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Abstract

S
peaker identity plays an important role in human communication. In addi-
tion to the linguistic content, speech utterances contain acoustic information

of the speaker characteristics. This thesis focuses on voice conversion, a technique
that aims at changing the voice of one speaker (a source speaker) into the voice of
another specific speaker (a target speaker) without changing the linguistic infor-
mation. The relationship between the source and target speaker characteristics is
learned from the training data. Voice conversion can be used in various applica-
tions and fields: text-to-speech systems, dubbing, speech-to-speech translation,
games, voice restoration, voice pathology, etc.

Voice conversion offers many challenges: which features to extract from speech,
how to find linguistic correspondences (alignment) between source and target fea-
tures, which machine learning techniques to use for creating a mapping function
between the features of the speakers, and finally, how to make the desired modifi-
cations to the speech waveform. The features can be any parameters that describe
the speech and the speaker identity, e.g. spectral envelope, excitation, fundamen-
tal frequency, and phone durations. The main focus of the thesis is on the design
of suitable mapping techniques between frame-level source and target features,
but also aspects related to parallel data alignment and prosody conversion are
addressed.

The perception of the quality and the success of the identity conversion are
largely subjective. Conventional statistical techniques are able to produce good
similarity between the original and the converted target voices but the quality is
usually degraded. The objective of this thesis is to design conversion techniques
that enable successful identity conversion while maintaining the original speech
quality.

Due to the limited amount of data, statistical techniques are usually utilized
in extracting the mapping function. The most popular technique is based on a
Gaussian mixture model (GMM). However, conventional GMM-based conversion
suffers from many problems that result in degraded speech quality. The problems
are analyzed in this thesis, and a technique that combines GMM-based conversion
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with partial least squares regression is introduced to alleviate these problems. Ad-
ditionally, approaches to solve the time-independent mapping problem associated
with many algorithms are proposed.

The most significant contribution of the thesis is the proposed novel dynamic
kernel partial least squares regression technique that allows creating a non-linear
mapping function and improves temporal correlation. The technique is straight-
forward, efficient and requires very little tuning. It is shown to outperform the
state-of-the-art GMM-based technique using both subjective and objective tests
over a variety of speaker pairs. In addition, quality is further improved when
aperiodicity and binary voicing values are predicted using the same technique.

The vast majority of the existing voice conversion algorithms concern the
transformation of the spectral envelopes. However, prosodic features, such as
fundamental frequency movements and speaking rhythm, also contain important
cues of identity. It is shown in the thesis that pure prosody alone can be used,
to some extent, to recognize speakers that are familiar to the listeners. Further-
more, a prosody conversion technique is proposed that transforms fundamental
frequency contours and durations at syllable level. The technique is shown to im-
prove similarity to the target speaker’s prosody and reduce roboticness compared
to a conventional frame-based conversion technique.

Recently, the trend has shifted from text-dependent to text-independent use
cases meaning that there is no parallel data available. The techniques proposed
in the thesis currently assume parallel data, i.e. that the same texts have been
spoken by both speakers. However, excluding the prosody conversion algorithm,
the proposed techniques require no phonetic information and are applicable for
a small amount of training data. Moreover, many text-independent approaches
are based on extracting a sort of alignment as a pre-processing step. Thus the
techniques proposed in the thesis can be exploited after the alignment process.
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Errata 
 
Page 70:  
Section 7.2, 2nd paragraph, starting with “Speaker-pair specific MCD …" 
 
DKPLS obtained lower MCD for each speaker pair compared to ML-GMM, except for one speaker pair with 
five training sentences. The difference between the techniques with that particular pair, however, was not 
statistically significant. In addition, there were also three other pairs out of 48 pairs that did not obtain 
statistically significant difference when comparing DKPLS to ML-GMM with five training sentences. With 20 
sentences there was one pair that did not obtain statistically significant different MCD as stated. However, when 
comparing DKPLS to GMM-F, the difference between their MCD means was found to be statistically 
significant for each speaker pair. This applied to both training data cases.    
 
P6 Publication 6: Section III-B, last paragraph 

“The processing steps 2-12…” should be “The processing steps 3-12…”.  

P7 Publication 7: Appendix 

In Step 2), the variable c should be capitalized, i.e. there should be C=XYT instead of c=XYT. 

“The processing steps 2-12…” should be “The processing steps 3-12…”.  
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Chapter 1
Introduction

S
peech is the most important communication form between humans. In ev-
eryday life we automatically decode speech into language regardless of who

speaks. In a similar way, we have the ability to recognize different speakers in
spite of the linguistic content of the speech. The physical and physiological prop-
erties of the speech production organs and learned speaking habits affect the
voice individuality of a speaker. Voice individuality helps us to identify the per-
son to whom we are talking without seeing the speaker. A familiar speaker can
be recognized even from a single word like “hello” over the telephone [Kre11].

Separating the speaker identity from the lexical content is easy for humans
but still somewhat difficult for machines. The major increase in computer speed
and storage has offered a new possibility for people to communicate with com-
puters through speech-based human-computer interfaces. Computers are able to
recognize and synthesize speech in order to interact with people that have differ-
ent voice characteristics. In speech recognition, voice individuality is considered
as an obstacle, and speaker normalization and adaptation techniques are used to
compensate the acoustic differences resulting from different voice qualities.

In text-to-speech (TTS) synthesis, a given text is analyzed and “spoken” by
a machine. Nowadays most TTS systems are either based on cutting and pasting
segments of speech from a large recorded database (called unit selection speech
synthesis) [Hun96] or by creating speech from statistical models trained from
speech parameters [Tok02]. In the first case, the TTS voice is restricted to be
the speaker that recorded the database (a so-called master speaker). Recordings
require time, effort, and storing capabilities. Hence, there are usually only a few
alternative voices to select from. With the help of voice conversion (VC), that
is the topic of this thesis, only a small set of recordings of the desired speaker
is needed to make the synthesizer speak with the desired speaker’s voice. For
example text messages or e-mails can be read aloud with the sender’s own voice.

Although the most evident application is a TTS system, it is by no means
the only one. Potential application areas include dubbing, voice restoration,
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language learning, chat rooms, games, and voice pathology. The most extreme
case is cross-lingual VC where the source and target do not speak the same
language [Sün06b, Err10a]. The approach can be used for example in dubbing
with the original actors’ voice or in speech-to-speech translation. Using speech-
to-speech translation systems people who do not speak the same language can
interact with the help of speech recognition, language processing, translation, and
speech synthesis [Gu06]. Instead of using a generic TTS voice, the message can
be spoken by the user’s own voice although he/she cannot speak the language.

Voice conversion has been a topic of interest during the last two decades. In
spite of the research, the commercial usage of the technology has been limited due
to the unsatisfactory speech quality. There is a compromise between the identity
conversion and quality; better identity conversion usually requires more signal
modifications that may cause more distortions. Furthermore, the perception of
the quality and speaker identity are largely subjective. There is no unique correct
conversion result; a person can utter a given sentence in slightly different ways
that are still inherent to the speaker. Due to these reasons, time-consuming
listening tests must be used in the voice conversion system evaluation.

