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Abstract

This thesis mainly focuses on the motion control problems of the wearable lower limb

exoskeleton robot. Firstly, by approximating the ideal human gait as a cyclic signal, the

motion control problem of the exoskeleton robot is converted to a tracking problem in

a series of fixed and finite time intervals, where each interval represents a gait cycle.

Then, a novel iterative learning control algorithm has been proposed. The proposed

algorithm combines the concept of feedback linearization with the iterative learning

control method and has advantages in response speed, tracking accuracy, and error con-

vergence rate. Relative simulation results are given to demonstrate the effectiveness of

the proposed algorithm. Finally, the adaptive oscillator method which is also feasible for

the problem has been introduced and a comparison between the two methods is given.

Both advantages and disadvantages of the proposed iterative learning control algorithm

are discussed.
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Chapter 1

Introduction

1.1 Background

The desire to be physically powerful has a long history for human beings. In ancient

times, having a stronger body usually means higher efficiency in hunting, gathering, or

fishing. Later, when human beings become more civilized, a stronger body may imply

being more productive in farming or working and a better chance to prevail over others

in battle, all of which will contribute to a higher possibility of survival [1]. Hence, hav-

ing a more sturdy, more muscular physique has been a target of people for thousands

of years, even throughout the entire history of the human race. In the past, efforts to

improve body strength generally include doing physical exercises and sport, as well as

having a more balanced diet. Though these methods can be quite effective, there always

exists an upper bound for their final results, which is, in fact, the physiological limita-

tions of human bodies. For example, the condition of the human respiratory system will

influence the endurance exercise performance of the human body [2], and the bones,

muscles, and ligaments will influence the safety load of human limbs [3]. Those are

22



CHAPTER 1. INTRODUCTION 23

the limitations that can not be overcome by the human body itself. People have to think

of using new machines and new technologies to break those barriers. In modern times,

many have laid their eyes down on robots, especially the exoskeleton robot.

The concept of building an exoskeleton robot has been growing for more than one hun-

dred years [4]. In the early stage of its development, the progress is minor. It was

only until the 1960s after the modern robots have been transferred from science fiction

to reality [5], that the research of exoskeletons had been sped up. During the last two

decades, the rapid development of mechanic, electrical and electronic technologies has

accelerated the evolution of exoskeleton robots on a massive scale. A great rise has

been witnessed in the number of functional exoskeleton robots. They have been used

not only as a common tool in manufacturing industries but also as helpful assistants

in health care, rescue service, heavy load carrying, rehabilitation, and many other as-

pects [6]. The flourishing research of relative control problems has also improved the

performance of the new exoskeleton robots, benefiting them to better enhance the capa-

bility of human bodies and overcome their physical limitations, which has led to a wider

market of those exoskeleton robots as well.

The exoskeleton robots are defined as a group of wearable devices that can be attached

to human bodies as extra skeleton systems in order to improve the human body per-

formance in physical tasks [7]. Some pioneer studies of exoskeleton robots were also

started in the late 1960s [8]. However, those more practical and reliable cases were

mainly started in the last two decades, including some prototype exoskeleton robots built

by the Israels [9], the Hybrid Assistive Limb (HAL) robot by the Japanese [10], the Ad-

vanced Lower Extremity Exoskeleton (ALEX) robot by the University of Melbourne in

Australia [11], and the Berkeley Lower Extremity Exoskeleton (BLEEX) project carried

out by the University of California, Berkeley, America [12]. Aside from these, many

other companies and institutions have begun their researches on exoskeleton robots in
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recent years. These studies include exoskeleton robots for both upper and lower limbs

and cover a wide range of real-life application scenarios, such as rehabilitation, health

care, walking assistance, and human power enhancement [13, 14].

Since the wearable exoskeleton robots have achieved great outcomes in providing as-

sistance to human movements and augmentation of physical endurance, it is predictable

that more relative researches will be carried out in future years. Further development

with new types and models will also be continued. Hence, the study of relative control

problems in exoskeleton robots will be of great importance as well.

1.2 Motivation

Exoskeletons are not equal to exoskeleton robots. In fact, exoskeletons can be catego-

rized in several ways [15]. According to the presence of actively powered actuators or

not, they are classified as active powered exoskeletons and passive exoskeletons. Usu-

ally only the former will be regarded as exoskeleton robots, which is also the research

focus of this thesis as well.

In general, the passive exoskeletons use springs and dampers or other mechanical actu-

ation to store and restore energy in order to drive the exoskeleton system [16]. Since the

passive exoskeletons do not require any external power source, they take advantages in

terms of simplicity, reliability, low cost, and much longer working endurance [17–19].

However, compared to the actively powered exoskeletons, the passive exoskeletons have

reduced function and performance capabilities, providing a lower level of assistance

than the active exoskeletons. Besides that, the passive exoskeletons need their users to

execute the movement and provide a portion of the driving force to work. Hence they

are less suitable in some circumstances, such as rehabilitation, where the users may lack
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sufficient strength to perform the activities required. In this case, despite the fact that

some of the burdens have been relieved, they may still find the remaining part of the

driving force exhausting or tiring enough.

On the contrary, actively powered exoskeletons, specifically the exoskeleton robots,

are more capable of providing firm assistance for human movements. The actuators

mounted on the exoskeleton robots can generate proper assistant torques depending on

the user posture and external load. By adjusting the control strategy, exoskeleton robots

are more flexible in dealing with different task conditions. They have more potential in

generating larger supporting forces and superior versatility as well [20]. Exoskeleton

robots are also more advanced than human beings in precision and repeatability, which

makes them suitable for physical rehabilitation applications and therefore reduces the

work burden of relative staff [11]. In industrial applications, exoskeleton robots have

reduced the physical load on human limbs for a wide range of occupational activities

and various postures [21]. In the meantime, extensive researches and applications of

exoskeleton robots have also promoted the study of relative control issues and proposed

many special requirements.

The actual design of an exoskeleton robot varies with its purpose, relative body part,

structure, and the power technology applied. It can be used for rehabilitation, protection,

enhancement, or assistance purpose. It can cover only one hand, one leg, the entire

upper or lower limbs, or even the whole body. Its structure can be hard-body or soft

suit, while the power source of its actuators can be hydraulic, pneumatic, electrical, or

mechanical [15]. The numerous variations of exoskeleton robots have raised different

requirements for the control design of each specific exoskeleton type. But they still

share many things in common.

On the one hand, the structure of hard-body exoskeleton robots, one of the focuses of
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this thesis, has a certain level of similarities to the normal humanoid robots or robotic

manipulators. They both usually consist of a series of links connected by revolving

joints [22], while the joints are driven by powered actuators. They both need the angle

sensors and accelerometers mounted on the body of robots to provide relative motion

data, then to make the corresponding links to trace certain trajectories. Hence, the

control designs of exoskeleton robots can be similar to normal robotic manipulators in

some aspects, including dynamic model building, joint actuator control, motion control,

and trajectory following.

On the other hand, there are numerous unique problems in the control of exoskeleton

robots. One major difference between exoskeleton robots and traditional robotic ma-

nipulators is that exoskeletons are attached to human limbs, which as a result, brings

an extra requirement in human-robot interaction. Instead of interfering with each other,

human limbs and the exoskeleton robots should have a high degree of collaboration.

Following that, one of the main motivations for investigating the control problems of

exoskeleton robots is to achieve better coordination between the exoskeleton robot and

human limbs [23, 24].

Therefore, the objective of the control issues of exoskeleton robots is to perform a faster,

more accurate response to the designated trajectory, while the movement of the ex-

oskeleton should coordinate with human limbs to make the user feel more comfortable.

As the iterative learning based algorithm can adapt to the variation in references, fit to

the different parameters in the model, and achieve high control accuracy after a few

iterations, it is suitable to be applied in such scenarios.

Meanwhile, the control scheme should not be too complicated in order to achieve a

higher speed of operation and better performance. The computational capability needed

for the scheme should be low to reduce the cost of the exoskeleton-board processor so



CHAPTER 1. INTRODUCTION 27

that the exoskeleton can be more affordable. The iterative learning based algorithm has

much lower computational requirements than other learning algorithms while it can still

do online learning and have good control performance. All those things have inspired

the research of this thesis.

1.3 Contributions

The research investigates the motion control problem of the lower limb exoskeleton

robots. The main contributions of this thesis are summarised as follows:

• A novel iterative learning based control algorithm has been proposed to deal with

the motion control problem of the lower limb exoskeleton robots. The proposed

algorithm has advantages in response speed and error convergence rate compared

to traditional iterative learning control algorithms.

• The proposed novel algorithm has introduced the feedback linearization method

to deal with the nonlinearity that exists in the system model to achieve a better

control performance. Such a method has improved the average error value, error

convergence rate, and algorithm robustness as well.

• The proposed algorithm has been applied to a model of the lower limb exoskele-

ton robot with nonlinear dynamics. Compared to other linearization methods,

the proposed algorithm is more effective while its calculation is not complicated.

The nonlinearities in the dynamic model will usually lead to a reduction of per-

formance for the normal iterative learning algorithms. However, the proposed

algorithm can handle those nonlinearities and perform a satisfactory result.

• An adaptive oscillator based control algorithm for the exoskeleton robot has also
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been designed, which is another feasible method for this application. The pro-

posed algorithm has demonstrated its advantages in tracking accuracy and error

convergence rates. A comparison between the adaptive oscillator based method

and the iterative learning based method has been carried out.

1.4 Thesis Outline

The organization of each chapter is described in detail at the beginning of those chapters.

To understand the structure of the entire thesis, a general overview is presented in this

section.

Chapter 1 Introduction. Brief overviews of the background and motivations for the

development of the exoskeleton robot are shown in this chapter, as well as its motion

control problems.

Chapter 2 Review and problem descriptions. The studies of the exoskeleton robot and its

motion control problems over the past few decades have been reviewed in this chapter.

The two main methods discussed in this thesis, the iterative learning control method and

the adaptive oscillator method, have also been introduced.

Chapter 3 Preliminaries. The background preliminaries related to the iterative learning

control method and the motion control problem of the exoskeleton robots are introduced

in this chapter. A dynamic model for human lower limbs and exoskeleton limbs has been

established. Finally, the acquisition of the human gait data which serves as the reference

signal to the exoskeleton robot has also been presented.

Chapter 4 Iterative learning control for the shank part of the lower limb exoskeleton. A

novel iterative learning algorithm is proposed to deal with the motion control problem
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of the lower limb exoskeleton robot. The proposed algorithm combines the feedback

linearization principle with the original ILC algorithms and demonstrates an obvious

advantage in error convergence rate. Simulation results are given to verify the effective-

ness of the algorithm.

Chapter 5 Adaptive oscillator control for lower limb exoskeleton. Another feasible

method for the problem, the adaptive oscillator method, is introduced in this chapter.

A comparison between the adaptive oscillator method and the iterative learning method

is carried out, as well as relative simulation results. The advantages and disadvantages

of both methods are introduced.

Chapter 6 Conclusions and future works. This chapter concludes the contributions and

the main results of this thesis. The possible remaining works and future research topics

are discussed for further studies.

1.5 Conclusion

This chapter firstly introduces the background of exoskeleton robot studies as well as

its motivations. Then, the main contributions of the thesis are summarised. Finally, the

overall structure of the thesis is outlined by chapters.



Chapter 2

Review and Problem Descriptions

Over the last few decades, researches into the control issues of exoskeleton robots have

expanded rapidly. This chapter briefly introduces the motion control problem of lower

limb exoskeleton robots, as well as the two main control methods used in this thesis to

address it. Section 2.1 is the introduction to the motion control problem. Section 2.2

provides a review of the two main control methods. Section 2.3 summarizes the chapter.

2.1 Motion Control Problem of the Lower Limb Exoskele-

ton Robot

Despite their flexibility in most scenarios in daily life, human bodies are still facing

physical limitations in many cases. The strength of muscles and bones is strongly de-

pendent on the age and health conditions of the relative human body. Sometimes they

might also be overburdened by heavy loads. The demands of overcoming those physical

30
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limitations have motivated the development of wearable exoskeleton robots. By imitat-

ing the human skeleton with an additional exoskeleton robot system, the exoskeleton can

reduce the load and energy consumption of its wearer during the movement, extend the

walking distance and duration of the elder, mitigate the burden of workers, and provide

medical rehabilitation service for those who have physical disabilities [11,25–27]. In the

recent decade, the studies of exoskeleton robots from both the hardware and control al-

gorithm aspects have drawn the attention of many researchers. Some of the researchers

have also built several prototypes of exoskeleton robots and performed a lot of tests on

their designs, structures, sensors, power sources, and control schemes [6, 7, 28–31].

The normal components of a lower limb exoskeleton robot are demonstrated in Figure

2.1. It usually includes the assistant actuators on the hip joint and knee joints, support-

ing structures along the thigh part, shank part, and foot part of the human lower limb,

the holding structure around hip position, the power unit drives the entire exoskeleton

system, as well as the controller that controls the actuators and manages the power sup-

ply [32–36]. There is no actuator on the ankle positions because the ankle joints of the

exoskeleton are usually not power-assisted. Other payloads are usually positioned on

the back of the wearer and supported by the exoskeleton structure.

