1,220 research outputs found

    Robust Adaptive Repetitive and Iterative Learning Control for Rotary Systems Subject to Spatially Periodic Uncertainties

    Get PDF
    This book chapter reviews and summarizes the recent progress in the design of spatial‐based robust adaptive repetitive and iterative learning control. In particular, the collection of methods aims at rotary systems that are subject to spatially periodic uncertainties and based on nonlinear control paradigm, e.g., adaptive feedback linearization and adaptive backstepping. We will elaborate on the design procedure (applicable to generic nth‐order systems) of each method and the corresponding stability and convergence theorems

    Relaxing Fundamental Assumptions in Iterative Learning Control

    Full text link
    Iterative learning control (ILC) is perhaps best decribed as an open loop feedforward control technique where the feedforward signal is learned through repetition of a single task. As the name suggests, given a dynamic system operating on a finite time horizon with the same desired trajectory, ILC aims to iteratively construct the inverse image (or its approximation) of the desired trajectory to improve transient tracking. In the literature, ILC is often interpreted as feedback control in the iteration domain due to the fact that learning controllers use information from past trials to drive the tracking error towards zero. However, despite the significant body of literature and powerful features, ILC is yet to reach widespread adoption by the control community, due to several assumptions that restrict its generality when compared to feedback control. In this dissertation, we relax some of these assumptions, mainly the fundamental invariance assumption, and move from the idea of learning through repetition to two dimensional systems, specifically repetitive processes, that appear in the modeling of engineering applications such as additive manufacturing, and sketch out future research directions for increased practicality: We develop an L1 adaptive feedback control based ILC architecture for increased robustness, fast convergence, and high performance under time varying uncertainties and disturbances. Simulation studies of the behavior of this combined L1-ILC scheme under iteration varying uncertainties lead us to the robust stability analysis of iteration varying systems, where we show that these systems are guaranteed to be stable when the ILC update laws are designed to be robust, which can be done using existing methods from the literature. As a next step to the signal space approach adopted in the analysis of iteration varying systems, we shift the focus of our work to repetitive processes, and show that the exponential stability of a nonlinear repetitive system is equivalent to that of its linearization, and consequently uniform stability of the corresponding state space matrix.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133232/1/altin_1.pd

    Smart Mechanical Ventilators:Learning for Monitoring and Control

    Get PDF

    Smart Mechanical Ventilators:Learning for Monitoring and Control

    Get PDF

    Robust Control

    Get PDF
    The need to be tolerant to changes in the control systems or in the operational environment of systems subject to unknown disturbances has generated new control methods that are able to deal with the non-parametrized disturbances of systems, without adapting itself to the system uncertainty but rather providing stability in the presence of errors bound in a model. With this approach in mind and with the intention to exemplify robust control applications, this book includes selected chapters that describe models of H-infinity loop, robust stability and uncertainty, among others. Each robust control method and model discussed in this book is illustrated by a relevant example that serves as an overview of the theoretical and practical method in robust control

    Spatially Sampled Robust Repetitive Control

    Get PDF

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Optimization-based iterative learning for precise quadrocopter trajectory tracking

    Get PDF
    Current control systems regulate the behavior of dynamic systems by reacting to noise and unexpected disturbances as they occur. To improve the performance of such control systems, experience from iterative executions can be used to anticipate recurring disturbances and proactively compensate for them. This paper presents an algorithm that exploits data from previous repetitions in order to learn to precisely follow a predefined trajectory. We adapt the feed-forward input signal to the system with the goal of achieving high tracking performance—even under the presence of model errors and other recurring disturbances. The approach is based on a dynamics model that captures the essential features of the system and that explicitly takes system input and state constraints into account. We combine traditional optimal filtering methods with state-of-the-art optimization techniques in order to obtain an effective and computationally efficient learning strategy that updates the feed-forward input signal according to a customizable learning objective. It is possible to define a termination condition that stops an execution early if the deviation from the nominal trajectory exceeds a given bound. This allows for a safe learning that gradually extends the time horizon of the trajectory. We developed a framework for generating arbitrary flight trajectories and for applying the algorithm to highly maneuverable autonomous quadrotor vehicles in the ETH Flying Machine Arena testbed. Experimental results are discussed for selected trajectories and different learning algorithm parameter
    • 

    corecore