1.1 Overview of Voice Conversion

This thesis defines voice conversion as automatic modification of speech spoken
by one speaker (a source speaker) to give an impression that it was spoken by
another specific speaker (a target speaker). Also multiple source speakers can be
used, but in this thesis, there is only a single source speaker. Voice conversion
should not be confused with a term voice transformation (VT) that refers to
various modifications that are applied to speech signals. Sometimes these terms
are used interchangeably in the literature. The main difference between VC and
VT is that in VC, there is always a specific target speaker that a VC system tries
to mimic. This thesis concentrates on VC.

The conventional VC process consists of two phases: training and conversion.
In training, a mapping model from source features to target features is created
based on training data from both speakers. In the conversion phase, any unknown
utterance from the source speaker can be converted to sound like it was spoken
by the target speaker. This stand-alone voice conversion represents the core idea
of VC regardless of the application and it is depicted in Figure 1.1.

If VC is used in a unit selection TTS system, the initial input is text. The
text is analyzed by the TTS system, the chosen segments (units) from the master
TTS speaker are parameterized and converted to match the target speaker char-
acteristics learned from the training data. The interaction between a VC system
and a TTS system has not been well studied and most studies concentrate on
stand-alone VC.
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Figure 1.1: Stand-alone voice conversion.

Voice conversion systems can be text-dependent or text-independent. Con-
ventional VC systems as shown in Figure 1.1 are usually text-dependent meaning
that they require the same texts (parallel data) to be recorded from both the
source and target speakers, but the linguistic content is not explicitly used. The
parallel sentences can be aligned for example with the help of dynamic time
warping [Rab93].

Nowadays the trend has shifted towards text-independent (non-parallel) voice
conversion. One alternative is to use a TTS system to synthesize the same texts
that the target speaker has spoken [Dux06b, Tot08]. Most techniques proposed to
cope with non-parallel data in a standard VC framework are based on finding pho-
netic or acoustic similarities from the source and the target data. Some of them
exploit techniques commonly used for speech recognition; statistical adaptation
techniques [Mou06] and vocal tract length normalization [Sün03]. Some text-
independent approaches require linguistic knowledge of the data, e.g. phonetic
labels were used in [Tao10]. Alternatively, the data can be automatically divided
into acoustic classes [Sün06a]. The alignment technique proposed in [Err10a] is
an iterative procedure that first aligns the data using nearest neighbor of each
source vector in the target acoustic space, estimates a conversion function, con-
verts source vectors and repeats the nearest neighbor procedure for the converted
source samples, makes the alignment again and so on.

In practice, the performance of a voice conversion system is rather dependent
on the particular source-target speaker pair. The most common problem formu-
lation is to have data from only one source and one target speaker available, as
it is assumed in this thesis. However, there are voice conversion approaches that
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Figure 1.2: Voice conversion in HMM-based speech synthesis is obtained by
adapting an average voice model trained from many “source” speakers.

exploit speech from more than two speakers. Figure 1.2 illustrates the conversion
process in statistical parametric speech synthesis that is most often used as a
synonym for hidden Markov model (HMM) based speech synthesis [Tok02]. The
“conversion” process follows the idea of speaker adaptation used in speech recog-
nition; an average voice model trained from multi-speaker data is adapted with
speech data from the target speaker [Yam09a]. This gives an ability to generate
a large set of voices without considerable effort and restrictions on the training
data [Yam10]. Detailed linguistic content of the training data is usually required,
but the use of a speech recognizer together with a speech synthesis system can
remove this requirement [Yam09b].

Furthermore, the use of eigenvoices [Tod07b, Oht10] is an example of an ap-
proach utilizing speech from many speakers. In the eigenvoice method, originally
developed for speaker adaptation in speech recognition [Kuh00], the parameters
of any speaker are formed as a linear combination of eigenvoices. The main bene-
fit of the eigenvoices is that only a little amount of training data for the target is
required and the linguistic content does not have to be known. As a prerequisite,
the approach requires a large amount of speakers (80 is used in [Tod07b]) with
parallel training data.

A fundamental question is that what speech features should be modified and
how, for obtaining believable identity transformation while maintaining a rea-
sonably good speech quality. The voice individuality is a combination of many
parameters [Kuw95]. The characteristics of a speaker are usually visible at seg-
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mental and suprasegmental level. Segmental level is mainly related to a speaker’s
speech production system anatomy that defines the timbre and the fundamental
frequency (F0) of the voice whereas suprasegmental level refers to intonation and
speaking style. In addition, the choice of words can be considered as a speaker-
specific property.

Speech signal is usually parameterized into excitation and spectral envelope
for enabling modifications and mapping function estimation at the feature level.
Most VC systems modify only segmental properties such as the timbre (the spec-
tral envelope) and the F0 scale at frame level. A disbenefit of many VC mapping
techniques is that they ignore temporal continuity of speech features. Further-
more, some of them require a lot of tuning to find an optimal configuration for
different sizes of training data or do not perform well with small databases.

Techniques proposed for VC have been successfully used in other feature map-
ping approaches, such as emotion conversion [Kaw99b], bandwidth expansion of
narrowband speech [Par00], acoustics-to-articulatory mapping [Tod08], speech
enhancement [Mou07], and body-conducted speech conversion [Tod09].

1.2 Objective and Scope of the Thesis

This thesis concentrates on stand-alone voice conversion as depicted in Figure
1.1. A major challenge is to utilize the limited training data to find an effective
mapping between source and target features. Most mapping approaches are based
on statistical conversion functions. The most popular approach, GMM-based
conversion [Kai98, Sty98, Tod07a], provides a reasonable identity transformation
at the cost of quality. Problems related to GMM-based voice conversion are
addressed and alleviated in this thesis. In addition, a new mapping approach
based on kernel transformed source data is proposed. The thesis specifically
addresses the overfitting problem common in all model fitting tasks and the
temporal continuity of converted speech features that is ignored by many mapping
techniques. The overall objective of the thesis is to propose mapping techniques
that allow good identity conversion but preserve the quality well with a small
amount of training data. Furthermore, the techniques in the journal articles [P6,
P7] are simple to tune and implement. These issues can be considered important
advantages for example in small hand-held devices.

Quality is mainly related to segmental level and most of the research has
been focused on converting the spectral envelope features. The emphasis of the
thesis is on spectral conversion as well, but to make a complete voice conversion
system, also algorithms for converting parameters related to excitation/residual
are proposed. Moreover, an important cue of a speaker identity is prosody, that
is a suprasegmental phenomenon visible at F0 contours or sound durations at
syllable, word, sentence, or even paragraph level. However, conventionally F0 is
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converted at segmental level. This thesis includes a technique for F0 and duration
prediction at syllable level.

