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Abstract 

 

One of the most important parameters of speech is the fundamental frequency of vibration 

of voiced sounds. The audio sensation of the fundamental frequency is known as the pitch. 

Depending on the tonal/non-tonal category of language, the fundamental frequency 

conveys intonation, pragmatics and meaning. In addition the fundamental frequency and 

intonation carry speaker gender, age, identity, speaking style and emotional state.  

Accurate estimation of the fundamental frequency is critically important for functioning of 

speech processing applications such as speech coding, speech recognition, speech 

synthesis and voice morphing.  

This thesis makes contributions to the development of accurate pitch estimation research 

in three distinct ways: (1) an investigation of the impact of the window length on pitch 

estimation error, (2) an investigation of the use of the higher order moments and (3) an 

investigation of an analysis-synthesis method for selection of the best pitch value among 

N proposed candidates. 

Experimental evaluations show that the length of the speech window has a major impact 

on the accuracy of pitch estimation. Depending on the similarity criteria and the order of 

the statistical moment a window length of 37 to 80 ms gives the least error. In order to 

avoid excessive delay as a consequence of using a longer window, a method is proposed 
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where the current short window is concatenated with the previous frames to form a longer 

signal window for pitch extraction. 

The use of second order and higher order moments, and the magnitude difference 

function, as the similarity criteria were explored and compared. A novel method of 

calculation of moments is introduced where the signal is split, i.e. rectified, into positive 

and negative valued samples. The moments for the positive and negative parts of the 

signal are computed separately and combined. The new method of calculation of moments 

from positive and negative parts and the higher order criteria provide competitive results. 

A challenging issue in pitch estimation is the determination of the best candidate from N 

extrema of the similarity criteria. The analysis-synthesis method proposed in this thesis 

selects the pitch candidate that provides the best reproduction (synthesis) of the harmonic 

spectrum of the original speech. The synthesis method must be such that the distortion 

increases with the increasing error in the estimate of the fundamental frequency. To this 

end a new method of spectral synthesis is proposed using an estimate of the spectral 

envelop and harmonically spaced asymmetric Gaussian pulses as excitation. The N-best 

method provides consistent reduction in pitch estimation error. 

The methods described in this thesis result in a significant improvement in the pitch 

accuracy and outperform the benchmark YIN method. 
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1.1  INTRODUCTION 

Speech is composed of the spoken words and sentences; it is the main form of human 

communication and interaction; this is particularly true in a historical sense when the great 

majority of humans did not have the benefit of learning to write and read using the textual 

forms of communication. Even now for many individuals and for most very young people 

below the age of five, speech is practically the only form of communication.  

The ability to use speech comes naturally and develops during the early years of a person’s 

life at such a rate that by the age of six on average a child has a vocabulary of 13000 

words, these increases to an average of 60,000 words vocabulary for a high school 

graduate [1]. 

1 
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Speech is exhaled random air fluctuations from the lung that is time and frequency 

modulated and temporally-spectrally shaped along the way from lung and out from the 

lips. At the glottis the rate of openings and closings of the vocal folds determines the 

fundamental frequency of the speech and the time-variation of the fundamental frequency 

primarily determines the intonation of speech. The fundamental frequency is perceived as 

pitch level, a low value of the fundamental frequency is perceived as a low pitch and a 

high value of fundamental frequency is perceived as a high pitch, and the intonations are 

the trajectory of changes in the pitch level.  

Speech signals are multilayered in that they simultaneously contain different forms of 

information, i.e. segmental and supra-segmental, conveyed mainly by the spoken form of 

word sequence and by the intended intonation [2]. 

At a word-sequence level layer, speech is composed of phrases, sentences and paragraphs 

each of which is composed of a number of words. The words themselves are combinations 

of elementary phonetic units; the arrangement of the words follows the constraints set by 

the rules of the grammar of the language. Speech is spoken as a sequence of connected and 

co-articulated words, where the articulation of each word is affected by the context of the 

previous and succeeding words. The degree of co-articulation of words depends on the 

personal style of speaking, the speaking rate, the accent and the emotional state of the 

speaker. 

At the supra-segmental level that is at the pitch intonation level speech signals convey 

phrase/sentence boundaries, punctuations, pragmatics, intent, emotion, accent intonation 

and the state of health and mind of the speaker.          



Chapter 1:                                                                                                                                                           Introduction 

3 

 

The function of the pitch intonations varies with languages. In tonal languages, such as 

Chinese and some African languages and to some extent Japanese, a change in the tone or 

the pitch of a word can completely change the meaning of the word; i.e. seemingly same 

sounding words (particularly to a foreign or non-native speaker), with different tones may 

have entirely different meanings [3]. 

In non-tonal languages, such as the English language, the function of the pitch is to convey 

supra-segmental information. For example a change of pitch may:                                  

 Distinguish between a question  or a statement,  

 Signal the intent of the speaker,  

 Be used to stress/emphasis a part of speech, 

 Signal reactions such as approval, surprise or boredom, 

 Signal emotions such as anger, happiness, contentment, indifference etc., 

 Signal phrase, sentence boundaries. 

Speech processing methods, employed in voice communication technology, deal mainly 

with three broad application areas of speech coding, speech synthesis and speech 

recognition. Speech processing methods are concerned with the accurate estimation and 

efficient representation and reconstruction of speech parameters.  

Speech is composed of a time-varying mixture of voiced (i.e. quasi-periodic) and unvoiced 

(i.e. noise like) signals. There are two main models of speech in current use; source-filter 

model and harmonic plus noise model [4]. In the source filter model, speech is composed 

of a mixture of a random noise plus harmonic (i.e. periodic) excitation that is input to a 

linear prediction model of vocal tract. In the harmonic plus noise model, speech is simply 
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modelled as the sum of a harmonic periodic part (modelled by a Fourier series 

representation) plus a noise part. 

One of the most important speech parameters is the fundamental frequency, perceived by 

the human auditory system as the pitch level and commonly referred to as the pitch of 

voice. The fundamental frequency of speech models the rate of repetition of the periodic, 

voiced part, of speech. It is in fact the rate of the opening and closing of vocal folds during 

voiced excitation. 

The estimation of the fundamental frequency of speech has proved a very challenging 

problem that continues to be a subject of research interest and the focus of this PhD thesis.  

1.2  THE RANGE OF PITCH VARIATIONS IN VOICE 

The range of values of fundamental frequency, pitch, varies substantially from very low 

values of 20 Hz to very high values of above 3000 Hz in young children. Variations and 

changes of voice pitch can be due to the following reasons: 

1) Physiological function of age, gender and speaker characteristics  

2) Intended intonation  

3) Induced by emotion, style, accent or singing. 

Associated with aging, the changes of the fundamental frequency from childhood to 

adulthood is significant, a child due to smaller and younger vocal organs can have double 

or more the pitch of an adult [5] - [6]. Changes in pitch as an adult person ages are slight 

increases for males aged 70 years or older. For females there is a decrease in the pitch 

associated with the aging process which is most obvious when comparing females in the 
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30s-40s age range with females in their 20s [7]. There may also be some tremor or 

shakiness in pitch with advanced aging process.  

The range of pitch is particularly wide well described for singing voice where the pitch 

range is categorised into four categories of pitch/vocal registers [8]  namely  

1) whistle (very high pitch),  

2) falsetto (high pitch),  

3) modal (normal pitch range) and 

4) fry (low pitch) .  

Whistle is the highest pitch register mainly used in singing voice or by children.  In most 

singers the whistle begins above the soprano "high C", C6 or 1,046.5 Hz, and extends 

more than an octave to above D7 or 2349.3 Hz. Young Children can produce high 

frequency whistle phonation that go beyond G7 or 3136.0 Hz. 

Falsetto is the vocal register in the high frequency range just above the modal voice 

register, overlapping with it by approximately one octave, and below the whistle register. 

It is produced by the vibration of the ligament edges of the vocal cords. 

 

Figure 1.1- General vocal register in speech and singing. 

Fry

Modal

Falsetto

Whistle
C6

1,046.5 Hz
D7

2349.3 Hz

Male: C4

261.7 Hz

Female: G4

392 Hz

E0

20.6 Hz

G1

49Hz

http://en.wikipedia.org/wiki/Vocal_register%20%20name
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Modal is the vocal register used normally in speech and singing. It is also the term used in 

linguistics for the most common phonation of vowels. In linguistics, modal voice is the 

only phonation found in the vowels and other sonorant (consonants such as m, n, l, and r).
  

Vocal fry is the lowest vocal register produced through a loose glottal closure which will 

permit air to bubble through slowly with a popping or rattling sound of a very low 

frequency.  

Figure 1.1 shows a depiction of the approximate range of the vocal registers from the 

lowest pitch (Fry) to the highest pitch (Whistle). 

1.3  THE IMPORTANCE OF PITCH IN SPEECH COMMUNICATION 

TECHNOLOGY 

Pitch is an important speech parameter for a wide range of applications such as speech 

coding, text to speech synthesis, speech recognition, gender identification, accent 

identification, accent synthesis, speaker identification, speaker verification and speech 

morphing.  

In mobile speech coders, such as GSM, the fundamental frequency is estimated at a rate of 

once every five ms (i.e. 200 times a second) and around 20% of the total coding bit 

resources are allocated to the quantization of the fundamental frequency parameter [9].  

For text to speech synthesis one of the major issues is the reproduction of the correct pitch 

intonation that fits the intended expression, style and emotion. Note that here; the issue is 

not the estimation of the fundamental frequency but that of the determination of the 

correct context dependent time-variation of the fundamental frequency at the phrase and 

sentence levels. 

http://en.wikipedia.org/wiki/Linguistics
http://en.wikipedia.org/wiki/Sonorant
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Pitch intonation is also a major indicator of an accent’s characteristics identity, for 

example in Southern UK English accent, the pitch intonation trajectory falls at the end of a 

declarative statement and raises at the end of a question. In contrast in some Northern UK 

English accents the pitch intonation rises at the end of a statement. 

The gender identity is carried mostly by the pitch, in that pitch appears to be the most 

distinctive parametric indicator of the gender. Typical adult males have a mean pitch value 

of around 120 Hz (with a range of 85 Hz to 180 Hz) and typical adult females have a mean 

pitch value of around 210 Hz ( with  a range of 165 Hz to 255 Hz) [10].  

Speaker identity and speaking style may be parameterised by the pitch variations, formants 

and spectral features such as cepstral features. In particular the speaking style is 

significantly impacted by the variations of the pitch trajectory, i.e. intonation style and 

habits, as well as the speaking rate [7].  

 1.4 THE CHALLENGES OF PITCH ESTIMATION 

Despite more than 50 years of research and development, the estimation of the 

fundamental frequency of voiced speech, pitch, remains a challenging and nontrivial 

problem as there does not exists a closed-form solution, or an error- free method of any 

form, for calculation of the pitch values and the correct pitch values have to be estimated 

and tracked from a number of likely candidates obtained at the maxima or minima of a 

similarity criterion.  
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The factors that contribute to the challenging nature of pitch estimation may be listed as 

follows. 

1) The time-varying nature of pitch; implies that the period, or its inverse the 

fundamental frequency, estimated from a speech frame is at best the average value of 

the period, or the fundamental frequency, within the frame. The actual period can 

vary substantially over a frame or it may oscillate within a frame depending on the 

emotional state of the voice.  

2) Indeterminate nature of some quasi-periodic speech; for transient speech segments, 

in particular at the onset and at the end of a voiced segment, it is difficult, even for 

an expert, to visually determine the correct pitch value as the period sometimes 

changes erratically or drastically. In particular, at the end of a phrase/sentence the 

fundamental frequency and the number of significant harmonics may decrease 

substantially. Furthermore, sometimes within a voiced segment the signal amplitude 

and or its harmonic to noise ratio can drop significantly. Many of the most 

challenging errors, that the author has observed, occur when the speech analysis 

window contains transient speech with substantial variations of fundamental 

frequency and spectral content within the analysis window. 

3) Missing fundamental; the fundamental frequency may coincide with a trough (anti-

resonance) of the spectral envelop such that the first observable harmonic is the 

second or a higher harmonic.  

4) Half and double pitch estimation; a periodic signal with a period of T exhibits peak 

correlations at integer multiples of T. This may lead to ‘half pitch’ estimation error, 

i.e. an estimate that is an octave below the actual pitch value, in cases where the 

similarity measure at    is stronger than at  . For some speech segments periodicity 

is also exhibited at half period leading to ‘double pitch’ estimation, i.e. an octave 
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above the actual pitch value, in cases where the similarity measure is a stronger at 

  ⁄   than at T. Note in addition there can be large errors which are not necessarily 

an integer multiple of the actual pitch.  

5) Voicing errors; for the purpose of pitch estimation, speech is broadly composed of 

two states; a voiced state with a harmonic structure and an unvoiced state with a 

noise-like structure. The error in detection of voiced/unvoiced states affects the 

accuracy of pitch estimate.  

6) Harmonic to noise ratio (harmonicity); generally voiced signals are composed of a 

mixture of harmonic and noise components. Pitch estimation accuracy improves with 

the increasing harmonic to noise ratio and degrades as the harmonic to noise ratio 

drops, for example, for breathy, creaky or hoarse voice [11].  

7) Noise; pitch estimation, particularly for mobile communication environment, can be 

affected by background noise, as in all signal estimation methods, the accuracy of 

pitch estimation drops with increasing background noise or decreasing signal to 

noise ratio. 

8) Speech disorders and impediment; speech impediments can complicate pitch 

estimation and result in increased estimation errors. Examples of speech disorders are: 

stuttering, apraxia (trouble sequencing the sounds in syllables and words), dysarthria 

(paralyse   of speech muscles), voice disorder impairment, cluttering (abnormal speech 

delivery rate) and muteness [11] - [12].  
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1.5 RESEARCH AIMS, OBJECTIVES, AND MOTIVATIONS 

The broad aims of this research thesis are: 

1) The development of digital signal processing models and methods for accurate 

estimation of the fundamental frequency, also commonly referred to as the pitch, of 

voiced speech signals.  

2) In particular a main focus of this research work is development of methods that are 

more robust in that they are less prone to suffer from large pitch estimation errors 

such as double and half pitch estimation. 

3) Comparative evaluation of the proposed pitch estimation methods using actual 

fundamental frequency as the reference. 

In order to achieve the aim of more accurate and robust pitch estimation, the objectives of 

this research thesis are defined as follows: 

1) A critical study of the existing pitch estimation methods in particular regarding to 

the objective criteria employed and the impact of the choice of the values for such 

parameters as the window length. 

2) Exploring, implementation and evaluation of novel similarity objective criteria for 

pitch estimation. 

3) A study of the methods used for resolving the ambiguity when the objective 

criteria yield several closely competing possible solutions. 

4) Exploring and implementation of novel methods for selection of the best candidate 

among several proposals from the objective criteria. 
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5) Comparative evaluation of the proposed pitch extraction methods and a state of the 

art method using as the reference, or as the ‘ground truth’, the values of the 

fundamental frequency extracted from the laryngograph signal. 

The motivation for this work is twofold;  

1) The central role practical importance of accurate pitch estimates in all speech 

processing technology applications for coding, synthesis and recognition. 

2) The continuing need for the development of pitch estimators that is more accurate 

and robust particularly with regard to large pitch errors. 

1.6 THE THESIS STRUCTURE  

Figure 1.2 shows the structure of the thesis whereas shown the research work presented in 

this thesis is organized in 7 chapters; each chapter starts with a brief introduction of its 

subject, highlights the main contributions and provides an overview of that chapter. At the 

end of each chapter, a brief conclusion is presented.  The structures of this thesis are as 

follows:  

 Chapter 1 provides a brief descriptive introduction to the fundamental frequency of 

speech, perceived as pitch, and explains the challenges in pitch estimation. The chapter 

sets out the aims, objectives and contribution of the thesis and includes a description of 

the thesis structure.       

 Chapter 2 describes an overview of the literature review of the established methods 

for estimation of the fundamental frequency or pitch. First, the general introduction to 

pitch extraction systems is presented. Then, the pitch extraction are categorised in 

different approaches such as in time domain, frequency domain, time-frequency 
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domain, and statistical model based approach and examples of their working principles 

applied to fundamental frequency or pitch of the speech segment are presented.       

  Chapter 3 presents the signal processing methods for production and synthesis of the 

human speech excitation signal.  The physiology of human speech production model 

where the mechanism of human speech system and the role of the various speech 

organs involved are described. Then, the source-filter model of speech production and 

the method of synthesis of speech production including linear prediction filter model 

and harmonic plus noise ratio model are explained. 

 Chapter 4 provides the statistical theory of the variation of pitch curve and includes 

the smoothing process. Firstly, the general theory of the method of the pitch trajectory 

of the speech signal such as finite-state Markovian-Gaussian and linear prediction 

models are introduced. Then algorithms that would limit the errors regarding the 

smoothness and the continuity of pitch trajectory are introduced. 

 Chapter 5 presents the detailed development of proposal pitch estimation method in 

time domain using the concept of modified higher order moments. Firstly, the general 

introduction of pitch estimation and the impact of varying segment or frame length of 

speech signal to the pitch estimation are described and evaluated. Then, the theoretical 

concept of the higher order moment (HOM) of the pitch estimation method is 

presented. The evaluation of the proposed pitch extraction method is performed by 

measuring the mean of percentage errors for three categories of errors: an average 

error, the fine error (less than 20%) and the gross error (more than 20%). The 

population errors for fine and gross errors are also calculated. Finally, the analysis 

from the obtained evaluation results is discussed and conclusion presented.   
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Figure 1.2 - The Structure of the thesis. 
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 Chapter 6 describes the detail of the determination of the best pitch value given a 

selection of   -best pitch candidates.  In this work, the  -best pitch candidates are 

obtained from the positions of the N extrema of the similarity criterion. The 

determination of which candidate is the best one, is based on the fidelity by which the 

harmonic part of the speech spectrum can be synthesised using the candidates, i.e. the 

candidate that provides for the best reconstruction of harmonic part of speech spectrum 

is selected as the best pitch. The speech synthesis is performed in the frequency 

domain using an analysis-synthesis method based on a harmonic plus noise model of 

speech. The synthesis of speech involved extraction of the spectral envelop and 

synthesis of a periodic excitation composed of asymmetric Gaussian pulses positioned 

at the harmonic frequency series determined by the pitch candidate. The selection of 

the best pitch candidate is based on evaluation of the distortion of the speech 

synthesised using each pitch candidate and as such a distortion measure that rewards 

for good spectral match and penalises spectral mismatch is required. The different 

distortion measure approaches evaluated are signal-to-noise ratio (SNR), minimum 

mean squared error (MMSE), and the mean Harmonicity (MH). Lastly the obtained 

results are analysed and conclude the evaluation. 

 Chapter 7 contains the summary of the research work, the conclusions, and the 

suggestions for the further work.  

 References and citation. 
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 1.7 THE MAIN CONTRIBUTIONS OF THE RESEARCH 

In this thesis significant issues concerning the estimation of the fundamental frequency or 

pitch have been considered and the proposed solutions evaluated. The main contributions 

of this research work are summarised as follows.   

1)  A modified higher order moments (MHOM) are proposed and evaluated as alternatives 

to the conventional second order moment model. The MHOM version proposed in this 

work includes a new method of calculation of the MHOM and the evaluation of the 

third order, fourth order and fifth order criteria. The MHOM criteria compare 

favourably and often outperform the conventional methods (published in ICASSP2010 

and INTERSPEECH2011).  

2)  A novel  -best strategy for determination and selection of the best pitch value given    

pitch candidates, the   pitch candidates are the top   extrema of a similarity moment 

criteria. For each proposal, the harmonic part of the signal spectrum is synthesised and 

subtracted from the original spectrum to determine the proposal that can best 

reproduce the harmonics content of speech. 

3)  Spectral signal synthesis methods using a combination of a new spectral envelop 

estimation method and a novel asymmetric Gaussian model of excitations. The 

spectral synthesis is employed in  -best pitch estimation for determination of the pitch 

candidate that can facilitate the best synthesis the original speech spectrum. 

4)   A set of t spectral distortion measures are proposed to determine the similarity 

between an original signal and a synthesised signal version. Several different criteria 

were considered including combinations of weighted SNR, weighted MSE and 
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harmonicity, the latter is a measure of harmonic strength of each harmonic partial of 

the signal spectrum. 

5)  Cost functions are proposed that combine different spectral distortions and apply a cost 

penalty for impulsive and step changes in estimation trajectory of pitch. 
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his chapter provides a literature review of the speech pitch extraction 

methods, describes the major advances made, the current challenges and the 

state of the art of pitch extraction methods. The literature review is described 

in terms of the main categories of methodologies. The descriptions of the methods are 

arranged in each class the major contributions are described in the chronological order. 

The methods are compared in terms of their complexity and performance. 
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2.1    INTRODUCTION 

The aim of pitch estimation (aka pitch extraction or pitch detection) algorithms is to detect 

and measure the time-varying period of repetition, or equivalently the fundamental 

frequency, of voiced speech.  

Pitch can be defined as the auditory sensation of the fundamental frequency,    of a 

periodic audio signal; whereas the fundamental frequency of a periodic signal is a 

numerical quantity that may be accurately measured and assigned a value by an electronic 

instrument, pitch is the perception of the ‘frequency level ‘or the ‘frequency tone’ of a 

signal by a human audio sensory system  [4], [13] - [14].  

The fundamental frequency,   , of a periodic signal defined as the number of repetitions or 

cycles per second, is the inverse of the duration or the period of one cycle    and is 

defined in units of Hz as  

   
 

  
                                                                              

Pitch is a significant parameter in speech, music and generally audio signal processing 

systems because a significant proportion of audio signals are often composed of quasi-

periodic components, examples are voiced signals or music signals generated by string or 

brass music instruments.  

Reliability and high accuracy in estimation of pitch, from the raw speech signals, are 

essential and necessary for accurate and/or high quality output in most speech 

communication application including in speech recognition, speech synthesis, and speech 

coding  [15].  
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Generally, speech signals are combination of a quasi-periodic voiced (harmonic) and a 

non-periodic unvoiced (coloured noised) signals and silence segments [16]. The term 

quasi-periodic implies the signal is seemingly, but not strictly, periodic because the period 

varies over time. The characteristic features of the quasi-periodic voiced segments is a 

harmonic spectral structure, a relatively higher overall energy compared to unvoiced 

signal and a greater concentration of the spectral energy in the lower frequency part of the 

spectrum (less than 2 kHz).  In contrast, unvoiced signals are random/aperiodic signals, 

have a lower overall energy and most of their spectral energy is concentrated at higher 

frequencies (above 2 kHz) [17] - [18]. 