The control system design of the exoskeleton robot is of great importance. A general

scheme of the control system is demonstrated in Figure 2.2. The main functions of

the controller are as follows: drive and control the joint actuators, control the motion

of the exoskeleton robot, monitoring the motion and mechanical status for both the

wearer and the exoskeleton robot, manage the power supply, and communicate with

the host computer if necessary. To accomplish these functions, the control system of

the exoskeleton robot usually includes several modules: the motion control module, the

motion measurement module, the joint actuator drive and control module, the power

management module, and the communication module [34, 37–40].
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Figure 2.1: A Conceptual Sketch for the Components of A Lower Limb Exoskeleton.
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The motion control module and the joint actuator control module work as a cascade

close-loop control system, where the joint actuator control module serves as the inner

loop and the motion control module as the outer loop. The motion control module shall

calculate proper trajectories for the exoskeleton limbs, provide a designated level of

assistance, and make sure the movement of exoskeleton limbs can coordinate with the

body of the wearer.

In the meantime, the motion measurement module shall detect the motion status for

both the wearer and the exoskeleton limb, and provide these data as feedback signals to

the motion control module. The power management module is responsible for providing

enough power to drive all the control modules and actuators. Finally, the communication

module can collect data from other modules and send them back to the host computer for

storage and analysis. If necessary, it can also receive commands from the host computer

and transmit those indications to the motion control module.

The kinds of actuators mounted on the exoskeleton vary according to the design of

the exoskeleton. They can be hydraulic [41, 42], pneumatic [43, 44], electrical [45,

46], electroactive polymers [47, 48], etc. while electrical motors are the most common

selection [15]. Whatever type the actuators are, their purpose must drive the joints and

limbs of the exoskeleton while following the trajectory proposed in the motion control

part.

The motion control module of the exoskeleton robot plays the most important role in de-

ciding the effectiveness of the assistance and whether the wearer is comfortable. How-

ever, the control objectives are different for exoskeleton robots depending on their pur-

poses and the relative body segments they are covering. For the upper limb exoskeleton

robots, their main application fields are rehabilitation, power assist, human strength

amplification, and haptic interactions [49–51]. Except for the rehabilitation cases, the
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main control objectives for most upper limb application cases are to identify human mo-

tion intention correctly and to perform proper assistance based on such intention. The

motions of human upper limbs are usually not highly repetitive. In the meantime, the

complexity of the human upper limb anatomic structure and the flexibility of upper limb

motions make the problem even more complicated [52].

But for lower limb exoskeleton robots, the conditions for the control algorithm design

are different. Rehabilitation has become the major application field of lower limb ex-

oskeleton robots, where the motions of exoskeleton robots are usually periodic in these

cases [53–55]. Besides, the human walking gait itself is very close to a periodic signal,

though the characteristics are distinct for each individual [56, 57]. Hence even for the

cases that the lower limb exoskeleton robots are not designed for rehabilitation purposes,

for example, in walking endurance enhancement cases and heavy load carry cases, the

motions of both human lower limbs and the exoskeleton robots are still highly repetitive.

Such a repetitive characteristic can benefit the control design of lower limb exoskeleton

robots on a great scale. Also, the degree of freedom requirement in exoskeletons de-

sign for the lower limb is less than the requirement of upper limbs [58, 59], which can

simplify the control design as well.

One of the key features of the motion control design of the lower limb exoskeleton

robots is determining how the exoskeleton robots should cooperate with the human

limbs. The control method is usually chosen based on the status of cooperation and

the design purpose of the exoskeleton robots.

On the one hand, if the exoskeleton robots are supposed to assist the wearers who still

have their walking abilities or to improve the performances of the wearers in specific

conditions, the wearers’ decision on motion will have a much higher weight in motion

control of the exoskeleton robots. For such a mode, the flowchart of the exoskeleton
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control algorithm is shown in Figure 2.3. In a few cases, the exoskeleton robots have

totally handed the motion control role to the wearers, as their motions are, in fact, fully

driven by the wearers. The exoskeleton robot will support the payload, while their

algorithms are simply designed to follow any movement of the wearers [60]. In other

cases, The control signals can be derived from the wearer based on various measurement

methods, including the joint torque signal of the wearer [61–63], the interactive force

between the exoskeleton robot and the body of the wearer [64, 65], and the sensitivity

function from the wearer to the exoskeleton robot [29]. Also, there are many others that

are designed to be controlled by the biological signals of the wearer, including surface

Electromyography (EMG) signals [66–68] and brain-machine interface [69–72].

On the other hand, if the exoskeleton robots are supposed to assist the wearers who have

damaged or even already lost their walking abilities, for example, in rehabilitation cases

[73], the exoskeleton robots selves will then play the decisive role in motion control. For

such a mode, the flowchart of the exoskeleton control algorithm is shown in Figure 2.4

In these cases, their motion control algorithms are usually designed to follow predefined

trajectories that are imitating normal human gaits. The amplitude, frequency, and stride

length of the gait can be adjusted in order to fit the specific gait characteristics of the

wearer. Then, the control protocol can be derived based on either the position tracking

error [74] or the joint angle tracking error [75].

Naturally, when a human walks forward straight and steadily on even ground at a con-

stant speed, the general walking status can be regarded as a periodic procedure [76–78],

and the time length of each period is the time length of each gait. According to the

coordinate system rigidly fixed on the human body, during such a procedure, the po-

sition changing procedure and the joint angle variations of the lower limbs can be ap-

proximated as periodical signals [79–81]. These periodic gait signals can serve as the

reference signals in the motion control problem of the exoskeleton robots. In this way,
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the motion control problem of the lower limb exoskeleton robots can be transformed

into a reference tracking problem in a fixed time interval. Therein, the time length of

each interval is given by the period time of each gait cycle, and the reference trajecto-

ries will be the position data or joint angle data obtained from each period of the general

periodical human gait.

However, since the development of practical and reliable exoskeleton robots was mainly

started in just one or two decades, while these techniques also have not been widely ap-

plied in industrial and daily life scenarios, there is currently no international standard for

the assessment of exoskeleton yet. In this thesis, the assessment features of the control

algorithms include response speed, error convergence rate, final tracking accuracy, and

robustness. The tracking error should be less than 5% while such a response should be

obtained in no more than 5 iterations. The final tracking error after 50 iterations should

be less than 2%. In order to deal with such a tracking problem, two main methods are

introduced in this thesis, the iterative learning control method and the adaptive oscillator

method, respectively.

2.2 Applied Motion Control Methods

For the motion control problem of the lower limb exoskeleton robot proposed in the

previous section, the key is to perform an ideal tracking for the exoskeleton robot to

follow the target gait trajectory during each period. In the meantime, the calculation

procedure of the motion control algorithm should not occupy too many computational

resources from the robot-board microprocessor, such that the system cost can be reduced

and the response can be sped up. Hence, two main control methods have been studied

in this thesis to solve this problem.
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2.2.1 Iterative Learning Control Method

The study of Iterative Learning Control (ILC) can be traced back to the early 1980s

[82, 83]. The concept of ILC is that, for systems that have to complete the same task

repetitively, the knowledge obtained from the previous control trials should be used in

order to design a better control protocol for the next trial [84]. For example, an indus-

trial manipulator has to execute an action repeatedly during a certain working period on

an assembly line. The working period is long enough and can be divided into a series

of fixed and finite time intervals, the length of which is the time required for the manip-

ulator to accomplish the proposed action once. Then, with the help of the ILC method,

the control performance of the manipulator can be improved iteratively by learning the

control result from the previous time interval. As the number of iterations increases, the

tracking error between the system response and reference will decrease.

ILC methods can be categorized in many ways [85, 86]. From the way of dealing with

previous error data, or in other words, from the form of updating laws, there are many

kinds of ILC algorithms including Proportional-Type (P-Type) [87], Derivative-Type

(D-Type) [88], Proportional-Integral-Type (PI-Type) [89], Proportional-Derivative-Type

(PD-Type) [90], and Proportional–Integral–Derivative-Type (PID-Type) [91], which has

a similar categorization way like the general PID controllers. Combining the optimiza-

tion methods with ILC, there are Norm Optimal Iterative Learning Control (NOILC)

[92] and quadratic ILC [93]. Besides, there are also many studies covering different

aspects of ILC design, including disturbance rejection [94], measurement noise [95],

non-minimum phase [96], time delay [97], robustness [98], etc. Although the detailed

implementation of ILC varies, they still share the same major feature that the perfor-

mance of the system will be generally improved with the control errors obtained from

previous control trials. Also, prior knowledge of the system model is not essential for

the ILC method, though it can perform better if the model is known [99].
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Such properties of the ILC methods soon lead to their applications in robotics, especially

when the robot has to execute routine orders in a repetitive process. Typical applica-

tion scenarios of the ILC methods include gantry robots [92], conveyor systems [100],

Permanent-Magnet Synchronous Machine (PMSM) [101], and obviously the industrial

manipulators [102–104] as well. The ILC method has presented a high level of tracking

accuracy in those applications.

For the motion control problem of lower limb exoskeleton robots, the periodical char-

acteristic of the human gait trajectory has made it suitable for the application of the ILC

methods. Each step during walking can be regarded as a time interval, while the gait

trajectory data of the wearer and the exoskeleton robot obtained from the previous step

can be used in improving the performance of the exoskeleton robot during the next step.

Compared to the traditional control methods, the ILC methods are more advanced in

eliminating the phase lag and achieving a better tracking result. Also, if the gait pattern

of the wearer changes during walking, the coefficients of the controller do not have to

be readjusted since the ILC controller can generally adapt to the new gait pattern as

the walking procedure continues. Furthermore, unlike the neural network based control

methods, the ILC methods do not need any time-consuming training procedure in ad-

vance. The learning procedure of the ILC methods can be carried online. In addition,

not only the computing time but also the computational resources needed for the ILC

methods are much less than those of the neural network based methods, which makes

it much easier for the ILC methods to be carried out by exoskeleton board processors.

By reducing the requirement of the processors, the cost of the entire exoskeleton robot

system can also be reduced.

Still, the common ILC methods also have their drawbacks. It can be hard for the ILC

methods to obtain a stable control output if the dynamics of the system have strong

nonlinearities. Meanwhile, if the learning parameters of the ILC algorithms have not
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been properly adjusted, sometimes the error convergence rates of the ILC methods can

be very slow, or even goes unstable. To solve these problems, the novel ILC method is

proposed in this thesis.

2.2.2 Adaptive Oscillator Method

The Adaptive Oscillator (AO) method is another way that fits for dealing with the mo-

tion control problem of the exoskeleton robots. The theory of adaptive oscillators has

been studied by researchers since the 1990s [105]. By its features, an oscillator can

be generally regarded as an autonomous dynamic system with one or more limit cycle

attractors [106]. Then, adaptive oscillators are special forms of oscillators that have

the ability to synchronize with other oscillators or external periodic signals [107, 108].

Compared to the normal oscillators, the adaptive oscillator has added extra dynamics

to its parameters, which lead to an effective learning mechanism for the frequency. In

this way, the frequency of the adaptive oscillator can generally adapt to the frequency

of the input external periodic signal and maintain it even after the external periodic sig-

nal disappeared [109]. Due to their ability to learn external frequency signals, adaptive

oscillators have been widely applied in the signal processing fields, including beat per-

ception [110], pattern generator [111], noise filter [112], vibration compensation [113],

and robotics [114, 115].

Oscillators are said to be coupled if they interact with each other. By combining a

set of adaptive oscillators together, coupled adaptive oscillators can not only learn the

frequencies of the external signals but also imitate their amplitudes and patterns [116],

which has expanded their applications remarkably.

Because of these properties, the adaptive oscillator method is well suited for situations
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in which control systems must deal with a series of periodic signals. As stated in previ-

ous sections, the human gait signal is similar to a periodic signal for the motion control

problem of lower limb exoskeleton robots. The relative control signals for joint actua-

tors are periodical as well. The adaptive oscillators can learn the angle trajectories of

human lower limbs during normal gaits and generate corresponding control signals for

joint actuators. When the rhythm of gait changes, the adaptive oscillators can also learn

the new characteristics and adapt to the new rhythm in a short time interval [117, 118].

Similar to the ILC method, the adaptive oscillator method also has advantages in that the

learning process is online, no previous training is needed, and the exact system model

is not essential [114, 119, 120]. Another important feature of the adaptive oscillator

method is that it will not cause any phase lag during the control procedure [121, 122].

Meanwhile, the drawbacks of the adaptive oscillator are laid on response speed and final

control accuracy. The adaptive oscillator controller usually will have remaining errors,

which will become even more severe if the order of the adaptive oscillator is not high

enough. Since both the ILC method and adaptive oscillator method can be applied to

solve the control problem of the exoskeleton robot, their performances have also been

compared in this thesis.

2.3 Conclusion

This chapter introduced the motion control problem relative to the lower limb exoskele-

ton robot. Since human gait in stable status is similar to a periodical pattern, two main

methods have been introduced to deal with such a control problem, which are the ILC

method and the adaptive oscillator method. Both two methods have their disadvantages

as well, including response speed, control error, and the ability to deal with nonlineari-

ties. To improve these drawbacks, a novel ILC method is proposed in this thesis.



Chapter 3

Preliminaries

The study of the motion control problem of the exoskeleton robots is related to many

background preliminaries, including the establishment of the dynamic model for both

the exoskeleton robot limbs and the human lower limbs, the main algorithms of iterative

learning control, as well as the acquisition of the human gait data. Those background

preliminaries are introduced in this chapter. Section 3.1 presents the dynamic model of

the human lower limb which has been used in the simulation part of this thesis. Section

3.2 introduces the general principles of the ILC algorithms. Section 3.3 explains the

problems related to the acquisition of the human gait data. Section 3.4 summarizes the

chapter.

3.1 Robotic Model Analysis

This section introduces the fundamentals of the human-exoskeleton modelling. Though

have some unique characteristics, the modelling problem for the combination of the

44
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human limbs and the exoskeleton robots still has many features in common to gen-

eral rigid-body robotic models. The analytical methods for general robotic modelling

and analysis can still be applied to the exoskeleton robot and the human limbs, which

include the kinematic methods and dynamic methods. In this thesis, the dynamics anal-

ysis methods have been mainly used, and the dynamic model for the combination of

the human lower limb and the exoskeleton robot limb presented in this section will be

applied in the following chapters.