In the literature, it is common to use several tens or even hundreds of parallel
sentences that cannot be considered realistic. The fundamental idea of VC is
to have only a small amount of training data available, at least from the target
side. In this thesis, a small amount means 5–30 parallel sentences. Non-parallel
alignment methods are beyond the scope of the thesis, but most of them carry
out alignment as a pre-processing step. The core mapping techniques proposed in
this thesis are applicable also for non-parallel cases after the alignment process.

1.3 Author’s Contributions

The author has carried out the majority of the research in each of the included
publications [P1–P7]. Other authors have mainly contributed in writing except
in [P3] Jan Schwarz organized a listening test and calculated objective alignment
accuracy results without conversion and Hanna Silén provided the codes for dy-
namic time warping. Prof. Joaquín Míguez has proposed a cost optimization
technique using particle filters [Míg12] and the idea of applying the technique to
voice conversion came to my mind when taking his course. This resulted in a
common publication [P5].

To summarize, the most important contributions of the thesis are the follow-
ing:

• Provide investigation on familiar speaker identification on the basis of a
pure prosodic signal [P1] (Section 2.2).

• Provide analysis on how standard alignment technique based on dynamic
time warping succeeds for aligning parallel data and what should be taken
into account [P3] (Section 3.2.2).

• Provide a study to determine whether it would be possible to select real
target speech segments (frames) for generating high quality speech in a unit
selection manner used in TTS systems [P4] (Section 4.1).

• Propose to use a cost function for post-processing of converted speech fea-
ture sequence that is solved using a cost optimization technique based on
particle filtering [P5] (Section 4.7).

• Propose a new prosody prediction technique for F0 [P2] (Section 4.9.2).
The technique has been granted a patent [Hel11].

• Address the problems of GMM-based VC and propose to combine GMM-
based VC with partial least squares (PLS) regression in order to avoid
overfitting [P6] (Chapter 5).

6



• Improve the temporal continuity of GMM-based VC with posterior proba-
bility smoothing [P6] (Chapter 5.4).

• Propose a novel approach for providing non-linear and temporally continu-
ous mapping using dynamic kernel partial least squares (DKPLS) regression
[P7] (Section 6.1).

• Address the importance of cross-validation order when using PLS for tem-
porally correlated data such as speech features [P7] (Section 6.3).

• Propose techniques for aperiodicity and voicing prediction that use DKPLS
and information from other features [P7] (Section 6.4).

1.4 About Notation

The variable n denotes for aligned source and target frame indices, i.e. a training
data pair index. The original previous and next frame of frame n are denoted
by n− and n+, since n–1 and n+1 may not correspond to consecutive frames
of frame n after training data selection. For the conversion phase, sections 4.5.1
and 4.7 employ variable t to denote the temporal frame index within a sentence
and t–1 and t+1 are really the preceding and the next frame of frame t.

The bold-face symbols are used to denote for vectors and matrices. The
original feature vectors for the source and the target in frame n are denoted by
xn and yn, respectively. Generally, the upper case letters denote for matrices but
in this thesis, there are two exceptions; variables Xn and Yn denote for the nth

input and output vector for prediction, respectively. In addition, they are used
in the context of a joint-density GMM model that includes dynamics (Section
4.5.1).

1.5 Organization of the Thesis

This thesis is organized as follows. Chapter 2 briefly introduces speech produc-
tion and parameterization as well as speaker identity perception. An overview of
a voice conversion system and its evaluation is given in Chapter 3. Mapping tech-
niques are devoted to an own chapter, Chapter 4. Chapters 5 and 6 describe two
novel mapping techniques in detail. Chapter 7 gives results on objective spectral
mapping performance for different mapping algorithms proposed or revised in the
thesis. The main conclusions of the thesis are provided in Chapter 8 together
with discussion and future work.
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Chapter 2
Speech Feature Extraction and Speaker

Identity

2.1 Speech Production and Perception

S
peech production is a complex process in which a large number of muscles
take part [Ben08]. The airflow is produced in the lungs and it is passed to

the vocal folds of larynx. When the vocal folds vibrate during articulation, the
resulting sound is voiced, otherwise; the sound is unvoiced. The vibration rate
of vocal folds is referred to as F0 or pitch and it is related to the length and
mass of the vocal folds. The shorter and thinner the vocal folds, the higher is the
pitch. Pitch is actually a perceptual factor whereas F0 is the acoustic correlate
of pitch [Hua01]. In many studies as well in this thesis, these terms are used
interchangeably.

Vocal folds produce a glottal wave that consists of F0 and its harmonics. The
glottal wave travels through the upper respiratory tract, where pharyngeal, oral,
and nasal cavities act as resonators. Different resonances occur depending on the
position and shape of the lips, jaw, tongue, soft palate, and other speech organs.
Harmonics near the resonances become emphasized resulting in formants that
show up as broad peaks in the spectrum. The human speech production organs
are shown in Figure 2.1.

The sounds of a language, i.e. the inventory of phonemes, can be divided
into two classes: vowels and consonants. This classification applies to almost all
languages in the world [Hua01]. Phonemes can be further divided into subgroups
(nasals, fricatives, etc.) based on certain articulatory properties.

An example of a speech segment is shown in Figure 2.2a. The sampling rate of
the signal is 16 kHz and according to the Nyquist theorem, the highest frequency
that the signal can contain is 8 kHz. The segment is taken from the word “cash”
(/k//ae//sh/ ). The waveform consists of two phonemes, a vowel /ae/ and an
unvoiced consonant /sh/. The pitch period of the vowel /ae/ is about 7.4 ms
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Figure 2.1: The human speech production organs [Wik11].

corresponding to an F0 of 136 Hz. For the unvoiced consonant, no pitch period
is observable.

Figure 2.2b shows a spectrogram, a long-term time-varying spectral represen-
tation of the speech signal. The darker a band is, the more energy the signal
contains at a given frequency. The energy of the voiced sound is concentrated on
lower frequencies and it is unevenly distributed because of the formants. During
the unvoiced sound /sh/, the energy is distributed evenly over higher frequencies.

The ears and the brain are the major components of the speech perception
system. The acoustic signal is transformed into a mechanical vibration pattern
on the basilar membrane in the ear and then passed to the brain where various
types of information is extracted. The cochlea of the inner ear acts as a spectrum
analyzer. A lot of research has been devoted to derive frequency scales that follow
the human perception. Two well-known scales are Bark scale and Mel scale. The
Mel scale is approximately linear below 1 kHz and logarithmic above. The Mel
scale is widely used for speech feature extraction in many applications.

2.2 Speaker Identity Perception

The success of voice conversion depends on how subjects perceive the quality
and the speaker identity in the converted sample. The correspondence between
acoustic correlates of speaker individuality and the human perception is not fully
understood [Lav01], but this understanding would be relevant and beneficial for
various fields of speech technology, especially for voice conversion.
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Figure 2.2: An example of (a) speech waveform of a vowel /ae/, and an unvoiced
consonant /sh/ and (b) the corresponding spectrogram representation (approxi-
mate phone boundary is indicated with a vertical line).