The harmonic plus noise model (HNM) of speech may be expressed as  

     ∑                         

  

   

                                   

where                is the time-varying fundamental frequency at discrete-time  , 

     and        are the time-varying amplitude and phase of the     harmonic of the 

signal respectively,     is the number of harmonics up to the bandwidth and      is the 

non-periodic (noise) component of the signal [19]- [20]. Note that the harmonic part of 

Equation (2.2) is essentially a Fourier series expansion of the periodic voice signal. 

The pattern of time-variation of the pitch,      , known as intonation, conveys such 

information as pragmatics of speech, intent, style, emotion and accent [4],[13]. In English 

language pitch does not affect the word identity, however in tonal languages, such as 

Chinese and some African languages, the word identity can change with the pitch 
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intonation; these changes can be subtle presenting particular challenges to automatic 

speech recognition for tonal languages [21]. 

Although, over more than 50 years, numerous papers and ideas in pitch extraction methods 

have been published, with several significant contributions, nevertheless pitch estimation 

remains a nontrivial problem that continues to be a research challenge in development of 

speech processing systems contributions. 

Reliable and accurate pitch period estimation is the most important objective in pitch 

estimation methods in all pitch extraction approaches. There are several different 

approaches in pitch period estimation which will be reviewed in this section.  

 2.2 AN OVERVIEW OF PITCH ESTIMATION METHODS  

Figure 2.1 shows a categorisation of pitch estimation methods into four broad categories 

of time domain, frequency domain, time-frequency and statistical methods. Within each 

category, several prominent methods are described. Note that each of the first three 

methods, namely time, frequency and time-frequency can be combined with and expressed 

in terms of a statistical probabilistic framework. Note also that most models/methods, such 

as moments, harmonic plus noise model, linear prediction model etc. can be described 

alternatively in time or in frequency domains. 
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Figure 2.1- Illustration of the categories of the pitch estimation. 
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Figure 2.2 - The generic block diagram of pitch estimation systems. 

Figure 2.2 shows the generic block diagram of a pitch estimation signal processing system. 

As shown most pitch estimation algorithms may have about six stages of signal 

processing: 

1) Pre-processing or signal conditioning. 

2) Segmentation and windowing.  

3) Signal transformation.  

4) Estimation of pitch candidates (core module).  

5) Selection of the best pitch candidate.  

6) Post-processing.  

2.2.1 Pre-Processing of Speech Signal 

The pre-processing or signal conditioning stage removes the signal components that are 

unwanted or detrimental for the purpose of pitch estimation [22]- [23], such as;  
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1) The mean/dc signal values are removed by a simple mean subtraction process; this 

may be done for the whole signal or on a segment by segment basis. This may also 

be done as part of bandpass filter. 

2) Very low frequencies that are below the minimum expected value of the pitch 

(typically less than 60 Hz), these components are removed by a lowpass filter with 

a cutoff frequency of 40 Hz. 

3) Higher frequencies with low harmonic to non-harmonic ratio (i.e. low 

harmonicity), typically above 2000 Hz, are removed by a high pass filter, note a 

band pass filter may be used to simultaneously remove the unwanted low and high 

frequency parts of the signal.    

4) The effect of vocal tract resonances at formants may be removed by an inverse 

linear prediction filter. 

5) Noise and interference can be reduced by a noise reduction method; care must be 

taken such that the noise reduction process does not have an adverse impact on 

harmonic structure of the signal [24]. 

2.2.2 Segmentation and Windowing 

For a non-stationary signal such as speech, with a time-varying spectral composition and 

time-varying fundamental frequency, a short-term similarity measurement (or other pitch 

estimation function) capable of tracking the trajectory of speech parameters is desirable. 

For this reason, pitch estimation measures are applied to relatively short segments (in the 

order of several 10’s of ms) of windowed speech segments. The segmentation and 

windowing are described here. 
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1) Segmentation or dividing the speech signal into frames is an integral part of all 

digital speech processing systems. Note the two words, segment and frame, are 

used interchangeably [4], [25]. The segment/frame length is constrained by: (a) the 

non-stationary character of speech and (b) the maximum allowable delay in voice 

communication systems. The International Telecommunication Unit-T (ITU-T) 

allows the delay in voice communication systems is 300ms under G.114 [9]. 

2) Hence in mobile communication systems the standard segment length may have 

significant time variations. Hence in mobile phones the pitch values is set to a 

value of 20 ms. However, even within a short segment of 20 ms the pitch values 

are actually updated four times per frame equivalent to a pitch update rate of once 

every 5 ms (or 200 Hz).  Note the actual window used for pitch estimation in 

mobile phones spans one and half window duration (equivalent to 30 ms), 

however, the centre of the window is shifted every 5 ms. 

3) The choice of the segment length is an important issue in pitch estimation; in 

general for calculation of the similarity criteria a segment should contain at least 

two or three pitch periods. If the segment is too short, the variance of the similarity 

criteria will be large and the pitch estimation method will not be able to estimate 

the pitch period accurately, likewise, if the segment is too long, then the pitch 

method will not be able to detect the non-stationary variation in the length of the 

pitch period from period to period  [26] - [27]. 

4) Windowing is commonly applied in speech processing. It can have two benefits: (i) 

reduce the end-point discontinuity and the consequent spectral leakage and (ii) 

shape the signal envelop such that it places more emphasis on a particular part (or 

subframe) in the current frame. This latter property is useful when the current 

frame is concatenated with one or more previous frame for the purpose of pitch 
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estimation as is the practice in mobile phone speech processing when one and a 

half frame length is used. One can then shape the window such that the current 

frame has a greater relative weight than the previous frames concatenated to it. 

Examples of popular windows used in speech processing include Hamming and 

Hanning window functions [17], [28]. 

2.2.3 Signal Transformation 

Pitch estimation can be achieved in the time domain, in the frequency domain, in the time-

frequency domain or in the frequency-scale domain such as wavelets. Hence, the 

transformation module may be Discrete Fourier Transform (DFT) [25], [29], a wavelet 

transforms [30] - [31] or for the case of time domain pitch extraction the transformation 

will be an identity matrix. 

The most commonly applied pitch estimation methods are based on time domain using the 

correlation function as the similarity criterion. However, as correlation and power 

spectrum (or squared magnitude spectrum) are Fourier transform pairs, one can apply 

correlation-based pitch estimation method in the frequency domain using the power 

spectrum as the similarity criterion [32] - [33]. 

In this thesis a time domain approach to pitch estimation using higher order moment 

methods is described in Chapter 5. In Chapter 6 a frequency domain approach is used to 

select the best pitch estimate among   candidates. 
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2.2.4 Pitch Estimation Module: Estimation of the Pitch Candidates  

The different similarity criteria used for pitch estimation have a common feature: they all 

measure the turning points at which the extrema of similarity reinforcements (e.g. as with 

the correlation criterion) or similarity cancellations (e.g. as with the magnitude difference 

function criterion) occur. Usually, for periodic signals, the similarity criteria have a 

number of significant extrema points and hence yield more than one likely pitch candidate.  

As explained above depending on the method employed, pitch estimation may be 

categorized into four distinct approaches:  

1) Time-domain pitch extraction methods often employ a moment-based similarity 

criterion, these include; correlation higher order moments (HOM) and magnitude 

difference; the latter includes the benchmark YIN method [34] as an 

implementation. The most commonly used similarity measurements include the 

peaks of the moments or the troughs of the differences of the signal as a function 

of the proposed period  . For example, correlation-based pitch extraction methods 

estimate the period as the value of T for which the average of the product of  

           over a frame of speech samples, known as the short-time 

correlation, attains a maximum value. Magnitude-difference-based pitch extraction 

methods estimate the period as the value of T for which the average magnitude 

difference |           | over a frame of speech samples attains a minimum 

[16], [23], [27], [34] - [35]. 

2) Frequency domain pitch extraction methods first transform speech segments into 

the frequency domain using a discrete Fourier transform or some variant of it. 

Frequency domain methods are based on the observation that the energy/power of 
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periodic signals is concentrated in a set of narrow bands of frequencies around the 

fundamental frequency         and its integer multiples    ; the harmonics, 

The fundamental frequency is obtained by detecting a set of spectral peaks and 

then, from this set, processing the frequency positions of the harmonically related 

components of the signal. Frequency-transformation methods include, 

magnitude/power spectrum-based methods cepstrum, zero-crossing and 

instantaneous frequency method [13], [25] - [26], [36]- [37]. 

3) Time-Frequency methods employ an expansion of the speech signal in time and 

frequency domains. This may take the form of a DFT-based spectrogram matrix of 

the speech signal combined with a peak tracking algorithm that tracks the time-

varying positions of the fundamental frequency of speech and its harmonics. 

Wavelets may also be used as a pitch extraction method employing frequency and 

scale [38].  

4) Model-based methods which may include the use of both: (a) a generative method 

such as an autoregressive moving average (ARMA ) filter [39] - [40], a linear 

prediction model or a harmonic plus noise model of speech and (b) a statistical, 

probability, model of the speech and pitch signals [41] - [42].  

A model-based comb filter, using an adaptive ARMA structure, with poles and zeros, can 

track the time variation of the fundamental frequency of a periodic signal. The criterion 

used is the minimisation of the energy (MMSE) of the filter output.  

In Chapter 6 a model-based method using linear prediction and a harmonics model is 

described for synthesis of periodic part of speech. 
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2.2.5 Pitch Estimation Module: Selection of the Best Pitch Candidate  

The selection of the best pitch value from a set of likely candidates is achieved by the use 

of scoring algorithm which calculates the least costly choice among the proposed 

candidates output by the pitch similarity function.   

Over time, the use of  -best candidate gives rise to a trellis of pitch trajectories, with 

different costs associated with different path in the trellis. The most common method of 

estimation of the best pitch is the computation of the most likely, or the minimum error, 

trajectory using a dynamic programming method. The Viterbi algorithm is often used to 

obtain the minimum cost path [43]. 

A new method described in Chapter 6 directly synthesises a harmonic signal for each pitch 

candidate. The best candidate is obtained as the one that produces the best reconstruction 

of the original signal. 

2.2.6 Post-processing of Pitch Trajectory Estimates 

After selection of the best pitch candidate, a number of techniques may be used to improve 

the pitch estimates including fine-tuning estimation, impulsive noise removal filters and 

trajectory smoothing filters. 

1) Fine-tuning, in some application after the calculation of the initial pitch value from 

a window length of L samples, a constrained recalculation/refining of the pitch 

value over a shorter window length, and within a relatively small region centred 

about the initial pitch estimate, may be performed in order to increase the time-

resolution of pitch estimation [34], [44]. 
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2) Impulsive noise removal is achieved by one a of a number of alternatives, (a) 

median filters, (b) removal of abnormally large differences in the residuals of a 

linear prediction (LP) filter, this involves processing of the residues of low-order 

LP model of p-itch tracks, (c) detection of sudden changes, samples corrupted by 

an impulse are removed and interpolated from the past values [24], [45]. 

3) Smoothing of random fluctuations of pitch estimates; constitutes the use of a  

moving average, low pass, filter for smoothing of  the pitch trajectory [13], [17], 

[24], [34]. 

2.3  PITCH EXTRACTION METHODS 

2.3.1 Moment Based Pitch Estimation 

Pitch extraction methods based on the autocorrelation function (ACF) are the most well-

known moment-based method for estimation of the period of an audio signal. Other 

moment based methods considered in this section include cross-correlation function 

(CCF), average magnitude difference function (AMDF) and higher order moment methods 

(HOMs). 

2.3.1.1  Autocorrelation Method (ACF) 

Autocorrelation based method is the method most commonly used to estimate period,    

or its inverse the fundamental frequency    of speech signal. The autocorrelation function 

is taken as a mathematical measure of the similarity of a signal with itself as a function of 

time lag T. The autocorrelation function (ACF) of N samples of a signal x(m), for a time 

lag of T samples is defined as 
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A normalised version of autocorrelation as showed in Figure 2.3 may be defined as  

       
 

   
 

∑           

   

   

                                                        

where the signal variance   
  is the normalization factor of the autocorrelation function. 

The signal period    may be estimated as the value of the lag T corresponding to the 

maximum of the ACF in the range Tmin to Tmax 

                                                                         

where Tmin and Tmax  are the expected minimum and maximum values of the period [16] -

[17],[23],[35],[46]-[48]. Since the ACF of a periodic signal is itself periodic, a time-

domain energy maximising function that utilises the periodic energy peaks of the ACF is 

defined as 

     
 

  
∑        

  

   

                                                          

where           ⁄     is the maximum number of periods T that can be fitted within the 

N samples length of a speech frame [49]. The estimate of the period T0 is obtained as 
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In autocorrelation pitch extraction method, the perception of pitch is strongly related to the 

periodicity in the waveform in the time domain.  

Some pre-processing methods have been combined with the autocorrelation method 

including centre-clipping technique and pre-whitening to flatten the spectrum of the 

speech signal [16], [48], [50] - [51].  

 
Figure 2.3 - Illustration of normalized autocorrelation method, ACF. 

2.3.1.2  Normalized Cross-Correlation Function (NCCF) Method 

Whereas the autocorrelation method finds the correlation of the samples,      and 

        of the same speech segment, the cross-correlation methods obtains the 

correlation between samples of different speech segments (or frames) [27], [52] 

     
    

 

   
 

∑              
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where       and         are samples of different segments of speech as shown in 

Figure 2.4. The different speech segments may be overlapping successive segments or one 

segment, e.g.    may be a sub-segment of another, e.g.   .  

 
Figure 2.4 - Illustration of Normalized Cross-correlation method, NCCF. 

Note in this method the period is obtained as the difference between the positions of the 

two most prominent peaks. This method is similar to autocorrelation function, it is claimed 

to follow the rapid variation in pitch and the amplitude of the speech signal. The NCCF 

overcomes most of the shortcoming of autocorrelation based algorithm at a slight increase 

in computation complexity. NCCF is better suited for pitch detection than the normal 

autocorrelation where the peak corresponding to the pitch period are more prominent and 

less affected by the rapid variations in the signal amplitude [23],[52] - [54].  

2.3.1.3  Average Magnitude Difference Function (AMDF) Method 
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The Average Magnitude Difference Function (AMDF), like the autocorrelation function, 

measures the degree of similarity between two signals as shown in Figure 2.5 [38], [55]-

[56]. The general form of the AMDF criterion for pitch extraction may be defined as  

     
 

 
∑|           | 
   

   

                                         

where for     we have the AMDF function and for =2 we have the squared magnitude 

difference function (SMDF) [34].  For a periodic signal, the AMDF/SMDF attain a 

minimum at the period T and its integer multiples, kT, when x(m) has a value similar to 

       . 

 
Figure 2.5 - Illustration of Normalized Average Magnitude Difference Function 

(NAMDF). 
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A combination of AMDF and ACF pitch estimation methods has been introduced to take 

the advantage of the AMDF and ACF complementary natures [34], [46], [57].   

2.3.1.4 YIN Method   

Among the recent and established pitch estimation method in speech and music signals in 

time domain, one can refer to, is the YIN approach [34].  The YIN method is introduced 

by A. de Cheveigne and H. Kawahara in 2002, which uses an expansion of the Squared 

Magnitude Difference Function (SMDF) criteria, Equation (2.9) with =2, as 

                                                                                 

where        and          are time-varying autocorrelations at lag zero, calculated at times 

zero, and T , respectively and          is autocorrelation at lag T. This technique yields 

better result than the autocorrelation function method; it is less sensitive to changes in 

signal amplitudes, being thus less prone to    estimation error.  About 80% decreases in 

pitch error is reported when the SMDF criteria of Equation (2.9) is used instead of the 

conventional ACF criteria of Equation (2.3). 

The YIN method includes several signal processing steps namely the autocorrelation 

method (ACF), the difference function, the cumulative mean normalized difference 

function, the absolute threshold function, the parabolic interpolation and the best local 

estimate. Consequently, the YIN method is named based on the oriental of the yin-yang 

philosophical principal of balance between autocorrelation and cancellation in the 

algorithm. 

2.3.1.5  Higher Order Moments Methods (HOM) 
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Correlation (2
nd

 order moment) methods utilise the similarity between two samples, e.g. 

     and         the higher order methods exploit the similarity between three (e.g. 

    ,       ,        ) or more samples. For pitch extraction, where the intent is to 

estimate the period T, the general expression for the K
th

 order moment can be defined as  

      
 

        
∑                                          

        

   

 

where       .  

The primary advantage of the higher order moments methods is a greater reinforcement 

obtained from the product of a higher number of similar samples;         

               as shown in Figure 2.6. The main disadvantage is a larger window 

length required to average samples that are 2T or more apart. The contributions to higher 

order method of pitch extraction found by the authors include a number of conference 

papers: [58] - [59].  
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Figure 2.6 - Illustration of   higher order moments function (HOM). 

2.3.2 Frequency-Domain Transformation Methods  

Frequency domain pitch analysis is an alternative approach for estimation of the 

fundamental frequency of speech. These methods are based on the observation that the 

energy of a periodic signal is concentrated in narrow bands of frequencies at the 

fundamental frequency         and at its harmonics    . Hence the signal is first 

transformed into the frequency domain and then one of several strategies can be used to 

estimate the value of    which a cumulative function of the signal energy at harmonics 

attains its extrema.  Like time domain methods frequency domain methods can suffer from 

problems of half and double pitch estimation.    

 2.3.2.1     Zero–Crossing Function (ZCF) Method 
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We have classified zero crossing as a frequency domain method because it gives a direct 

estimate of the fundamental frequency. A simple early approach for estimation of the 

fundamental frequency   , or its inverse, the period   , is measuring the distance between 

the zero crossing points of the signal, the inverse of which is the zero-crossing rate (ZCR) 

[13,25], [60] - [61]. Zero Crossing rate (ZCR) is a measurement of how often the 

waveform crosses zeros per unit time. 

Zero-crossing occurs in a speech signal every time the waveform crosses the time axis and 

provides information about the spectral content of the waveform. Each cycle of a sinusoid 

signal has two zero-crossing per period as shown in Figure 2.7, therefore the long-time 

average rate of zero-crossings can be related to the fundamental frequency as 

                                                                        (2.12)             

Hence from an estimate of zero-crossings the fundamental frequency can be obtained as 

    
 ⁄                                                                                 

Since speech signals are broadband signals, the pitch estimation can be obtained using 

representation based on the short-time average zero-crossing rate, which has same 

properties as the short-time energy and the short-time average magnitude. This method 

provides an intuitive approach in estimating the frequency of a sine wave. This approach is 

accurate for narrowband signals which may not have higher harmonics.  
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Figure 2.7 - Illustration of zero-crossing functions (ZSF). 

The advantage of this method is in its simplicity and computational efficiency; however 

their main drawback is that for most waveforms do not have only one pair of zero crossing 

per cycle due to the possible existence of strong second or higher harmonics. 

 2.3.2.2 Magnitude (power) Spectrum Method 

Since autocorrelation and squared magnitude spectrum of a signal are discrete Fourier 

transform (DFT) pairs, a frequency-domain form of Equation (2.6), a frequency-domain 

energy maximising function that utilises the uniformly spaced (with spacing of 

fundamental frequency) harmonic energy peaks of the power spectrum can be defined as 

     
 

  
∑|     | 
  

   

                                                     

 where           ⁄    is the maximum number of harmonics of a proposed 

fundamental frequency F that can be fitted within the N/2 frequency bins of the DFT of  
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speech frame of length N samples [49]. The estimate of the fundamental frequency    is 

obtained as shown in Figure 2.8 and may be defined as  

          
 

                                                                      

The research contributions on magnitude and power spectrum include the following 

works: [26], [28, 38], [62] - [64]. 

 

Figure 2.8 - Illustration of pitch estimation based on peak-picking of the frequency 

spectrum of a signal.  

2.3.2.3  Cepstrum Method 

Cepstrum analysis is based on the Fourier transform of the log of the magnitude spectrum 

of a signal. A speech signal      may be modelled as the convolution of a vocal tract      

and a glottal input e(t);                . The cepstrum of      may be defined as the 

cosine transform of its log magnitude spectrum as 
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|    |                             

where     ,      and      are the spectra of speech, vocal tract and excitation signals 

respectively. The cepstrum index is known as the quefrency (an anagram of frequency) as 

depicted in Figure 2.9. In cepstrum method the vocal tract is mainly confined to the lower 

quefrency indices whereas the pitch value appears as a distinct peak at a higher quefrency 

relative to that of the vocal tract  [36] - [37], [65] - [70].  

 

Figure 2.9 - Illustration of decomposition of vocal tract and pitch function using 

cepstrum function.  
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Instantaneous frequency is a fundamental concept that can be found in many disciplines 

such as communications, speech, and music processing. In the continuous time-frequency 

domains the instantaneous frequency spectrum is defined as the first derivative of the 

phase spectrum as 

       
       

  
                                                                  

where       is the phase term. Consider a harmonic model of speech signal with the 

    harmonic component of the signal defined as 

            (     )                                                           

where  

                                                                        

Now taking the derivative of the phase of the     harmonic w.r.t. time gives 

      

  
        

      

  
                                                 

Assuming that 
      

  
 is relatively small  

      

  
                                                                            

From Equation (2.21), the frequency of a harmonic is proportional to the derivative of 

phase. For discrete-time speech signals in [63] a method is proposed for extraction of IF 

from the differences between the phase spectrum of the short-term Fourier transform 

(STFT) of two consecutive speech frames; the basic idea can be expressed as 
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where the variables k and m are the discrete frequency and the frame index respectively,  

       is the time-varing DFT spectrum and         is the phase  function.  The 

contributions in IF-based pitch extraction include the followings [63], [71] - [74]. 

2.3.2.5 Adaptive Comb Filters for Pitch Estimation 

A comb filter is defined as a pole-zero filter whose zeros are on the unit circle and whose 

poles, at the same frequency as the zeros are used to adjust the selectivity, bandwidth of 

the filter [61], [75] - [81]. The transfer function of a comb filter with fundamental 

frequency    is defined as 

     ∏(
(              )(              )

                                  
)

  

   

                         

where    is the number of  harmonics of the speech signal. 

