97 research outputs found

    Design and Control of Compliant Tensegrity Robots Through Simulation and Hardware Validation

    Get PDF
    To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center has developed and validated two different software environments for the analysis, simulation, and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ("tensile-integrity") structures have unique physical properties which make them ideal for interaction with uncertain environments. Yet these characteristics, such as variable structural compliance, and global multi-path load distribution through the tension network, make design and control of bio-inspired tensegrity robots extremely challenging. This work presents the progress in using these two tools in tackling the design and control challenges. The results of this analysis includes multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures. The current hardware prototype of a six-bar tensegrity, code-named ReCTeR, is presented in the context of this validation

    Super Ball Bot - Structures for Planetary Landing and Exploration, NIAC Phase 2 Final Report

    Get PDF
    Small, light-weight and low-cost missions will become increasingly important to NASA's exploration goals. Ideally teams of small, collapsible, light weight robots, will be conveniently packed during launch and would reliably separate and unpack at their destination. Such robots will allow rapid, reliable in-situ exploration of hazardous destination such as Titan, where imprecise terrain knowledge and unstable precipitation cycles make single-robot exploration problematic. Unfortunately landing lightweight conventional robots is difficult with current technology. Current robot designs are delicate, requiring a complex combination of devices such as parachutes, retrorockets and impact balloons to minimize impact forces and to place a robot in a proper orientation. Instead we are developing a radically different robot based on a "tensegrity" structure and built purely with tensile and compression elements. Such robots can be both a landing and a mobility platform allowing for dramatically simpler mission profile and reduced costs. These multi-purpose robots can be light-weight, compactly stored and deployed, absorb strong impacts, are redundant against single-point failures, can recover from different landing orientations and can provide surface mobility. These properties allow for unique mission profiles that can be carried out with low cost and high reliability and which minimizes the inefficient dependance on "use once and discard" mass associated with traditional landing systems. We believe tensegrity robot technology can play a critical role in future planetary exploration

    Design and computational aspects of compliant tensegrity robots

    Get PDF

    A survey on policy search algorithms for learning robot controllers in a handful of trials

    Get PDF
    Most policy search algorithms require thousands of training episodes to find an effective policy, which is often infeasible with a physical robot. This survey article focuses on the extreme other end of the spectrum: how can a robot adapt with only a handful of trials (a dozen) and a few minutes? By analogy with the word "big-data", we refer to this challenge as "micro-data reinforcement learning". We show that a first strategy is to leverage prior knowledge on the policy structure (e.g., dynamic movement primitives), on the policy parameters (e.g., demonstrations), or on the dynamics (e.g., simulators). A second strategy is to create data-driven surrogate models of the expected reward (e.g., Bayesian optimization) or the dynamical model (e.g., model-based policy search), so that the policy optimizer queries the model instead of the real system. Overall, all successful micro-data algorithms combine these two strategies by varying the kind of model and prior knowledge. The current scientific challenges essentially revolve around scaling up to complex robots (e.g., humanoids), designing generic priors, and optimizing the computing time.Comment: 21 pages, 3 figures, 4 algorithms, accepted at IEEE Transactions on Robotic

    Safe Supervisory Control of Soft Robot Actuators

    Full text link
    Although soft robots show safer interactions with their environment than traditional robots, soft mechanisms and actuators still have significant potential for damage or degradation particularly during unmodeled contact. This article introduces a feedback strategy for safe soft actuator operation during control of a soft robot. To do so, a supervisory controller monitors actuator state and dynamically saturates control inputs to avoid conditions that could lead to physical damage. We prove that, under certain conditions, the supervisory controller is stable and verifiably safe. We then demonstrate completely onboard operation of the supervisory controller using a soft thermally-actuated robot limb with embedded shape memory alloy (SMA) actuators and sensing. Tests performed with the supervisor verify its theoretical properties and show stabilization of the robot limb's pose in free space. Finally, experiments show that our approach prevents overheating during contact (including environmental constraints and human contact) or when infeasible motions are commanded. This supervisory controller, and its ability to be executed with completely onboard sensing, has the potential to make soft robot actuators reliable enough for practical use