Every speaker has a unique vocal anatomy and hence unique vocalizations are
produced by different speakers. The effect of vocal tract is clearly visible in voiced
sounds meaning that they contain more speaker-specific information. In partic-
ular, vowels and nasals are more effective than other sounds for both perceptual
speaker identification [Ami07] and automatic speaker recognition [Eat94].

The first and the second formant are mainly related to the phoneme identity
whereas the third and the fourth formant are related to the speaker [Kuw95].
In addition to the third and the fourth formant, the most important acoustic
features related to speaker identity include F0 and the closing phase of the glottal
wave [Lav01]. Formant center frequencies affect more than F0 and a 5% shift in
center formant frequencies destroys the speaker identity [Kuw95]. Shifting higher
formants is more destructive, but its effect varies between different speakers.
Speaker individualities appear mostly in the spectral envelopes of vowels in the
region of 1700–2500 Hz [Kit07].

Prosody is also an important aspect of voice individuality. Indeed, it has
been observed that imitators are not able to fool automatic speaker recognition
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systems but may fool people [Zet04]. This results from the fact that speaker
recognition systems use mainly segmental information and not prosodic informa-
tion as humans do. In [P1] the importance of prosody was investigated in the
case of familiar speakers. A listener was asked to recognize a speaker he/she
knows on the basis of a very coarse signal expressing the speaker’s prosody. The
coarse signal form was originally proposed for prosody evaluation in TTS systems
[Son98]. During voiced sections, the stripped signal consists of a single sinusoid
whose frequency and amplitude follow the F0 and energy contour, respectively.
Unvoiced and silent regions are represented as silence.

The recognition decision was made from a group of two or three speakers that
had their average F0 level close to each other [P1]. It was concluded that it is
possible to identify familiar people on the basis of pure prosody. This indicates
that prosody conversion is likely to be important when the target speaker is
familiar to the listeners. The recognition rate of familiar speakers was slightly
improved if the texts of the sinewave signals were provided [P1].

It can be summarized that vocal tract information (e.g. formants) is more
important than the glottal wave information for identification, but the specific
parameter importance varies from speaker to speaker and from listener to lis-
tener [Lav01]. Nevertheless, it is apparent that listeners exploit all sources of
information, such as pitch, loudness, voice quality and their variation over time.

2.3 Speech Signal Representations

The production of speech involves a time-varying vocal tract system with time-
varying glottal source. The speech signal is thus non-stationary, but many signal
processing algorithms presume stationary signals. Speech signals are assumed to
be stationary enough in blocks of 10–30 ms.

Short-time Fourier analysis is a basic tool for analyzing speech. Speech signal
is decomposed into a series of short overlapping segments (frames), meaning
that all samples within e.g. 20 ms window are gathered together at say 5–10
ms steps and a discrete Fourier transform (DFT) for each frame is calculated.
An example of a DFT magnitude spectrum extracted from a vowel is shown in
Figure 2.3 with dashed line. The spectrum is affected by the speaker’s F0 and
the formant structure. Using a source-filter model, the effect of F0 and vocal
tract (formants) can be separated. The source or excitation represents the air
flow at the vocal folds and the filter represents the resonances of the vocal tract.
Usually speech recognizers can ignore the excitation since phoneme information
is mainly included in the filter. However, for VC, there is a need to modify both
the excitation (pitch) and the filter (timbre).

Although formants as such carry a lot of speaker-specific information and
have been used as VC features in some studies e.g. [Nar95, Ren04], their estima-
tion and modification is difficult. Representations obtained by straightforward
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mathematical rules are more popular. This section introduces commonly used
representations for speech signals.

2.3.1 Linear Prediction and Line Spectral Frequencies

Linear prediction (LP) is one of the most important speech analysis techniques.
In LP, an all-pole filter from a short-time speech segment is estimated. The
current sample sn is predicted as a linear combination of its past p samples

ŝn =

p
∑

k=1

aksn−k (2.1)

where ak is the kth coefficient of the all-pole filter A(z). The coefficients of the
LP filter can be estimated in various ways, for example using the autocorrelation
method with Levinson-Durbin recursion [Hua01].

Linear prediction coefficients (LPCs) can be further transformed into line
spectral frequencies (LSFs) and a fully reversible conversion back to LPCs is
retained. LSFs, also called as line spectral pairs, are obtained by computing the
roots of two polynomials, P (z) and Q(z), that are defined as

P (z) = A(z) + z−(p+1)A(z−1) (2.2)

Q(z) = A(z) − z−(p+1)A(z−1) (2.3)

Figure 2.3 shows an example of a short-time Fourier spectrum of a Hanning-
windowed speech segment. The resulting 18th order LP spectrum and the corre-
sponding LSFs are also shown in Figure 2.3.

LSFs offer a robust representation for quantization and modification purposes.
They have a close relationship to formants; if two or more LSFs are close to each
other, this indicates a formant. Due to these properties, LSFs have been popular
features for VC [Ars99, Nur06, Tur06, Err10b, Tao10] [P2, P3].

2.3.2 Cepstral Features

Another way to separate the source from the filter is via cepstrum. A (power)
cepstrum is the result of taking the inverse Fourier transform of the log-magnitude
Fourier spectrum. The Mel-frequency cepstrum coefficients (MFCCs) [Dav80] are
widely used features in speech and speaker recognition. They parameterize the
rough shape of the spectral envelope in a perceptually meaningful way. For each
short-time frame, the power spectrum is calculated with DFT and the linear
frequency scale is substituted with the Mel scale

fmel = 2595 log10(1 + f/700) (2.4)
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Figure 2.3: Spectrum of a speech segment (dashed line) and the resulting 18th

order LP spectrum (solid line) with corresponding line spectral frequencies (circles
at the bottom of x-axis).

where f is the frequency in linear scale. The scale conversion is implemented
using a bank of triangular filters uniformly distributed on the Mel scale. MFCCs
are obtained by applying a discrete cosine transform (DCT) to the logarithmic
filterbank energies as

cMFCC
d =

K−1
∑

k=0

Sk cos

(

πd(k − 0.5)

K

)

(2.5)

where Sk is the logarithmic energy output of the kth filter, K is the number
of filters and cMFCC

d denotes for the dth MFCC. For sampling rate of 16 kHz,
usually 24 filters are used. DCT provides decorrelation of the features and the
energy is usually concentrated on the first coefficients. For speech recognition, it
is common to retain only the first coefficients (for example 13 out of 24).

2.3.3 Generalized Mel-Cepstral Analysis Method

Standard LPCs give information of the formants (peaks) but not the valleys
(spectral zeros) in the spectrum whereas cepstral processing weights peaks and
valleys equally. The generalized Mel-cepstral analysis method [Tok94] unifies
both of them and gives flexibility to balance between them. The procedure is
controlled by two parameters, α and γ. The parameter γ balances between the
cepstral (γ=0) and linear prediction representation (γ=–1) whereas the parame-
ter α controls the frequency resolution of the spectrum (α=0 for linear scale and
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α=0.42 for approximating the Mel scale for sampling frequency of 16 kHz). The
procedure results in Mel-generalized cepstral coefficients (MGCs). To obtain the
cepstral coefficients, a cost function based on unbiased estimation of log spectrum
[Tok95] is applied. In the SPTK toolkit [SPT], the Newton-Raphson method is
used to minimize the cost function.