The main parameter to adjust is the fundamental frequency of the comb filter   . This 

parameter can be optimised by noting that for the corrected value of    when the comb 

notch values coincide with the peaks of the harmonics the filter output energy is 

minimised. Hence an energy minimisation approach such as the gradient descent based 

adaptive least mean squared (LMS) error algorithm can be used to find the value of    for 

which the comb filter output energy is at a minimum [67], [82]. In [78]  an adaptive lattice 

notch filter is described where optimisation is performed by minimisation of forward and 

backward residues of error, and in [83]  pitch detection in musical sounds using a number 

of parallel comb filters is described.  
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Figure 2.10 (a - b) are illustration of the poles and zeros and the frequency response of a 

comb filter.   

 

Figure 2.10 - Illustration of the (a) poles and zeros parameter, and (b) the frequency 

response curve of the adaptive comb filter. 

2.3.3 Model-Based Pitch Extraction Methods  
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model of the fundamental frequency [20], [33], [39], [84]- [85]. For example GSM 

mobile phone employs an LP model of speech [ITU-T GSM standard]. 

2) A statistical model of the probability distribution of the signal such as a Gaussian 

model [39], [86], a Gaussian mixture model, hidden Markov-model (HMM) which 

involves with finite-state model [41] - [42], [87] - [88]. 

3) A combination of a generative/synthesis and a statistical model. For example, LP 

or HNM model may be formulated within a maximum likelihood framework. 

As described in Chapter 3, the two common forms of parameterisation of speech are linear 

prediction model (LP) and harmonic plus noise model (HNM). A linear prediction model 

of a segment of N samples of speech can be described compactly in Chapter 3 as 

                                                                                   

where                are the LP model coefficients. Similarly a harmonic plus noise 

model of a segment of N samples speech can be described compactly as  

                                                                 (2.25) 

where   is a matrix of sine and cosine functions and   is vector containing the weights 

assigned to sine and cosine components and   is the noise component of HNM method. 

Note the similarity of form between Equations (2.24) and (2.25), in both cases the 

solutions may be derived from a least mean squared error or a maximum likelihood 

optimisation method. Also note that it is assumed that the pitch is given or that it can be 

estimated using a separate pitch estimation method.  

2.3.3.1  Maximum Likelihood (ML) of Pitch Estimation 
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Maximum likelihood pitch estimation uses a statistical approach to find the most likely 

parameters which model a segment of speech signal.  The most common approach to ML 

method is to calculate the likelihood of a residual signal obtained as the difference 

between the speech signal and an estimate of the periodic component of speech. The ML 

approach can be formulated as 

  ( ̂ )   ̂ 
         

 ̂ 

(   |   )       
 ̂ 

(        |   )                  

where   is the residue from an operation on   such as linear prediction inverse filter output 

       or it may be the difference between the spectrum of the actual signal and the 

synthesised harmonic based on the pitch proposal   . The maximisation of the ML 

function (coinciding with minimisation of the error residue) can be performed on the log 

probability as 

 ̂ 
         

 ̂ 

(   (   |   ))                                               

The commonly used least squared error criterion may be considered as a special case of 

ML estimation where the signal has a Gaussian probability distribution. Furthermore when 

the likelihood function    |     is Gaussian then the ML estimate is the same as the least 

squared error (LSE) estimate due to the fact that maximisation of a Gaussian function is 

equivalent to minimisation of the exponent, e.g.     ̂     
   ⁄  , of the Gaussian 

function [89]. 

Hence, Bayesian minimum mean squared error (MMSE) is a probabilistically weighted 

MMSE method [39], [41] - [42], [60], [87], [90].  
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2.3.3.2  Maximum a Posterior (MAP) of Pitch Estimation 

Maximum a-Posteriori (MAP) is a special case of Bayesian function when the cost is 

 ( ̂    )     ( ̂    ), then the Maximum a positerior method is obtained  

   ( ̂ )   ̂ 
          

 ̂ 

(     |  ⏟    
             

)        
 ̂ 

(    |   ⏟    
          

     ⏟  
     

)                 

Where   is the Kronecker delta function. 

The maximisation of the MAP function can be performed on the log probability as 

 ̂ 
          

 ̂ 

(   (   |   )     (     ))                                 

Note that the main difference between ML and MAP pitch estimators is that the latter 

employs a prior knowledge of the distribution of pitch    in the form of the probability 

function       [89], [91]. 
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SPEECH MODELS: PRODUCTION, SYNTHESIS 

AND DISTRIBUTION 

 

 

 

 

 

 

his chapter describes the principles of human speech production mechanism; 

including the function and models of the acoustic articulator components. 

The voiced and unvoiced speech production and the commonly used speech 

models such as the source-filter linear prediction model and the harmonic plus noise 

model are described. The histograms of pitch distributions are shown and the probability 

distribution models of the pitch such as the Bayesian pitch estimation models including the 

maximum likelihood and the maximum a posterior model are presented.   
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3.1  INTRODUCTION 

Speech signals are the natural and primary form of human communication, where acoustic 

signals (i.e. variations of air vibrations) are employed to convey words, sentences and 

intonations from which the listener deduces meaning, expression, intension, emotion and 

accent.   

Human speech signals are produced by vibrating vocal organs mainly the vocal cords and 

the vocal tract and moving the articulators mainly the jaws, the tongue and the lips. The air 

vibrations coming out of the mouth/lips set the surrounding air into motion which, as the 

communication channel/medium, facilitates transmission of the speech from the source 

speaker to the receiver listener. 

Speech sounds are auditory sensations of air pressure vibrations produced by air exhaled 

from the lungs.  The air flows through the larynx, which contains the vocal cords, to the 

pharynx (throat cavity) and then goes through the oral cavity and the lips and also via the 

nasal cavity and the nostrils. Both the oral cavity and the nasal cavity can be closed. The 

tube leading from the larynx to the pharynx and from there on to the oral and nasal cavities 

is called the vocal tract [13,25], [92]. 

The speech signal production may be modelled as the convolution of the excitation 

waveform produced by the glottis and the impulse of the vocal tract. Speech sounds are 

modulated and spectrally shaped by the frequency and mode of vibrations of the glottal 

cords and the frequency response and resonances of the vocal tract and the anti-resonances 

of the nasal cavity as the air is pushed out through the lips and nose.  
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Speech is an immensely information-rich signal exploiting frequency-modulated, 

amplitude-modulated and time-modulated carriers (e.g. resonance movements, harmonics 

and noise, pitch intonation, power, duration) to convey information about words, speaker 

identity, accent, expression, style of speech, emotion and the state of health of the speaker. 

Most of this information is conveyed primarily within the traditional telephone bandwidth 

of 4 kHz. The speech energy above 4 kHz mostly conveys audio quality and sensation and 

some of the information of unvoiced. 

3.2  THE PHYSIOLOGY SPEECH PRODUCTION MODEL  

Acoustic speech output is produced by exhaling air from lungs through trachea, larynx, 

vocal cords (vocal valve), and epiglottis, oral and nasal cavities and finally out through the 

mouth opening and lips as illustrated in Figure 3.1.  

 

 

 

Figure 3.1 - Illustration of anatomy of speech production. 
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3.2.1 The Anatomy of Speech Production System 

The act of production of speech begins with exhaling (inhaled) air from the lung. The 

exhaled air is continuously replenished. Without the subsequent modulations and spectral 

shaping, by the voice production system, this air will sound like a low energy random 

noise, not dissimilar to that from a deflating balloon, with no information imprinted upon 

it.  

The information is first modulated onto the passing air by the manner and the frequency of 

vibrations of the closing and opening of the glottal folds, the resonance frequencies of the 

vocal cavity, the passage/blocking of air through the nasal cavity and the shape and the 

opening of mouth and lips.  

The output of the glottal folds, in the form of a sequence of pulses for voiced sounds and 

air turbulence for unvoiced sounds, is the excitation signal to the vocal tract which is 

further shaped by the resonances of the vocal tract and the effects of the openings to the 

nasal cavities and the teeth and the shape of lips.  

Figure 3.1 shows an outline of the anatomy of speech production system. The speech 

production system consists of the lungs, larynx, vocal tract cavity, nasal cavity, teeth, lips, 

and the connecting tubes. 

1) Lung- The lung acts as the source of the air that is exhaled and in passing through 

the vocal system, is shaped and modulated with speech information to result in the 

acoustic form of speech output from the lips. The exhaled air is continuously 

replenished through inhalation. In fact efficient use of the exhaling and inhaling 

process, during speech production, is an important aspect of speech production.  
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2) The total volume of air that an average adult can hold in male/female lungs is 

around 6-7 litres. However, only part of this air can be actually used for speech 

production and physical activities; around 2 litres of air is always present in the 

lungs, and is called residual volume. This residual air could not be expelled unless 

the lungs collapse. The remaining volume of 4-5 litres, called the tidal volume, is 

usable for respiration or voice use. However, 10-15% of the tidal volume of air in 

the lungs is used in speech production [93]. The rest is held in reserve for more 

demanding physical activities, such as physical exercise or singing, which can 

demand our entire tidal volume. 

3) Bronchi and Trachea -The lungs are connected via left and right bronchi tubes to 

the trachea  tube which goes up to the vocal cords (the trachea or windpipe). The 

trachea is made of smooth muscle tissue along the back wall with 16 to 20 C-

shaped bands of cartilage running along its length. The air at the point that the air 

exits lung, in its way to the larynx, it is entirely noise like and random and of very 

little loudness as evident from individuals who had laryngectomy surgery [94]. 

4) Larynx - The larynx, commonly known as voice box, is an organ in the production 

of sound that allows changes in pitch and volume of sound and also serves to 

protect the upper part of the trachea. The larynx houses the vocal folds or vocal 

cords and is shaped like a funnel. These components are connected to each other 

by muscles and ligament. The movement of these cartilages alters the tension of 

the vocal folds, which changes the pitch of the sound emitted by the vocal folds 

when they vibrate [95] - [96].  

http://www.beltina.org/health-dictionary/skeletal-muscle-body-definition-function.html
http://www.beltina.org/health-dictionary/cartilage-what-is-definition-function.html
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5) Vocal cords/vocal folds- The shape of the opening and closing and the frequency 

of vibrations of the vocal cords affect the voiced/unvoiced character of sounds as 

well as the trajectory of the pitch and intonation in speech.  The space between the 

vocal cords is called the glottis.  The term glottis includes both the space between 

the vocal folds, called the membranous glottis, and the space behind the vocal folds 

between the arytenoid cartilages, called the cartilaginous glottis. The vocal cords 

are composed  of two strings of muscle (mucous membrane) that form a V-shape  

stretched horizontally across  the larynx in the respiratory tract as shown in Figure 

3.2.  Producing speech causes the vocal cords tighten together but then air from the 

lungs forces its way between the two vocal cords. The air causes the vocal cords to 

vibrate which, in turn, creates sound [98]. 

6) Male and female have different vocal fold sizes. The male vocal folds are between 

17.5 - 25 mm in length, and the female vocal folds are between 12.5 - 17.5 mm. 

The average adult female pitch is around 210 Hz compared to the average adult 

male pitch of 120 Hz  [98] - [99]. 

 

Figure 3.2 - Illustration of vocal cords (taken from [97]) 
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7) Vocal tract- The vocal tract consists of the laryngeal cavity, the pharynx, the oral 

cavity, and the nasal cavity. The vocal tract begins at the opening between vocal 

cords or glottis, and ends at the lips. The vocal tract acts as a time-varying filter 

with a set of around five time-varying resonances whose position and shape 

convey phonetic label/identity and speaker information. The estimated average 

length of the vocal tract in adult male humans is 16.9 cm and 14.1 cm in adult 

females. Assuming a closed tube model (resonance frequency = speed of sound / 4 

× length of tube), these vocal tract lengths correspond to an average fundamental 

resonance frequency of 503 Hz for male and 603 Hz for female [100].  

3.2.2  Production of Voiced/Unvoiced Excitation Signals  

3.2.2.1  Voiced Speech Excitation Signal 

Speech sounds are produced by either a periodic, or a non-periodic, sequence of opening 

and closing of the vocal folds. For voiced speech sounds with a periodic character, such as 

vowels or voiced consonants, the output of the larynx, which is the voicing input to the 

vocal tract, is composed of a quasi-periodic series of air pulses resulting from periodic 

cycles of opening and closing of vocal folds at a rate that is determined by the pitch and 

intended intonation of the speaker.  

Figure 3.3 shows sketches of the gradual opening (3.3 (a-e)) and the gradual closing 

(3.3(f-j)) of the vocal cords during one cycle of production of voiced speech.  

Voiced sounds are produced by a repeating sequence of opening and closing of glottal 

folds with a frequency of between 40 Hz (e.g. for a male with a low pitch and a 

heavy/coarse voice) to 600 Hz (e.g. for young children’s voice) cycles per second (Hz) 

http://en.wikipedia.org/wiki/Laryngeal_cavity
http://en.wikipedia.org/wiki/Pharynx
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depending on the speaker, the phoneme and the linguistic and emotional/expressional 

context. For an adult male, with a fundamental frequency of 100 cycles/second or 100 Hz, 

the duration of the average period of a single glottal cycle of the opening and closing of 

vocal cords is in the region of 1/100th of second. This rate is too fast for the human ear to 

discriminate each individual opening/closing of the vocal cords. However, the overall rate 

of vibration is perceived as the pitch of the voice, "pitch" being the perceptual correlate of 

acoustic frequency.  

 

Figure 3.3 - Illustration of vocal cords activities during voiced speech production 

(taken from [101]). 

 

The periodicity of the glottal pulses determines the fundamental frequency, F0 of the 

source signal and contributes to the perceived pitch of the sound. The time-variations of 

glottal pulse period convey the style, the intonation, the stress and emphasis in speech 

signals. In normal speech the fundamental frequency (pitch) changes constantly, providing 

linguistic clues and speaker information, as in the different intonation patterns associated 
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with questions or statements, or information about the emotional content, such as 

differences in speaker mood e.g. calmness, excitement, sadness etc. 

The manner and the duration of the opening and closing of the glottal folds in each cycle 

of voice sounds and contribute to the perception of the voice quality and the speaker’s 

identify. The quality of voice and its classification into such types as normal (modal), 

creaky, breathy, husky, tense etc. depends on the glottal pulse shape. 

3.2.2.2  Unvoiced Speech Excitation Signal 

For speech signal with a non-periodic character, such as unvoiced consonants and stops, 

the output of the larynx is non-periodic and may take one of several forms depending on 

whether the sound is nasal, fricative or stop.  For fricatives the air flow input to the 

vocal/nasal cavities is formed by a small opening of the vocal fold constriction. 
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(b) 

 

(c) 

Figure 3.4 - a) Acoustic production of the word sea (pronounced s-iy), (b) spectrum of the 

unvoiced segment “s”, and (c) spectrum of the voiced speech segment 

“iy”[Taken from [4]. 

 

For unvoiced sounds air is passed through some obstacle in the mouth (e.g. when 

pronouncing ‘S’), or is let out with a sudden burst (e.g. when pronouncing ‘P’). The 

position where the obstacle is created depends on which speech sound (i.e. phoneme) is 

produced. During transitions, and for some mixed-excitation phonemes, the same air 

stream is used twice: first to make a low-frequency hum with the vocal cords, then to 

make a high-frequency, noisy hiss in the mouth [4].  

If the vocal cords are held apart, air can flow between them without being obstructed, so 

that no noise is produced by the larynx. In voiceless fricatives such as /f/, /s/, /c/,/x/ the 

vocal cords are held apart. If there is a sufficiently high rate of airflow through the open 

glottis, a quiet disruption of the air, whisper, results. The glottal fricative /h/ has whisper 

phonation, as do whispered vowels, and the aspiration portion of voiceless aspirated stops 

such as English /p/, /t/, or /k/ in pre-vocalic position.  For stops and fricatives, on the other 

hand, there are separate letters for voiced and voiceless sounds, e.g. /b/ (voiced) vs. /p/ [4].  
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Figure 3.4 shows an example of a speech segment containing an unvoiced sound “s” and a 

voiced sound “iy”. Note that the spectrum of voiced sounds is shaped by the resonance of 

the vocal tract filter and contains the harmonics of the quasi-periodic glottal excitation, 

and has most of its power in the lower frequency bands, whereas the spectrum of unvoiced 

sounds is non-harmonic and usually has more energy in higher frequency bands. The 

shape of the spectrum of the input to the vocal tract filter is determined by the details of 

the opening and closing movements of the vocal cords, and by the fundamental frequency 

of the glottal pulses.  

3.3  SOURCE-FILTER MODEL OF SPEECH 

Speech sounds result from a combination of a source of sound energy from the lung 

modulated by time-varying openings and closings of vocal cords and spectrally shaped by 

the transfer function filter of vocal articulators determined by the shape and size of the 

vocal tract and nasal cavity. This results in a shaped spectrum with broadband energy 

peaks. This combination model is known as the source-filter model of speech production 

as shown in Figure 3.5.  This model is at a common component of many speech analysis 

methods and also drives ideas in speech perception research. The source-filter model is a 

significant model of speech production, as an outline of the anatomy of the human speech 

production system as shown in Figure 3.1. 
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Figure 3.5 - A discrete-time source-filter model of speech production. 

The source-filter theory describes speech production as a two stage process involving the 

generation of an excitation sound source, with its own spectral fine structure which is then 

filtered and spectrally shaped by the resonant properties of the vocal tract [102].  

3.3.1  Voiced Source Signal Model 

For voiced sounds, the source signal, the airflow from the lungs, is shaped into a quasi-

periodic sequence of air pulses by the opening and closing vibrations of the vocal fold. 

Figure 3.5 shows a model of glottal pulse with an impulse train input and a filter model of 

the spectrum of the vocal folds.   
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Figure 3.6 (a) shows a model of a sequence of glottal pulses based on the Liljencrants-Fant 

(LF) model [103]. Figure 3.6 (b) shows a single LF glottal pulse and its derivative. The 

glottal pulse consists of an open phase, during which a pulse or puff of air is let through, 

and a closed phase. The open phase of the cycle itself is composed of an opening phase 

which culminates in the maximum opening of the glottal folds and a closing phase. The 

maximum negative value of the derivative of the pulse is reached at the point of the fastest 

rate of closing of the glottal folds.  

The duration of each cycle is called the (duration of the) glottal pulse or pitch period 

length.  We represent the length in time of the glottal pulse or pitch period length.  

The LF model of the derivative of the glottal pulse is defined as 

           {

   
                                                             

  ( 
                  )                               

                                                                                

                                   

where a composition of a segment of less than ¾ of a period of a sine wave, with a 

frequency of   and an exponential envelop    
 , is used to model the derivative of the 

glottal pulse up to the instance    where the derivative of the pulse reaches the most 

 

Figure 3.6 - Illustration of (a) the Liljencrants-Fan (LF) model of a sequence of glottal 

pulses a glottal pulse and (b) its derivative. (Taken from [4]). 
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negative value which corresponds to the fastest rate of change of the closing of the glottal 

folds. The final part of the closing phase of the glottal folds, the so called return phase, is 

modelled by an exponentially decaying function in the second line of Equation 3.1.  In 

Equation 3.1,     is the period of the glottal waveform;         is the fundamental 

frequency (pitch) of speech harmonics, and    is the instance of closing of the glottal fold. 

The parameters    and    can be described in terms of the most negative value of the 

pulse    at the instant   ;          ⁄         and      [            ]⁄ . The 

modelling and estimation of the glottal pulse is one of the ongoing challenges of speech 

processing research [4]. 

3.3.2  Unvoiced Source Signal Model 

Unvoiced source of sound is generally modelled by a random noise sequence, such as a 

Gaussian noise. This noise is subsequently filtered by a vocal tract whose spectral shape 

determines the perception and identity of the unvoiced sound. Due to its randomness 

unvoiced signals has higher entropy than the more predictable voiced signals as a result in 

speech coding most of the coding bit resources are allocated to the encoding of unvoiced 

part of speech. 

3.3.3  The Vocal Tract Filter Model 

Whereas the source model describes the fine-detailed structure of speech spectrum, the 

filter model describes the spectral envelope of speech. The resonance characteristic of the 

physical space, such as the combination of vocal and nasal tracts, through which a sound 

wave propagates, changes the spectrum of sound and its perception.  



Chapter 3:                                                                    Speech Models: Production, Synthesis and Distribution 

61 

 

The vocal tract space composed of the oral and the nasal cavities and the airways can be 

viewed as a time-varying acoustic filter that amplifies and filters the sound energy and 

shapes its frequency spectrum. The resonance frequencies of the vocal tract are called the 

formants. The identities of the acoustic realisation of phonemes are conveyed by the 

resonance frequencies at formants. Depending on the phoneme sound and the speaker 

characteristics there are about 3 to 5 formants in voiced sounds.  

Formants are dependent on the phonemes but are also affected the overall shape, length, 

volume and reverberation characteristics of the vocal space and the vocal tract tissues and 

the associated parts i.e. nasal cavities, tongues, teeth and lips. The detailed shape of the 

filter transfer function is determined by the entire vocal tract serving as an acoustically 

resonant system combined with losses including those due to radiations at the lips.  

3.3.3.1  Linear Prediction (LP) Model  

Linear prediction model is a source-filter model of speech production. A LP model is 

defined as   

     ∑                                                      

 

   

 

where      is a speech signal,    is LP parameters, and      is speech excitation. The 

coefficients    model the correlation of each sample with the previous   samples whereas 

     models the part of speech that cannot be predicted from the past P samples.   

Equation (3.2) could be represented in frequency domain as  
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   ∑           
   

 
    

    
 

      

    
                           

where      is the speech spectrum,      is the spectrum of excitation,      is the  

normalised power of excitation,   is a gain factor and        is the spectrum of the LP 

model of the combination of vocal tract and nasal cavities and lips as well as the spectral 

slope due to glottal pulse.  In a source-filter LP model of speech, the spectral envelope of 

speech is modelled by the frequency response of the LP model       , whereas the finer 

harmonic and random noise-like structure of the speech spectrum is modelled by the 

excitation (source) signal       

The model parameters {         } of the speech spectral can be factorised and 

described in terms of a set of complex conjugate and real roots, and called poles of the 

model {         }. The poles are related to the resonance or formants of speech. 

Figure 3.7 shows the frequency response of a linear prediction model of a speech sound.  