3.1.1 Kinematic Model

The kinematics of the robots can be defined as a branch of mechanics that deals with the

description of the motion of the robots without involving the forces that generate motion.

When it comes to the multi-body and joint mechanism of a robot, more specifically an

exoskeleton, its kinematics involves analysing the motion of each robot link relative

to the reference frame, which includes the analytical description of its movement as a

function of time, and the non-linear relationship between the robot end-effector position,

orientation, and robot configuration.

Then, In this case, the mobility of a multiple link robot is defined as the number of

independent parameters and the position of each link needs to be fully specified [123].

A specific robot configuration is a vector of realisable values for the independent pa-

rameters at a certain time slot. However, in the control algorithm study case, due to

the kinematic model of the exoskeleton can not take the forces and torques into con-

sideration, though kinematic analysis is still helpful for relative studies, it will be more

convenient to adopt the dynamic models for relative motion control algorithm designs.
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3.1.2 Dynamic Model

The study of the dynamics of an object is a part of the classical mechanics field, which

aims to research the objects from the view of motions and the causes of the motions,

such as forces. In the case of dynamic researches, there are two main ways to describe

the relationship between the motions and the forces, which are the forward dynamics

ways and the inverse dynamic ways.

The forward dynamic model of an object is its motions expressed by a function of the

forces and torques, which is summarised as follows:

p̈ = f(F ,T ),

ṗ =

∫
p̈dt,

p =

∫
ṗdt,

(3.1)

where p is the position vector of the object, ṗ the velocity vector, and p̈ the acceleration

vector. F and T represent the forces and torques that have been applied to the object

which lead to the designated motions.

In the mean time, the inverse dynamic model of an object is the forces F and torques T

that are needed to generate a designated motion given by the position p, velocity ṗ and

acceleration p̈:

[F ,T ] = g(p, ṗ, p̈). (3.2)

Considering a multiple link robot with N joint actuators, its dynamic model can be

described as a nonlinear second-order vector differential equation:

M (θ)θ̈ +C(θ, θ̇)θ̇ +G(θ) = τ − τd, (3.3)

where M(θ) ∈ RN×N is the square inertial matrix which is positive definite. θ, θ̇, θ̈ ∈

RN are the joint angle positions, joint angle velocities, and the joint angle accelerations
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respectively. C(θ, θ̇) ∈ RN represents the centrifugal and Coriolis forces. G(θ) ∈ RN

is the force related to gravity. τ ∈ RN is the torque serves as control input signal.

Finally, τd ∈ Rn describes the possible disturbances and noises.

3.1.3 Model of the Exoskeleton Robot and Lower Limbs

The overall model for the lower limb of the wearer, after wearing the exoskeleton robot,

can be regarded as a combination of the exoskeleton robot model and human lower limb

model, which means their dynamics, kinematics, and mechanical structures should be

considered together. For the exoskeleton robot aspect, its modelling is straightforward

since the structure of the exoskeleton robot has a lot in common with the robotic arms.

For the hard-body exoskeleton robot introduced in this thesis, the deformation of its

body during the motions are negligible compared to its size, which means its limbs can

be regarded as rigid bodies.

The typical structure of an exoskeleton robot is consisted of joints and links, while their

numbers depend on the actual design and purpose. Particularly, the structure of the

exoskeleton robot studied in this thesis is shown by the side view and front view in

Figure 3.1. As shown in the figure, it is a lower limb exoskeleton robot that has seven

body links and six joints. The seven body links, which are attached to the corresponding

human body segments, include a trunk link, two thigh links, two shank links, and two

foot links. l1 is the length of the thigh link while l2 is the length of the shank link.

The centre controller and power units are mounted on the trunk link. The six joints

contain two hip joints, two knee joints, and two ankle joints respectively. The Degree

of Freedom (DoF) designs for the three kinds of joints are different. The hip joints have

three DoF to provide a wider Range of Motion (RoM) and more flexibility for the entire

legs. The knee joints have only one DoF in order to enhance the structural strength of
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Figure 3.1: Side and Front Views of A Lower Limb Exoskeleton.
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the joints and simplify the mechanical design, as the knee joints usually will not twist

around the axes of legs during the normal walking process. Meanwhile, the ankle joints

also have three DoF to provide more wearing comfort, making up the total DoF of each

exoskeleton leg reaching seven.

Among those six joints, what is worth noting is that in rehabilitation cases usually only

the knee joints and one DoF of the hip joints of the exoskeleton will be power-assisted

by the actuators [53]. For rehabilitation exoskeleton robots, such a design is a balance

between performance and system complexity. During the normal walking process of

the wearer, the most torques for leg motions are provided by the muscles at the hip,

thigh, and shank positions [124]. By offering power assistance to the two DoF of hip

and knee joints, it is already enough for the exoskeleton to provide necessary assistant

torques for normal walking. The effectiveness of the waking assist will not considerably

increase even if the assistant actuators for more DoF have been added. Hence, in order

to simplify the motion control problem of the lower limb exoskeletons, it is reasonable

to model the exoskeleton legs as a 2-DoF 2-link rigid-body robot.

For the human lower limb aspect, with some reasonable assumptions, the methods used

to study the robots can also be applied to the analysis of human kinematics and dynam-

ics. For example, one of the most common assumptions is to assume the human limbs

during normal walking gait can also be regarded as rigid-body links. In reality, the hu-

man limbs are not right-body, and their deformation in length during normal walking

gait is larger than those of the robot limbs. But in exoskeleton cases, such errors are not

obvious. In the meantime, after the wearer wears on the exoskeleton robot, the limbs of

the wearer and the exoskeleton robot will be in fact tied together. The wearer will stand

on the foot links of the exoskeleton robot, and their motions will also be synchronized.

Also, at this stage, the main body parts of the wearer that will be focused on are the

thigh segments, shank segments, hip joint, and knee joints, as the trajectory of human
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lower limbs during normal walking is mainly determined by them. Hence, it is reason-

able to describe the dynamics of the human lower limbs via a 2-link rigid-body model,

where the feet segments are regarded as extensions of the shank segments in length.

The segments of the model are connected by joints that mimic the human joints in terms

of DoF and RoM. The dynamics of the ankle joints are not considered in this thesis to

simplifying the problem, as usually they are also not power-assisted by the actuators in

real designs.

For such a model, the relative anthropometric data needed are shown in Table 3.1 [125].

In this table, the weight and length for the corresponding limb segments are given in rel-

ative percentages, where M represents the mass of the entire human body, P represents

the distance is calculated from the proximal end of the segment, and H represents the

height of the entire human body.

Table 3.1: Anthropometric Data of Human Lower Limb Segments

Segment Centre of Mass Segment

Weight / Total Position / Length/ Total

Segment Body Weight Segment Length Body Height

Foot 0.0145 M 0.50 P 0.039 H

Shank 0.0465 M 0.433 P 0.246 H

Thigh 0.100 M 0.433 P 0.245 H

Foot and Shank 0.061 M 0.606 P 0.285 H

Total Leg 0.161 M 0.447 P 0.530 H

Pelvis 0.142 M 0.105 P 0.045 H

Hence, in this thesis, the final model for the combination of the human lower limb and

the exoskeleton robot is a 2-DoF 2-link rigid-body model, which is shown in Figure

3.2. Though the total DoF of the original combination is more than two, only the two

power-assisted DoF are considered as they are the major concerns. As demonstrated in
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Figure 3.2: Overall 2-Link Model of Lower Limbs.
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the figure, the thigh part and shank part of the combination is modelled as a rigid-body

link. According to Table 3.1, the Centre of Mass (CoM) for the foot, shank, and thigh

segments are all very close to the middle of its total length. Hence, it is reasonable to

regard the links of the rigid-body model as homogeneous links, whose CoM are located

in the middle of each link. The foot segment is regarded as a mass point attached to the

distal end of the second link, while the distance from its CoM to the ankle joint has been

added to the length of the link.

As demonstrated in Figure 3.2, l1 and l2 are the lengths of the first and second links,

which represent the lengths of the thigh segment and shank segment of the exoskeleton

robot respectively. lc1 and lc2 are the distances between the CoM and the proximal end

of the segments, which equal to half of the segment length l1 and l2. m1, m2 and m3 are

the weights of the thigh, shank, and foot segments respectively. θ1 is the hip joint angle

while θ2 is the knee joint angle. The two joint actuators of each leg is mounted on the

hip joint and knee joint, corresponding to angle θ1 and θ2.

In terms of the specific 2-DoF 2-link rigid-body model, its dynamic model can still be

described by the nonlinear equation (3.3), while the terms θ, τ , M , C, and G of the

equation are expressed as follows:

The angle vector θ defined by:

θ =

θ1
θ2

 , (3.4)

represents the joint angles for hip joint and knee joint.

The torque vector τ defined by:

τ =

τ1
τ2

 , (3.5)
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represents the joint torques generated by the hip and knee joint actuators of the ex-

oskeleton robot. Such torques serves as the control input signals to the 2-link model

system.

Afterwards,

M =

m11 m12

m21 m22

 , (3.6)

is a positive definite square matrix which represents the inertial of the system, where

m11,m12,m21,m22 are the elements of the square inertial matrix. These elements are

expressed by:

m11 = m1l
2
c1 +m2(l

2
1 + l2c2 + 2l1lc2 cos θ2) +m3(l

2
1 + l22 + 2l1l2 cos θ2),

m12 = m2(l
2
c2 + l1lc2 cos θ2) +m3(l

2
2 + l1l2 cos θ2),

m21 = m12,

m22 = m2l
2
c2 +m3l

2
2.

(3.7)

Then,

C =

c11 c12

c21 c22

 , (3.8)

represents the effects of the centrifugal and Coriolis forces to the system, whose ele-

ments c11, c12, c21, and c22 can be obtained by:

c11 = hθ̇2,

c12 = hθ̇1 + hθ̇2,

c21 = −hθ̇1,

c22 = 0,

(3.9)

among which h is given by:

h = −m2l1lc2 sin θ2 −m3l1l2 sin θ2. (3.10)
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And finally,

G =

G1

G2

 , (3.11)

is the gravity matrix, where G1 and G2 are the gravity elements formulated by:

G1 = (m1lc1 +m2l2)g cos θ1 + (m2lc2 +m3l2)g cos θ1 + θ2,

G2 = (m2lc2 +m3l2)g cos θ1 + θ2.
(3.12)

In this research, it is assumed that there is no input noise in the framework, which leads

to:

τd =

0

0

 . (3.13)

As a summary, this section introduced the kinematic and dynamic models of a robot

system. Then, by a series of assumptions, the dynamics model of the system has been

given for further ILC algorithm designs.

3.2 Iterative Learning Control

After explaining how to establish the dynamic model for the rehabilitation exoskeleton

robot, this section introduces the basics of ILC methods, the typical ILC algorithms for

linear and nonlinear systems, as well as the relative design criteria for ILC systems.

They are the main control methods that have been studied in this thesis.

3.2.1 Background

As introduced in Section 2.2.1, the study of the ILC algorithm begins in 1984 [82]

and has been widely applied in various fields since the 2000s [126]. In recent years, a
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number of researches about its applications for more complicated systems and scenar-

ios have also been proposed, for example for input constraints in 2017 [127] and for

cooperation with neural networks in 2020 [128]. In principle, ILC algorithms mainly

focus on systems that have repetitive or periodic procedures, for example, the repetitive

control of servomotors. The entire control procedure of the system can be divided into a

series of time intervals, where the length of each time interval is equal to the time length

of each repetitive period. The length of the time intervals is fixed and finite. Then, the

system is assumed to be invariant between those time intervals, which means that the

states of the system will share the same initial value at the start point of each time in-

terval, and the dynamics of the system will also be the same in each interval if not been

interfered by external signals. The application of the ILC algorithm does not require full

knowledge of the system. It also does not focus only on the current interval itself. In

each time interval, the ILC algorithm will make use of the knowledge and experiences

the system obtained from previous intervals. The output errors of the system in previous

intervals will help in constructing the control input in the next time interval. Finally, as

time goes by, the number of these time intervals will increase and the output error of the

system will generally convergent to zero [129]. Compared to other learning algorithms

based on neural networks [130–132], the ILC algorithm is much simpler while the entire

learning process is completed online.

These notable features have led to the establishment of ILC as an interesting and ongo-

ing area for control system researches and applications. In recent years, more theoreti-

cal works have been done by the researchers, such as [86, 133–135], but the concept of

learning from the previous knowledge to improve future performance has been retained.

Also, during the development of the ILC algorithm, the idea of ILC has been expanded

in both width and depth, including intersect with other control topics such as adaptive

control [136], robust control [137], and optimal control [138]. The applications of ILC

methods have also been broadened beyond the industrial robotics and process control
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field [139].

For the novel ILC algorithm proposed in this thesis, which combines the ILC method

with a feedback linearization method, the relative background preliminaries are intro-

duced as follows.

3.2.2 Iterative Learning Control for Linear Systems

In this section, the ILC algorithms for linear systems is introduced. Firstly, the principle

of ILC control law design is given. Then, three common used types of ILC algorithm

are presented, which are P-Type, PD-Type and NOILC algorithms. Due to the vigorous

development of ILC algorithms in recent decades, there still exist many other types of

ILC algorithms, including the model inversion ILC and gradient descent ILC algorithm,

but they will not be detailed introduced in this section.