Mel-cepstral coefficients (MCCs) (γ=0) are a special case of MGCs and they
have been popular in VC [Tod07a, Tot08, Des10] [P5, P6, P7]. The spectrum is
modeled using the Dth order MCCs cd, d = 0, 1, . . . , D, as

H(z) = exp
D

∑

d=0

cdz̃
−d (2.6)

where z̃−1 is defined by a first order all-pass function

z̃−1 =
z−1 − α

1 − αz−1
(2.7)

and α is 0.42 for sampling frequency of 16 kHz.
Figure 2.4 shows a speech spectrum obtained from the STRAIGHT anal-

ysis/synthesis system [Kaw99a] (Section 3.1) for a speech segment sampled at
16 kHz. Three types of 24th order MGCs ({γ=0, α=0}, {γ=0, α=0.42}, and
{γ=–0.5, α=0.42}) were extracted from the spectrum. The corresponding three
spectra are shown in Figure 2.4. When α is set to 0.42 (non-linear scaling) the
modeling at low frequencies is more accurate than at higher frequencies whereas
linear scaling gives equal weight for all frequencies. In the case of γ=–0.5, the
analysis algorithm gives more weight to peaks than the valleys.

2.4 Summary

Speech production and perception are complex processes. The interaction of the
brain with vocal tract and auditory system is not fully understood. Different vocal
tract anatomies and learned speaking habits make each person’s voice unique.
Learned speaking habits affect prosodic characteristics and to an extent, prosody
can alone be used to identify a familiar speaker [P1].

Acoustic descriptors of speech include for example resonances of the vocal
tract (formants) and vibration rate of the vocal cords (F0). To separate the
effect of F0 from the vocal tract (spectral envelope), linear prediction or cepstral
techniques can be used. Frequency axis can be transformed into a perceptually
motivated scale, such as Mel scale. Mel-generalized analysis method combines
linear prediction and cepstral processing in a unified manner.
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Chapter 3
Voice Conversion System

T
he voice conversion process consists of two parts: training and conversion. A
general block diagram of the training phase is shown in Figure 3.1. The sys-

tem is given speech databases from both source and target speaker. In this thesis,
the speech databases contain utterances with the same lexical content (a parallel
corpus). An analysis/synthesis (A/S) system, e.g. LPC codec, STRAIGHT, or
codec based on harmonic-plus-noise model, is used to analyze the speech wave-
forms and provide frame-level estimates of parameters related to the used speech
model. Usually the parameters include F0, spectral envelope, and excitation in
some form. Spectral envelope is typically parameterized for example into LSFs
or MCCs explained in Section 2.3. A/S frameworks are described in Section 3.1.

The utterances of two speakers are aligned at frame level in order to obtain
correspondence between different speech sounds. In the case of parallel data, this
is accomplished for example by dynamic time warping. The alignment process is
described in Section 3.2. Using the aligned source and target features, a mapping
function between the spectral, excitation, or F0 features is estimated. A variety
of techniques exists for obtaining the mapping function. They are not discussed
in this chapter but are devoted to an own chapter, Chapter 4.

In the conversion phase depicted in Figure 3.2, any unknown utterance from
the source speaker can be transformed to sound like the target speaker. The
utterance is analyzed and parameterized with the same A/S framework as in
training and the conversion function obtained in the training phase is applied to
the features. An inverse parameterization of the converted features is conducted.
A time-domain waveform is generated from a set of converted parameters using
the A/S framework.

The success of any new technology depends on the user’s opinion on the per-
ceived quality. The VC quality comprises two factors: the overall sound quality
and the success of identity conversion. No standards exist for VC system evalua-
tion. Most of the system evaluation strategies are borrowed from speech coding.
Chapter 3.3 describes evaluation methodologies.
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3.1 Analysis/Synthesis Framework

An essential part for successful VC is a high-quality A/S framework. The spectral
envelope, F0, and segmental durations should be easily modifiable. The frame-
works reviewed in this section (LP-based codec, STRAIGHT, and harmonic-plus-
noise model based codec) allow both spectral and prosodic modifications.

In LP-based codecs, the spectral envelope is represented with an all-pole filter.
The simplest LPC codec, called LPC vocoder, models the excitation to consist
of white noise for unvoiced segments or a sequence of impulses spaced at pitch
period for voiced segments. If the codec decides that the current frame is voiced,
an estimate of F0 is needed. In synthesis, the excitation is passed through a
time-varying all-pole filter.

The correct voiced-unvoiced estimation is essential for high-quality speech
modification. If a voiced segment is declared as unvoiced, the synthesized sound
is rough and less intelligible. On the other hand, classifying unvoiced segment
as voiced results in metallic sounding speech. However, this two-category hard
decision model is too simple, since for example voiced fricatives such as /z/
contain both periodic and non-periodic components. A mixed excitation is a
weighted sum of both an impulse train and noise. In speech coding, a mixed
excitation can be obtained by filtering the speech signal into frequency bands (e.g.
0–1 kHz, 1–2 kHz, 2–4 kHz, 4–6 kHz, and 6–8 kHz) and estimating the average
voicing strength in these bands [Kon04]. Voicing strength can be estimated using
the normalized correlation coefficients around the pitch period.

A simplified alternative is to exploit the idea of split-band linear predictive
coding [Atk97], where the excitation signal is divided into two parts separated
by a marker; the lower part of the spectrum is declared voiced and the upper
part unvoiced. This results in a form of mixed excitation. Nurminen et al.
[Nur06] modeled the residual in a more sophisticated way. They assumed that
the excitation signal is as a sum of sine waves with frequency of F0 harmonics for
voiced frames and a fixed value for unvoiced frames. Sinusoids evolve randomly or
linearly in time corresponding to unvoiced parts and voiced parts of the residual
spectrum, respectively. The model and the corresponding A/S system described
in [Nur06] was used in [P2, P3].

Instead of using sinusoidal modeling only for the residual, the original speech
segment can be decomposed as a sum of sinusoids that are characterized with
frequency, amplitude and phase. A special case of sinusoidal representation is
harmonic modeling where frequencies of the sinusoids are multiples of F0. A
harmonic plus noise model (HNM) [Sty05] is an example of a sinusoidal model.
HNM-based codecs have been a popular VC framework [Sty98, Shu06, Err10b].
In HNM, speech is decomposed into periodic (harmonic) and non-periodic (noise)
components. A variety of techniques exist for extracting the parameters of the
harmonic part. The noise component was extracted by subtracting the harmonic
part from the original speech in the time-domain [Sty05].
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Figure 3.3: STRAIGHT aperiodicity map (solid line) and the corresponding band
averages (0–1 kHz, 1–2 kHz, 2–4 kHz, 4–6 kHz, and 6–8 kHz).

