97 research outputs found

    LSTM based voice conversion for laryngectomees

    Get PDF
    This paper describes a voice conversion system designed withthe aim of improving the intelligibility and pleasantness of oe-sophageal voices. Two different systems have been built, oneto transform the spectral magnitude and another one for thefundamental frequency, both based on DNNs. Ahocoder hasbeen used to extract the spectral information (mel cepstral co-efficients) and a specific pitch extractor has been developed tocalculate the fundamental frequency of the oesophageal voices.The cepstral coefficients are converted by means of an LSTMnetwork. The conversion of the intonation curve is implementedthrough two different LSTM networks, one dedicated to thevoiced unvoiced detection and another one for the predictionof F0 from the converted cepstral coefficients. The experi-ments described here involve conversion from one oesophagealspeaker to a specific healthy voice. The intelligibility of thesignals has been measured with a Kaldi based ASR system. Apreference test has been implemented to evaluate the subjectivepreference of the obtained converted voices comparing themwith the original oesophageal voice. The results show that spec-tral conversion improves ASR while restoring the intonation ispreferred by human listenersThis work has been partially funded by the Spanish Ministryof Economy and Competitiveness with FEDER support (RE-STORE project, TEC2015-67163-C2-1-R), the Basque Govern-ment (BerbaOla project, KK-2018/00014) and from the Euro-pean Unions H2020 research and innovation programme un-der the Marie Curie European Training Network ENRICH(675324)

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Speech Enhancement Exploiting the Source-Filter Model

    Get PDF
    Imagining everyday life without mobile telephony is nowadays hardly possible. Calls are being made in every thinkable situation and environment. Hence, the microphone will not only pick up the user’s speech but also sound from the surroundings which is likely to impede the understanding of the conversational partner. Modern speech enhancement systems are able to mitigate such effects and most users are not even aware of their existence. In this thesis the development of a modern single-channel speech enhancement approach is presented, which uses the divide and conquer principle to combat environmental noise in microphone signals. Though initially motivated by mobile telephony applications, this approach can be applied whenever speech is to be retrieved from a corrupted signal. The approach uses the so-called source-filter model to divide the problem into two subproblems which are then subsequently conquered by enhancing the source (the excitation signal) and the filter (the spectral envelope) separately. Both enhanced signals are then used to denoise the corrupted signal. The estimation of spectral envelopes has quite some history and some approaches already exist for speech enhancement. However, they typically neglect the excitation signal which leads to the inability of enhancing the fine structure properly. Both individual enhancement approaches exploit benefits of the cepstral domain which offers, e.g., advantageous mathematical properties and straightforward synthesis of excitation-like signals. We investigate traditional model-based schemes like Gaussian mixture models (GMMs), classical signal processing-based, as well as modern deep neural network (DNN)-based approaches in this thesis. The enhanced signals are not used directly to enhance the corrupted signal (e.g., to synthesize a clean speech signal) but as so-called a priori signal-to-noise ratio (SNR) estimate in a traditional statistical speech enhancement system. Such a traditional system consists of a noise power estimator, an a priori SNR estimator, and a spectral weighting rule that is usually driven by the results of the aforementioned estimators and subsequently employed to retrieve the clean speech estimate from the noisy observation. As a result the new approach obtains significantly higher noise attenuation compared to current state-of-the-art systems while maintaining a quite comparable speech component quality and speech intelligibility. In consequence, the overall quality of the enhanced speech signal turns out to be superior as compared to state-of-the-art speech ehnahcement approaches.Mobiltelefonie ist aus dem heutigen Leben nicht mehr wegzudenken. Telefonate werden in beliebigen Situationen an beliebigen Orten geführt und dabei nimmt das Mikrofon nicht nur die Sprache des Nutzers auf, sondern auch die Umgebungsgeräusche, welche das Verständnis des Gesprächspartners stark beeinflussen können. Moderne Systeme können durch Sprachverbesserungsalgorithmen solchen Effekten entgegenwirken, dabei ist vielen Nutzern nicht einmal bewusst, dass diese Algorithmen existieren. In dieser Arbeit wird die Entwicklung eines einkanaligen Sprachverbesserungssystems vorgestellt. Der Ansatz setzt auf das Teile-und-herrsche-Verfahren, um störende Umgebungsgeräusche aus Mikrofonsignalen herauszufiltern. Dieses Verfahren kann für sämtliche Fälle angewendet werden, in denen Sprache aus verrauschten Signalen extrahiert werden soll. Der Ansatz nutzt das Quelle-Filter-Modell, um das ursprüngliche Problem in zwei Unterprobleme aufzuteilen, die anschließend gelöst werden, indem die Quelle (das Anregungssignal) und das Filter (die spektrale Einhüllende) separat verbessert werden. Die verbesserten Signale werden gemeinsam genutzt, um das gestörte Mikrofonsignal zu entrauschen. Die Schätzung von spektralen Einhüllenden wurde bereits in der Vergangenheit erforscht und zum Teil auch für die Sprachverbesserung angewandt. Typischerweise wird dabei jedoch das Anregungssignal vernachlässigt, so dass die spektrale Feinstruktur des Mikrofonsignals nicht verbessert werden kann. Beide Ansätze nutzen jeweils die Eigenschaften der cepstralen Domäne, die unter anderem vorteilhafte mathematische Eigenschaften mit sich bringen, sowie die Möglichkeit, Prototypen eines Anregungssignals zu erzeugen. Wir untersuchen modellbasierte Ansätze, wie z.B. Gaußsche Mischmodelle, klassische signalverarbeitungsbasierte Lösungen und auch moderne tiefe neuronale Netzwerke in dieser Arbeit. Die so verbesserten Signale werden nicht direkt zur Sprachsignalverbesserung genutzt (z.B. Sprachsynthese), sondern als sogenannter A-priori-Signal-zu-Rauschleistungs-Schätzwert in einem traditionellen statistischen Sprachverbesserungssystem. Dieses besteht aus einem Störleistungs-Schätzer, einem A-priori-Signal-zu-Rauschleistungs-Schätzer und einer spektralen Gewichtungsregel, die üblicherweise mit Hilfe der Ergebnisse der beiden Schätzer berechnet wird. Schließlich wird eine Schätzung des sauberen Sprachsignals aus der Mikrofonaufnahme gewonnen. Der neue Ansatz bietet eine signifikant höhere Dämpfung des Störgeräuschs als der bisherige Stand der Technik. Dabei wird eine vergleichbare Qualität der Sprachkomponente und der Sprachverständlichkeit gewährleistet. Somit konnte die Gesamtqualität des verbesserten Sprachsignals gegenüber dem Stand der Technik erhöht werden