 

(a) 

 

(b) 

Segment (time) Segment (time)
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(c) 

Figure 3.7 - Illustration of (a) a segment of the vowel ‘ay’, (b) its glottal excitation, 

and (c) its magnitude Fourier transform and the frequency response of 

a linear prediction model of the vocal tract [taken from [4]]. 

3.3.3.2  Line Spectral Frequency (LSF) Model 

The line spectral frequencies (LSF) are an alternative representation of linear prediction 

parameters. LSFs are used in speech coding, and in the interpolation and extrapolations of 

LP model parameters, for their good interpolation and quantisation properties. LSFs are 

derived as the roots of the following two polynomials: 
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where           
      

           is the inverse linear predictor filter. 

Clearly                   . The polynomial Equations (3.4) and (3.5) can be 

written in factorised form as 

     ∏           
                                             

         

 

     ∏           
                                             

         

 

where i are the LSF parameters. It can be shown that all the roots of the two polynomials 

have a magnitude of one and they are located on the unit circle and alternate each other.  
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(c) 

 

(d) 

 

(e) 

Figure 3.8 - (a) A segment of speech signal, (b) its FFT and LP spectra, (c) the 

spectrum of its excitation, (d) the poles of its LP model, (e) the roots of P(z) and Q(z)  

LSF polynomials. 

 

Hence in LSF representation the parameter vector              is converted to LSF 

vector               . 

Figure 3.8, shows a segment of voiced speech together with poles of its linear predictor 

model and the LSF parameters.  

3.4  HARMONIC PLUS NOISE MODEL (HNM) OF SPEECH 

Harmonic plus noise, as the name implies, models speech as a combination of a harmonic 

component, modelled by a Fourier series, and a noise component 
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      ∑                            

 

   ⏟                          
                               

        ⏟  
           

                        

where    is the fundamental frequency,    and    are the amplitudes of the sine and 

cosine components of the     harmonic, M is the number of the harmonics up to the 

bandwidth, and      is the noise-like random components that model the fricatives and 

noise contents of speech.  

The spectral shape of noise-like signal component of speech      is often modelled by 

linear prediction model as  

     ∑               

 

   

                                                          

where    are the Linear Prediction (LP) model coefficients,       the unit variance 

random process and g is a gain factor. Hence the parameters vector of the HNM is { ,  , 

 ,   and   }. The harmonic part of the model is a Fourier series representation of the 

periodic component of the speech signal.  

A segment of N samples of speech can be expressed in a vector-matrix notation as 

[
 
 
 
 

    

      

      
 

        ]
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In compact notation Equation (3.10) can be written as 

                                                                             11) 

where x is the vector of discrete-time speech samples,   is a matrix of sine and cosine 

functions,         is the vector of amplitudes of the harmonics and   is the noise 

component of the speech model. The harmonics amplitude vector   can be obtained from a 

least squared error minimisation process. Define an error vector as the difference between 

speech and its harmonic model as 

                                                                                

The squared error function is given by 

                                                                 

Minimization of Equation (3.13) with respect to the amplitudes vector c yields 

                                                                            

The frequency domain representation of Equation (3.8) is defined as  

       ∑                

 

   ⏟              
                               

         ⏟  
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where   is the frame index,      is the Gaussian-shaped function.  

 
Figure 3.9 - Gaussian-shaped function M(f) is used for modeling harmonics.  

 

3.4.1  A Harmonicity Model of Excitation  

The proportion of harmonic and noise, at each harmonic, in voiced speech depends on a 

number of factors including: the speaker characteristics; the speech segment character (e.g. 

voice/unvoiced) and the harmonic frequency; the higher frequencies of voiced speech have 

a higher proportion of noise-like components. The ratio of the harmonic energy to the 

noise energy in each sub-band can be calculated as the level of harmonicity of that sub-

band defined as:             

     
∫  |      |         |        | 

    ⁄

    ⁄
  

∫ |    |   
   ⁄

    ⁄

                              

where Hk is the harmonicity of the speech signal in the k
th

 band, X(f) is the discrete Fourier 

transform (DFT) of the speech signal and M(f) is a Gaussian shaped function shown in 

Figure 3.9 and defined as: 
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where typically a value of        is used. The signal around each subband frequency of 

each frame is then reconstructed as:  

| ̂   |        (
          

√∫       
 

          

√∫       
)               

  

 
       

  

 
                                                                                                                                                

       

where N(f) is the noise component of the excitation. N(f) is a Rayleigh distributed random 

variable to comply with the assumption of the Gaussian distribution model of the speech 

DFT [4]. Figure 3.10 illustrates the excitation of a sample frame together with the 

harmonicity values of each band.  

 

 
Figure 3.10 - Harmonicity of the excitation sub-bands superimposed on the normalized 

excitation. 

3.4.2 Estimation of Harmonic Amplitudes 

The harmonic amplitudes can be obtained from the tracking of the peak amplitudes of the 
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fundamental frequency   . Alternatively, given an estimate of   , the following least 

square error estimation method can be used to obtain the harmonic amplitudes. 

3.5  PITCH PROBABILITY DISTRIBUTION MODEL 

This section introduces the use of probability distribution models in pitch estimation. 

3.5.1  Pitch Histograms  

The probability density function (pdf) of pitch variations of a speaker may be obtained by 

fitting a curve to the histogram of the pitch extracted from the corresponding laryngograph 

records. Pitch pdf may be used as the prior function in a maximum a posteriori pitch 

estimation method.  

In the following we plot the histograms for a number of individual male and female 

speakers and also for the group of male and female speakers. The variations in pitch 

among speakers imply that the pdf of a group of speakers has a larger variance and a 

broader shape than the pdf of an individual speaker. The pdf of combined group of male 

and female speakers shows two distinct modes corresponding to male and female genders. 

It is evident, as is well known, that pitch is a strong indicator of gender. 

For male speakers the average pdf mode (peak) is at 120 Hz and most of the pdf is within 

the range of 70-200 Hz. For female speakers the average pdf mode (peak) is at around 185 

and most of the pdf is within the range of 145-350 as shown in Figure 3.11 and Figure 

3.12.  
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(a) 

 

(b) 

Figure 3.11 - The normalised histogram of the pitch (a) of 11 male speakers: mean 

=112.7 Hz, standard deviation=18. Hz, and (b) of 10 female speakers, 

mean =213.3 Hz, standard deviation =37.3 Hz. 

 

 

Figure 3.12 - The histogram of the pitch of all 21 speakers: mean= 151. Hz, standard 

deviation = 55.8 Hz.  

Note two distinct modes one at 112 Hz corresponding to male speakers and the other at 

213 Hz corresponding to female speakers.  
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3.5.2 Bayesian Formulation of Pitch Estimation Model 

Given a segment of raw speech data                       , the  posterior 

probability of pitch can be described, using the Bayes rule, as 

    |     
     |        

      
                                                   

where     |     is the posterior probability of the unknown pitch value given the speech 

signal   and spectral envelope  ,      |    is the likelihood of   and   assuming a value 

of   ,       is the prior probability of    and        here becomes a normalising factor.  

The Bayes` estimate  ̂  is defined as  

        ( ̂ )     
 ̂ 

(∫  ( ̂    )    |     

 

  

)                           

where  ( ̂    ) is the cost of estimating an actual value of    as   ̂    . The Bayesian 

function can be expressed, by expanding the posterior probability in terms of the 

likelihood and the prior, as  

        ( ̂ )     
 ̂ 

(∫  ( ̂    )   |           

 

  

)                           

The elements of the Bayes estimation are as follows; 

1) The Bayes cost function  ( ̂    ) associates a cost with estimation error   ̂  

  . Typical cost functions are mean squared error (MSE) and absolute value of 

error. The objective of Bayesian estimation is to minimise the cost of error. 
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2) The likelihood function    |    provides the likelihood that the signal   is 

generated by a proposed value of pitch     . 

3) The prior function       provides a probability description of the distributions of 

the pitch value    independent of any particular observation  . The prior 

distribution is therefore obtained beforehand (perhaps from a large database) and it 

describes the available knowledge of the distribution of the pitch of a person. 

When  ( ̂    )  ( ̂    )
 
 the Bayesian Minimum Mean Squared Error (MMSE) 

solution is obtained.    

 3.5.2.1  Maximum a Posterior (MAP) Pitch Estimation 

MAP is a special case of Bayesian function when the cost is  ( ̂    )     ( ̂    ) 

then the Maximum a positerior method is obtained. 

   ( ̂ )   ̂ 
       

 ̂ 

(    |  )     
 ̂ 

(   |        )                           

The maximisation of the MAP function can be performed on the log probability as 

 ̂ 
       

 ̂ 

(   (   |   )     (     ))                                                     

  3.5.2.2  Maximum Likelihood (ML) Pitch Estimation 

ML is a special case of Bayesian function when the cost is  ( ̂    )     ( ̂    ) and 

when the prior function is uniform (i.e. when all the pitch value is equally likely or 

without any preference data) 

  ( ̂ )   ̂ 
      

 ̂ 

(    |  )     
 ̂ 

(   |   )                                     
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The maximisation of the ML function can be performed on the log probability as 

 ̂ 
      

 ̂ 

(   (   |   ))                                                         

General Formulation of ML for Pitch Estimation 

The most common approach to ML method is to calculate the likelihood of a residual 

signal obtained as the difference between the speech signal and an estimate of the periodic 

component of speech. Given a speech segment spectral vector              

    and an estimate of the spectral envelop vector  , a harmonic plus noise model of 

speech may be written as 

   (    ̂     )                                                              

Where     ̂   and    are the harmonic and noise parts of the excitation signal. 

The ML estimate is obtained via maximisation of the likelihood function 

  ( ̂ )   ̂ 
      

 ̂ 

( ( |    ̂))                                               

Using the harmonic plus noise model, the ML likelihood probability can be written as 

 ̂ 
       ̂ 

( (   ̂ ̂   ̂  ))      ̂ 
( ( ̂ ))                   

where the likelihood of  ̂  is measured as the likelihood of the residual      

   ( ̂ ), i.e. the difference between  the original speech segment   and the harmonic 

component    ( ̂ ) synthesised  assuming that the fundamental frequency has a value of 

 ̂ . 
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For the most commonly assumed form of the distribution of the residual, i.e. the Gaussian 

distribution, we have 

 (        ( ̂ ))  
 

√     
 

   (    
(       ̂  )

 

   
 )                                                    

Different methods in the literature differ mainly in the way that the periodic component is 

modelled, synthesised and subtracted to yield the non-periodic residual. 

3.5.3  Least Squared Error (LSE) Pitch Estimation 

Least squared error may be considered as a special case of Bayesian estimation. When the 

prior function has a uniform distribution the MAP estimate reduces to an ML estimate. 

Furthermore when the likelihood function    |     is Guassian then the ML estimate is 

the same as the least squared error (LSE) estimate due to the fact that maximisation of a 

Gaussian function is equivalent to minimisation of the exponent, e.g.     ̂     
   ⁄  , 

of the Gaussian function.  

 A note on LSE, MMSE and Bayesian MMSE Estimation 

LSE and MMSE are commonly used as alternative descriptions of the estimation methods 

that minimise the average of the squared error of a target (original value or true value) of a 

signal and a synthesised/estimated version based on the values of some parametric 

function. For example in LSE or MMSE pitch estimation the mean squared error, due to a 

proposed value of pitch  ̂ , may be obtained from the difference between the harmonics 

synthesised from  ̂  and the actual value of the signal. 
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In Bayesian MMSE estimation, the cost function is the squared error function  ( ̂    )  

( ̂    )
 
. However each value of the squared error, due to a proposed value of pitch  ̂  , 

is weighted by the posterior probability of the true value of the unknown parameter 

    |  . Hence, Bayesian MMSE is a probabilistically weighted MMSE method.   
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STATISTICAL MODELING AND SMOOTHING 

OF PITCH TRAJECTORIES 

 

 

 

 

n this chapter a finite-state statistical model of the time-variations of the trajectory 

of the fundamental frequency of speech (pitch intonation) is presented. Based on 

this model three different and complementary post-processing methods for 

removing impulsive errors, step change errors and smoothing of the random fluctuations 

from the pitch trajectories are described.  
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4.1      INTRODUCTION 

Examinations of many examples of the time-variations of the actual pitch trajectories, 

obtained from the laryngograph signals, shown in Figure 4.1, demonstrates that the pitch 

intonation is a low frequency slowly varying process.  

As evident from Figure 4.1, the low frequency character of the intonation curve can be 

seen by observations of rise-connect-fall (RCF) pitch intonation [104] cycles, where each 

RCF  usually spans a duration, of the order of several 100 ms, of a voiced utterance.  

The observations that the pitch intonation trajectories are relatively smooth and slowly 

time-varying curves gives rise to the following general deductions that may be made 

regarding the smoothness and the continuity of pitch trajectories: 

1) Continuity within each pitch utterance. Within each pitch utterance unit that is 

within a continuous voiced speech segment, the pitch trajectory is a highly 

correlated relatively slow time-varying, curve process, during which sudden 

changes such as step changes, impulsive changes, or short duration pulses in the 

value of pitch are not normally observed. Hence, within a voiced utterance it may 

be useful to employ filters or cost penalties that detect and remove sudden bursts of 

impulsive or step like changes in the pitch trajectory.  

2) Change across two consecutive pitch utterances. Across two consecutive pitch 

utterance units, in many cases continuity of pitch trajectory is observed, however, 

there can be a step change in the pitch value from the end of one pitch utterance 

unit to the beginning of the next pitch utterance unit. Hence, at the start of a voiced 

segment one needs to allow for the possibility of a step change in the pitch value, 

relative to the value of the pitch at the end of the previous voiced segment. 
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Figure 4.1 - Illustration of the time-variations of the actual pitch trajectories 

obtained from the laryngograph signals, and the dotted lines represent 

the mean pitch values. 

 

3) Natural random variation in stressed or pathological voice.  It should be noted that 

within each pitch utterance unit the pitch trajectory may oscillate, for example this 

happens when voice trembles during highly emotional voice expression, for 

example, as a signal expressing distress or extreme present fear. 

Based on the above observation it is clear that a finite-state characterization of the pitch 

trajectory is an informative model for derivation of signal processing models, methods and 

algorithms that would limit errors in pitch estimation. For the purpose of pitch smoothing 
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and for limiting large erroneous impulsive and step changes in pitch, this thesis considers a 

finite-state model that is essentially composed of two states; a voiced state and an 

unvoiced state.  

For the voiced state there are two types of transitions which impact the pitch trajectory 

differently:  

1) Within-voiced-utterance state transition, in this state speech is already within a 

voiced state and the successive pitch values derived from the successive frames 

can be constrained to conform to variation within a smooth trajectory that excludes 

step or impulsive type changes.  

2) Across-voiced-utterance state transitions which happens usually when there is a 

gap between two consecutive voiced segments e.g. when there is a voiced-

unvoiced-voiced sequence or at the beginning of a new voiced utterance. This 

state-transition signals the beginning of a new voiced segment and a step change in 

the new pitch value relative to its previous value at the end of the last voiced 

segment is a possibility that needs to be allowed for.  

Based on the above observations, in this chapter, first in section 4.2 we consider a finite-

state model of pitch trajectory. Next, in the following sections, three different pitch post-

processing methods are investigated for maintain smoothness and continuity in the pitch 

trajectory within each voiced utterance unit, these are: 

1) Removal of impulsive change in pitch. 

2) Removal of step changes in pitch. 

3) Smoothing of the pitch trajectory.  
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4.2  PITCH TRAJECTORY MODELS 

4.2.1  Finite-State Model  

As explained the pitch signals are highly correlated processes that can be modeled by a 

slowly time-varying Markovian-Gaussian process.  Figure 4.2 (a) shows a two state 

voiced-unvoiced model of pitch trajectory. Within the unvoiced state the speech signal is 

not periodic and hence it does not have a fundamental frequency as the vocal folds do not 

open and close in a periodic manner. Within the voiced state speech signal is periodic with 

a time-varying fundamental frequency.  

The self-loop transition within the voiced state signals the continuation of the smooth 

evolution of the current pitch trajectory with no expected occurrence of step/impulse type 

changes in the pitch value. The transition, from the unvoiced state into the voiced state, 

signals the beginning of a new voiced state and should allow for an initial value of a 

smooth pitch trajectory that may be a step change different from the final pitch value of 

the previous utterance.  

In other words, a step change discontinuity in the pitch may be observed across the gap in 

voiced-unvoiced-voiced speech segment but not within a voiced speech segment. An 

impulse type discontinuity is pitch is not expected in normal speech. The smooth variation 

of the pitch trajectory within each voiced state may be modeled by the well-known rise-

fall or rise-connect-fall, RCF models. A set of relatively simple Markovian models of the 

pitch variations, within each pitch utterance, is a rise-fall and rise-connect-fall model as 

shown in Figure 4.2 (b - d). Note Figure 4.2 (b) is a two-state Markov model of the type of 

pitch utterance units that may be characterized and modelled by a rise and a fall.   
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Figure 4.2 - Illustration (a) a pitch curve composed of a series of voiced-unvoiced, 

rise-connect- fall events and a set of Markovian  model: (b)-(c) a two-

state of rise and fall model, (d) a three-state of rise-connect-fall model, 

and (e) a combination of rise-fall and rise-connect-fall models that 

includes a skip-state transition.  
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Figure 4.2 (c) is a three state model that models the rise, connect and fall states of pitch 

utterance units. Figure 4.2 (d) is a Markov model combination of rise-fall and rise-

connect-fall models that includes a skip state transition which allows the two models (4.2 

b and c) to be integrated within one structure. Note the sum of state self-loop and exit 

transition is unity.  

Within each voiced state the variation of the pitch trajectory is a slowly-time-varying 

process that may be modelled by a low order linear prediction model with a Gaussian 

input as explained in the next section.  

4.2.2 Linear Prediction Model of Pitch  

The smooth trajectory of pitch, within the voiced state of a finite-state model, can itself be 

modelled by a low order linear prediction model. For modelling the slow variations of 

pitch trajectory typically a linear prediction model of order 2-3 should be sufficient.  

Assume the sequence of pitch estimates within each utterance is denoted as   ̂        For 

a pitch utterance unit, the prediction of the pitch value at frame  ,  ̅    , given the 

previous   pitch estimated values,   ̂        ̂        may be modeled by a linear 

prediction function as 

 ̅     ∑    ̂                                                               

 

   

 

where      are the coefficients of the linear prediction model. The pitch prediction error, 

 ̃      is given as the difference between the estimated value and the predicted value as 
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 ̃      ̂       ̅      ̂     ∑    ̂                                   

 

   

 

Note the ‘true’ pitch values, obtained from a laryngograph, are only available for 

evaluation purposes during the system research and development phase. During the system 

operation phase all we have is the pitch estimate sequence,   ̂     , for which smoothing 

and noise reduction functions may be developed. 

Assuming that the pitch prediction error is a zero-mean random process with a Gaussian 

distribution, the probability of the estimate for the frame  ,  ̂    , given the pitch 

estimates for the previous P frames,  ̂        ̂      , may be expressed as  

 ( ̂    | ̂        ̂      )  
 

 √  
   ( 

( ̂      ̅    )
 

   
)              

where   is the variance of pitch prediction error.  

The value of the variance of pitch prediction error can be used to define a limiting function 

that will limit sudden jumps to half pitch or double pitch values.  

A linear prediction model incorporating a limiting function on the prediction error may be 

expressed as  

 ̅       ∑    ̂         

 

   

 (    )                                    

where         is the limiting or influence function. An example of influence function is 

shown in Figure 4.3(b). Note the influence function in Figure 4.3 (b) is the derivative of 

the Gaussian function shown in Figure 4.3 (a).  
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Figure 4.3 - Illustration of (a) the Gaussian pulse and (b) the influence pulse.  

4.3 DETECTION AND REMOVAL OF IMPULSIVE AND PULSE NOISE 

FROM PITCH TRAJECTORY  

This section is concerned with the modelling of the pattern of occurrence and removal of 

impulsive noise and short duration noise pulse in pitch trajectory [24]. 

4.3.1  Definition of an Impulse 

An actual impulsive noise may be just one sample long or it may be a short duration pulse 

spanning several samples. The theoretical impulse function shown in Figure 4.4 is defined 

as a pulse of unit area with an infinitesimal time width as 

                 {
         | |    ⁄⁄

             | |    ⁄
                                   

The Fourier transform of the impulse function is obtained as  
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     ∫                                                            

 

  

 

where   is the frequency variable. Real impulsive noise is in fact short duration pulses 

with a finite duration and finite amplitude. They may also exhibit oscillatory 

characteristics which could be in part the impulse response of the system through which 

they propagate. Figure 4.5 shows the impulsive noise sequence as the output of an 

idealized impulse sequence and an impulse shaping filter [24]. 

 
Figure 4.4 - (a) A unit-area pulse, (b) The pulse becomes an impulse as its duration

0Δ , (c) The spectrum of the impulse function. 

4.3.2 Probability Models of Impulsive Noise 

An impulsive noise sequence ni(m) may be modeled as the output of a filter excited by an 

amplitude-modulated sparse random binary sequence as 

      ∑                 

   

   

                                      

where      is a binary-valued random sequence model of the time of occurrence of 

impulsive noise,      is a continuous-valued random process model of impulse 

p(t)
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amplitude, and      is the impulse response of a filter that models the duration and shape 

of each impulse as illustrated in Figure 4.5. In the following three statistical processes for 

modeling an impulsive noise process are considered [4].  

 

 

Figure 4.5 - Illustration of an impulsive noise model as the output of a filter excited by 

an amplitude-modulated binary sequence. 

4.3.2.1  Bernoulli–Gaussian Model of Impulsive Noise 

 

In a Bernoulli-Gaussian model of an impulsive noise process      , the random 

occurrence of the impulses is modelled by a binary Bernoulli process      and the 

amplitude of the impulses is modelled by a Gaussian process as 

  
         (    )    (      )  (     )                                         

where      is the Kronecker delta function. The probability mass function of a Bernoulli 

process is given by 

  (    )  {
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A Bernoulli process has a mean value    of   and a variance of        [24].  