The amplitudes and phases of the harmonics are not suitable as such for
feature conversion, since their dimensionality varies according to F0. Harmonic
amplitudes and frequencies were parameterized into LSFs in [Err10b, Sty98].

STRAIGHT [Kaw99a] is a high-quality A/S system that has been a popular
framework for VC [Che03, Oht06, Tod07a, Des10] [P5, P6, P7]. A speech wave-
form is decomposed into F0 contour and a spectrum with carefully tuned algo-
rithms. The estimation of the spectrum is done pitch-adaptively and the success
of the F0 extraction affects the estimation process. An example of STRAIGHT
spectrum was given in Section 2.3.3 (Figure 2.4).

A mixed excitation can be used for STRAIGHT [Kaw06]. To generate signals
with a mixed excitation, an aperiodicity index for each spectrum component
is estimated. It is computed as a ratio of lower and higher spectral envelopes
connecting all the valley points and all the peaks of the spectrum, respectively.
The index ranges from –60 dB to 0 dB, –60 dB referring to a totally voiced and 0
dB to a totally unvoiced segment. An example of STRAIGHT aperiodicity map
is shown in Figure 3.3 with 5-band average parameterization.

Table 3.1 gives an overview of the information provided by STRAIGHT and
the parameterization that is used in [P5, P6, P7], with [P5, P7] or without [P6]
the aperiodicity map. The parameters are updated at 5 ms steps.

In speech coding, a perceptual weighting filter [Hua01, Koi95] is used to shape
the noise spectrum in order to hide it under the speech signal. The postfiltering
procedure helps in emphasizing the formants and it can also be applied to con-
verted speech features, that tend to become oversmoothed. Postfiltering is used
in the sample generation for the listening tests in [P2, P3, P5, P6, P7].
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Table 3.1: The common parameterization used for STRAIGHT features. The
number of elements is shown in parenthesis for each feature in a frame.

STRAIGHT Parameterization
Spectrum (513) 24th order MCCs (25)

F0 (1) Logarithmic F0 (1)
Aperiodicity map (513) Band averages (5)

The correct estimation of the pitch plays a major role in A/S systems. A
variety of techniques exist for pitch estimation. The main principle of time-
domain algorithms is to find the pitch period by comparing the similarity be-
tween the original signal and its shifted version in the region of interest [Hua01].
Frequency-domain methods, such as harmonic peak detection and spectrum simi-
larity methods, operate directly on the speech spectrum and are computationally
more complex. The combination of time- and frequency-domain algorithms (e.g.
[McA90]) has become popular due to the growing interest in sinusoidal speech
coders.

In practice, A/S systems contain a lot of heuristics for pitch and voicing
estimation. Problems in the estimation degrade the re-synthesis quality. The
performance is rather dependent on the conditions. For example STRAIGHT
[Kaw99a] gives excellent results on clean speech and modal voices but may fail
with creaky non-modal voices [Sil09]. Codecs designed for speech coding pur-
poses, on the other hand, need to operate also on noisy conditions, but may not
offer high quality.

3.2 Parallel Corpus Alignment

The same speech utterance produced by two speakers is rarely realized at the same
speaking rate. The utterances must thus be aligned in time in order to preserve
linguistic correspondence. The simplest way for obtaining the alignment is linear
normalization [Rab93]. It is based on the assumption that speaking rate variation
is proportional to the duration of the utterance and independent of individual
sounds. Linear normalization performs reasonably well for mono-syllabic words
but not for poly-syllabic words [Whi76]. Thus satisfactory results can not be
expected when aligning utterances that consist of multiple words.

The most popular approach for aligning two sentences at the frame-level is
dynamic time warping (DTW). DTW is discussed in more detail in the following
subsections. Other alternatives for parallel data include for example HMM-based
alignments [Err10b] or sentence HMMs [Ars99]. If phoneme boundaries are avail-
able from manual alignment or speech recognizer, these can be used as anchor
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Figure 3.4: Overview of the training data alignment and selection procedure.

points for the alignment algorithm. In Chapter 1, also some non-parallel data
alignment methods were referred but they are beyond the scope of the thesis.

As a result of the alignment, each source frame is ideally matched with exactly
one target frame. With DTW, multiple source frames may become matched with
a certain target frame or vice versa, but the best pair can be selected based on
e.g. the minimum distance.

An example of alignment and training data gathering is shown in Figure 3.4.
The figure also illustrates the notation; index n denotes the selected training data
and the indices of the previous and the next frame of n are denoted by n

−
and

n+, respectively. In Figure 3.4, the fifth frame of the source is not included in
the training data, since it was matched with the same target frame as the fourth
source frame.

3.2.1 Dynamic Time Warping

The idea of DTW is to obtain an optimal alignment between two sequences in
terms of a distance function. DTW is a dynamic programming algorithm for time-
aligning two feature sequences X = {x1,x2, . . . ,xTx

} and Y = {y1,y2, . . . ,yTy
}.

Before conducting the alignment, a distance matrix between source and target
features is calculated. A common choice is to use Euclidean distance as a distance
measure and MFCCs as alignment features as was done in [P3]. MFCCs can be
augmented with their first-order dynamics (deltas). The alignment features can
be different from the features used in the conversion. In this thesis MCCs are
used as spectral conversion features. They perform similarly to MFCCs and were
used as alignment features in [P6, P7].

Some restrictions and constraints on the warping function are necessary in
order to provide a meaningful comparison between two speech feature sequences:
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Figure 3.5: Example of a distance matrix and alignment given by DTW (red line)
and linear interpolation (green line).

endpoint constraints, monotonicity constrains, local and global continuity con-
straints, and slope weighting [Rab93].

For local constraint of type I, the following is evaluated at each point of a grid

ϕ(i, j) = d(xi,yj) + min(ζϕ(i − 1, j − 1), ϕ(i, j − 1), ϕ(i − 1, j)) (3.1)

where ϕ(i, j) is the cumulative distance of point (i,j), d(xi,yj) is the distance at
the current point, and ζ is a positive slope weighting factor. The total cost of
the optimal alignment is returned by ϕ(Tx, Ty) and the optimal alignment can be
obtained by path backtracking.

A classic DTW operates on an equally weighted case (ζ=1 in (3.1)). This
makes the path bias towards the diagonal, since the cost of one cell corresponds
to the cost of two cells (a horizontal and a vertical step) [Mül07]. In speech
recognition, ζ is typically set to 2 [Rab93] that gives equal emphasis on performing
one diagonal step or combining a horizontal and a vertical step. However, in this
thesis ζ is set to

√
2 in order to give a slightly more weight on diagonal transitions.

An example of alignment given by DTW (ζ=
√

2 in (3.1)) and alignment ob-
tained by linear normalization are shown in Figure 3.5 together with the distance
matrix. The silent segments at the beginning and at the end were removed before
obtaining the alignments. The distance matrix was calculated from MCCs that
give similar results to MFCCs.