For a Single-Input Single-Output (SISO) or Multi-Input Multi-Output (MIMO) discrete

linear time-invariant system with m states, p inputs and q outputs, its state-space form

model is given by:

x(i+ 1) = Ax(i) +Bu(i), i = 0, 1, 2, · · · , x(0) = x0,

y(i) = Cx(i) +Du(i),
(3.14)

where x is the state, y is the output, u is the control input, i is the discretized time

variable, A is an m×m system matrix, B is an m× p input matrix, C is a q×m output

matrix, and D is a q× p transfer matrix. Without losing generality, it is assumed D = 0

if not specially mentioned.

In ILC cases, the entire dynamics of the system is divided into a series of fixed and finite

time intervals. Each interval is regarded as an iteration, whose length is decided by the

period length of the system. After each iteration ends, the system will be reset to the



CHAPTER 3. PRELIMINARIES 57

initial status and start a new iteration. In kth iteration of ILC, the system model can be

writen as:

xk(i+ 1) = Axk(i) +Buk(i), i = 0, 1, 2, · · ·N − 1, xk(0) = x0,

yk(i) = Cxk(i) +Duk(i),
(3.15)

where N is the number of sample points in each iteration.

For a certain reference signal r(i), the error between the system output and the reference

in kth iteration is given by:

ek(i) = r(i)− yk(i). (3.16)

In order to rewrite the system in a more compact form, the following vectors are intro-

duced:
yk = [yk(0), yk(1), · · · , yk(N − 1)]T ,

uk = [uk(0), uk(1), · · · , uk(N − 1)]T .
(3.17)

Then, the system model can be written as:

yk = Guk, (3.18)

where G is a Nm×Np lower triangular Toeplitz matrix [140]:

G =



D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
... . . . ...

CAN−2B CAN−3B CAN−4B · · · D


. (3.19)

Then, the control objective of the ILC algorithm is, as the iteration time k increases,

the output error should converge to zero. By introducing the compact form of reference

signal and system error as well:

r = [r(0), r(1), · · · , r(N − 1)]T ,

ek = [ek(0), ek(1), · · · , ek(N − 1)]T ,
(3.20)
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the control objective of the ILC algorithm can be written as:

lim
k→∞
‖ek‖ = 0, (3.21)

lim
k→∞
‖uk − u∞‖ = 0, (3.22)

where u∞ is the converged input sequence. The converged input sequence in ILC cases

means it is the value of the input signal when it finished its learning progress and con-

verged to a steady-state status. Since u∞ is not a known parameter that can be defined

before the start of the ILC algorithm, in real applications, whether objective (3.22) has

been fulfilled is judged by monitoring the value of uk. If the value of uk has not been

changing for a long enough period while the control error of the ILC algorithm con-

verges, objective (3.22) can be regarded as fulfilled.

The value of the conveged input u∞ is decided by the final value of the learning process

of the controller. The learning process is given by:

uk+1 = uk + ∆(uk, ek), (3.23)

where ∆(uk, ek) is the correction term. It is a function of the previous control signal

and error signal. It represents how much the controller has been modified between each

iteration.

Finally, if the output disturbance of the system is taken into account, system output

(3.18) can then be rewritten as:

yk = Guk + d, (3.24)

where d is the output disturbance defined by:

d = [d(0), d(1), · · · , d(N − 1)]T . (3.25)

To obtain a better control performance, one of the rules in ILC control law design is

to make sure the dynamics of the system error ek is asymptotically stable. If this re-

quirement is not fulfilled, an inner loop controller of the system should be designed in
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advance in order to stabilize the system error [141]. Several common used ILC control

laws are given in the following sections.

D-Type ILC

By taking a derivative on system error, a D-Type ILC control law is given by:

uk+1(i) = uk(i) +Kd(ek(i+ 1)− ek(i)), (3.26)

or in compact form:

uk+1 = uk +Kdėk, (3.27)

where Kd is the learning coefficient. The system error will converge to zero with D-

Type ILC control law if and only if ‖I−CBKd‖ < 1, or in other words, discrete system

matrix I−CBKd is stable [133]. It is worth noting that the criteria for the performance

of ILC systems will be slightly different from that of standard control systems, as the

system dynamics over the iteration numbers have to be taken into account as well.

A interesting feature of this D-Type ILC control law is that the convergence of system

error does not depend on the system matrix A. This is due to the time length of each

iteration is finite and the system is linear. Even if the original system (3.26) is unstable,

the system error can still convergence as iteration number increases. However, in this

case, the performance of the ILC controller and the error convergence speed will be

decreased due to the instability.

PD-Type ILC

Based on the D-type ILC control law (3.26), there are many variations including the

P-Type, PI-Type, PD-Type and PID-Type ILC control law, among which the most com-

monly used one is the PD-Type ILC control law. The PD-type ILC control law is given
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by:

uk+1(i) = uk(i) +Kpek(i+ 1) +Kd(ek(i+ 1)− ek(i)), (3.28)

or in compact form:

uk+1 = uk +Kpek +Kdėk, (3.29)

where Kp is the proportional learning coefficient and Kd is the derivative learning coef-

ficients. In some cases, the proportional item ek(i + 1) in (3.28) may also be replaced

by ek(i) or ek+1(i) [90, 142].

For systems with the PD-type ILC control law, the system error convergence if and only

if ‖I−CB(Kp+Kd)‖ < 1, or in other words, discrete system matrix I−CB(Kp+Kd)

is stable [85]. As the structure of the PD-type ILC controller is inspired by the PD feed-

back controller, the effects ofKp andKd on the system performance also have similarity

to some extent. Larger learning coefficients will lead to a speed up in convergence rate,

but will also risk in causing strong oscillation on system error. Smaller learning coeffi-

cients will suffer from a reduction of error convergence rate [143]. Usually, by carefully

tuning the learning coefficients Kp and Kd, PD-type ILC control law can have a bet-

ter tracking performance and error convergence rate, compared to other PID-form ILC

control laws.

Norm Optimal ILC

The concept of norm optimal iterative learning control (NOILC) is based on the gradient

theory. It combines the ILC algorithm and optimal control in order to achieve a better

control performance.

From the discussions in previous sections, it is obvious that for a system applying the

ILC algorithm, its entire dynamics can be divided into two layers. The first layer is the
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system dynamics by time in each single iteration, while the second layer is the system

dynamics between different iterations. The overall error convergence performance of

the system depends on the dynamics of both two layers. Then, the basic idea of NOILC

is to decouple the control design of those two layers so that they can be designed and

optimized separately.

NOILC introduces a independent criteria to judge the performance of the system based

on the input signal and output error of each iteration. In this way, the design of the

system dynamics on the iteration layer is no longer directly related to the variable of

time. The design can now be transformed into an optimal problem and can be solved in

optimal ways. In each iteration, the NOILC algorithm is a combination of both feedback

control and feedforward control. It takes the error data from the current iteration as

a feedback loop, while the data from the previous iterations serve as a feedforward

loop [135, 144].

The main idea of the NOILC algorithm is given by:

uk+1 = arg min
uk+1

‖r − yk+1‖2Q + ‖uk+1 − uk‖2R, (3.30)

where Q ∈ RN×N
++ and R ∈ RN×N

++ are optimal weight matrices that must be symmetric

and positive definitive. The front quadratic item ‖r − yk+1‖2Q represents the system

error that decides the tracking performance of the system. The latter quadratic item

‖uk+1−uk‖2R is a penalty item that represents the changes in the input signal. By taking

such changes into the optimal calculation, the system stability can be enhanced while

the convergence performance can also be improved.

By reformulating the NOILC algorithm (3.30) to an optimal control form, the NOILC

problem can be converted to an optimization problem, whose cost function is given by:

J(uk+1) = ‖r − yk+1‖2Q + ‖uk+1 − uk‖2R, (3.31)
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or equivalently:

J(uk+1) =
N−1∑
i=0

(r − yk+1(i))
TQ(r − yk+1(i))

+
N−1∑
i=0

(uk+1(i)− uk(i))TR(uk+1(i)− uk(i))

. (3.32)

To achieve the optimal status, the cost function (3.31) must fulfill the stationarity con-

dition that:
∂J(uk+1)

∂uk+1

= 0. (3.33)

By substituting the cost function (3.31) and the system model (3.18) into condition

(3.33), there is:

−GTQ(r −Guk+1) +R(uk+1 − uk) = 0. (3.34)

By reformulating the equation with the system error (3.16), the NOILC control law can

be given by:

uk+1 = uk +R−1GTQek+1. (3.35)

The system error convergent condition of this control law is either the kernel of matrix

GT is equal to zero or r ∈ range G [135].

However, one remaining problem of the NOILC control law (3.35) is that such a control

law is not causal. In normal cases, the system error of the k + 1th iteration ek+1 is

impossible to be obtained if the corresponding system input uk+1 has not been decided

yet. But in NOILC cases, it is possible since the system error can be calculated in

another way. By introducing a familiar costate system on a reverse time sequence from

i = N − 1 to i = 0, there is:

φk+1(i) = ATφk+1(i+ 1) + CTQ(t+ 1)ek+1(i+ 1),

uk+1(i) = uk(i) +R−1(i)BTφk+1(i),
(3.36)
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where N − 1 ≥ i ≥ 0, and the terminal condition of the costate system is given by

φk+1(N) = 0.

Assuming the states of the anticausal costate system (3.36) is fully known, a causal

implementation can be found for it in [145]. Then, the costate system (3.36) can be

transformed to:

φk+1(i) = −K(i)(I +BR−1BTK(i))−1A(xk+1(i)− xk(i)) + ξk+1(i), (3.37)

where ξk+1(i) is a feedforward item and K(i) is a gain matrix.

The value ofK(i) is given by the solution of the corresponding discrete Riccati equation

of the costate system (3.36) [146], which is given by:

K(i) = ATK(i+ 1)A+ CTQC

− ATK(i+ 1)B(BTK(i+ 1)B +R)−1BTK(i+ 1)A,
(3.38)

where N − 1 ≥ i ≥ 0, and the terminal condition of K(i) is given by K(N) = 0. It

is worth noting that the value of K(i) is only dependent on the original system (3.14)

as well as the optimal weight matrices Q and R. It is not related to the control input,

system output, status, and error signals in each iteration, which means its value can be

calculated in advance of each control progress.

For the remaining unknown value in the costate system (3.36), the feedforward item

ξk+1(i) in the equation is obtained by:

ξk+1(i) = (I +K(i)BR−1BT )−1(AT ξk+1(i+ 1) + CTQek(i+ 1)), (3.39)

where the terminal condition is also given by ξk+1(N) = 0. The value of ξk+1(i) is

related to the value of the gain matrix K(i) and the system error ek(i + 1). K(i) is a

constant during each control progress and ek(i+1) can be obtained by the tracking error

of previous iterations.
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Since in solving the optimization problem for NOILC algorithm (3.30) a model inver-

sion method has been applied in the procedure to calculate relative coefficients, some

also regard NOILC not a completely different method, but a general variation of imple-

menting model inversion ILC [147].

Compared to other commonly used ILC algorithms, the major advantages of the NOILC

algorithm lies in error convergence performance, including convergence speed, tracking

error, and the monotonicity of convergence. Such properties lead to a wide range of

NOILC applications for robotics, manipulators, Unmanned Aerial Vehicle (UAV)s, and

exoskeletons [148, 149].

In the meantime, the NOILC algorithm also has its disadvantages. For example, when

dealing with a system with nonlinearities, the dynamics of the system can be much

complex than the linear system in (3.14). The optimal problem for cost function (3.31)

will include nonlinear least-squares items, which is non-convex and a global optimal

cannot be guaranteed [150, 151]. To deal with the nonlinear ILC problems, either some

linearization method should be applied to linearize the system and improve the perfor-

mance of NOILC, or different ILC methods shall be used.

3.2.3 Iterative Learning Control for Nonlinear Systems

The majority of ILC studies in the past few decades are focused on linear objects. How-

ever, due to the wide existence of nonlinearities in both industrial practice and daily

environment, ILC algorithms for nonlinear systems has also been widely studied in the

literature [152–154].

A typical example of a nonlinear system is the manipulator system, which can be com-

monly seen in industrial practice. Its dynamics can be expressed by the following model
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based on torques:

Mr(x(t))ẍ(t)− Cr(x(t), ẋ(t))ẋ(t)− gr(x(t))− dr(x(t), ẋ(t)) = τ(u(t)), (3.40)

where ẍ(t), ẋ(t), x(t) are the accelerations, velocities, and positions of the manipulator

limbs, respectively. Mr is the inertial matrix, which have to be positive definite. Cr

represents the effects of Coriolis force. gr is the force vector of gravity. dr represents

the vector of friction torque and other disturbances. Finally, τ is the output torque of

actuators. which is generated by the control input u(t).

One way of categorizing nonlinear systems is to judge whether the control of the system

is affine or not. An affine system can be formed as:

ẋ(t) = f(x(t)) +B(x(t))u(t),

y(t) = h(x(t)),
(3.41)

while a non-affine system can be formed as:

ẋ(t) = f(x(t)) +B(x(t)u(t)),

y(t) = h(x(t)),
(3.42)

where x, u, y are the state vector, input, and output of the system while f,B, h are

nonlinear functions.

Another way of categorizing the nonlinear systems is via their continuity, which leads

to Global Lipschitz Continuous (GLC) systems, Local Lipschitz Continuous (LLC) sys-

tems, and other systems [153]. Whether a function is Lipschitz continuous or not de-

pends on whether there exists a non-negative real number such that, for any part of the

designated function, the absolute value of its derivative should not be greater than this

number. The smallest value of such number is named as Lipschitz constant. In recent

years, GLC systems and LLC systems have been the main attractions for nonlinear ILC

researches.
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Besides, the convergence proof of the system errors dependent on the iteration numbers

has became a very important direction of nonlinear ILC studies as well. Relative system

dynamics by iterations have also been studied.