 

 

4.3.2.2 Poisson–Gaussian Model of Impulsive Noise 

In a Poisson model, the probability of occurrence or absence of an impulse in a short time 

interval    is given by 

                                                                           

                                                                     

The probability of   impulsive noise in a time interval of   is  

        
     

  
                                                                      

In a Poisson–Gaussian model, the probability density function (pdf) of an impulsive noise 

      in a small time interval of      is given by 

  
                   (     )         (     )                            

where   (     ) is the Gaussian  pdf of Equation (4.8).  From Equation (4.13) the mean 

and variance of the number of impulses in a time interval of   are given by 
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4.3.2.3 Hidden Markov Model of Impulsive and Burst Noise  

Hidden Markov Models (HMMs) are defined by two sets of parameters, the Markovian 

state transition probabilities {   } and the state observation probabilities {   }. The state 

transition probability models the pattern of occurrences of the impulses whereas the state 

observation probability models the amplitude of the impulses. A popular model for state 

observation probability is a Gaussian mixture model (GMM) [105].  

 
Figure 4.6 - A binary-state model of an impulse noise generator. 

The state transition probabilities can affect a variety of different statistical patterns of the 

intervals of occurrences and the durations of impulsive noise. For example, as shown in 

Figure 4.6, the self-loop transition probability of         , can be used to control the 

duration of the impulse-absent whereas the self-loop transition probability of   ,    , can 

be used to control the individual or burst nature of impulses emitted in state   .  

4.3.3  Impulsive Noise Detection and Removal Using Linear Prediction Models  

The impulsive noise removal system shown in Figure 4.7 consists of two subsystems: a 

detector and an interpolator. The detector locates the position of each noise pulse, and the 

interpolator replaces the distorted samples using the samples on both sides of the 

impulsive noise. Both the detector and the interpolator share the linear prediction analysis 

system.   
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Figure 4.7 - Configuration of an impulsive noise removal system incorporating a 

detector and interpolator subsystems [taken from [4]]. 

A simple method for detection of impulsive noise is to employ an amplitude threshold, 

and classify those samples with amplitudes above the threshold, as noise, however, this 

method fails when the noise amplitude falls below the signal.  

Detection can be improved by utilizing the characteristic differences between the 

impulsive noise and the signal. An impulsive noise, or a short-duration pulse, introduces 

uncharacteristic discontinuity in a correlated signal. The discontinuity becomes more 

detectable when the signal is differentiated. The differentiation (or, for digital signals, the 

differencing) operation is equivalent to decorrelation or spectral whitening which may be 

achieved by inverse filtering via transforming the noisy signal      to the excitation 

signal of a linear predictor which has the following effects: 

(i) The scale of the signal amplitude is reduced to almost that of the original 

excitation signal, whereas the scale of the noise amplitude remains unchanged or 

increases. 
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(ii) The signal is decorrelated, whereas the impulsive noise is smeared and 

transformed to a scaled version of the impulse response of the inverse filter. 

Both effects improve noise delectability.  

4.3.4 Median Filters for Removal of Impulsive Noise 

The classical approach to removal of impulsive noise is the median filter [24]. The median 

of a set of samples {     } is a member of the set      
    such that; half the 

population of the set is larger than      
     and the other half is smaller than 

     
   . Hence, the median of a set of samples is obtained by sorting the samples in the 

ascending or descending order, and then selecting the mid-value.  

 

     
           {     }                {     }                   

 

In median filtering, a window of predetermined length slides sequentially over the signal, 

and the mid-sample within the window is replaced by the median of all the samples that 

are inside the window, as illustrated in Figure 4.8.  

The output   ̂     of a median filter with input       and a median window of length 

     samples are given by  

 ̂          
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Figure 4.8 - Input and output of a median filter. Note that in addition to suppressing the 

impulsive outlier, the filter also distorts some genuine signal components 

when it swaps the sample value with the median. 

 

4.4 REMOVAL OF STEP CHANGE DISCONTINUITY IN PITCH 

TRAJECTORY 

Within each voiced pitch utterance unit, the pitch trajectory follows a smooth rise-sustain-

fall curve or rise-connect-fall curve [104]. Hence, sudden step changes in the pitch 

trajectory, within an utterance unit, are unlikely to occur naturally and are most probably 

due to a large sustained error such as half pitch step change or double pitch step change 

estimation errors. Therefore, it is beneficial to apply a penalty to the overall pitch 

estimation cost function to penalize for step changes in pitch within a voiced utterance 

unit.  
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Figure 4.9 - Illustration of the step change values. (a) a signal with the distinct of step 

change at sample 500, (b) the step change detector

A step change in discrete-time domain, by definition, usually implies that the overall trend 

in the neighbourhoods before and after the step change are similar, other than a step 

change in the mean value. The derivative of a step change would be a relatively large 

impulse and hence by monitoring of the first order differences in the pitch sequence 

estimate, it is possible to detect an uncharacteristically large change in pitch differences at 

the point where the step change happens. The derivative of the pitch function can be 

obtained by a first order FIR filter with coefficients 

                                                                                      

The equation for this difference equation is  
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Note this filter is a first order difference filter whose output is the difference between the 

current input sample and the immediately previous input sample. 

Figure 4.9 illustrates this point, it shows a slowly varying curve with a step change at the 

sample number 500, the first order derivative of this curve shows a distinctive impulse at 

the point where the step changes happens.  

The step change can be removed by processing the output of the difference filter with the 

following influence function (IF) as shown in Figure 4.10 (b) 

             
                                                                      

The IF of Equation 4.20 is the derivative of the Gaussian function [106]. This function 

linearly passes the input to output for values of the input that fall within the variance or 

standard deviation but attenuates or may even block large outlying samples that are 

outside the variance or standard deviation. As shown in Figure 4.10 the variable   can be 

increased/decreased to increase/decrease the linear region in which the signal is passed 

unaffected. Figure 4.10 and 4.11 show the impact of variation of    on the processed 

signal.  

 



Chapter 4:                                                        Statistical Modeling and Smoothing of Pitch Trajectories 

95 

 

 

Figure 4.10 - Illustration of the variation of the shape of (a) Gaussian pulse and (b) its 

derivative, the influence function (IF), with three different values of the 

variance of    .  

 

Figure 4.11 - 
2
 of the speech signals 

with the dotted lines represent the actual curves.  

-10 0 10
0

0.2

0.4

0.6

0.8

1

-10 0 10
-4

-3

-2

-1

0

1

2

3

4

s=1

s=2

s=3

s=2

s=1

s=3

(a) (b)

0

200

400

-200

0

200

0

100

200

0

100

200

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

s=0.3

s=2

s=10

Time index

M
a
g
n
it

u
d

e



Chapter 4:                                                        Statistical Modeling and Smoothing of Pitch Trajectories 

96 

 

4.5 SMOOTHING OF THE PITCH TRAJECTORIES 

Moving Average Filter  

Random fluctuations in pitch estimation can be reduced by a simple, relatively low-order, 

low-pass moving average (MA) filter [24],[107]. A moving average filter also known as a 

finite impulse response (FIR) filter is defined as 

                                                             

Where               are the coefficients of a filter of order  . In z-transform 

domain the MA filter can be expressed as 
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(b)  

Figure 4.12 - Illustration of (a) the impulse response and (b) the frequency 

response of the moving average filters with coefficients vectors 

                         . 

 

A large number of choices are available for design of a such a filter such as the window 

design technique that employs the inverse  Fourier transform of an idealized lowpass filter, 

or the Gaussian low-pass filter [106]. In this work a 5th order, one-sided, MA filter is used 

with the following coefficients vector,  ,   

                                                                        

Note the MA filter coefficients are chosen heuristically to give progressively less weights 

to the past samples as shown by the filter impulse response (note for MA filter impulse 

response is the coefficient set). The more distance a sample, the less weight it gets in the 

MA process.  

Figure 4.12 (a-b) shows the impulse frequency response of the MA filter. The filter 

coefficients were chosen empirically.  
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4.6 CONCLUSION 

The smoothness and the continuity of the time-variation of pitch trajectories may be 

optimized by considering the variation models, the removal of impulsive noise, and the 

removal of the step change within utterances and between utterances of the speech signals. 

The variation of pitch trajectories may be modelled using the probability of the finite-state 

model, or the linear prediction models. Several challenges such as impulsive noise, step 

change and smoothing commonly are the steps or techniques to improve the pitch 

trajectories in order to reduce the error of pitch estimation in speech processing.  

The observations of many extracted pitch examples shows that of the three forms of 

estimation error (i.e., step change, impulsive noise and random noise), step changes and 

impulsive noise are the most significant and constitute the majority of pitch error. Pitch is 

generally a smooth process and hence smoothing random variations is not as much of an 

issue as that of the removal of large errors. 
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IMPACT OF WINDOW LENGTH AND 

MOMENT ORDER ON PITCH ESTIMATION 

 

 

 

his chapter explores the impacts of the choice of the similarity criterion and the 

speech window segment length on pitch estimation. The similarity criteria 

explored are the second order moments and a set of modified moments 

including the modified second and higher order moments. The main finding is that the 

length of the window is by far the most dominant factor that affects the pitch estimation 

error. Various moment-based similarity criteria offer similar results while a modified 

second order method offers some robustness. All methods perform substantially better 

than the benchmark YIN method. 

 

5 
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To obtain the modified higher order moment, MHOMs, each speech frame is split into a 

positive-valued and a negative-valued signal. The magnitudes of the HOMs for the 

positive and the negative valued signals are obtained separately and combined. 

HOMs form a sharper peak around the true pitch value compared to the correlation 

function.  

The choice of the window length has a major impact on pitch estimation. For each 

criterion the variation of pitch error is obtained as a function of the window length. 

Depending on the moment criteria used a window size of 33 ms to 80 ms is optimal. To 

avoid excessive delay in real-time applications a two-stage method is proposed whereby 

an initial, coarse but robust, estimate of the pitch, from a longer window length, spanning 

the current and past speech frames is followed by fine-tuning within the current frame. 

This strategy imposes no additional delays.  

The impact of the choice of the window length and the choice of similarity criterion are 

evaluated on a database of 10 male and 8 female speakers over a range of SNRs and noise 

types. For calculation of pitch errors, the pitch references are obtained from manually-

corrected estimates obtained from laryngograph signals. The results for the second to 

fifth order moments are compared with magnitude difference criteria and the YIN 

method. The overall conclusion is that the HOMs provide similar performance to second 

order method with second order modified HOM being more robust than other methods. 

However, for each method very substantial improvement in pitch accuracy is obtained by 

selection of optimal window duration. 
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5.1  INTRODUCTION 

Accurate estimation and smooth trajectory of the pitch,      , or fundamental frequency 

     , of a speech signal is a challenging task, especially in low signal-to-noise ratio, 

SNR, environments and also in dynamic channel conditions. Conventional pitch 

estimation methods are mostly based on the correlation (i.e. 2
nd

 order moment) criterion, 

as the similarity measure for detection and estimation of the periodicity of speech signals. 

An alternative similarity criterion often cited in the literature is the average magnitude 

difference function (AMDF). Whereas the correlation criterion utilises the average product 

of two samples      and        as a measure of the similarity of the samples spaced 

by   seconds, the AMDF uses the average difference between the samples as the similarity 

measure. This chapter investigates the use of higher order moments (HOMs) as an 

alternative to conventional pitch estimation criteria and explores the impact of the length 

of the signal window on the variations of the pitch estimation error.  

For implementation on real-time systems, a two-stage method is proposed where the 

advantage of a robust coarse estimate obtained from a larger window, spanning a number 

of stored past speech frames and the current speech frame, is combined with fine-tuning 

over a short current window (i.e. spanning only the current speech frame). 

5.2 MODIFIED HIGHER ORDER MOMENTS METHODS (MHOMs) AS 

PITCH ESTIMATION CRITERIA 

Whereas autocorrelation (2
nd

 order) based pitch extraction methods, utilise the average 

similarity between two samples, e.g. x(m) and       , the higher order moment 
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methods (HOMs) exploit the average similarity between three or more samples; .e.g. 

    ,       ,         and so on [108]- [109].  

For pitch extraction, where the intent is to estimate the period T, the general expression for 

calculation of the K
th

 order moment can be defined as 

      
 

        
∑                                       

        

   

 

where       . The contributions in the literature to the application of HOM method to 

pitch extraction are limited  to a number of  conference papers: [59] introduced the use of 

the higher order statistics where they can extract useful information of voiced frames and 

can separate speech from noise; [58], [110]  improve the reliability of the pitch estimation 

for unknown, periodic non-sinusoidal signals [111]. 

5.2.1 Modified Higher Order Moments 

The modified higher order moments (MHOMs) criteria are applied to the sample analysis 

of a periodic speech signal and the results are compared with conventional pitch extraction 

criteria. Pitch estimation methods based on MHOMs require a longer length of averaging 

window as the similarity of each sample with the corresponding samples up to (K-1) 

periods away is computed.  

The impact of window length on the accuracy of pitch estimation and the implications of 

the use of a large window for practical implementation of the proposed pitch estimation 

methods on delay-sensitive communication systems are discussed and an appropriate 

solution for real-time communication systems is presented. 
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Conventional period/pitch estimation uses the average of the product of two samples (i.e. 

correlation or second order moment),           , spaced at a distance of T as a 

measure of similarity or periodicity at T. At the values of the period   where      and 

       are similar, reinforcement of the periodic values occurs and hence a peak of the 

product            is observed. Theoretically, this idea of reinforcement of similar 

periodic samples can be extended to employ the average of the product of K periodic 

samples (i.e. K
th

 order moment),                        , as the similarity 

measure for a proposed value of the period T. The expected advantage gained is a greater 

degree of reinforcement of the product of K similar samples that theoretically may result 

in a sharper similarity criterion and hence less pitch estimation error as the moment order 

K increases. In reality the moment order, K, cannot be set to a value beyond five or six due 

to the non-stationary character of speech and pitch signals and because as K increases an 

appropriately larger averaging widow is required.  

The general form of the equation for the MHOMs may be expressed as 

      
 

        
∑                                         

        

   

 

where       is some general function that may assume different forms.  For this thesis a 

novel and particular form of       termed the modified HOMs is obtained by splitting, 

rectifying, a signal x(m) into a positive-amplitude        part and a negative-amplitude 

       part defined as 

      {
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         {
                             
                                  

                                                 

Clearly, we have  

                                                                                       

Note that using the electrical engineering terminology,       and       are obtained 

from positive and negative half-wave rectifications of the signal     .  

 The K
th

 order modified moment is defined as 

         
       

    
 

  
 {∑ (∏         |∏        

   

   

|

   

   

)

  

   

}       

        

where    
       

    are the MHOMs of positive and negative parts of the signal and  

           , and | | is the absolute value operator. 

For example the equation for the third order (K=3) moment is defined as the sum of  

      
 

    
{ ∑                     

    

   

 | ∑                     

    

   

|} 

(5.7) 

The K
th 

order moments of a periodic signal are periodic. Hence, for estimation of the 

period, an energy maximizing function of the moments is defined as  
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∑   

  

   

                                                           

where          ⁄   is the maximum number of periods that can be fitted in the 

function     . The estimate of the period T0 is obtained as  

          
 

                                                                   

 

Figure 5.1 - Illustration of   the general block diagram of a modified higher order 

moment (MHOM) pitch estimation system. 

Figure 5.1 shows the general block diagram of the proposal modified higher order moment 

method of pitch estimation in time domain.  
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 5.2.2 An Analysis of Modified Higher Order Moments 

Figure 5.2, (top panel) shows a Hanning windowed segment of a periodic voiced speech 

together with a comparative illustration of the shapes of the similarity curve for various 

pitch extraction criteria namely the ACF, the AMDF and the third order, fourth order and 

fifth order MHOMs. The speech window is 400 samples long (i.e. 50ms at a sampling rate 

of 8 kHz). Note that for display purposes the AMDF curve has been inverted and zero-

floored.  

From Figure 5.2, it is evident that the modified HOMs forms a sharper peak around the 

true period value (T) and its integer multiples      compared to the 2
nd

 order moment 

ACF and the AMDF functions. Furthermore, the peak of the third order moment at the 

correct period value T has a relatively higher value than the peak at 2T when compared to 

similar points of the correlation function and this relative difference is even more 

pronounced for the fourth order and fifth order moments.  

Therefore, using MHOMs as period estimation criteria appear to promise more accurate 

period/pitch estimates with less large (e.g. double or half pitch) errors. A more in-depth 

experimental evaluation that validates this expectation follows in Section 5.6.   
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Figure 5.2 - Comparative illustration of the relative sharpness of ACF, AMDF, 

modified third order, modified fourth order and modified fifth order 

moment methods. 

We postulate that the reason for the more concentrated and sharper shapes of the higher 

order moments is due to a greater degree of relative reinforcements that is obtained when 

the average of the products of three or more similar periodic samples (i.e.         

            ) are obtained.  

 

 5.3 THE EFFECT OF SPEECH WINDOW LENGTH 

The choice of speech window length has a significant impact on pitch estimation. This is 

particularly the case for pitch estimation using MHOMs. It is easy to see that the higher 

the order K of the moments, the greater would be the        distance between the 

multiplied samples      and             and hence by necessity a longer 
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averaging window is required for reasonably accurate and low-variance estimates of the 

higher order moments.  

Four main considerations that influence the choice of the speech window length are: 

1) The time-variations of the speech signals. Classical signal processing theory – such 

as Fourier transform, moment analysis, linear prediction models, etc. – assume that 

the signal processes are non-stationary; for this reason the window length should be 

short enough such that within the window the signal parameters, such as the pitch, 

remain approximately stationary [17], [112] - [113]. In most speech processing 

systems, speech is assumed stationary for about 20ms. However, note that there are 

differences in the degree of stationarity of different parameters of speech. For 

example, pitch is extra-segmental parameters that generally vary at a slower rate 

depending on the speaker and the style of speech. Extra segmental parameters are 

parameters that span relatively large segments composed of several frames of quasi-

stationary speech. 

2) The maximum allowable delay in voice communication. Due to the inevitable delay 

incurred in signal propagation through communication networks and channels, the 

processing delay, including the window length, should be kept at a minimum 

possible value. The maximum allowable delay in communication systems is about 

300 ms and mobile communication systems strive to keep speech frame (window) 

delay within 20 ms [9].  

3) The variance of the estimate of a moment decreases inversely with the number of 

samples used in the averaging process.  

4) The accuracy of pitch estimation and the variance of pitch estimation error. For 

accurate estimation of stationary signal processes, the averaging window length 
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should be as large as possible; however this conflicts with the constraints on 

stationarity and delay explained in (1) and (2). 

From the estimation theory, specifically the Cramer-Rao lower bound, the variance of 

estimation error decreases with the increasing observation length [24]. Hence, as expected 

the choice of the speech window (or frame) length has a substantial influence on the 

variance of the pitch error. Generally, pitch estimates improve with the increasing speech 

window length within a voiced segment of speech.  However, if the window length is too 

large, the pitch estimate will not accurately follow the smooth variation of the pitch 

utterance curves and will give rise to a coarse estimate of the pitch curve that has a step-

wise shape.  

We suggest that a combination of a coarse but robust pitch estimate obtained from a longer 

speech window length, spanning the current and several past speech frames, followed by 

fine tuning over the current speech frame can be used to have a good advantage without 

imposing any additional delay and without compromising the delay constraint of the voice 

communication systems, hence, the following two-stage approach is utilized:   

1) Initially a larger window length of    samples, based on a concatenation of the 

current speech frame of length    samples with       samples extracted from the 

adjacent immediately preceding (and possibly overlapping) speech frames, is used 

to obtain a robust gross estimate of the pitch value    .  

 2) The pitch estimation process is repeated over a shorter window length, composed 

of the    samples of the current speech frame, to obtain a locally optimised fine 
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estimate of the pitch constrained around the current values of    in the range of 

      , where       . Typically       .  

The Practical Implication of Using a Longer Window in Real-Time Applications 

In this section it is briefly explained that the two-stage multiple window method proposed 

in this work can be implemented in real-time for current communication systems without 

imposing the prohibitive cost and limitation of an additional delay. To achieve this for 

every speech frame      of length N-samples,                     , a longer 

speech window of length         speech samples  may be obtained via concatenation of 

the current speech frame and P stored previous frames as               as shown in 

Figure 5.3. In this way at any time there are two concurrent speech windows; the relatively 

short current speech frame and the longer asymmetric speech window spanning the current 

and past frames; these two windows can be used to implement the two-stage pitch 

estimation method proposed here. The asymmetric window has more weight on the current 

speech frame than previous frames. Note the main additional costs are the extra memory 

required to store P past frames and the additional processing time for calculation of 

MHOMs and extraction of pitch from a longer window.   
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Figure 5.3- Illustration of the concatenation of frames to form larger segments for pitch 

estimation. 

5.4 DATABASE OF SPEECH AND REFERENCE PITCH SIGNALS FOR 

EVALUATION OF RESULTS  

This section describes the databases of speech, reference pitch and noise, employed for 

evaluation of pitch extraction results. The method of extraction of the reference pitch 

values from the laryngeal signals is described.  

5.4.2 Additive Noise Types 

In order to investigate the robustness of the proposed criteria, four types of additive noise 

namely; Gaussian white noise, car noise, train noise, and babble noise are used [114]. The 

power spectra of the noise are shown in Figure 5.7. Gaussian white noise was generated 

using the MATLAB routine. Car noise and train noise were recorded by researchers at 

Brunel University, whereas the babble noise was obtained from publicly available data 

[115].  

Frame nFrame n-1Frame n-2Frame n-3

Long concatenated frames

window

Current frame (x(m))P pass frames

speech signal

N(P+1)
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(a) Power spectra of white noise 

 

(b) Power spectra of babble noise 

 

(c) Power spectra of  train noise 

 

(d) Power spectra of car noise at 

motorway environment. 

Figure 5.4 - The power spectra of the four types of noises used for evaluations. 

The range of the variations of noise power from low frequency to 3.5 kHz is 0 dB (i.e 

constant power)  for white noise, 30 dB for babble noise, 40 dB for train noise and 50 dB 

for car noise. Hence the noise with the most spread energy across frequency is the white 

noise followed by babble noise, then train noise and lastly car noise.  

Note that car noise, babble, noise and train noise, in that order, have the largest 

coincidence of spectral energy with those of the fundamental frequency and the first and 

second harmonics of speech. Noting that since the fundamental frequency and the first two 

harmonics are usually crucial for accurate pitch estimation, it is expected that at a given 

overall signal to noise ratio, comparatively, car noise degrades the pitch estimation 

accuracy most followed by babble noise, train noise and then white noise.  
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All noise signals like speech, were lowpass filtered and band limited to 4 kHz and 

resampled at 8 kHz sampling rate for evaluation.  