It is somewhat paradoxical that in VC, one attempts to capture the differ-
ences between the source and the target speaker characteristics but the alignment
process is guided by global minimization of the differences between the source
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and the target features [P3]. One alternative to compensate the differences be-
tween different speakers was proposed in [P6]: first the alignment was carried out
using the original features and a conversion function was estimated using PLS re-
gression (Section 5.2) between the aligned features for the sentence. The source
features of the sentence were then converted to mimic the target. The align-
ment process was repeated for aligning target features with the converted source
features. A computationally more complex approach was employed in [Sty98].
Instead of applying a simplified mapping function calculated for each sentence,
alignments from all sentences were used to estimate a similar mapping function
as for the final conversion phase. The process was repeated until no changes in
the alignments occurred.

3.2.2 The Effect of Alignment

Both the training and objective evaluation of a conventional VC system rely on
parallel data. However, the effect of alignment on voice conversion performance
has not been addressed before [P3].

In [P3], three main alignment cases were compared: alignment with man-
ual labels, alignment given by DTW, and linear normalization based alignment.
In the first case, the alignment was made based on manually labeled phoneme
boundaries. The boundaries were used as anchor points and it was assumed that
the “correct” alignment goes through these labels.

In objective alignment evaluation, several DTW configurations were tested
related to forcing the endpoints, different local constrains, data removal and
the use of simple voice activity detection (VAD) [P3]. The objective alignment
accuracy was measured by comparing the starting time of each phoneme given
by a certain alignment scheme to the corresponding starting time given by the
manual labels. The misalignment times were averaged over all phonemes and
speaker pairs. In addition, the percentage of misalignments greater than 20 ms,
50 ms, and 100 ms were calculated in [P3].

A VC system was built based on alignments given by multiple alignment
schemes and spectral distortion values were calculated. In a listening test, a VC
system based on alignments given by DTW was compared to a voice conversion
system based on alignments given by the manually annotated labels and align-
ments provided by linear interpolation. The DTW configuration in the listening
test exploited simple VAD, forced endpoints and data removal as suggested by
the objective results. In data removal, unvoiced-voiced pairs were discarded as
well as pairs where at least one of the frames was assumed to be silent.

The conclusions according to the alignment are summarized as follows:

• As expected, the converted speech quality was degraded if linear interpola-
tion was used. This applied both to the subjective quality and the objective
measures.
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• DTW endpoint constraints are beneficial in most of the cases whereas the
use of a specific global or local constraint is not important.

• When using endpoint constraints, the presence of the silence segments at
the beginning and at the end of utterances (endpoints) must be taken into
account. Either both speakers should have a small amount of silence at
endpoints or the silences should be removed using simple VAD techniques.

• DTW provides a globally optimal solution and thus non-optimal local pairs
can occur. Removing for example pairs that include silence is likely to
improve the effectiveness of a conversion function.

• The use of DTW instead of manual labels did not degrade subjective quality
and the spectral distortion was degraded only about 0.05 dB.

3.3 Evaluation Methods

“Speech quality is a complex psychoacoustic outcome of the human perception
process” [Ben08]. The quality of a speech signal is necessarily a subjective mea-
sure. The most straightforward way of measuring the quality is to have a group
of people listening to a speech sample and rating its quality. This is costly and
time consuming, and therefore objective measures have been developed. However,
subjective tests should always be used when determining the final quality.

There are several difficulties related to objective quality evaluation in VC.
First of all, for the testing data, the objective results are typically based on the
alignment which is not perfect. Furthermore, numbers may not express the true
information on the overall sound quality. The errors are usually calculated on
frame-by-frame basis which does not take the temporal continuity into account.
In some cases, e.g. crosslingual VC, there is no parallel data available for testing.

In addition to quality evaluation, the success of speaker identity transforma-
tion must be assessed. There are no well-established tests for evaluating the
success of identity conversion. In this section, the commonly used objective qual-
ity measures and subjective evaluation tests are revised and discussed.

3.3.1 Objective Performance Measures

The performance is objectively measured by comparing the converted speech
features to the original target features, if available. The error criterion should
follow the human perception.

In speech coding, the success of the coding process is related to spectral
distortion measure. The spectral distortion measure for LSFs and MCCs, the
most widely used features for representing the spectrum in VC, are given below.
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The spectral distortion (SD) between two LP spectra S1 and S2 is defined as

SD =

√

1

fu − fl

∫ fu

fl

[10 log10(S1(e
j2πf

fs )) − 10 log10(S2(e
j2πf

fs ))]2 df (3.2)

where fl and fu denote the lower and upper frequency limits and fs is the sam-
pling frequency. Equation (3.2) is mainly used for narrowband speech, say for a
frequency range 125–3100 Hz [Kon04]. In practice the integral (3.2) is approxi-
mated by sampling the power spectrum with N points. Spectral distortion was
used as a performance measure in [P3, P4].

Although the power spectrum is approximated by sampling, the computa-
tional complexity is still rather high. A lower computational complexity can be
achieved by basic MSE techniques that are modified to take the perceptual ef-
fects into account. A weighted MSE between the original LSF vector f lsf and the
converted LSF vector f̂ lsf is given by

d(f lsf, f̂ lsf) =

p
∑

i=1

wi(f
lsf
i − f̂ lsf

i )2 (3.3)

where wi is the weighting factor for ith LSF. Different weighting schemes for
narrow-band speech have been proposed, e.g. [Pal93]. More weight is put on the
first LSFs, and LSFs that are close to each other indicating a formant.

The Mel-cepstral distortion (MCD) between the converted target and the
original target is calculated as [Tod07a]

sdmel[dB] =
10

ln 10

√

√

√

√2
D

∑

d=1

(cd − ĉd)2 (3.4)

where cd and ĉd are the dth MCC of the original and converted target, respectively,
and D is the order of MCCs. The first (0th) MCC term is not included in (3.4),
since it describes the energy of the frame and is usually copied from the source.
The MCD is a widely used perceptual objective error criterion in many statistical
speech synthesis and voice conversion studies. It was used to assess the spectral
conversion performance in [P5, P6, P7].

Usually an averaged spectral distortion value is given, i.e. the results are
averaged over all converted frames. However, the human hear is sensitive to
occasional large abrupt changes. In speech coding, the quality criterion also
defines what kind of outliers and how many of them are accepted. In [Pal93],
the following criteria were used to define transparency: 1) the average SD is less
than 1 dB, 2) there are no outlier frames having SD above 4 dB, and 3) less than
2% of frames have SD in the range from 2 to 4 dB. In [P4], these quality criteria
were used to examine the upper limit for the use of real target data frames.
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3.3.2 Identity Evaluation Using a Speaker Recognition

System

A speaker identification system can be used to objectively assess the success of
the identity transformation. If the target speaker is identified correctly, the con-
version is considered successful. The benefit is that no parallel data is required.

A simple speaker identification system can be built as described in [Rey95].
A GMM is trained for both the source and the target speaker. A converted
utterance is recognized to be spoken by the speaker whose model produces the
highest cumulative likelihood for the utterance. On the other hand, the binary
recognition result does not imply that the converted sentence would be close to
the target, it only tells that it was closer to the target than the source. A more
interesting case is to have models from a variety of male and female speakers
available among which the selection is made. In [Far10] the selection was made
among four speakers. In [Mou06] and [P7], twelve speakers were used.