For affine systems, an important condition for applying ILC algorithms is the Lipschitz

continuous condition. for the affine system in the form of (3.41), its Lipschitz continu-

ous condition is given by:

|f(x1)− f(x2)| ≤ f0|x1 − x2|,

|B(x1)−B(x2)| ≤ b0|x1 − x2|,

|h(x1)− h(x2)| ≤ h0|x1 − x2|,

(3.43)

where f0, b0, h0 are Lipschitz constants. If Lipschitz continuous condition (3.43) holds

for any x1 and x2 in the domain of system (3.41), system (3.41) will become a GLC

system. Otherwise, if for any x in the domain of system (3.41), the Lipschitz continuous

condition only holds for a neighborhood U of x, then system (3.41) will become a LLC

system.

There are many possible ways to deal with the ILC problems for nonlinear systems.

One of the ways is to apply the linear ILC algorithms to nonlinear systems, which

includes using linear ILC methods directly to nonlinear systems that can fulfill the GLC

conditions, as well as treating the nonlinearities in nonlinear systems as a particular kind

of noise that has been added to the linearised system models.

In these cases, the output tracking performance will become the main target of ILC

control. The relative degree of the system is usually assumed to be zero, and the state

information of the system is usually estimated. To make sure the system error can

converge in a finite time interval, an identical resetting condition is also required, which

means the initial condition of the system in each iteration should be the same and equal

to the initial condition of the target trajectory [134]. However, sometimes this condition
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can be difficult to fulfill in practical applications.

The other way to deal with the nonlinear ILC problems is to design new nonlinear ILC

algorithms for nonlinear systems which can fulfill the GLC conditions or LLC condi-

tions. Nonlinear ILC design for LLC systems has become one of the recent topics in

nonlinear ILC studies. In these cases, the state information of the system is assumed to

be available, while the relative degree of the system is assumed to be equal to or more

than one [153]. To solve these problems, several nonlinear ILC algorithms have been

proposed, including the Lyapunov-function based Composite Energy Function (CEF)

methods, adaptive ILC methods for unknown or time-varying parameters, robust ILC

methods for system uncertainties, internal model based ILC methods, and function ap-

proximation ILC methods.

Different from theoretical analysis, in the real application environment, most of the

controllers are implemented based on discrete-time systems. Though sometimes the

discrete-time model for a nonlinear system will be difficult to build, it is still possible

to design a discrete time ILC control algorithm based on the continuous-time model

of the system. By implementing such ILC control algorithms, the output error of the

system will be easier to measure. In this way, the analysis of the error convergence

over iteration numbers and the study of implementing the ILC algorithms to nonlinear

systems can still be completed.

3.2.4 Design Criteria

While designing an ILC algorithm for the objective system, the choice of design criteria

is also of great importance. Different design criteria preferences will lead to different

strategies and designing focuses on ILC controller designs [85]. In the meantime, com-

pared to the design criteria for normal control algorithms, there are certain criteria that
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are unique in ILC cases. In this subsection, four main criteria of ILC controller de-

sign are introduced, which are stability, performance, transient error performance, and

robustness.

Stability

Obviously, stability analysis is an indispensable and important part of control theory.

In most cases, the controller has to consider its stability before its design. In iterative

learning control, there are two dimensions of system stability that have to be taken into

consideration. The first dimension is the system stability in the scale of time inside

each iteration. The second dimension is the system stability in the scale of iteration

numbers, which decides the stability of the system during the iteration progress. The

overall stability of the ILC system is decided by both two dimensions of stabilities.

For the first dimension of system stability, at first glance, its criteria are similar to the

stability of ordinary control problems. But the real difference between them is, due to

the time length of each iteration is finite, the system response will not go to a real infinite

value in such a finite time scale. In this sense, the system will not be real unstable in

these finite iterations.

However, such a condition is not enough for the stability design of the ILC algorithm

inside each iteration. In practical applications, there will always be physical limitations

for the control objects. For example, motors have their maximum rotating speeds and

output torques. In exoskeleton cases, the rotating angle of each joint actuator on the

exoskeleton must also be limited in order to guarantee the safety of the wearer. Though

the system response is finite in each finite iteration, it may still break the physical limi-

tations of the control objects.
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Hence, the system stability inside each iteration should still be noticed and taken into

consideration in ILC controller designs. It is better to make sure the system response

will not break those limitations in any iteration.

The second dimension of system stability, which is the system stability over iteration

numbers, is defined in the input space. Compared to the previous dimension, such stabil-

ity is unique in ILC designs. To achieve this dimension of stability, the input sequence in

each iteration should asymptotically converge to a converged input sequence [85, 155],

which can be written as:

∃u∞ : lim
k→∞
‖u∞ − uk‖ = 0, (3.44)

where u∞ is the converged input sequence. As explained previously in subsection 3.2.2,

it represents the value of the input signal when it finished its learning progress and

converged to a steady-state status.

Also, it is worth noting that the system stability over iteration numbers does not guar-

antee a convergence for the output error of the system. It only represents when the

iteration number increases, the output error will always be bounded. The convergence

of the output error is categorized in the performance part.

Performance

Except for the stability, system performance is also a vital criterion for ILC controller

designs. The exact benchmark of system performance usually varies with its physical

properties and designing target. But in general cases, the performance of a control

system will refer to its tracking performance, which is, for a certain given reference

signal, how will the system act and follow such a reference.

In ILC problems, the tracking performance of the system is represented by the output
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error, which is the difference between the system output and the desired reference signal.

Just like the stability criterion, the output error of the system also has to be considered

in two dimensions, the first one is the error inside each iteration, while the second is the

error over iteration numbers. There are many ways to measure and compare the tracking

performance between different controllers and algorithms, one of which is to compare

the Euclidean norms of the initial errors and the errors when iteration numbers go to

infinite, which is ‖e0(i)‖2 and ‖e∞(i)‖2. The convergence speed of error will also be

considered. In practical applications, the true value of the error when iteration numbers

go to infinite will be hard to obtain, so usually the value of the final iteration error will

be regarded as the value of ‖e∞(i)‖2.

It is also worth noticing that the stability of the system is not strictly related to the track-

ing performance, which means the system does not have to be stable to obtain a good

tracking performance, or in other words, the output error does not have to be conver-

gence for the entire period of ILC process. In some cases of ILC controller design, there

exist a phenomenon that the output error of the system will converge to a small value

in the first several iterations of the ILC process, then goes to unstable in the following

part as the iteration number increases. For normal control problems, such instability is

usually unacceptable. But in ILC control cases, it is possible for the system to run nor-

mally for the first several iterations, then cut off the ILC controller and stop the iterative

learning process before the output error goes unstable. The controller can be kept in the

status when the output error is the smallest. In this way, good tracking performance of

the system can still be achieved even if the system is unstable and the error output is not

globally converging.

In the meantime, there are also cases that even when the system is stable and the output

error finally converges, the ILC algorithm is still unacceptable. Such cases are due to

the transient error problem unique in ILC control, which will be introduced in the next
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subsection.

Transient Error Performance

The transient error performance is a criterion specific for ILC controllers. Such a crite-

rion is set in response to the transient error problem that happens during ILC controller

designs. For the ILC controllers, there exists a phenomenon that sometimes even for sta-

ble ILC systems with convergent output errors, their error convergence processes may

still be non-monotonic. The output error will increase rapidly in the first few iterations

of the ILC process, then gradually decrease, and finally, converge to an expected bound.

Though the final norm value of the output error ‖e∞(i)‖2 may still meet the performance

criteria, the peak value of the error can be harmful to the system, causing damage to the

controllers or actuators. Such problems should be avoided during the ILC controller

designs.

A typical example of the transient error problem over iteration numbers in ILC designs

is shown in Figure 3.3. It is obtained while the ILC algorithm proposed in this thesis

is being simulated. In the figure, the x-axis represents the iteration numbers while the

y-axis represents the average absolute output error value of each iteration during the

ILC process.

As demonstrated in the figure, in the first 12 iterations, the output error has encountered

a tremendous rise from near zero to a peak value of more than 2000. Then between iter-

ation 12 and iteration 50, the output error has faced a reduction with a bit of oscillation.

After iteration 50, the value of the output error has been gradually settled to a relatively

small scale again. Though in this case the system is asymptotically stable and the output

error converges, such a scene is definitely not desired in ILC controller designs. In or-

der to evaluate and analyze systems with such problems, the transient error performance
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Figure 3.3: An Example of the Transient Error Problem.

criterion is introduced.

To avoid the transient error problem of ILC systems, one of the important features is

that the convergence of the system output error should be monotonic. For both linear

system (3.14) and nonlinear system (3.41), their monotonic error convergence condition

can be written as [156]:

‖e∞ − ek+1‖ ≤ λ‖e∞ − ek‖, (3.45)

where e∞ is the converged error when the iteration number goes to infinity, and λ is the

error convergence rate whose range is given by 0 ≤ λ < 1.

For linear ILC systems, the transient error problem is usually related to the learning gain

of the proposed ILC algorithm. A larger learning gain will have a higher possibility of

leading to the transient error problem. For nonlinear ILC systems, the appearance of

the transient error problem is not only related to the learning gain but also related to
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the nonlinear dynamics of the system. Hence, to achieve the monotonic convergence

property of the output error, the learning gain of the ILC algorithms must be carefully

selected. In particular, for the nonlinear ILC problems, the effects of the nonlinearities

on system performance must be considered in advance.

Robustness

Except for the three main criteria introduced in previous subsections, the last criterion

for the ILC controller design is robustness. Similar to those of all other controllers,

robustness in the field of ILC also refers to the ability of the controller to deal with the

unexpected deviations of the system. Those unexpected deviations include uncertain

parameters, time-varying parameters, measurement errors, time delays, unmodelled dy-

namics, system mismatches, internal and external disturbances, as well as other possible

deviations. Though been listed here as the fourth criterion, the robustness of a system is

not an independent vector. It is usually represented via other criteria, for example, the

stability, error convergence, or tracking performance of the system after adapting the

previous unexpected deviations.

Nevertheless, for ILC algorithms, their robustness is still of great importance. Since one

of the advantages of ILC methods is the ability to deal with a certain level of uncertain-

ties. ILC methods usually do not require full knowledge of the system. Though some

information might be unknown to the controller, the controller can still have a good

control performance after a number of iterations. Also, ILC methods are suitable for

time-varying systems as well, as the controller can gradually learn the variation of the

system and adapt the control protocol correspondingly. Relative studies can be found

in [98, 157, 158].

Specifically for ILC systems, the external disturbance signal also has two versions, the
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first one is that the external disturbances will only appear once in one of the iterations,

while the second one refers to external disturbances which will appear continuously in

every iteration. Compared to other control methods, ILC methods have advantages in

dealing with the second type of disturbances. Due to such external disturbances will

appear repetitively in multiple iterations, the control sequence of later iterations can

have the experience and knowledge from previous iterations. A feedforward control

will then be conducted to eliminate the effect of such disturbances.

In the meantime, ILC algorithms have disadvantages in dealing with the first type of

external disturbances. The reason is that in such cases, the disturbance signal will appear

only once in one of the iterations, but the system response in later iterations will still be

affected by this disturbance. It will cost several successive iterations for the effect to be

eased.

As a summary of the previous subsections, it is the combination of the four criteria

mentioned above, stability, performance, transient error performance, and robustness,

that have constructed a reasonable performance evaluation system for ILC algorithms.

3.3 Gait Data

Besides the ILC algorithms and the robotic model of the exoskeleton system, another

essential aspect in exoskeleton research is the study of human gait. From the individual

point of view, each single step for each individual person is unique. Due to the random

disturbance in environment and the chaotic property exists in nature, there will never

be any specific step that can be precisely repeated. However, from the statistic point of

view, by ignoring some minor errors, the gaits of the human beings are highly periodic,

repetitive, and share a number of characteristics in common. This section generally
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introduces these characteristics of the human gait, as well as how the gait data used in

this thesis is obtained.

3.3.1 Characteristics of Human Gait

The gait of human beings is a highly ordered process regulated by the central nervous

system, while its control is a combination of an autonomous system and the will of

human beings. Its rhythm is decided by the Central Pattern Generator (CPG), which is

a kind of biological neural circuit that exists in the spinal cord of human beings [159].

Generally speaking, during a normal stable walking process, the basic motion control of

muscles and legs is completed by the cerebellum, CPG, and spinal cord automatically.

The subjective interference by human wills is not really necessary during such a process,

unless there is something special happens.

For example, when people are walking on the street, they usually will not have to think

about how their muscles should be powered or where their feet should locate for their

next steps all the time. The control of the gaits is accomplished by the nervous system

steadily and smoothly. The interference of human wills to gait control will only hap-

pen when something special, whether expected or unexpected, happens. Those special

things can be the changes of the environment, for example, traffics, obstacles, direc-

tions, surfaces, and slopes of the road, or, the subjective changes of the walking rhythm

by human beings.

For a steady walking process without those changes, which means the designated human

being is walking straight and steadily on an ideal flat surface without disturbance, the

corresponding human gait can be regarded as a cyclic process [124]. Figure 3.4 shows

the phases of each gait cycle during such a straight and steady walking. The horizontal

axis represents the gait time, while T represents the time length of an entire gait cycle.
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Figure 3.4: Normal Human Gait Phases.

The actual length of T varies according to the physical conditions of each individual,

but it usually will be a value of around 1.1 seconds [125].