5.4.1 Speech Signals and Laryngograph Signals Databases 

The raw databases used for the evaluation of the experimental results are publically 

available simultaneous recordings of speech and laryngograph signals [116] - [120]. 

(1)  Speech Signals Databases 

The speech databases used in this work, for the extraction of reference pitch values and the 

evaluation of pitch extraction methods, contain gender-balanced and phonetically-

balanced (i.e. having approximately the same statistics of occurrence of phonemes as those 

that of a very large database) utterances from 10 male speakers with a total of 304 

utterances and 8 female speakers with a total of 155 utterances with total durations of 1048 

and 597 seconds respectively.  All speech signals were band-limited to 4 kHz and 

resampled at 8 kHz which is the standard bandwidth and sampling rate used for mobile 

phones as shown in Table 5.1.  

 

Table 5.1 - The databases of the speech and laryngeal signals. 

Gender Number of 

speakers 

Number of 

utterances 

Mean Duration 

of utterance 

(sec) 

Duration 

(sec) 

Bandwidth, 

Sampling 

Rate 

Female 8 155 3.85 597 4 kHz, 8 kHz 

Male 10 304 3.45 1048.2 4 kHz, 8 kHz 
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(2) Extraction of Reference Pitch from Laryngograph Signals 

Laryngograph or electroglottograph (EGG) signals are records of the vocal folds 

phonatory vibrations during voice production.  The laryngograph signals has been used as 

the “ground truth” or reference pitch values in our evaluation. The laryngograph signals  

provide a relatively clean recording of the glottal vibrations from which the speech signal 

period and its inverse, the pitch, can be extracted with a high degree of accuracy [121].   

The EGG signals measure the variations of the contact area of the vocal folds. To measure 

the vibrations of vocal folds contact area, an EGG records the pattern of variations in the 

transverse electrical impedance of the larynx and nearby tissues by means of a small A/C 

electrical current in the mega Hertz region applied by electrodes on the surface of the 

neck. This electrical impedance will vary slightly with the area of contact between the 

moist vocal folds during that part of the glottal vibratory cycle in which the folds are in 

contact.  
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Figure 5.5 - The flowchart for period estimation (pitch marking) from laryngograph           

                    signal using zero-crossing method. 

 

However, because the percentage variation in the neck impedance caused by vocal fold 

contact can be extremely small and varies considerably between subjects, no absolute 

measure of contact area is obtained, only the pattern of variation for a given subject [122].  

(3) Pitch Marking of the Laryngograph Signals 

Figure 5.5 illustrate the pitch marking process of laryngograph signals. Pitch marking 

refers to a process of, marking regularly spaced points, corresponding to period or 

Re-Sampling  to 8kHz

& 

Band pass Filtering  60 Hz -500 Hz

Laryngograph Signal

Zero-Crossing Detection

Period  Estimation

Hand-corrected 

Period T0

Manual Inspection and Correction
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frequency of repetition (pitch), in time or frequency domain representation of the signal. 

The time variations of the period/pitch are derived from the pitch mark points. 

A zero-crossing method was used for the initial marking and extraction of the period 

information from the laryngograph signal [123].  First the mean of the laryngograph signal 

is removed to obtain a zero-mean signal.  A zero crossing is defined as when the 

magnitude of the zero-mean signal changes sign from a positive value to a negative value 

or vice-versa. Note that each period of a zero-mean signal is composed of two zero 

crossings, one from positive to negative and the other from negative to positive as shown 

in Figure 5.6 and Figure 5.7. 

The period is calculated as the total number of samples, between the zero-crossing at the 

beginning of a period and the zero crossing at the end, multiplied by the sampling period.  

All the extracted period data were visually inspected and hand-corrected where necessary. 

The pitch values extracted from the voiced activity of the laryngograph signals for the 

reference (or ‘ground truth’) values for various pitch extraction methods evaluated in this 

section.  

The estimates of pitch from the laryngographs signals and from speech signals are 

performed at 5 ms intervals, which correspond to a window slide of 40 samples at 8 kHz 

sampling rate. The choice of 5 ms sampling interval is a standard that is also employed as 

the pitch update rate for mobile phone voice coding [9]. Note 5 ms sampling corresponds 

to a sampling rate of        Hz and a maximum frequency of 
  

 
     Hz. This is 

sufficient for capturing the variation of pitch trajectory i.e. intonation.  
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Figure 5.6 - (a) The speech signal, (b) the pitch marking on laryngograph signal, (c) 

the down-sampled period, and (d) the pitch or fundamental frequency of 

the male speaker. 

Figure 5.6 and 5.7 show two examples of speech and the corresponding laryngograph 

signal, pitch marks, period curve and pitch curve for a male speaker and a female speaker. 

Given the visual inspection and hand correction process, the inspected/corrected reference 

pitch are highly accurate.  
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Figure 5.7 - (a) The speech signal, (b) the pitch marking on laryngograph signal, (c) 

the down-sampled period, and (d) the pitch or fundamental frequency of 

the female speaker.  

5.5 EXPERIMENTAL EVALUATION AND DISCUSSION 

In this section a set of experiments are performed to evaluate and compare the 

performance of the proposed pitch extraction methods with several well-established 

methods namely the autocorrelation function, ACF  [17], [22] – [23], [112]- [113], [124]- 

[125]; the AMDF method [38], [55] – [57],  [126] - [132], and the benchmark YIN method 

[34] and HOMs (3
rd

, 4
th

 and 5
th

) methods [58]-[59], [110]- [111]. The effects of different 

types of noise on the performance of pitch extraction methods are examined. The 

experiments are conducted on several databases with different noise types and in a range 

of signal to noise ratios. The details of the experimental setup are described next. 
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5.5.1 Pitch Error Analysis Method 

For error measure, the average percentage absolute value of pitch estimation error is 

defined as 

      (
| ̂          |

     
)                                                    

where       and  ̂     are the true (aka ‘ground-truth’) value (obtained from manually-

corrected laryngographs) and the estimate of pitch, for the m
th

 speech frame, respectively. 

Note that the pitch error is calculated over voiced frames only. The voicing information is 

reliably obtained from the laryngeal signal and visually inspected and manually corrected. 

The choice of the average % of absolute pitch error, as opposed to other error measures 

such as mean square error etc, conforms to the normal practice employed in other works 

[17], [126], [133]- [134]. 

For analysis of pitch accuracy six categories of mean percentage absolute value of pitch 

error are considered:  

1)       ; the average percentage of overall absolute value of pitch errors for all values 

of pitch error large and small,  Equation (5.10). 

2)       the average percentage of small absolute value of pitch errors that are less than 

or equal to    , called fine percentage error (FPE),   

          (
| ̂          |

     
    )                                    
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3)        the average percentage of large absolute value of pitch errors that are greater 

than    ,  called gross percentage error (GPE)   

           (
| ̂          |

     
    )                                  

4) Var;  variance of pitch errors for all values of pitch error large and small.  

5) The percentage of population of errors,      , for small value of pitch error,       

   .  

6) The percentage of population of errors,       , with large value of pitch errors 

          .  

Note that is                     . 

The motivation for splitting the pitch estimation errors into gross and fine errors is to 

provide an indication of robustness of the pitch estimator. Generally a robust system will 

yield less outlier and large errors including double and half pitch errors. 

The choice of a threshold value of 20%, dividing the boundary between small and large 

errors, is arbitrary, however, this division is also used by other researchers [34], [71] to 

assess the tendency of a pitch estimation method to produce gross errors including half 

and double pitch estimates. 

For pitch error evaluation purposes, the voicing detection is based on the laryngograph 

signals whose high signal to noise ratio recording process allows very accurate 

voiced/unvoiced detection. The voicing detections are visually inspected and manually 

corrected where necessary.   
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5.5.2 Analysis of the Effect of Varying Window Length on Pitch Estimation Error 

An experiment was conducted to determine the variations of the pitch estimation error 

with the variation of speech window length and hence to select an optimal value of speech 

window for each of the MHOM and the second order methods [135].   
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(b) 

Figure 5.8 - The mean of (%) pitch error versus speech window lengths for clean speech 

signals (30dB SNR):  (a) widow length varying from 20 ms to 100 ms windows length 

and (b) widow length zoomed in 30 ms to 100 ms windows length. 

Figure 5.8 Illustrates the variations of pitch estimation error, for different methods, with a 

range of window lengths of: 20ms (160 samples at a sampling rate of 8 KHz), 30ms (240 

samples), 37.5 ms (300 samples), 50ms (400 samples), 62.5 ms (500 samples) ,75ms (600 

samples), 87.5ms (700 samples) and 100 ms (800 samples).  

The overall trend of variations of the pitch estimation error with the increasing window 

length is an initially steep reduction in the pitch error rate which levels off and slightly 

increases beyond the minimum error point. Since the statistical (moments) theory assumes 

that within the observation window the pitch signal is stationary, as the window length 

increases there is a point (around 30 - 40 ms for ACF)  where the pitch error starts to 
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increase due to the considerable time variations of the actual pitch within the large time 

window.   

Figure 5.8, suggests that the pitch estimation method based on the modified third order 

moment criteria provides the least error value for a window length of 50 ms and slightly 

more error for longer window lengths. The fourth  and fifth order methods performs best 

for a window length of greater than 60 ms and the pitch error  levels off at a minimum 

error value around a window length of 87 ms.   

A further interesting point is the behaviour of the correlation-based pitch estimation 

method compared to the benchmark YIN method as shown in Figure 5.9. As the window 

length increase the curve of pitch error of the correlation method crosses that of YIN 

method and the correlation method significantly outperforms YIN. This underscores the 

importance of the influence of the window length as a dominant factor in pitch estimation. 

Increasing window length alone can outperform the combined effect of all the 

optimizations steps employed in the YIN method.  

When estimating periods it is useful to place limits on maximum and minimum values of 

the period. For minimum and maximum values of period,           and pitch            

the following values were chosen as tabulated in Table 5.2. 

Table 5.2 - The limitation of period and fundamental frequency for the evaluation 

Period           ms          

Fundamental Frequency                                        
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These limits can be varied.  Based on the results, as explained in section 5.3 we employed 

a two-stage pitch estimation strategy whereby in the first stage a large window length of 

50 ms (400 samples at 8 kHz sampling rate) is employed for the pitch estimation method 

based on the third order modified moment and a window length of 87.5 ms (700 samples) 

is employed for the pitch extraction methods based on the fourth and fifth order modified 

moments.  Note that for a delay sensitive communication system these larger speech 

windows may include a number of stored past frames so that the system will not incur 

additional delays. The relatively large window length employed at the first stage of pitch 

estimation provides a coarse but robust initial estimate. In the second stage of the pitch 

estimation process, the coarse estimate, obtained from the first stage, is fine-tuned in the 

locality of the current short frame of 160 (20 ms) sample.  

5.5.3 Analysis of Performance of Pitch Extraction Methods in Noisy Environments 

The pitch estimation methods were evaluated in a range of signal to noise ratios from 

30dB down to -5dB with a SNR step size of 5dB. The noisy speech samples were obtained 

by adding several common types of noise; Gaussian white noise, car noise, train noise, and 

babble noise to clean speech signal [136]. 
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(c) 

Figure 5.9 - The % overall  pitch error for a different windows length (20 ms, 33 ms, 

and 50 ms) as a function of SNR of Gaussian white noise; (a) Modified 

third order moment method , and (b) autocorrelation function method with 

YIN method, and (c) the ACF, modified third order moment, and YIN  

with the window length of 33 ms and 50 ms. 

For these experiments the performance of two pitch extraction method based on 

autocorrelation and modified third order criteria, were evaluated for windows of 20 ms, 33 

ms and 50 ms with speech contaminated with white Gaussian noise in a range of SNRs 

from 30 dB down to -5 dB. The results plotted in Figure 5.9 (a-c) shows a definitive 

pattern of improvement in the pitch estimation accuracy with the increasing window 

length at all SNRs.  

Again, the most important finding from Figure 5.9 (a-c)  is that increasing the signal 

widow length, for correlation or modified third order moment methods, can alone 

outperform all the various optimisation steps employed in YIN; this \underscores the 

importance of the length of the window as a dominant factor.   
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Figure 5.10 to Figure 5.13 provide a comparative analysis of the percentage of the overall 

pitch estimation error for the proposed modified HOM methods and the conventional pitch 

extraction (i.e. ACF and AMDF) and the YIN methods. The evaluations are performed for 

a range of signal-to noise ratios, in the range of -5 dB to 30 dB and the four 

aforementioned types of noise. Note that car, train and babble noise, due to a greater 

concentration of their power at low frequencies, where the fundamental frequency of 

speech resides, result in significantly larger pitch errors compared to white noise. For 

white noise, the second, the third and fourth order moment methods result in almost 50% 

less error compared with the bench mark YIN method as shown in Figure 5.10. For other 

noise types (i.e. car noise, train noise and babble noise) also the second to fourth order 

moments consistently yield less pitch errors than the YIN method. However, the fifth 

order method does not perform as well as the second to fourth order moments; we 

postulate this is due to a limit reached, in that for the fifth order moment the distance of 

four times the period between the samples,                              

       too large and significant changes in pitch and speech signal occurs for distance of 

   and beyond.    
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Figure 5.10 - The % overall  pitch error of Gaussian white noise as a function of SNR 
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Figure 5.11 - The mean of overall (%)  of pitch error of  car noise as a function of SNR 
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Figure 5.12 - The mean of overall (%)  of pitch error in train  noise as a function of SNR 
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Figure 5.13 - The mean of overall (%) pitch errors of babble noise as a function of 

SNR. 
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Figure 5.14 - Comparative pitch estimation error of the modified third order moment 

for four types of noise the function of SNR. 

 

Figure 5.14 illustrate the comparison of pitch estimation error for the modified third order 

moment method with four different types of noise.  

5.5.4 Analysis of the Variance of Pitch Errors 

Figure 5.15 shows the plots and the values of the variances of the overall pitch errors for 

different criteria for the range of SNR from -5dB to 30dB for white noise. The proposed 

methods based on third and fourth order moments methods display less variance and 

compete well with the conventional ACF method and the YIN pitch extraction method.  
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Figure 5.15 - Illustration of the variance of the pitch error of Gaussian white noise. 

 

5.5.5 Analysis of the Weighted Average Fine and Gross Pitch Errors 

For more detailed pitch error analysis, the percentage pitch errors are divided into two 

categories; the population weighted fine pitch errors defined as     

     
        

                                                                      

Where       is the percentage population of fine errors and      
        

 designate the 

weighted percentage pitch errors less than or equal to 20% (FPE) as shown in Figure 5.16. 
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Where        is the percentage population of gross errors and       
        

 designate the 

weighted percentage pitch error greater than 20% (GPE) as shown in Figure 5.17. The 

choice of the threshold of 20% as a dividing line between small and large pitch errors is 

arbitrary but this value of threshold is also used by other researchers [34], [124]. 

 

 

Figure 5.16 - The % weighted fine pitch error of Gaussian white noise as a function 

of SNR.  
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The evaluation results plotted in Figure 5.16 and Figure 5.17 display the weighted average 

pitch error for fine and gross pitch error respectively. It is evident that the combination of 

an optimal widow length and MHOMs criteria achieve a distinct improvement in terms of 

the accuracy of relative to the benchmark YIN for both fine and gross pitch evaluations 

which resulted in smaller error values in a range of -5dB to 30dB SNR.  

 

 

 

Figure 5.17 - The percentage weighted gross pitch error of speech in Gaussian white 

noise as a function of SNR.  
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5.5.6 Analysis of the Population of Fine and Gross Pitch Errors 

Figure 5.18 and Figure 5.19 are the plot of the percentage population of gross and fine 

pitch errors, using various pitch extraction methods, respectively. In Figure 5.19, the pitch 

extraction based on ACF and MHOMs result in a significantly lower percentage of 

population of the gross pitch errors (that are greater than 20%) compared to the bench 

mark YIN methods. Conversely, as shown in Figure 5.18, the ACF and MHOMs methods 

yield a relatively higher percentage of population of pitch error that are less than 20%. The 

results indicate that while the pitch extraction methods based on the third and fourth order 

modified moments provide a competitive overall average pitch error, they are also robust 

in that they have a relatively lower proportion of large pitch errors; low overall error and 

fewer occurrence of large errors are two desirable features of a pitch extraction method 

offered by higher order moments. Furthermore, the correlation method performs well 

compared with YIN when the strategy of estimating the pitch from a longer window 

followed by a localized estimate is used. This result further underscores the importance of 

window length in pitch estimation in that longer windows in addition to providing lower 

overall errors also result in fewer large errors.  
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Figure 5.18 - The % population fine pitch error of speech in Gaussian white noise as a 

function of SNR. 
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Figure 5.19 - The % population gross of pitch error of Gaussian white noise as function of 

SNR. 
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results compete favourably with the conventional methods (i.e. autocorrelation with 20 ms 

window length and AMDF) and the benchmark YIN method. 

A significant finding of this research work is the relatively dominant impact of the choice 

of window length on the pitch estimation error. Since MHOM methods involve the 

average of the products of samples, x               , that are apart by two or 

more times the maximum allowable period, the reliable estimation of MHOMs requires 

appropriately larger windows. A set of experiments were conducted to determine the 

curves of the variations of pitch error versus speech window length for conventional and 

higher order pitch estimation methods. The results reveal that the pitch error decreases 

with the increasing speech window length, despite the impact of a non-stationary process, 

and that the choice of speech window length is the most influential factor effecting pitch 

estimation accuracy. For example pitch estimation based on correlation method using a 

window length of 50 -70 ms outperforms the bench mark YIN method of pitch extraction. 

The apparent downside of choosing a large window is an increase in delay. However, this 

is overcome by the proposed two-stage solution whereby an initial estimate of the pitch 

from a large window spanning the current and past speech frames is followed by fine-

tuning around the current speech frame.  

Of the higher order methods experimented with, the modified third order moment in 

particular and the fourth order moment methods perform well. Beyond the fourth order 

moment the relatively large length of speech window required, contains significant 

variation of pitch and this affects and limits the accuracy of pitch estimation. Significantly 

the third order and fourth order methods  are robust in that in addition to yielding smaller 

pitch error also result in a small percentage of large pitch errors.  
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The potential advantages of higher order moment criteria may be cited as:  

1) A higher level of reinforcement of similarity resulting from multiplication of more 

than two similar samples as shown in Figure 5.2.   

2) Robust and improved performance at low SNRs (i.e. Figures 5.10 to Figure 5.13).  

3) Competitive performance across SNRs (i.e. Figures 5.10). 

 

The potential disadvantages of higher order moment criteria may be cited as:  

1) Increase computational complexity;  

2) Increased delay (the proposed two-stage method resolves this issue); and  

3) Coarse estimate resulting from the averaging of pitch within a large window. 
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PITCH ESTIMATION VIA ANALYSIS-SYNTHESIS 

OF N-BEST CANDIDATES 

 

 

 

he similarity criteria (e.g. moments or average magnitude difference function) 

used for the estimation of the period, or its inverse the fundamental frequency, 

yields multiple competing candidates at the extrema points giving rise to errors 

when the similarity at one of the maxima/minima other than the correct pitch is strongest. 

This chapter addresses the problem of determination of the best pitch value among a 

number of N proposed pitch candidates selected at the extrema of the similarity criterion 

used for pitch estimation. For each prospective pitch candidate,    
        , the 

harmonic part of speech with the proposed fundamental    
 is synthesised in frequency 

domain as the product of an estimate of the spectral envelope of speech and an estimate of 

6 

T 
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the spectrum of the harmonics of the excitation. The synthesised speech spectrum is 

subtracted from the actual speech spectrum and the difference is used to yield a harmonic 

synthesis distortion measure such as the harmonicity distance, HD, signal-to-noise ratio, 

SNR, minimum mean squared error, MMSE etc. Furthermore, the harmonicity of speech 

at the proposed pitch and its harmonics is used as an additional component of the overall 

distortion score. The pitch candidate yielding the smallest synthesis distortion is selected 

as the most likely pitch value. The choice of the harmonic synthesis model and its 

parameters and the choice of the distortion measure are critical and these should be 

selected so as to maximise the mismatch between the harmonic part of speech signal 

reconstructed from an incorrect pitch candidate and the actual speech signal. For 

evaluation of errors, the pitch reference (aka ‘ground truth’) values are calculated from 

manually-corrected estimates of the periods obtained from laryngograph signals. 

 

6.1  INTRODUCTION 

Speech signals are composed of a combination of quasi-periodic and non-periodic signals. 

The term quasi-periodic implies that the signal is seemingly, but not strictly, periodic 

because the period varies over time. The pattern of time-variation of the pitch, known as 

intonation, conveys such information as pragmatics of speech, intent, style and accent.  

 Pitch extraction methods utilise the similarity of speech samples at time t,     , with the 

speech samples a period of T seconds away;        or       . 

For example, correlation-based pitch extraction methods estimate the period as the value 

of   for which the average of the product of             over a frame of speech 

samples, known as the short-time correlation, attains a maximum value [25]. Magnitude-
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difference-based pitch extraction methods estimate the period as the value of   for which 

the average magnitude difference |           | over a frame of speech samples 

attains a minimum.  

 

A periodic signal with a period of   is also periodic at integer multiples of   i.e.   , 

     etc. Hence similarity exterma points will occur also at integer multiples of  as 

illustrated in Figure 6.1.  

 
 

Figure 6.1 - Illustration of:  (a) a periodic speech segment, (b) the peaks of the 3
rd

 order 

moment as the candidates for period/pitch estimation, the max peak position 

52 sample is close to the true period of 51 samples and (c) the frequency-

domain representation of the harmonic structure of periodic speech. 
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Figure 6. 2 - Illustration of: (a) a transient speech segment, (b) double pitch (i.e. half 

period) estimation from the max peak of the 3
rd

 order moment, and (c) the 

frequency-domain representation of the harmonic structure of speech 

In cases when the     harmonic of speech coincides with a strong resonance, and hence 

becomes the dominant harmonic, strong periodicity will be seen at a period of     , for 

example when the second harmonic is stronger than the first harmonic then a 

correspondingly stronger similarity will be seen at a lag of half period     as shown in 

Figure 6.2.  