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Methods for speaking style conversion from normal speech to high vocal effort speech

    Get PDF
    This thesis deals with vocal-effort-focused speaking style conversion (SSC). Specifically, we studied two topics on conversion of normal speech to high vocal effort. The first topic involves the conversion of normal speech to shouted speech. We employed this conversion in a speaker recognition system with vocal effort mismatch between test and enrollment utterances (shouted speech vs. normal speech). The mismatch causes a degradation of the system's speaker identification performance. As solution, we proposed a SSC system that included a novel spectral mapping, used along a statistical mapping technique, to transform the mel-frequency spectral energies of normal speech enrollment utterances towards their counterparts in shouted speech. We evaluated the proposed solution by comparing speaker identification rates for a state-of-the-art i-vector-based speaker recognition system, with and without applying SSC to the enrollment utterances. Our results showed that applying the proposed SSC pre-processing to the enrollment data improves considerably the speaker identification rates. The second topic involves a normal-to-Lombard speech conversion. We proposed a vocoder-based parametric SSC system to perform the conversion. This system first extracts speech features using the vocoder. Next, a mapping technique, robust to data scarcity, maps the features. Finally, the vocoder synthesizes the mapped features into speech. We used two vocoders in the conversion system, for comparison: a glottal vocoder and the widely used STRAIGHT. We assessed the converted speech from the two vocoder cases with two subjective listening tests that measured similarity to Lombard speech and naturalness. The similarity subjective test showed that, for both vocoder cases, our proposed SSC system was able to convert normal speech to Lombard speech. The naturalness subjective test showed that the converted samples using the glottal vocoder were clearly more natural than those obtained with STRAIGHT

    Mapping Techniques for Voice Conversion

    Get PDF
    Speaker identity plays an important role in human communication. In addition to the linguistic content, speech utterances contain acoustic information of the speaker characteristics. This thesis focuses on voice conversion, a technique that aims at changing the voice of one speaker (a source speaker) into the voice of another specific speaker (a target speaker) without changing the linguistic information. The relationship between the source and target speaker characteristics is learned from the training data. Voice conversion can be used in various applications and fields: text-to-speech systems, dubbing, speech-to-speech translation, games, voice restoration, voice pathology, etc. Voice conversion offers many challenges: which features to extract from speech, how to find linguistic correspondences (alignment) between source and target features, which machine learning techniques to use for creating a mapping function between the features of the speakers, and finally, how to make the desired modifications to the speech waveform. The features can be any parameters that describe the speech and the speaker identity, e.g. spectral envelope, excitation, fundamental frequency, and phone durations. The main focus of the thesis is on the design of suitable mapping techniques between frame-level source and target features, but also aspects related to parallel data alignment and prosody conversion are addressed. The perception of the quality and the success of the identity conversion are largely subjective. Conventional statistical techniques are able to produce good similarity between the original and the converted target voices but the quality is usually degraded. The objective of this thesis is to design conversion techniques that enable successful identity conversion while maintaining the original speech quality. Due to the limited amount of data, statistical techniques are usually utilized in extracting the mapping function. The most popular technique is based on a Gaussian mixture model (GMM). However, conventional GMM-based conversion suffers from many problems that result in degraded speech quality. The problems are analyzed in this thesis, and a technique that combines GMM-based conversion with partial least squares regression is introduced to alleviate these problems. Additionally, approaches to solve the time-independent mapping problem associated with many algorithms are proposed. The most significant contribution of the thesis is the proposed novel dynamic kernel partial least squares regression technique that allows creating a non-linear mapping function and improves temporal correlation. The technique is straightforward, efficient and requires very little tuning. It is shown to outperform the state-of-the-art GMM-based technique using both subjective and objective tests over a variety of speaker pairs. In addition, quality is further improved when aperiodicity and binary voicing values are predicted using the same technique. The vast majority of the existing voice conversion algorithms concern the transformation of the spectral envelopes. However, prosodic features, such as fundamental frequency movements and speaking rhythm, also contain important cues of identity. It is shown in the thesis that pure prosody alone can be used, to some extent, to recognize speakers that are familiar to the listeners. Furthermore, a prosody conversion technique is proposed that transforms fundamental frequency contours and durations at syllable level. The technique is shown to improve similarity to the target speaker’s prosody and reduce roboticness compared to a conventional frame-based conversion technique. Recently, the trend has shifted from text-dependent to text-independent use cases meaning that there is no parallel data available. The techniques proposed in the thesis currently assume parallel data, i.e. that the same texts have been spoken by both speakers. However, excluding the prosody conversion algorithm, the proposed techniques require no phonetic information and are applicable for a small amount of training data. Moreover, many text-independent approaches are based on extracting a sort of alignment as a pre-processing step. Thus the techniques proposed in the thesis can be exploited after the alignment process
    corecore