An entire cycle of the gait can be divided into two phases. For each leg, there are a

stance phase and a swing phase. In the stance phase, the foot part of the corresponding

leg will touch the ground and bear the weight of the body, while the other leg is swinging

forward. Then, in the swing phase, the original stance leg will become the swing leg. It

will swing forward in the air while the weight of the body is now carried by the other

leg. The swing phase ends when the swing leg touches the ground again. For the leg

represented by the solid lines in Figure 3.4, its stance phase is the 0% to 60% part of an

entire gait cycle, while its swing phase is the rest 60% to 100% part. The stance phase

is longer than the swing phase because at the beginning and end of each stance phase,

both feet will touch the ground and the body weight is shared by the two feet.

The status and phases of the lower limbs can be determined by monitoring the joint angle

data in each gait cycle. Those joint angle data can also serve as the reference signal to

help the controller of the exoskeleton robot to calculate a proper torque assistant scheme

for the entire gait cycle. In real exoskeleton applications, many other data may also be

applied to help to determine the status of the lower limbs, for example, the interactive

forces, foot pressures, or EMG data, as previously stated in Chapter 2.1.

Since the motion control problem of the exoskeleton robot for walking assist missions
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under such a cyclic walking process is the main focus of this thesis, it is necessary

to conduct a proper measurement for those relative human gait data in each cycle, in

order to obtain better performance for the exoskeleton and provide a higher human-

exoskeleton cooperation level.

3.3.2 Acquisition of Gait Data

The main gait angle data applied in this thesis is the joint angle data of the lower limbs.

In order to obtain the designated joint angle data, a measurement system that contains

a set of gyroscopes has been mounted on a test subject. A schematic diagram of the

mounting method is shown in Figure 3.5.

The test subject is a 28-year-old male individual, with a height of 180 centimeters, a

weight of 82 kilograms, and no obvious physical disease. Though only the gait data of

one person has been collected in this section, it is worth noticing that the main purpose

of this thesis is to study and verify the effectiveness of the proposed ILC algorithm, not

to conclude the principles of human gait. The gait data collected from one person is

enough to demonstrate the periodical characteristics of human gait cycles and to verify

the effectiveness of the ILC algorithms dealing with such problems. Detailed studies

about the principles of human gait have already been introduced in the previous subsec-

tion.

As shown in Figure 3.5, there are four gyroscopes in total mounted on the body of the

test subject. One of the gyroscopes is mounted on the trunk of the test subject, while

the other three are mounted on the thigh part, shank part, and the foot part of his left leg

respectively. The red squares in the figure indicate the positions where the gyroscopes

have been mounted, while the blue line segments are the fixing straps used to fasten the

gyroscopes to the relevant body segments. These gyroscopes are connected to a laptop
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Figure 3.5: The Measurement Method of the Gait Angle Data.
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computer via cables, while the data they obtain is also processed by the laptop.

The main data that have been measured in this case are three joint angles of the test

subject during a straight walking process on a flat surface. The three joint angles include

the hip angle, which is the angle between the thigh segment and the horizontal plane,

marked as θ1 in the figure, the knee angle, which is the relative angle between the

thigh segment and the shank segment, marked as θ2, and the ankle angle, which is the

relative angle between the shank segment and the foot segment, marked as θ3. The

gyroscopes can measure their relative angle data to the horizontal plane. By calculating

the differences between the angle data of each body segment, the angle data of the three

joints can be obtained. Meanwhile, only the data in the X-axis and Y -axis of Figure 3.2

has been considered. The data in the Z-axis which is vertical to the plane is ignored, as

the motion scale of human lower limbs in this direction during normal walking is minor,

and the exoskeleton model studied in this thesis has no powered actuators on this axis.

The straight walking process needed for the measurement is carried out in a long empty

corridor of a building. The walking process has been done three times and a less noise

set of joint data has been picked among them. The raw data is filtered via the median

average filtering method. The results are demonstrated in the following figures. Figure

3.6 shows the angle variation of the hip joint in a typical gait cycle, while Figure 3.7

shows the angle variation of the knee joint. The angle variation of the ankle joint is

shown in Figure 3.8. These data are selected from a series of gait cycles as they present

the typical variation of the joint angles during the walking process smoothly. It can be

verified that these measured gait data fit the common shapes, amplitude limits, and time

length of normal human gait cycle data obtained in other research papers [125, 160].

Hence, these measured data can represent the status of typical human gaits. Also, these

gait data for single gait cycles will serve as the angle reference signals for the simulation

of the ILC algorithms in the following chapters.
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Figure 3.6: Variation of the Hip Joint Angle during a Single Gait.
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Figure 3.7: Variation of the Knee Joint Angle during a Single Gait.
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Figure 3.8: Variation of the Ankle Joint Angle during a Single Gait.

Other than the single gait cycle data, two series of joint angle data in continuous gait

cycles have also been collected for further tests and comparisons. These continuous

gait cycle data are measured when the test subject is walking at a slightly faster speed.

The corresponding angle data are shown in Figure 3.9 and 3.10, where the blue line is

the continuous knee joint angle and the red line is the continuous hip joint angle. The

continuous gait data serve as the reference signals for adaptive oscillator method cases

as a comparison to the ILC methods.
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3.4 Conclusion

This chapter briefly introduced the basic concepts and preliminaries related to the ILC

algorithms, robotics, and gait data measurements. Firstly, the background of ILC meth-

ods, typical ILC algorithms for linear and nonlinear systems, and relative designing

criteria are given. Then, the kinematic and dynamic model of the robot, as well as the

dynamic model for the combination of human lower limbs and the exoskeleton robot,

are discussed, followed by a simple description for the biomechanics of the human

gaits. Finally, the joint angle data for both single gait cycles and continuous gait cycles

are given as well as their measurement methods.



Chapter 4

Iterative Learning Control for the

Shank Part of Lower Limb

Exoskeleton

A novel ILC algorithm, which combines the feedback linearization method with the

original ILC algorithms, has been proposed in this chapter. Furthermore, the proposed

algorithm has been applied to a lower limb exoskeleton robot model to verify its effec-

tiveness. The proposed algorithm can also combine with the NOILC and Dual Internal

Model Structure (DIMS) ILC algorithms to improve their performances. The relative

simulation results, as well as the comparison between the proposed ILC algorithm and

the original ILC algorithms, have also been given in this chapter. Section 4.1 intro-

duces the original ILC algorithm and Section 4.2 the target exoskeleton robot. Section

4.3 presents the simulation results of the original ILC algorithm while Section 4.4 in-

troduces the proposed novel ILC algorithm to deal with the problems that exist in the

85
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original ILC algorithm. Section 4.5 presents the combination of the proposed algo-

rithm and the NOILC method. Section 4.6 shows its application with the DIMS ILC

algorithm. Finally, section 4.7 concludes the chapter.

4.1 Original Iterative Learning Control Algorithm

For a fixed and finite time interval t ∈ [0, T ], consider the following continuous time-

invariant dynamic system given by:

ẋ(t) = f(x(t)) +Bu(t),

y(t) = Cx(t),
(4.1)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rm is the output vector, u(t) ∈ Rp is

the control input vector, f(·) ∈ Rn are smooth vector-valued function, and B,C are

constant state matrices of proper dimensions. The reference signal of the system in time

interval t ∈ [0, T ] is given by r(t).

The repeat time of the control operation period is called iteration trials. For the k-th

iteration trial, the control updating law of the ILC algorithm is given by:

uk+1(t) = uk(t) + γėk(t), (4.2)

where γ ∈ Rp×m is a constant learning gain matrix, and ek(t) ∈ Rm is the tracking error

of the system in the k-th iteration trial given by:

ek(t) = r(t)− yk(t). (4.3)

According to [82], define a vector norm for e(t), which is also a vector-valued function,

on the fixed finite time interval t ∈ [0, T ] as:

||e(t)||j = sup
0≤t≤T

{exp(−jt)||e(t)||∞}. (4.4)
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If for the entire time interval t ∈ [0, T ], the following condition holds:yk(0) = r(0),

||Im − CBγ||∞ < 1.
(4.5)

where Im is an m-dimensional identity matrix, then there exists constant j ≥ 0 and

0 ≤ q ≤ 1 such that:

||ėk+1(t)||j ≤ q||ėk(t)||j, (4.6)

holds for any k. The corresponding proof has been demonstrated in [129]. Hence by

choosing a proper learning gain matrix γ according to equation (4.5), there is:

lim
k→∞
||ėk(t)||j = 0, t ∈ [0, T ]. (4.7)

Substituting equation (4.3) into (4.7) leads to:

lim
k→∞

d

dt
(r(t)− yk(t)) = 0, t ∈ [0, T ]. (4.8)

Considering the initial condition yk(0) = r(0) in equation (4.5) which means ek(0) = 0,

equation (4.8) implies that:

lim
k→∞

yk(t) = r(t). (4.9)

When the iteration number increases, the system output yk(t) will gradually approach to

the reference r(t) and the error between them will go to zero as iteration number goes to

infinity. Hence, the tracking problem of system (4.1) can be solved by the ILC updating

law (4.2).
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4.2 Dynamic for the Shank Part of the Lower Limb Ex-

oskeleton

As stated in the previous section, in the rehabilitation applications of exoskeleton robot,

the exoskeleton usually moves along a predefined repetitive gait trajectory. It makes the

ILC method suitable to be applied to such conditions. To verify the effectiveness of the

proposed algorithm, consider the rigid body model of lower limb exoskeleton as shown

in Figure 4.1. At this stage, only the one DoF shank part has been considered, but the

algorithm can be extended to the full lower limb.

As shown in Figure 4.1, the shank part is modeled as a uniform rigid body stick from

knee joint point K to ankle joint point A. The stick has a length of l and a mass of

ms, which is the sum of mass for both the human shank part and the exoskeleton shank

part. A particle with the mass of foot part mf is attached to ankle point A. θ is the

angle between the shank part and vertical direction. An actuator is mounted at the knee

position of the exoskeleton, which gives a torque of τ to the shank part and drives the

entire movement of the system.

According to the equation of motion for the system, there is:

Mθ̈ + f(θ̇, θ) + g(θ) = τ, (4.10)

where M represents the inertia of shank, f(θ̇, θ) represents the effects of centrifugal

force and Coriolis force, and g(θ) represents the torque to the knee joint K by gravity

[124].

Considering the shank part only, the directions of the centrifugal force and Coriolis force

are along the stick, pointing at the far side of knee joint K, which means they will not

generate torque to the knee joint. After calculating the inertia and gravity, the dynamic
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Figure 4.1: Rigid Body 1-DoF Shank Model.
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model of the shank part can be described by:

c1θ̈ + c2 sin θ = τ, (4.11)

where c1 and c2 are real constants given by:

c1 =
msl

2

3
+mf l

2,

c2 =
(ms

2
+mf

)
lg0,

(4.12)

g0 in equation (4.12) is the gravitational acceleration on earth which equals to 9.8m/s2.

Set the torque generated by knee joint actuator as the system input u, which gives u = τ ,

and define the state vector x by:

x =

x1
x2

 =

θ
θ̇

 . (4.13)

The dynamic of the shank part in time interval t ∈ [0, T ] can be described by:

ẋ1(t) = x2(t),

ẋ2(t) = −c2
c1

sinx1(t) +
1

c1
u(t).

(4.14)

Define the shank angle θ as the output of the system, then the output vector is:

y = Cx, (4.15)

where C = [1, 0].

4.3 Simulation Results of the Orignal ILC Algorithm

According to [125, 161] and Table 3.1, the length of shank is approximately 28.5% of

body height, while its mass is 4.65% of body weight. The mass of foot is 1.45% of body
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weight. Assuming the wearer of the exoskeleton is of 1.80m height and 75kg weight,

the weight of exoskeleton shank part itself is 1.5kg, then the specification parameters in

the shank model can be obtained by l = 0.51m, ms = 4.99kg and mf = 1.09kg, which

lead to the value of the constants given by c1 = 0.72 and c2 = 17.92.

Then the dynamic model of the shank part in time interval t ∈ [0, T ] can be written as:

ẋ1(t) = x2(t),

ẋ2(t) = −24.89 sinx1(t) + 1.39u(t),

y(t) = x1(t).

(4.16)

The reference signal of the system is the target trajectory of the shank angle in time

interval t ∈ [0, T ], as shown in Figure 4.2. It represents the shank angle variation during

a walking gait cycle, which is calculated via the position data of human lower limb

joints in [125], captured by cameras with a sampling time of 0.15 second. The average

gait cycle time is T = 1.1 seconds.

Since the wearer can choose to start at any reachable shank angle, and the reference

signal can be known in prior as well, it is reasonable to assume that the wearer can start

the iteration at the same initial angle with the reference, which gives:

y(0) = r(0). (4.17)

The goal of control system design is to generate a proper control input u so that the

trajectory of the shank angle can track the proposed reference.

Applying the ILC updating law (4.2) to the dynamic system (4.16), for learning gain

γ = 0.5, the system output in iteration 1 to 4 are shown in Figure 4.3, while iteration 30

to 33 are shown in Figure 4.4 as the error has converged. The corresponding tracking

error are shown in Figure 4.5 and 4.6. It can be observed that, as the iteration trial

number increases, the system output gradually approaches the reference trajectory.
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Figure 4.2: The Reference of Shank Angle in a Single Gait Cycle.
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Figure 4.3: Angle Tracking Performance, D-Type ILC, Iteration 1 to 4.
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Figure 4.4: Angle Tracking Performance, D-Type ILC, Iteration 30 to 33.
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Figure 4.5: Angle Tracking Error, D-Type ILC, Iteration 1 to 4.
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Figure 4.6: Angle Tracking Error, D-Type ILC, Iteration 30 to 33.