Due to non-stationary and indeterminate nature of some speech segments sometimes a 

strong similarity extrema occurs at a period other than that expected. This is particularly 

the case for speech segments at the transitory sections as shown in Figure 6.2 (a), i.e. at 

the beginning or the end of an utterance or at the boundary of a transition between two 

utterances, when the signal period within a given segment window varies considerably 

from the beginning to the end [137] .  
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Figure 6.3 - Illustration of:  (a) a periodic speech segment, (b) the correct pitch 

estimation from the ACF (2
nd

 order moment), and (c) the frequency-

domain representation of the harmonic structure of periodic speech. 

 

Figure 6.3 shows an example where the maximum of the autocorrelation function method, 

ACF similarity criterion corresponds to a twice the true period which is equivalent to half 

the true pitch. 

6.2 THE PROPOSED  -BEST CANDIDATES PITCH ESTIMATION 

METHOD 

Figure 6.4 shows an outline of the proposed N-best pitch estimation method. A similarity 
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th

 order moment,     , is calculated for the speech signal for a 
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similarity criteria can operate on the frequency domain signal obtained from the Fourier 

transform.  

 

Figure 6. 4 - An outline of  -best pitch estimation method. 

From the set of   candidate periods corresponding to the positions of the   top peaks of 

the similarity curve             a set of   pitch candidate values are obtained as 

                 .   

 

For each pitch candidate            , the harmonic part of speech spectrum is 

synthesised to yield   ̂             . A set of spectral distortion measures, such as 

weighted SNR or weighted MMSE, harmonicity etc. are accumulated as        
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∑         ̂          . The pitch candidate with the least distortion is selected as the 

best estimate of the pitch. The success of the  -best strategy depends on the methods 

used for synthesis of the harmonic part of speech and the choice of the distortion measure 

as explained next. 

For each of the  -best pitch candidates,           , the harmonic plus noise model of 

speech is defined as 

 ̂        ∑                                                    

  

   

                     

where     is the fundamental frequency,      is the     harmonic spectral amplitude, 

      is     harmonic excitation spectral shape function,    is the number of harmonics 

and      is the non-harmonic part of speech [138]. 

For each of the  -best pitch candidates,     
, i =1…, N, the harmonic part of speech is 

synthesised as 

 ̂          ∑                                                     

  

   

                     

The distortion measure for the original and synthesised spectra,   and   , for the i
th

 pitch 

candidate is defined as 

 (   
      )  ∑  (      ̂  

      
 )                                                   

     

Various forms of distortion measures evaluated are described in section 6.6. 

The success of the  -best strategy depends on the efficiency of the model used for 

synthesis of the harmonic part of speech and on the choice of the distortion measure as 

explained next. The best pitch value among the N candidates is obtained as 
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 (   
)                                                                             

The implementation of the  -best methods requires the estimation of the following 

parameters: 

1) Estimation of  -best pitch candidates, [   
, …    

 ,  obtained from the top   

extrema of a similarity criterion. 

2) An estimate of the parameters of the shape of each harmonic excitation signal       

to fit the actual speech harmonic shapes. 

3) An estimate of the spectral envelope     ; this is a critical part of the method; the 

spectral envelop should be such that the error in harmonic synthesis is an increasing 

function of the pitch error [139] -  [141]. 

4) A spectral distortion measure of the difference between the actual speech signal and 

the harmonic synthesised signal [142]. 

5) A selection method for finding the best candidate, this may be a straightforward 

selection of the pitch candidates that yields the best synthesised harmonics of speech 

or it may additionally employ the past history of the pitch estimates within nearest 

neighbour. 

Figure 6.5 illustrates the  -best Pitch estimation method proposed in this chapter. The 

bandpass filter limits the signal to band of 40 Hz to 2000 Hz where the signal harmonics 

are expected to have the strongest harmonicity. The segment length depends on the type 

of the similarity criteria and is set between 30 ms to 62.5 ms as explained in section 5.3 

(chapter 5). The segment shift 5 ms corresponding to 200 estimations of the pitch value 

per second. Each segment is windowed by the commonly used Hanning window. 
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After bandpass filtering, segmentation and windowing, the similarity criterion yields N-

best competing candidates corresponding to the positions of the N top extrema points 

sorted in order of the decreasing magnitude of the extrema.    

For each pitch candidate the harmonic synthesis module synthesises the harmonic part of 

the speech spectrum using a combination of the estimates of the spectral envelop of 

speech and the spectral details of the harmonic excitation. The estimation of spectral 

envelope and excitation details of speech are described in section 6.4. 

 

 

Figure 6.5 - Illustration of N-Best pitch estimate algorithms 
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1) Harmonics’ frequency adjustment,  

2) Excitation pulse shape estimation, and  

3) Selection of the number of harmonics for analysis-synthesis.  

 

 

Figure 6.6 - The block diagram of harmonic excitation estimation model.  

6.3.1 Harmonic Frequency Adjustment 
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multiples of the fundamental frequency as may be the theoretical expectation. The reason 

for deviation of the position of the harmonics from the integer multiples     , is the time-

varying nature of the excitation signal and the configuration and resonances of the voice 

tube through which the excitation propagates. Hence a more accurate model of the 

position of the frequencies of the harmonics may be modelled as  
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where     
 is the deviation of the     harmonic from the nominal value of    . The value 

of     
 is found around the locality of     by a peak search in the region of            

to           where       is a user-set search region parameter.     
is obtained as 

    
       

              
                                                              

After adjustment of the harmonic frequencies as shown in Figure 6.6, a weighted estimate 

of the fundamental frequency is obtained as summation of the harmonic frequencies as 

    ∑     
      

 
                                                                         

  

   

 

where 
      

 
 is an estimate of the fundamental frequency obtained from the adjusted     

harmonic frequency normalised by the harmonic number   as shown in Figure 6.7.  

The weights      may reflect the strength of each harmonic component and they may be 

obtained from a number of different measures such from the normalised SNR obtained 

for each synthesised harmonic: 

     
      

∑        
                                                                             

or from the estimate harmonicities at      as 

     
              

∑                
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Figure 6.7 - The frequency adjustment of speech spectrum. The star (red) represents 

the adjusted    and diamond (black) is the estimated    before 

adjustment. 

6.3.2 Harmonic Excitation Shape Estimation 

The frequency spectrum of the harmonic part of the excitation for each segment of 

speech,        is modelled as a sequence of periodic Gaussian functions positioned at the 

frequencies corresponding to the fundamental    and the harmonic frequencies     

      ∑                                                                       

  

   

 

where           is a unit-amplitude Gaussian function fitted to the     harmonic pulse 

centered  at the frequency of     .  
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The parameters of a Gaussian function are the mean value   and the variance   . For 

each harmonic signal the mean of the Gaussian function is set to the harmonic frequency; 

i.e. the mean or the centre of the Gaussian function for the     harmonic is    and the 

Gaussian function is given by 

          
 

 √  
       (

     
 

)
 

                                              

Removing the scaling factor    √  ⁄  yields a unit-amplitude Gaussian pulse, i.e. with a 

maximum value of 1, as required in the context of the signal synthesis in this work 

                 (
     

 
)
 

                                                       

For each excitation harmonic of speech, the variance of the Gaussian function is 

calculated such that the width of the Gaussian function at a pair of points, at a 

predetermined fraction of the maximum value of the Gaussian pulse, fits the width of 

excitation.   

For fitting the Gaussian function to the harmonic pulses of the speech signal, we select to 

fit the width of a Gaussian function to the width of the harmonic pulse, at such symmetric 

points about the mean, (   ,   ) where the Gaussian function magnitude is a fraction    

of the maximum value, these points are known as full-width- -maximum, F  M [143]. 

This process is illustrated in Figure 6.8. Hence for each harmonic pulse the width, 

F  M, between the two points on either side of the maximum peak at the harmonic, 

where the harmonic pulse magnitudes are a fraction   of the peak value, are measured. 

The variance is then calculated, as described next, such that F  M of the Gaussian 

function is the same as F  M of the speech excitation harmonic pulse. 
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Consider a Gaussian function        (
 

 
)
 

 with its mean centred at    , for the 

following derivation we do not need the scaling constant 
 

 √  
. Since the maximum value 

of the Gaussian pulse is unity,          (       (
 

 
)
 

)     the frequency    at which this 

function will have a magnitude equal to a fraction   of the maximum magnitude is given 

by 

         (
  
 

)
 

                                                                            

        (
  

 
)
 

                                                            (6.14)  

      √      ⁄                                                                      

 

The width between the points (   ,   ) at which the magnitude of the pulse is a fraction 

  of the maximum value is given by 

                                                            (6.16)  

           √      ⁄                                               (6.17) 

For a value of  =0.5 we have the full width at half magnitude, FWHM,  

      √                                                                    

Alternatively we can use a fitting of the full width at other pointes such as at three quarter 

of the maximum or at a quarter maximum values.                       

For a value of  =0.75 we have the full width at three quarter of the maximum magnitude, 

i.e. a quarter below the maximum, FW3QM, as 
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       √                                                                

For a value of  =0.25 we have the full width at quarter of maximum magnitude, i.e. three 

quarter below the maximum, FWQM, as 

      √                                                              

Note the maximum value of the Gaussian pulse is at its centre with a value of 1 and this 

will be scaled during synthesis with the value of the envelope of the harmonic of speech 

at    .  

 

 

Figure 6.8 - Illustration of asymmetric Gaussian distribution model, with full width 

three quarter maximum (FW3QM), full width half maximum (FWHM), and 

full width quarter maximum (FWQM). 
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6.3.3 Asymmetric Gaussian Pulse Shape for Harmonic Excitation 

Although theoretically, the shape of the excitation harmonics in frequency domain may 

be desired to be symmetric and regularly spaced at integer multiple of the fundamental 

frequency,       in practice, due to influence of the resonances and the anti-resonances of 

the vocal tract and the time-varying nature of speech, the shape of the harmonic pulse, the 

position of the peak points of the harmonics of speech and the frequency distances 

between the successive harmonics varies along the frequency.  

 

 

Figure 6.9 - Illustration of asymmetry Gaussian distribution model. 

 

Hence, for example we are likely to have an asymmetric harmonic pulse shape such that 

the number of frequency samples measured from the mid points between two successive 

harmonics to the peak point (at harmonic frequency) is different on the two sides of the 
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harmonic. In addition the harmonic pulse shape itself may be skewed having two different 

slopes at different sides of the harmonic frequency. The asymmetry of the Gaussian pulse 

is modelled in order to optimise the shape of the synthesised speech spectrum as shown in 

Figure 6.9.   

 

6.3.3.1  Generation of an Asymmetric Gaussian Pulse from Two Half-Gaussian 

Pulses 

 

Figure 6.10 - Harmonic excitation of speech spectrum with (a) an asymmetric Gaussian 

pulse model, (b) their harmonic excitation with multiple integer speech 

spectrum, and (c) the synthesised speech spectrum (solid line) and the 

original speech spectrum (dashed line). 



Chapter 6                                                         Pitch Estimation via Analysis-Synthesis of N-Best Candidates 

 158   

 

An asymmetric Gaussian pulse can be formed from the generation and concatenation of 

two half Gaussian pulses (the left half and the right half about the peak value) of different 

variances,      , as shown in Figure 6.10. To achieve this, two separate values of 

variance of the Gaussian pulses to fit the full widths at a fraction a of the maximum. 

e to the 

right of the curve are computed. Then, given the values of       , a software code 

generates and concatenates the two half Gaussian curves. 

Figure 6.10 illustrates the generation, synthesis and fitting of an example of a speech 

segment with asymmetric excitation.  

6.3.4 Selection of Number of Harmonics  𝒉 

The choice of the number of harmonics used for estimation of the fundamental frequency 

will give impacts to the accuracy of pitch estimation.  

In general for a bandwidth of        ⁄  Hz, and a fundamental frequency of    there is 

a maximum number of harmonics of             ). However, for most speakers 

only the first few harmonics are well defined with a high harmonicity and a shape that can 

be conveniently modelled by a Gaussian pulse. Experimentally, we have arrived at the 

choice of a 1000 Hz as the bandwidth that contains the most significant harmonics as 

shown in Figure 6.11. This choice is justified by the two experimental observations: (1) 

that the power spectrum of voiced speech drops in magnitude by more than 20 dB after 

1000 Hz as shown in Figure 6.11 (a), and (2) the most well defined harmonics, i.e. those 

with the highest values of harmonicity, are the first 5 harmonics which on average reside 

in a frequency bandwidth of 1000 Hz, as shown in Figure 6.11 (b).  
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Hence, in the  -best pitch estimation method developed in this thesis the number of 

significant harmonics for analysis-synthesis, given a pitch candidate proposal    , is 

calculated as                ).  

 
(a) 

 
(b) 

Figure 6.11 - (a) showing the power spectral density of voiced speech signal; note 

that at 1 kHz the power is down by 20 dB, and (b) the harmonicity at the 

first 15 harmonics of the voiced speech of a male speaker. 
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6.4 SPECTRAL ENVELOPE ESTIMATION,   𝒇    

Spectral envelope estimation is one of the most crucial and critical parts of speech 

processing applications such as, speech coding, speech synthesis and speech recognition 

where the system performance is affected by the accuracy of the spectral envelope 

estimate [139] - [140].  

In this application an estimate of the synthesized signal is obtained via multiplication of 

an estimate of the spectral envelop,     , by an estimate of the excitation harmonic, for 

the proposed pitch               . For maximising the mismatch, between the magnitude 

spectrum of the actual speech signal and an incorrectly synthesised harmonic (for 

example a harmonic incorrectly synthesized with half pitch or double pitch estimates), the 

spectral envelop should ideally pass through the peaks of speech magnitude spectrum at 

the harmonic frequencies but it should not go through other points and in particular the 

envelope should not pass through the local peaks that reside at the spectral troughs in 

between the harmonics.  

There are several established alternatives for the modelling of the spectral envelope or the 

vocal tract frequency response of speech, each method has merits and shortcomings, these 

methods are discussed in section 3.3 (Chapter 3)  and in the following references [139], 

[144].  

In particular LPC envelope and cesptrum envelop were experimentally explored as two 

alternative methods of spectral envelop estimation. However, both methods fail to 

conform to the requirement that the spectral envelop should go through the significant 

peaks at the harmonics and ideally should not miss any peaks or exhibit false peaks. LPC 
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and Cepstrum envelop do not have sufficient accuracy in tracing the significant spectral 

peaks and often exhibit sharp peaks where none exists in the actual signal. 

The preferred choice for estimation of the spectral envelop in this work, justified in the 

followings, is the polynomial interpolation through the peaks of the spectrum at the 

harmonics.  

Broadly, the spectral envelop via interpolation of a curve through the harmonic peaks, or 

the significant peaks, involves the following stages: 

1) Identification and estimation of magnitude and position of the most significant 

spectral peaks; here a peak is defined as a turning point that stands above a preset 

number of neighbouring samples on both sides of the peak. 

2) Pruning of the spectral peaks; this is an iterative process of identification and 

retaining of the most significant peaks; it uses two threshold parameters, these are 

peak prominence and minimum distance between successive harmonics. 

3) A polynomial interpolation method, interpolates a spectral curve through the 

spectral peak points. 

For the specific application of estimating a spectral curve that rests on the peaks at the 

harmonics, a number of constraints have been employed as:  

1) Even distribution of the peaks across the bandwidth. In order to ensure that the 

spectral peaks are relatively evenly spread (as would be expected from a harmonic 

structure), the bandwidth is divided into   segments and in each segment   peaks 

are selected. Typically for the first 4 kHz (telephony) speech bandwidth,      

and    . This implies that each frequency segment has a bandwidth of 200 Hz 
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width (            ) and for each segment 2 peaks are estimated, hence for 

each 200 Hz band two peaks can be estimated. 

2) Maximum frequency difference between the positions of two consecutive peaks, the 

maximum frequency difference is set to 350 Hz which is in the upper range of the 

female pitch. The setting of this threshold may result in inclusion of some non-

harmonic peaks data, above the threshold, in the estimation of the envelope. 

3) Minimum frequency difference between the positions of two consecutive peaks, the 

minimum frequency difference is set to 80 Hz. The setting of this threshold helps to 

prevent inclusion of non-harmonic peaks data below the minimum frequency.  

4) Maximum dB drop in magnitude between two successive peaks, this is set to value 

of 20 dB. 

6.4.1 Harmonic Peak Identification: Optimising the Trade-off between the Miss-

Rate and the False-Alarm Rate  

The classical trade-off   in the communication, detection/estimation, theory between   the 

miss-rate and the false-alarm rate can be applied to the objective of identifying the correct 

peaks at the harmonic frequencies while avoiding the misidentification of smaller peaks at 

non-harmonic frequencies (akin  to false-alarms).  

This can be guided by arguing that for the particular  -best pitch estimation problem the 

cost of missing some of the least prominent peaks at the harmonics (miss-rate) may be 

greater than the cost of misidentification of incorrect peaks that may for example reside at 

trough between the harmonics as shown in Figure 6.12 (a).   
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The trade-off between miss-rate and false-alarm rate can be set by the choice of 

thresholds used in the envelop estimation process as shown in Figure 6.12 (b) and 

explained further in the next section.  

 

(a) 

 

 

(b) 

Figure 6.12 - The Spectral envelopes using polynomial interpolation (PCHIP), (a) the 

speech segment, (b) the spectral envelop with missed-rate estimation, and 

(c) the spectral envelop with trough false-alarm estimation (dashed line).  
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Figure 6.13 - The block diagram of spectral envelop estimation model. 

6.4.2 Algorithm for Spectral Envelop Estimation 

Figure 6.13 and 6.14 illustrate the block diagram and the flow chart for spectral envelop 

estimation algorithm.  

Set the number of subbands,      ;  

Set the number of peaks per subbands,     ;  

This implies that N peaks will be considered for each frequency segment of width BW/M.  

Initial Steps (1 & 2) 

Step 1: Find   distinct spectral peaks in   subbands (    peaks) subject to the 

constraints that successive peaks should have a minimum frequency spacing 

       , a maximum frequency spacing of      and a difference in amplitude 

of no more than dBthreshold.  
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Step 2: Obtain an initial estimate of the fundamental frequency    from amplitude 

weighted combination of the frequency position of the harmonic peaks divided 

by the harmonic number      ⁄          (assumed to be the harmonics) 

of speech. 

 ̂  ∑       
   

 
                                                              

  

   

 

where the weights are obtained as 

              ∑        

  

   

⁄                                          

Where      is the frequency spectrum of the signal and   =1 or 2. Note the weights give 

more emphasis to estimates obtained from the more significant high amplitude harmonics.   

Iterative Steps in a loop (3 & 4) 

Switch to adaptive      and       iteration index  . 

Step 3: Prune the peaks/peak positions using the constraints of  

1) An adaptive minimum frequency spacing of   ̂   between successive 

harmonics obtained from the current estimate of the pitch  ̂   and a maximum 

difference in peak level of dBthreshold. The value of   is experimentally selected 

in the range between 0.5    0.8.  

2) An adaptive maximum frequency spacing of   ̂   between successive 

harmonics obtained from the current estimate of the pitch  ̂   and a maximum 

difference in peak level of dBthreshold. The value of   is experimentally selected 

in the range between 3    4.  
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3) A maximum amplitude difference threshold between successive peaks, peaks 

below dBthreshold are deemed insignificant. 

Step 4: Obtain an updated estimate of  ̂  from amplitude weighted combination of the 

frequency position of the pruned peaks (assumed to be the harmonics) of speech.  

Convergence test: If the convergence (      
      

) criterion is not satisfied go to 

step3.    may be set to a small value of 2 Hz.  Where     
 is the pitch estimate at 

iteration t. 

 

Figure 6.14 - Spectral envelope estimation algorithm 
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Figure 6.15 - Spectrogram of (a) the speech spectrum, (b) and (c) the pitch trajectory 

from spectral envelope using PCHIP interpolation pitch estimation method 

subject to the constraint of peak selection. The circles in (b) show areas with 

relatively higher proportion of false harmonic peak estimates which are 

improved by iterative post processing as shown in (c). 
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Figure 6.15 (a) shows the spectrogram of speech signal where the pitch trajectories are 

clearly visible. Figure 6.15 (b) are the initial estimate of the frequency-time trajectories of 

the spectral peaks that are used for estimation of the spectral envelop of speech, these 

estimates are obtained using the initial constraints on minimum frequency distance and 

maximum magnitude difference between the successive spectral peaks. As hoped, the 

spectral peaks of speech spectrum largely trace the pitch trajectories. However, there are 

instances of false peak detections some of which are shown encircled. Figure 6.15 (c) 

shows that some of the false spectral peaks are removed in the following iterations that 

impose constraints on the minimum and maximum frequency distance between the peaks 

and constraints on maximum magnitude difference between successive harmonics.  A 

Piecewise Cubic Hermite Interpolation Polynomial (PCHIP) is used as the interpolation 

of the spectral envelop.   

6.5 HARMONIC SIGNAL SYNTHESIS  

For each proposed pitch candidate,          , the harmonic part of the speech signal 

is synthesised in the frequency domain as the product of the estimate of the spectral 

envelop  (    
) and the estimate of the harmonic excitation sequence            as 

expressed in equation (6.2) 

 ̂  (     
)  ∑  (    

)  (      
)                      

  

   

                       

The   synthesised signal spectra,  ̂  (     
)          are then compared with the 

original signal      to determine which of the   proposed candidates is best capable of 

generating the harmonic part of the signal. 
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Figure 6.16 shows an example of the synthesized harmonic spectrum of 2
nd

 order moment 

(ACF) pitch method.  

 

Figure 6.16 - Illustration of (a) the periodic speech signal in time, and (b) the spectral 

envelop fitted on the actual speech spectrum and the synthesised speech 

spectrum. 

6.6 SPECTRAL DISTORTION MEASURES 

For each pitch candidate     a distortion function provides a numerical measure of the 

difference between the synthesized speech spectrum    and the actual speech spectrum   
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 (   
     )  ∑  (    

) (    
     )                                                       

  

   

 

where      are a set of weights and   (    
     ) is the part of the distortion incurred in 

the synthesis of the     harmonic of the proposed candidate  

             ∑                                                                

  

     

 

where    and    denote the span of the     harmonic, in the following these are the mid-

points between the successive harmonics. 