    Model-based and Model-Free Robot Control : A Review

    Get PDF
    Robot control is one of the key aspects of robotics research. Models are essential tools in robotics, such as the robot’s own body dynamics and kinematics models, actuator/motor models, and the models of external controllable objects. In this paper, we review the latest advances in model-based and model-free ap-proaches with a strong focus on robot control. Based on the designed search strategy, several prevailing control approaches are classified and discussed ac-cording to their control strategies. An insight into the gripper control is also explored. Then the research problems and applicability of the control methods are discussed by investigating their merits and demerits. Based on the discussion, we summarize the challenges and future research trends of robot control

    Motion Generation and Planning System for a Virtual Reality Motion Simulator: Development, Integration, and Analysis

    Get PDF
    In the past five years, the advent of virtual reality devices has significantly influenced research in the field of immersion in a virtual world. In addition to the visual input, the motion cues play a vital role in the sense of presence and the factor of engagement in a virtual environment. This thesis aims to develop a motion generation and planning system for the SP7 motion simulator. SP7 is a parallel robotic manipulator in a 6RSS-R configuration. The motion generation system must be able to produce accurate motion data that matches the visual and audio signals. In this research, two different system workflows have been developed, the first for creating custom visual, audio, and motion cues, while the second for extracting the required motion data from an existing game or simulation. Motion data from the motion generation system are not bounded, while motion simulator movements are limited. The motion planning system commonly known as the motion cueing algorithm is used to create an effective illusion within the limited capabilities of the motion platform. Appropriate and effective motion cues could be achieved by a proper understanding of the perception of human motion, in particular the functioning of the vestibular system. A classical motion cueing has been developed using the model of the semi-circular canal and otoliths. A procedural implementation of the motion cueing algorithm has been described in this thesis. We have integrated all components together to make this robotic mechanism into a VR motion simulator. In general, the performance of the motion simulator is measured by the quality of the motion perceived on the platform by the user. As a result, a novel methodology for the systematic subjective evaluation of the SP7 with a pool of juries was developed to check the quality of motion perception. Based on the results of the evaluation, key issues related to the current configuration of the SP7 have been identified. Minor issues were rectified on the flow, so they were not extensively reported in this thesis. Two major issues have been addressed extensively, namely the parameter tuning of the motion cueing algorithm and the motion compensation of the visual signal in virtual reality devices. The first issue was resolved by developing a tuning strategy with an abstraction layer concept derived from the outcome of the novel technique for the objective assessment of the motion cueing algorithm. The origin of the second problem was found to be a calibration problem of the Vive lighthouse tracking system. So, a thorough experimental study was performed to obtain the optimal calibrated environment. This was achieved by benchmarking the dynamic position tracking performance of the Vive lighthouse tracking system using an industrial serial robot as a ground truth system. With the resolution of the identified issues, a general-purpose virtual reality motion simulator has been developed that is capable of creating custom visual, audio, and motion cues and of executing motion planning for a robotic manipulator with a human motion perception constraint

    A Survey on Reservoir Computing and its Interdisciplinary Applications Beyond Traditional Machine Learning

    Full text link
    Reservoir computing (RC), first applied to temporal signal processing, is a recurrent neural network in which neurons are randomly connected. Once initialized, the connection strengths remain unchanged. Such a simple structure turns RC into a non-linear dynamical system that maps low-dimensional inputs into a high-dimensional space. The model's rich dynamics, linear separability, and memory capacity then enable a simple linear readout to generate adequate responses for various applications. RC spans areas far beyond machine learning, since it has been shown that the complex dynamics can be realized in various physical hardware implementations and biological devices. This yields greater flexibility and shorter computation time. Moreover, the neuronal responses triggered by the model's dynamics shed light on understanding brain mechanisms that also exploit similar dynamical processes. While the literature on RC is vast and fragmented, here we conduct a unified review of RC's recent developments from machine learning to physics, biology, and neuroscience. We first review the early RC models, and then survey the state-of-the-art models and their applications. We further introduce studies on modeling the brain's mechanisms by RC. Finally, we offer new perspectives on RC development, including reservoir design, coding frameworks unification, physical RC implementations, and interaction between RC, cognitive neuroscience and evolution.Comment: 51 pages, 19 figures, IEEE Acces

    Incorporating prior knowledge into deep neural network controllers of legged robots

    Get PDF

    Distributed Actuation and Control for Morphing Structures

    Get PDF
    corecore