Figure 4.7 and 4.8 indicate the system tracking performance in terms of the average

absolute error for each iteration trial, with different learning gain values. The choice of

the learning gain γ will affect the convergence speed of error. For γ value between 1.0

and 2.0, the system error has its highest convergence rate. Its amplitude decreases in a

higher rate in the first 10 iteration trials but slower in the following trials.

For dynamic system (4.16), condition (4.5) holds for any γ value, which means theoret-

ically the tracking error is guaranteed to converge for any γ. However, for γ beyond 2.5,

the tracking error will increase dramatically at the beginning, which leads to a worse

tracking performance for the entire system compared to the smaller γ values. Such a

result is demonstrated in Figure 4.8.

Although the original ILC updating law can solve the tracking problem for the system

(4.16), the convergence speed of the error is far from satisfaction. As presented in

Figure 4.4 and 4.6, even after 30 iteration trials, there still exist obvious errors between
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Figure 4.7: Average Absolute Error, D-Type ILC, Small γ Values.
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Figure 4.8: Average Absolute Error, D-Type ILC, Large γ Values.
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the reference and the system output. To solve this problem, an improved controller is

introduced in the following section.

4.4 ILC with Feedback Linearization

As shown in Figure 4.2, the reference signal is bounded in a neighbour of zero for time

interval t ∈ [0, T ]. However, the open-loop system (4.16) is an unstable system with

nonlinearity. The nature divergence trend of its open-loop response has decreased the

control performance of the original ILC updating law (4.2) since a part of its abilities

has been used to stabilize the system. Hence, by implementing a feedback linearization

structure, the open-loop nonlinear system can be converted to a linear one with desired

pole positions [162] and the entire control performance can be improved.

Taking the derivatives of y in system (4.16), for t ∈ [0, T ], there is:

ẏ(t) = x2(t),

ÿ(t) = −24.89 sinx1(t) + 1.39u(t).
(4.18)

Define a new feedback variable v(t) by:

v(t) = −24.89 sinx1(t) + 1.39u(t), (4.19)

the linearized system of (4.16) is now given by:

ẋ1(t) = x2(t),

ẋ2(t) = v(t).
(4.20)

The state feedback law for the linearized system (4.20) can then be designed as:

v(t) = −a1x1(t)− a2x2(t), (4.21)
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which stabilizes the system with constants a1 > 0 and a2 > 0. Define w(t) as the new

ILC updating law of the linearized system in k-th iteration trial, which equals to:

wk+1(t) = wk(t) + γėk(t). (4.22)

The reference tracking form of the linearized feedback law (4.21) can be rewrite as:

v(t) = −a1 (x1(t)− w(t))− a2x2(t). (4.23)

Combining (4.19) with (4.23), there is:

−24.89 sinx1(t) + 1.39u(t) = −a1 (x1(t)− w(t))− a2x2(t). (4.24)

Then, the control input of the original system (4.16) can be given by:

u(t) =
1

1.39
(24.89 sinx1(t)− a1(x1(t)− w(t))− a2x2(t)) . (4.25)

With the new proposed ILC algorithm with Feedback Linearization (FL), for a1 = 25,

a2 = 10, learning gain γ = 0.5, the system output in iteration 1 to 4 and iteration 10 to

13 are shown in Figure 4.9 and 4.10 respectively. The corresponding tracking error are

shown in Figure 4.11 and 4.12.

Compared to the results in the original ILC algorithm case, the tracking performance

has been improved dramatically. Within only 4 iteration trials, the tracking error has

already decreased to a small value.

The variation of the average absolute error by iteration numbers for different learning

gain values are shown in Figure 4.13 and 4.14. For learning gain γ between 0.3 and 0.8,

the tracking error has its highest convergence rate, where its amplitude can decrease to

almost 0 in less than 10 iteration trials.

For γ larger than 1.2, there is a similar phenomenon to the original ILC algorithm case,

where the updating law will generate a huge overshoot in the beginning and reduce the

control performance for the entire system, as shown in Figure 4.14.
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Figure 4.9: Angle Tracking Performance, ILC with FL, Iteration 1 to 4.
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Figure 4.10: Angle Tracking Performance, ILC with FL, Iteration 10 to 13.
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Figure 4.11: Angle Tracking Error, ILC with FL, Iteration 1 to 4.
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Figure 4.12: Angle Tracking Error, ILC with FL, Iteration 10 to 13.
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Figure 4.13: Average Absolute Error, ILC with FL, Small γ Values.
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Figure 4.14: Average Absolute Error, ILC with FL, Large γ Values.
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Finally, for any sensor applied in the practical system, the measurement noise will al-

ways exist. By adding Gaussian noise with an average value of 0 and variance of 6.25

to y(t) in system (4.16), the control performance with about 5% measurement noise is

simulated. Although facing an obvious degradation, the ILC algorithm with feedback

linearization can still work in such a scenario, as shown in Figure 4.16, while its con-

vergence speed and average error are superior to normal ILC method as well, as shown

in Figure 4.15. The comparison for the error convergence performances are shown in

Figure 4.17. However, as presented in these figures, due to the basic principle of the

ILC method, it is not good at handling non-repeating random noises. To guarantee the

smooth operation of the robot, an additional filter for the measured data will be required.
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Figure 4.15: Tracking Performance with Noise, D-Type ILC.
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Figure 4.16: Tracking Performance with Noise, ILC with FL.
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Figure 4.17: Average Absolute Errors with Measurement Noise.
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4.5 NOILC with Feedback Linearization

The concept of NOILC has been introduced in Section 3.2.2. It is an optimal control

based ILC algorithm that aims at a better control performance. The NOILC algorithm

has demonstrated great advantages in error convergence rate and monotonicity. How-

ever, a major drawback is, the algorithm is designed for linear systems. If there exists a

certain level of nonlinearity in the system model, the algorithm can only work on the lin-

earized model of the system, while its performance will face an obvious downgrade. For

the exoskeleton system defined by (4.16), applying the control protocol given by (3.36)

and (3.37) to the linearized model of the system at its working point, the performance

of the system is shown in Figure 4.18 and 4.19.
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Figure 4.18: Angle Tracking Performance, NOILC, Iteration 1 to 4.

The optimal weights in this case is given by Q = 70 and R = 0.1. Figure 4.18 is the

performance of the system in the first 4 iterations, while Figure 4.19 is the performance
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Figure 4.19: Angle Tracking Performance, NOILC, Iteration 50 to 53.

of the system in iteration 50 to 53 when the error has converged to more settled status.

As shown in the two figures, due to the effect of nonlinearity, though the system has

demonstrated a certain scale of tracking, its performance is far from satisfactory. The

error convergence rate is also quite slow. Even after 50 iterations, the error between the

reference and the system output is still obvious. The effects of different Q and R values

on the average absolute error convergence rate are shown in Figure 4.20 and 4.21. The

error convergence rate is relatively slow.

To solve such a problem, the NOILC algorithm can also be improved with a similar

feedback linearization way. Design the control law for the feedback linearized system

in kth iteration as:

vk(t) = −a1x1,k(t)− a2x2,k(t) + a1wk(t), (4.26)
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Figure 4.20: Average Absolute Error, NOILC, R = 0.1.
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Figure 4.21: Average Absolute Error, NOILC, Q = 70.
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where wk(t) is the NOILC updating law:

wk+1(t) = wk(t) +R−1(t)BTφk+1(t), (4.27)

where φk+1(t) is the state of the costate system given by (3.37), R is one of the optimal

weight, and B = [0, a1]. Then, the final control input to the system (4.16) can also

be written in the form of (4.25). But this time, the ILC updating law item w(t) in the

control input are changed to the NOILC updating law (4.27).

For the new NOILC algorithm with feedback linearization, its tracking performance

is shown in Figure 4.22 and 4.23. Figure 4.22 is the system performance in the first

4 iterations while Figure 4.23 is the performance of the system in iteration 20 to 23

when the error has converged to a more settled status. Compared to the original NOILC

algorithm, it can be seen from the figure that for the first few iterations, the system

response speed is faster, though the error still exists. The error convergence rate has

been optimized on a great scale, as the system almost achieved perfect tracking in only

20 iterations.

The effects of different optimal weight values on the average absolute error convergence

rate in the new NOILC algorithm are shown in Figure 4.24 and 4.25. The selection of

the optimal weight values has to make a balance between the error convergence rate

and system stability. Compared to the results of the original NOILC algorithm, the

error convergence of the new proposed NOILC algorithm is now at an exponential rate,

which is much faster than the original one. The convergence process is monotonic,

which is also very important. The overall performance of the NOILC algorithm has

also been significantly improved.
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Figure 4.22: Angle Tracking Performance, NOILC with FL, Iteration 1 to 4.
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Figure 4.23: Angle Tracking Performance, NOILC with FL, Iteration 20 to 23.
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Figure 4.24: Average Absolute Error, NOILC with FL, R = 0.1.
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Figure 4.25: Average Absolute Error, NOILC with FL, Q = 70.
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4.6 Dual Internal Model Structure ILC

Though the system performance has been improved by the new NOILC algorithm, im-

provement can still be made to obtain a better control result. As can be seen from Figure

4.24, though with an exponential error convergence rate, it still takes the system more

than 20 iterations to achieve a small average error. Such a speed may not be enough

for some applications. To make further improvements to the system performance, espe-

cially in the first few iterations, a DIMS ILC algorithm is introduced.

The DIMS ILC algorithm is an internal-model-based ILC algorithm. In this algorithm,

the discrete-time periodical external signal to the system of length N is modeled as an

external state-space model given by:

xw(i+ 1) = Awxw(i) +Bwuw(i),

w(i) = Cwxw(i) +Dwuw(i),
(4.28)

where Aw is an N ×N matrix, Bw is an N × 1 matrix, and Cw is a 1×N matrix. For

past-error feedforward system, Dw = 0. Both periodic reference signal and reference

disturbance are included in such an external model. For the example given in later

this section, the system has only one output signal and one reference signal, while no

other periodical disturbance had been applied to the system. In this case, the values of

matrices Aw, Bw, and Cw is given by:

Aw =


0 1 · · · 0
...

... . . . ...

0 0 · · · 1

1 0 · · · 0

 ,

Bw =
[
0 0 · · · 0 1

]T
,

Cw =
[
1 0 0 · · · 0

]
.

(4.29)
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Then, for a MIMO system, the augmented matrix of the external model is given by:

Al = diag{Aw, Aw, · · · , Aw}, Bl = diag{Bw, Bw, · · · , Bw},

Cl = diag{Cw, Cw, · · · , Cw}, Dl = diag{Dw, Dw, · · · , Dw}.
(4.30)

For the augmented system which contains both the objective system and the external

system, its state-space form in kth iteration is given by [140]:xl,k(i+ 1)

xk(i+ 1)

 =

 Al 0

BCl A

xl,k(i)

xk(i)

+

 Bl

BDl

 ũk(i), (4.31)

and the output error of the system is given by:

ek(i) = r(i)−
[
DCl C

]xl,k(i)

xk(i)

−DDlũk(i). (4.32)

The control input of the state-space system, ũk(i), is given by:

ũk(i) = −Kl

x̂l,k(i)

x̂k(i)

 , (4.33)

where x̂l,k(i) and x̂k(i) are state estimates generated by the state observer. The observer

is designed as:x̂l,k(i+ 1)

x̂k(i+ 1)

 =

 Al 0

BCl A

x̂l,k(i)

x̂k(i)

+

 Bl

BDl

Kl

x̂l,k(i)

x̂k(i)


+ Ll

ek(i) +
([
DCl C

]
−DDlKl

)x̂l,k(i)

x̂k(i)

 .

(4.34)

The Kl and Ll are the control gain and observer gain to be designed. Its value can be

designed via the Linear Quadratic Regulator (LQR) method.

Applying such a DIMS ILC algorithm to the shank exoskeleton system, its tracking per-

formance is shown in Figure 4.26 and 4.27. Figure 4.26 is the system performance in



CHAPTER 4. ILC FOR THE LOWER LIMB EXOSKELETON 111

the first 4 iterations while Figure 4.27 is the performance of the system in iteration 10 to

13 when the error has converged to a more settled status. Compared to the NOILC algo-

rithms introduced in the previous section, it can be witnessed that the system response

speed has been improved on a great scale, while the final error has also been reduced.

The system output can follow the reference in less than 5 iterations. After 10 iterations,

only a minor error still exists.
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Figure 4.26: Angle Tracking Performance, DIMS ILC, Iteration 1 to 4.

Though the system performance with the DIMS ILC algorithm is already much better

than the previous ILC methods, tracking errors can still be witnessed in the first few

iterations as well as later iterations. Such a phenomenon is also due to the nonlinearities

existing in the system model. To cancel the effect of such nonlinerities and achieve

an ideal tracking performance, the proposed feedback linearization ILC method has

also been applied to the DIMS ILC method. The performance of the new DIMS ILC

algorithm are shown in Figure 4.28 and 4.29. As demonstrated in the figures, the system

response is even faster while the output achieves a very precise tracking in less than 3
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Figure 4.27: Angle Tracking Performance, DIMS ILC, Iteration 10 to 13.

iterations. Meanwhile, the final error has almost been eliminated after 10 iterations.

The effect of the feedback linearization method on DIMS ILC is shown in Figure 4.30.

As shown in the figure, the tracking error has been decreased on a great scale. The

system response in the first few iterations is very fast and the final tracking error is

minor.