The distortion measure is expected to have the following attributes  

1) Reward the well fitted segments of the synthesised harmonics at the actual 

harmonic frequencies. 

2) Penalise the poorly fitted segments for missing (double pitch) and false (half 

pitch) excitation pulses and for any other deviations of the synthesised harmonics 

from the actual harmonics. 

3) Weight the good fits and the poor fits with a function that appropriately scales the 

distortion values. 

The distortion measures explored in the following are based on the weighted harmonicity 

distance (WHD), weighted minimum mean squared error (WMMSE) and weighted signal 

to noise ratio (WSNR). 

6.6.1 Harmonicity Distance 

Harmonicity distance is used to measure the distortion of the harmonic structure of 

speech; a harmonicity contrast function may be defined in general terms as 
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where                       is a function of the peak at the     harmonic and the 

troughs on either side of the     harmonic. For example, one choice of the harmonicity 

measure is the ratio of the energy at a band of        frequency samples centred 

around the peak at the harmonic to the mean of the energy at a band of        

frequency samples centred around the troughs on the two sides of the harmonic as 

     
 ∑             

    

∑                        
     ∑                        

    

  

(6.27) 

Where        is the frequency of the peak spectrum at the     harmonic and the 

midpoints centred at troughs are defined as 

                    (             )                           

                    (             )                          

where  typically    = 1 or 2.    

Alternatively one can use the following average of harmonicity on two sides 

     
   ∑             

    

∑                        
    

 
   ∑             

    

∑                        
    

 

                                                                                                                  (6.30) 

Figures 6.17 show an example of voiced speech, their corresponding spectrum and their 

harmonicity.  
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Figure 6.17 - The harmonicity  at each peak spectrum of a segment of speech. 

6.6.2 Minimum Mean Squared Error (MMSE) Distortion  

The weighted MSE distortion measure is defined as the sum of the partial distortions at 

the harmonics as 

              ∑                                                               
  
     

Where   and    are the actual and the synthesised spectra,    is the number of 

synthesised harmonics for a proposal    .  

The squared magnitude spectral error,   , of the     proposed harmonic is given by 
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              ∑             
                                   

             

           

 

and the weights        , calculated as normalised average energy around each 

harmonic, are given by 

        
 

   (        )           
∑ |    |                    

             

           

 

 

where      is the spectral envelop. Alternatively, the spectral envelop weights can be 

calculated as the maximum of the original and the synthesised spectra as 

           (                )                                                            

The best pitch candidate is chosen as  

         
   

(             )                                                       

6.6.3 Weighted Signal to Noise Ratio Distortion 

The weighted signal–to-noise ratio (WSNR) of the synthesized signal    relative to the 

original signal   is defined as the weighted sum of the segmental SNRs around the 

proposed harmonics as 

               ∑                                                 

  

   

 

where the SNR for the     harmonics is given by 
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                      ( ∑ |    | 

             

           

) ( ∑              

             

           

)⁄  

             

Since        is a relative value of signal to noise ratio at frequency  , it is weighted by 

the estimate of the spectral envelope   as 

                                                                               

where   

        
 

   (        )           
∑ |    | 

             

           

                 

The consequence of weighting with the spectral envelop is that more rewards or penalties 

are given at high spectral envelop energy than at low spectral envelope energy as desired. 

The best pitch candidate is chosen as 

         
   

(              )                                         

Focused segmental SNR 

The segmental SNR between synthesized harmonics and the original signal may be 

calculated at a focused region around the harmonics where the signal energy should be 

high and the expected contrast between a correctly synthesized and an incorrectly 

synthesized harmonic may be well pronounced. The modified SNR may be obtained as 
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                      ( ∑ |    | 

          

             

) ( ∑              

          

              

) ⁄  

       

where             , the choice of   is typically between               

6.6.4  -Best Selection using Viterbi Network Process, 𝑭𝟎 

The  -best pitch estimation is implemented using a selection method that finds the best 

value among N proposed candidates. Alternatively, for future work, the past history of N 

best proposed candidates pitch can be utilised within a Viterbi network.  

6.6.5 N-Best Cost Functions 

 

The Viterbi method finds the best route in  a truncated distortion matrix computed as 

 (   
  )  ∑                                                                     

    

   

 

Where t is the speech frame number. Viterbi network is used to find the best sequence of 

states (N-Best pitch candidates). N-Best algorithm is a time-synchronous Viterbi-style 

pitch estimate procedure that is assured to find the N most likely pitch candidates that are 

within the pitch values prediction [145]. 

6.7 EVALUATION AND PERFORMANCE ANALYSIS 

This section provides an analysis of the distances from the true pitch, of the positions of 

the   top extrema points of the similarity functions, used for pitch extraction, in terms of 

the number of times each of the extrema points is closest to the actual pitch value. The 

similarity criterions considered are the autocorrelation method ACF (2
nd

 order moment), 
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the average magnitude difference function AMDF and the higher order moment methods 

HOMs. 

The  -best candidate pitch estimation method has been applied to the following moment 

criteria; the 2
nd

 to 5
th

 order moments and the average magnitude difference function 

(AMDF). The results were compared with  -best =1, and the YIN Method. 

The speech sampling rate for the evaluation is 8000 Hz and the file speech databases 

format is 16 bits precision .wav. Prior to signal moment analysis, the speech signals are 

band-pass filtered to a range of 40-2000 Hz. The window lengths selected for different 

moments are as follows: 

1) 2
nd

 order (ACF) and AMDF methods, 30 ms ( 240 samples); 

2) 3
rd

 order moment, 37.5 ms (300 samples), and  

3) 4
th

 order and 5
th

 order moments, 62.5 ms (500 samples)  

The window overlap parameter is set to a value of 5 ms (40 samples) for all methods, this 

equates to 200 updates per second of the pitch estimate.  

The similarity criteria, using various moments, were calculated in the range      

       (20 samples) and             (200 samples). The N-best candidates for each 

similarity moment criteria are obtained as the N top peaks of the similarity curve.  

The  -best candidates together with the speech segment are processed to determine 

which pitch candidate can best facilitate the synthesis of the harmonic components of the 

speech signal. 
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The synthesis of harmonic part of the signal is performed in frequency domain. First, the 

time domain signal is transformed to frequency domain via FFT with a frequency 

resolution of 1 Hz.  The next stage is to readjust the nominal values of the harmonic 

frequencies for each candidate       using a local peak search in the range        

where   is typically 10 - 20% of     . 

Subsequently a Gaussian train of harmonic excitation pulses are placed at        . Each 

Gaussian pulse is fitted to the shape of the speech harmonic pulse using the asymmetric 

Gaussian pulse model definition and estimation described in section 6.3. 

For estimation of the envelope of the signal spectrum, the method described in section 6.4 

is used. First the spectral bandwidth (of 4000 Hz) is divided into      segments and in 

each segment the two highest peaks are selected, here a peak is defined as a turning point 

that stands above neighbouring samples for a range of    (typically 20)  samples. Next, 

the most significant spectral peaks, subject to the constraints of the maximum allowable 

magnitude difference and the minimum allowable position (frequency) difference from 

the neighboring peaks, are obtained. This is an iterative peak pruning process. Finally, the 

spectral envelop is interpolated through the spectral peaks. 

The spectral envelop and the harmonic excitation Gaussian pulses are multiplied to obtain 

the synthesized signal spectrum. 

6.7.1 Analysis of the N-best Candidates Compared with True Pitch Value 

This section provides justification for  -best strategy in the form of statistical analysis of 

the number of times each of the N-best candidates is closest to the true pitch value. For 

the purpose of this analysis the  -best are arranged in order of the increasing peak value 
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of the similarity moment criteria and hence the choice of the first candidate represents the 

conventional method of selection of the top peak for the pitch value. 

For the 2
nd

 moment and the 3
rd

 moments criteria of pitch estimation, Figures 6.18 and 

6.19 show the histograms of the errors and the mean squared errors (MSE) for the two 

cases when the pitch values are derived from the position of (a) the top peak of the 

moment curve and (b) the peak of the moment curve that is nearest to the true pitch value 

obtained from laryngograph. As expected case (b), that is the choice of the best peak of 

the curve, provides reduced pitch estimation error and a better distribution of errors in 

that there are less large more noticeable errors.   

 

 
 

Figure 6. 18 - The histograms of the 2
nd

 moment (ACF) pitch estimation error and the 

MSE values: (a) for the pitch estimate at the maximum peak of the 

moment curve, (b) for the pitch estimate at the moment peak that is 

nearest to the true pitch. 
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Figure 6. 19 - Illustration of the histogram of the 3
rd

 order moment pitch estimation 

error and MSE values: (a) for the pitch estimate at the maximum peak of 

the moment curve, (b) for the pitch estimate at the moment peak that is 

nearest to the true pitch. 

 

Figure 6.20 illustrate the percentage of frames of the best peak closest to the true pitch at 

the peak of n=1 to n=7 for ACF and third order moment of similarity criteria.  

Next are the results finding of N-Best pitch estimation using three different distortion 

measures; (i) weighted signal-to-noise, WSNR,  (ii) minimum mean squared error,  

MMSE , and (iii) combination of WSNR, MMSE, and weighted harmonicity distance, 

WHD. The comparison graphs of these three distortion measure are presented in 

Appendix A for further reference. 
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Figure 6. 20 - The % of frames for which the true pitch is closest to the     best peak 

where n=1:7 and the peaks are arranged in descending order. 

i)  Weighted Signal-to-Noise Ratio Distortion Measure 

From Figure 6.21 displays the average of similarity criteria of pitch estimation methods 

using weighted signal-to-noise ratio, WSNR distortion measure.  

The pitch errors decrease consistently with the increasing number of the N-Best 

candidates from N-Best =1 to 7 for the error criteria considered in this thesis. 

For the modified third order moment, the pitch estimation error is reduced by 10% as N-

Best increases from 1 to 7. Likewise, the error for autocorrelation and modified 

autocorrelation methods is reduced by 14% as N-Best increases from 1 to 7.  The AMDF 

is improved by 30% with the increasing number of the N-Best. 
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Figure 6. 21 - The % N-Best overall pitch error with weighted SNR distortion measure.  

 

Figure 6.22 shows the values of the percentage gross pitch errors, with WSNR distortion 

measure using various similarity criteria for pitch estimation. In Figure 6.22, the N-Best 

pitch estimation based on conventional ACF and MHOMs result in a significantly lower 

percentage of population of the gross pitch errors (that are greater than 20%) compared to 

the bench mark YIN method.  The pitch estimation error are reduced about 32% of ACF 

method, likewise 23% from modified 3
rd

 order moment, and almost 64% from AMDF 

method as the N-Best index increases.   
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Figure 6. 22 - The % N-Best gross pitch error with the weighted SNR distortion 

measure as a function of N-Best pitch index.  

 

The population gross pitch error using WSNR distortion measure as in Figure 6.23 shows 

the improvement in conventional and proposed similarity criteria as the N-Best pitch 

index increases.    
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Figure 6. 23 - The % N-Best population gross pitch error with weighted SNR 

distortion measure. 

 

The standard deviation of pitch estimation error as in Figure 6.24 shows the improvement 

in conventional and proposed similarity criteria as the N-Best pitch candidate increases 

from 1 to 7.   

The smallest standard deviation is achieved for the modified third order moment criteria.  
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Figure 6. 24 - The % N-Best standard deviation of pitch error with the weighted SNR 

distortion measure. 
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An alternative fine tuning, is to increase apparent spectral ‘resolution’ by resampling the 

speech spectrum at a high rate and then recalculating the position of the peaks of the first 

  harmonics in a search range that is constrained to lie within say 1.5% of the spectral 

peaks corresponding to pitch estimate and its harmonics. The increase in spectral 

resolution can be obtained by zero-padding speech or by resampling the spectrum around 

the peaks using a linear interpolation method. 

Then harmonic amplitude weightings are employed to combine the refined estimates. 

This method offers further reduction in pitch error as shown in Figure 6.25 and Figure 

6.26. Figure 6.25 shows the reduction in pitch estimation error about 3.5% for ACF and 

in Figure 6.26 shows the improvement of 2.5 % for modified third order moment method. 

 

Figure 6. 25 - The ACF and fine-tuned ACF with weighted SNR as a function of 

N-Best pitch index.  
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Figure 6. 26 - The 3
rd

 moment and fine-tuned 3
rd

 moment with weighted SNR 

distortion measure as a function of N-Best pitch index. 
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Figure 6. 27 - The % overall pitch error with MMSE distortion measure. 
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Figure 6. 28 - The % gross pitch error with MMSE distortion measure as a function of 

pitch index.  
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Figure 6. 29 - The % population gross pitch error with MMSE distortion measure as a 

function of pitch index. 
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Figure 6. 30 - The % standard deviation pitch error with MMSE distortion measure as a 

function index. 

 

6.8 CONCLUSION 

In this chapter, we proposed an analysis-synthesis method for robust and smooth 
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The selection of the best pitch value among the N top candidates is investigated. 

Generally, a similarity criteria yields N candidates taken from the peaks (or minima) of 

the criteria and the selection of the best candidate may be facilitated with such constraints 

as continuity and smoothness of the pitch trajectory curve. A novel approach is proposed 

in which each of the N pitch frequency candidates are used to synthesis the spectrum of 

the harmonic part of the speech. The candidate that achieves the minimum distortion 

synthesis is selected as the best candidate.  

For this approach to work optimally, the synthesis method should be designed such that 

the resulting distortion increases with increasing error in pitch frequency. The spectral 

synthesis method is based on the product of  spectral envelop derived from the speech 

signal and harmonic excitation composed of a series of asymmetric Gaussian pulses 

positioned at adjusted, refined, estimates of the fundamental frequency and its harmonics. 

The choice of the spectral envelope is a critical aspect of the synthesis method. The 

envelope should be such that it passes through the major peaks at the fundamental 

harmonics but it should not pass through the spectral peaks that are in between the 

harmonics. To find an appropriate algorithm for the spectral envelope is a challenging 

nontrivial task, as the conventional spectral envelope extraction methods such as the 

linear prediction or cepstral method are unsuitable choices for a spectral synthesis method 

that ultimately aims to select the best pitch value based on the spectral synthesis 

distortion. 

The synthesis of spectral excitation is also a challenging task. The shape of the excitation 

pulses, in frequency domain, are modelled by asymmetric Gaussian pulses whose 
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variances, on both sides, are derived such that the Gaussian pulse fits the actually pulse 

shape at the proposed harmonic frequency.  

Three distortion measures are experimented  for evaluation of  the  N-best pitch trajectory 

such as the weighted signal-to-noise ratio, WSNR, the weighted  minimum mean squared 

error MMSE, and the combination of the WSNR, weighted MMSE and weighted 

harmonicity distance, WHD.  

The results show the improvement of pitch estimation error for all distortion measures as 

the N-best pitch candidate increases.  
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CONCLUSIONS AND FURTHER WORK 

 

 
The main contributions of this research are three folds: (1) an investigation of the 

variation of the pitch error with increasing window length for various similarity criteria, 

(2) an investigation of the influence of the choice of the similarity criteria on pitch 

estimation accuracy and (3) a novel method of spectral analysis-synthesis for selection of 

the best pitch value among N candidates.  

The issue of window length is a relatively simple and yet somewhat under-explored issue. 

The experimental finding is that the pitch estimation error initially decreases sharply 

when the window length is increased from the conventional choice of 20 ms (standard in 

mobile phones) and then rate of decrease of pitch error levels off until it reaches a 

minimum which is at about 37 - 80 ms depending on the type of similarity criteria used. 

Increasing the window length, beyond the point at which minimum pitch error occurs, 

7 



Chapter 7                                                                                                                                       Conclusion 

 194   

 

results in some increase in error due to the non-stationary characteristics of speech and 

the time varying trajectory of pitch. 

The second issue investigated in this thesis is the impact of the choice of the similarity 

criteria on pitch estimation error. Two distinct contributions were made in this respect; (1)  

exploring the use of the higher order moments methods in reducing pitch estimation error, 

(2) a new method of calculation of moments named modified higher order moments 

wherein the signal is split, rectified, into positive and negative halves, before the moments 

are calculated. Interestingly the modified higher order method for the 2
nd

 order moment 

performs better that the conventional correlation method. 

The third major issue investigated in this thesis is the selection of the best pitch value 

among the N top candidates. Generally, a similarity criteria yields N candidates taken 

from the peaks (or minima) of the criteria and the selection of the best candidate may be 

facilitated with such constraints as continuity and smoothness of the pitch trajectory 

curve. A novel approach is proposed in which each of the N pitch frequency candidates 

are used to synthesis the spectrum of the harmonic part of the speech. The candidate that 

achieves the minimum distortion synthesis is selected as the best candidate.  

For this approach to work optimally, the synthesis method should be designed such that 

the distortion increases with increasing error in pitch frequency. The spectral synthesis 

method is based on the product of the spectral envelop derived from the speech signal and 

harmonic excitation composed of a series of asymmetric Gaussian pulses positioned at 

adjusted, refined, estimates of the fundamental frequency and its harmonics. 
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The choice of the spectral envelope is a critical aspect of the synthesis method. The 

envelope should be such that it passes through the major peaks at the fundamental 

harmonics but it should not pass through the spectral peaks that are in between the 

harmonics. To find an appropriate algorithm for the spectral envelope is a challenging 

nontrivial task, as the conventional spectral envelope extraction methods such as the 

linear prediction or cepstral method are unsuitable choices for a spectral synthesis method 

that ultimately aims to select the best pitch value based on the spectral synthesis 

distortion. 

The iterative method of spectral envelope estimation introduced in this thesis uses a 

number of constraints regarding the pivotal peak points through which the spectral 

envelop pass. These constrains include the total number of  peak points, the number of 

peak points per spectral segment, the length of the spectral segments, the minimum and 

maximum distances of the spectral peaks and their associated frequencies. Ideally the 

envelope should go through the peaks at the fundamental and harmonic points which are 

actually the unknowns. In practice constrains can be chosen such that a trade-off is 

achieved between miss rate (when a spectral peak at a harmonic is missed) and a false 

alarm rate (when a spectral peak in between the harmonics is selected). For the purpose of 

pitch estimation in this thesis, it is less harmful to have a miss-rate than a false-alarm. 

The synthesis of spectral excitation is also a challenging task. The shape of the excitation 

pulses, in frequency domain, is modelled by asymmetric Gaussian pulses whose 

variances, on both sides, are derived such that the Gaussian pulse fits the shape at the 

proposed harmonic frequency of speech. 
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Examination of the shape of speech spectrum at the harmonics shows that the spectrum, 

at the two sides of the peak at harmonic, are asymmetric, i.e. having different slopes and 

bandwidth of rate of decay. This asymmetry of harmonic shape is due to a number of 

reasons including the glottal pulse shape and the influence of resonances and anti-

resonances of the vocal tract. 

In this thesis a novel method has been used to model the harmonic pulse shapes. The 

asymmetric Gaussian pulses are obtained by merging of two halves of Gaussian pulse of 

different variances. The variance of the pulses are derived from the width of the speech 

harmonic at such points where the harmonic spectral amplitude drops to half the peak 

(maximum) value (alternatively other factors such as 0.75 or 0.25 of the maximum may 

be used) 

The choice of distortion measure is important for the selection of the best pitch value, 

among the N-best likely candidates, as the one that facilitates the minimum distortion 

spectral synthesis of the harmonic part of speech. This work explored several weighted 

spectral-segmental distortion measures, a spectral segment consisting of the bandwidth of 

frequencies around a harmonic. The weighted segmental SNR and the weighted 

segmental MSE perform particularly well. The use of harmonicity as a further 

discriminator of distortion was also explored. 

The overall impact of the spectral analysis-synthesis method proposed for N-best 

selection is a marked improvement in error, the error decreases by some 50% or more 

relative to the case when the top peak of the similarity criterion is selected. 
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In conclusion pitch extraction is a challenging problem that has been subject of 40 years 

of research. This thesis has made contribution in systematic investigation of the impact of 

window length, similarity criteria and method of selection of the best pitch among the N 

top candidate. Much more remains to be done however it will be as is the nature of 

research an incremental process towards increasing better pitch extraction systems. 

FURTHER WORK 

The three main issues considered in this thesis can be subject of further research 

investigations. 

On the issue of windowing, one can consider the simultaneous use of several overlapping 

windows of different lengths having different time-frequency resolutions.  The issues of 

the choice of window length, efficient combinations of the pitch estimates from different 

windows and the relationship to wavelet analysis are interesting challenges that may 

arise. 

On the issue of similarity criteria, one can also investigate composite similarity criteria, 

i.e. those that are combinations of several different similarity criteria. We have shown that 

a new method of splitting the signal into positive and negative valued part and combining 

the similarity criteria for each part provides improve results. There is room for a more in-

depth analytical and experimental exploration of such an approach and its variants. 

On the issue of N-best, the spectral analysis-synthesis method and the distortion so 

calculated for each candidate can be a component of a composite cost function that may 

include other costs such as continuity of pitch trajectory within a Viterbi dynamic 

optimization network.    
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Figure A.1 – Comparison % overall pitch error of three distortion measures:  ACF 

with weighted SNR, weighted MMSE, and combination (i.e. SNR + MMSE + 

Harmonicity) as a function of N-Best index. 
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Figure A.2 - Comparison % overall pitch error of three distortion measures:  Modified 

3
rd

 order moment  with weighted SNR, weighted MMSE, and combination (i.e. SNR + 

MMSE + Harmonicity) as a function of N-Best index 

 

 

Figure A.3 - Comparison % weighted gross pitch error of three distortion measures:  

ACF with weighted SNR, weighted MMSE, and combination (i.e. SNR 

+ MMSE + Harmonicity) as a function of N-Best index. 
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Figure A.4 - Comparison % weighted gross pitch error of three distortion measures:  

Modified 3
rd

 order moment  with weighted SNR, weighted MMSE, and 

combination (i.e. SNR + MMSE + Harmonicity) as a function of N-Best 

index 

  

 

Figure A.5 - Comparison % population gross pitch error of three distortion measures:  

ACF with weighted SNR, weighted MMSE, and combination (i.e. SNR + MMSE + 

Harmonicity) as a function of N-Best index 
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Figure A.6 - Comparison % population gross pitch error of three distortion measures:  

ACF with weighted SNR, weighted MMSE, and combination (i.e. SNR 

+ MMSE + Harmonicity) as a function of N-Best index  
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