The robustness of the DIMS ILC algorithm is not good enough to eliminate the effect of

disturbances, but its performance is still better than the original ILC algorithm. For the

same Gaussian measurement noise added to the system output, the DIMS ILC algorithm

has a faster error convergence rate and a slightly smaller average absolute error. But the

system performance is also noisy since this is the kind of random noise that is not good

for ILC applications. For a fixed impulse disturbance added to the system output which

will appear repeatedly in each iteration, the DIMS ILC algorithm can compensate with
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Figure 4.28: Angle Tracking Performance, DIMS ILC with FL, Iteration 1 to 4.
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Figure 4.29: Angle Tracking Performance, DIMS ILC with FL, Iteration 10 to 13.
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Figure 4.30: Average Absolute Errors, DIMS ILC, with and without FL.
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Figure 4.31: Comparison of Error Convergence Rate.
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it. The result has a higher average error but can still achieve a good tracking perfor-

mance. For the system uncertainties that exist during the modelling of the system, the

DIMS ILC algorithm faces a slow down in error convergence speed, while its final track-

ing accuracy has almost not been affected. For the unmodelled dynamics that existed in

the system model, the algorithm goes unstable during the test, which leaves the problem

worthwhile for further studies.

Finally, the comparison of performance based on error convergence performance for all

the ILC algorithms introduced in this chapter is shown in Figure 4.31. As demonstrated

in the figure, the DIMS ILC method has the fastest error convergence rate and smallest

final error. But the construction of the internal model needs a certain level of system

knowledge. The NOILC algorithm is relatively slower in convergence speed, but usu-

ally, it can guarantee the monotonic of its error convergence, which is a very important

property of ILC algorithms. The D-type ILC has neither the fastest convergence rate

nor a guarantee of monotonic. However, it has the simplest control structure and does

not need any previous knowledge of the objective system. For all three kinds of ILC

algorithms, the proposed feedback linearization ILC method has greatly improved their

tracking performance and error convergence rate. The proposed ILC algorithm also

enhanced the abilities of these ILC algorithms in dealing with the system nonlinearities.

4.7 Conclusion

In this chapter, the control problem for the shank part of the lower limb exoskeleton

robot has been discussed. With the periodical gait reference signal and the dynamic

model obtained from its equation of motion, the control problem of the shank part lower

limb exoskeleton robot has been transformed to a reference tracking problem in a fixed

finite time interval. Several ILC algorithms have been applied to solve such a problem.
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But due to the unstable and nonlinear features that existed in the dynamic model, their

performances are not satisfying. Then, with the proposed novel algorithm, the perfor-

mances of those ILC algorithms have been greatly improved. Finally, the simulation

results of the proposed algorithms indicate that the error convergence rates have been

increased for those algorithms.



Chapter 5

Adaptive Oscillator Control for Lower

Limb Exoskeleton

Other than the ILC methods, the adaptive oscillator method is another method that can

be applied to solve the control problem of the exoskeleton robots. This chapter intro-

duces the principle of the adaptive oscillator method and its application on the exoskele-

ton robot. Section 5.1 presents the structure and principle of the adaptive oscillator.

Section 5.2 gives its simulation result on the exoskeleton robot model. A comparison

between the ILC methods and the adaptive oscillator method has been represented in

Section 5.3. Finally, Section 5.4 summarizes the chapter.

5.1 Adaptive Oscillator

In general, an oscillator can be regarded as a dynamic system with a stable limit cy-

cle [108]. By introducing a frequency variable ω, which can determine the intrinsic

117
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oscillation frequency of the system, the system can be transferred to an adaptive oscil-

lator. In the meantime, the dynamics of variable ω are designed to be affected by the

external target frequency signal f . Then, the oscillation frequency and phase of the des-

ignated adaptive oscillator can gradually adapt to the external target frequency signal

f .

One of the most commonly used adaptive oscillators is the Hopf oscillator. The typical

dynamics of the Hopf oscillator is given by [163]:

ẋo(t) = λ(µ− xo(t)2 − yo(t)2)xo(t)− ω(t)yo(t) + εf(t),

ẏo(t) = λ(µ− xo(t)2 − yo(t)2)yo(t) + ω(t)xo(t),

ω̇(t) = −εf(t)
yo(t)√

xo(t)2 + yo(t)2
,

(5.1)

where xo and yo are state variables of the Hopf oscillator, µ is the oscillation amplitude

parameter, ε is the coupling strength parameter, and λ determines the recovery speed of

the oscillator after perturbations.

The Hopf oscillator has an important property that it can not only imitate the frequency

of the external signal but also keep oscillating at such frequency after the external signal

disappears. For the Hopf oscillator presented by (5.1), if f(t) is a frequency signal, the

oscillation frequency of the Hopf oscillator will gradually synchronize to the frequency

of f(t). Then, after the oscillation has started, even if the external signal f(t) returns

to zero at some point, the oscillator can still maintain its oscillating frequency. If the

input signal is the amplitude error sequence between the external signal and the Hopf

oscillator, the Hopf oscillator not only can synchronize with the frequency of the exter-

nal signal but also can imitate its frequency. Such a property lead to the design of the

coupled adaptive oscillator system and the adaptive oscillator control scheme. To better

explain the working status of the Hopf oscillator, an example has been given. Setting

the parameters in the Hopf oscillator (5.1) as µ = 0.2, ε = 0.9, λ = 0.2, and the initial
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intrinsic frequency of the oscillator as ω0 = 5rad/s, giving a simple external periodical

signal:

f = sin(8t), (5.2)

which is active to the system between t = 10 and t = 40, the frequency variation of the

adaptive oscillator in this example is shown in Figure 5.1 and 5.2, where Figure 5.1 is

in frequency scale and Figure 5.2 is in amplitude scale.
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Figure 5.1: Adaptation Process of Hopf Oscillator, Frequency Scale.

As indicated in the figures, the red line represents the external periodical signal while

the blue line represents the Hopf oscillator. The initial frequency of the Hopf oscillator

is 5rad/s. After the external signal f has been activated, the frequency of the Hopf

oscillator gradually approaches the frequency of f . Then, after the external signal has

been turned off at t = 40, the Hopf oscillator still keeps its frequency learned from the

external signal.
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Figure 5.2: Adaptation Process of Hopf Oscillator, Amplitude Scale.
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Figure 5.3: Control Scheme of the Adaptive Oscillator Control System.
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Oscillators are said to be coupled if they have interacted with each other. Coupled os-

cillator system can not only study the frequency of the external signal but also generate

designated patterns. The control scheme of the exoskeleton system based on the cou-

pled adaptive oscillator system is shown by Figure 5.3. The structure of the coupled

oscillator in the control scheme is shown by Figure 5.4. The adaptive oscillator will

learn the frequency and amplitude of the external reference gait signal, then generate

estimations of the gait states which can help calculate the assistance torques of the joint

actuators. Then new estimations can be generated based on the difference between the

exoskeleton motion and the external gait signal. Also, due to the property mentioned in

previous paragraphs, the adaptive oscillator can still keep its oscillating frequency and

drive the motion of the exoskeleton even if the external reference gait signal has been

disconnected.

For the coupled oscillator system in Figure 5.4, R(t) is the external periodic reference

signal. Y (t) is the output of the coupled oscillator system, which is a weighted sum of

the individual oscillator outputs. F (t) is the error between the external periodic refer-

ence signal and the oscillator system output. Oi represents the ith individual oscillator

in the system where 0 < i < N . Ei is the remaining error between the reference signal

and the output sum of the first i oscillators, where 0 < i < N − 1. A negative feedback

loop is also added to the system so that the amplitude of the system output can track

the amplitude of the external signal. The dynamics of the ith individual oscillator Oi in

Figure 5.4 is given by:

ẋoi(t) = λ(µ− xoi(t)2 − yoi(t)2)xoi(t)− ωi(t)yoi(t) + εfi(t) + η sin(θi − φi),

ẏoi(t) = λ(µ− xoi(t)2 − yoi(t)2)yoi(t) + ωi(t)xoi(t),

ω̇i(t) = −εfi(t)
yoi(t)√

xoi(t)2 + yoi(t)2
,

(5.3)

where xoi and yoi are state variables of the ith individual oscillator, ε and η are the cou-

pling strength parameters. fi is the frequency input signal for each individual oscillator,
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which equals to the sum of F (t) and EN−1. µ is the oscillation amplitude parameter.

λ determines the recovery speed of the individual oscillator after perturbations. ωi is

the oscillation frequency of ith individual oscillator. θi is the current phase of the ith

individual oscillator given by:

θi = sgn(xoi) cos−1(− yoi√
xoi(t)2 + yoi(t)2

), (5.4)

while φi is the phase difference between the ith oscillator and 1st oscillator whose dy-

namics is given by:

φ̇i = sin(
ωi

ω1

θ1 − θi − φi). (5.5)

Finally, the dynamics of the weight factor αi in Figure 5.4 is given by:

α̇i = κxoifi(t), (5.6)

where κ is the learning gain. Due to the property of the adaptive oscillator which can

maintain oscillating frequency after the disconnection of external signal, the system can

finally reach steady status when F (t) and fi(t) all equals to zero. In this case, the output

of the coupled oscillator system will equal to the external reference signal R(t), which

means the system gait has been fully estimated.

5.2 Simulation Result

In the exoskeleton robot case, the coupled adaptive oscillators can adapt to the external

reference signal with multiple frequency harmonics. For the two continuous joint an-

gle references shown in Figure 3.9 and 3.10, the tracking performances of the coupled

oscillator system are shown in Figure 5.5 and 5.6. The two cases represent these two

separate sets of gait data that have been tested.
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As shown in the figures, the coupled oscillator system has demonstrated an impressive

performance of tracking even if the human gait data is not strictly regulated and period-

ical. The errors are obvious in the first few steps but soon reduced to a much smaller

value.

5.3 Comparison Between ILC and Adaptive Oscillator

Methods

The convergence of the average absolute errors by steps for the adaptive oscillator

method is shown in Figure 5.7. A comparison between the performance of the ILC

methods and the adaptive oscillator method has also been made.
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Figure 5.7: Comparison of Error Convergence Performance.

As demonstrated in the figure, case 1 of the adaptive oscillator method has 36 steps in
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total while case 2 has 51 steps. The angle tracking performance converges at a relatively

fast speed in the first few steps, then fluctuates around a small value. Compared to the

results of the ILC methods, their error convergence rates are at an equivalent level,

but the final error of the adaptive oscillator method is larger than the ILC methods.

Meanwhile, since the adaptive oscillator method is tested on an unregulated reference,

it is clear that the adaptive oscillator has a better performance in dealing with non-

standard gait patterns. The performances of the ILC algorithms will face an obvious

downgrade in such cases.

5.4 Conclusion

This chapter gives a brief explanation of the principle and structure of the adaptive

oscillators. The online learning and fast adaption properties make the adaptive oscillator

method suitable for the motion control problem of the exoskeleton robot like the ILC

methods. After giving relative simulation results, a comparison between the adaptive

oscillator method and the ILC methods has been presented as well. The results show that

the adaptive oscillator method has advantages in dealing with non-standard gait patterns

but disadvantages in tracking accuracy and error convergence rate. These differences

lead to their divergence in application scenarios.



Chapter 6

Conclusions and Future Works

This chapter concludes the entire thesis, then indicated the possible directions for future

works.

6.1 Conclusions

In this thesis, the motion control problem for the lower limb exoskeleton robot has been

studied. Firstly, by studying the cyclic property of the human gait, the motion control

problem of the exoskeleton robot is converted to a tracking problem on a series of fixed

and finite time intervals where every interval represents a gait cycle. Then, a dynamic

model of the lower limb exoskeleton robot is established. A novel iterative learning

control algorithm has been proposed to deal with the nonlinearities in the model and

solve the tracking problem.

Compared to normal iterative learning algorithms, the proposed algorithm has consid-

erable advantages in response speed, tracking accuracy, and error convergence rate. It

128
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can also better handle the nonlinearities that exist in the dynamic model of the system.

By applying the proposed algorithm to other iterative learning algorithms, including the

norm optimal iterative learning control algorithm and the dual internal model structure

iterative learning control algorithm, improvements in system performances have been

witnessed in both cases. For the exoskeleton model given in the thesis, the response

speed has been improved by more than 40 percent, the average absolute error in the

steady-state has been reduced by more than 60 percent, and the error convergence speed

has been improved from more than 20 iterations to less than 5 iterations. All those

examples have demonstrated the effectiveness of the proposed algorithm.

Finally, another method feasible for the motion control problem, the adaptive oscilla-

tor method, has also been introduced. The simulation results of the adaptive oscillator

method and the iterative learning control methods have been compared as well. The iter-

ative learning control methods also have more advantages in tracking accuracy and error

convergence rate, while the adaptive oscillator method is superior in its adaptability to

unregulated gait patterns.

6.2 Future Research

Along with the remaining works, the following open problems can be heuristic research

topics for the iterative learning control of exoskeleton robots in the future.

1. The transition dynamics. During the control process of the exoskeleton robot, it is

possible for the wearer to change the gait pattern. The iterative learning controller

will be interrupted from its current control process and learn the new gait pattern.

The transition dynamics of the controller during such a process can be further

studied in the future.
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2. More flexible gait cycle length. For the current iterative learning controller, it

is assumed that the time length of each gait cycle is the same. Though such an

assumption holds in rehabilitation applications, it is possible for the wearer to

have a more flexible gait cycle length in other working modes of the exoskeleton.

The way to handle such a non-constant gait cycle length can also be a topic for

future studies.

3. Robustness. The DIMS ILC method is good at dealing with some periodical dis-

turbances defined by some models. But it is hard to deal with non-periodical dis-

turbances or some disturbances which cannot be modelled. The NOILC method

is also weak against non-periodical disturbances. How to enhance the robustness

of the iterative learning controller in those aspects is worth future studies.
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