In addition to a binary recognition result, a continuous objective measure is
defined [Ars99]

θst = log
p(ŷ|λtgt)

p(ŷ|λsrc) (3.5)

where λtgt and λsrc are the GMMs for the target and the source speaker, respec-
tively and ŷ is the converted target. A high value of θst indicates a good system
whereas a negative value indicates that the conversion result is closer to the
source. The measure was used in [P7]. It can be noted that Equation (3.5) is a
log-likelihood ratio that derives from the Bayes classifier. Assuming perfect esti-
mation of the class densities, equal class priors and symmetrical misclassification
costs, the value θ=0 gives the Bayes optimal threshold for binary classification.
The log-likelihood ratio is used in most speaker verification systems, e.g. [Rey00].

3.3.3 Subjective Evaluation

A number of rating procedures exists for assessing the speech quality in a listening
test. They can be divided into absolute category rating (ACR), comparison
category rating (CCR), and degradation category rating tests [Ben08]. The first
two are used in VC evaluations. The results are presented as a mean score
or an average number of votes obtained by each system. Furthermore, 95%
confidence intervals on the mean are often given to allow assessment of whether
the differences between different systems are significant.

A mean opinion score test (MOS) used in [P7] is an ACR test. It is the most
common procedure for quality testing in telecommunications. Listeners rate a
sample using a five-level scale (1=Bad, 2=Poor, 3=Fair, 4=Good, 5=Excellent).
The average of all scores obtained by a particular system is the system’s MOS.
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In addition to quality, the success of identity conversion is evaluated. Identity
can be assessed for example using a five-level scale from 1 denoting for definitely
different to 5 denoting for definitely identical [Err10b]. The listeners must initially
hear some examples from the target speaker.

In speech coding, a codec receiving a MOS of 3.5–4.0 is interpreted natural
and adequate for telecommunications and a MOS over 4 is near transparent. This
kind of interpretation cannot be used in evaluating a TTS system [Hua01] nor a
VC system. Moreover, comparing the results from different MOS tests is difficult.
Hence, the comparison of MOS obtained by different methods in different studies
is not meaningful. On the other hand, the MOS test is suitable for ranking
different TTS systems [Hua01] and presumably also different VC systems.

A drawback of a MOS test is that the difference between systems may be
small. An alternative is to use a CCR test. In its simplest form, a listener is asked
to choose a preference between two samples generated by two different systems.
This test procedure was used in [P5, P6]. Also there can be an alternative that
the samples are equal as it was used in [P2, P3]. An extended version is to judge
the quality of the second sample relative to the first sample in seven categories
(3=Much better, 2=Better, 1=Slightly better, 0=About the same, –1=Slightly
worse, –2=Worse, –3=Much worse).

In an ABX test, a listener hears three samples, A, B, and X. The listener is
asked to choose which one of the samples, A or B, is closer to X. This kind of test
can be used to assess the identity as it was done in [P7]. A and B include samples
from the original source and target speakers and X is the converted sample. If
X is closer to the target speaker, the system is successful. The sentence in X
can be the same as in A and B, but different prosodies may affect the result.
In most inter-gender transformations, the desired result is easy to obtain. In
intra-gender transformation, on the other hand, listeners may have difficulties
even without any modifications: the recognition rate was about 70% when X
contained an original sample of a different sentence from either the source or the
target [Tod07a].

3.3.4 Evaluating Prosody Conversion

The evaluation of prosody conversion is difficult. Some studies such as [Lol08]
use only objective error criteria. However, objective measures such as RMSE
of the converted F0 compared to the original target F0 can be misleading, since
there is not only one type of acceptable prosody. The same person can utter
the same sentence at different prosody at different times. The aim of prosody
conversion could rather be to generate “believable” prosody for the target speaker
[P2]. Thus, a listening test should always be used in final prosody conversion
evaluation. The subjects can be asked to choose the one of two sample files that
mimicked a certain speaker’s prosody the best [P2].
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Prosody is likely to play a more important role when the listeners know the
speaker. So far, VC system evaluations have not specifically considered speakers
that are familiar to the listeners.

3.4 Summary

A high-quality analysis/synthesis system is essential for successful voice conver-
sion. Spectral envelope as well as F0 and durations should be easily modifiable.
Many voice conversion algorithms assume that the data is aligned before estimat-
ing the mapping function, but the effect of parallel data alignment has not been
studied before [P3]. Parallel data is most often aligned with DTW that performs
reasonably well when considering silence parts and end points. There are no
well-established techniques for assessing voice conversion systems. Identity and
quality are typically evaluated in separate tests. How to weight these two goals
has not been considered in the field.
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Chapter 4
Mapping Techniques

S
peaker identity should be converted as accurately as possible while maintain-
ing high speech quality. Due to the limited amount of training data, most

voice conversion systems learn statistical transformation functions from a set of
frame-level paired feature vectors. For feature transformation, a conversion func-
tion maps the source feature vector xn (size Dx1) into the target feature vector
yn (size Dx1) for each frame n.

In most VC studies, the aim is to find a conversion function F(·) that mini-
mizes the prediction error ǫ over all N pairs of training samples as

ǫ =
N

∑

n=1

‖yn −F(xn)‖2 (4.1)

Before presenting statistical techniques for spectral mapping, the use of real
target data is considered in Section 4.1 and approaches based on frequency warp-
ing are shortly reviewed in Section 4.2. The techniques presented in sections 4.3,
4.6, 4.4, and 4.7 can be applied to any speech features, but they are reviewed in
the context of spectral features. Excitation and prosody (mainly F0) conversion
are considered in sections 4.8 and 4.9, respectively. The spectral envelope energy
is assumed to be copied from the source.

4.1 The Use of Real Target Data

A perfect identity conversion could be achieved by using real speech data from
the target, so why not to choose target speech frames in a unit selection manner?
Sündermann et al. [Sün06a] used real target data in text-independent VC. An
optimal target frame sequence was searched from the target database using a
cost function based on an acoustic cost and a join cost similarly to unit selection
speech synthesis. The acoustic cost was the distance between the source frame
to be converted and a target frame candidate and the join cost accounted for
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Table 4.1: The mean spectral distortion using 5, 10, 20, 50, and 100 training
sentences for covering the acoustic feature space of a speaker with the speaker’s
own data and the amount of outliers.

5 10 20 50 100
Mean SD [dB] 2.23 2.00 1.80 1.59 1.46
2 dB outliers [%] 58.5 46.1 34.7 21.4 14.0
4 dB outliers [%] 2.63 0.95 0.38 0.10 0.04

the continuity between consecutive target frame candidates. This technique may
result in finding frames that are closest to the source. Dutoit et al. [Dut07] first
converted LSF features using a conventional GMM-based approach and then
searched from the target speech database for the closest match to the converted
LSF vector in order to obtain more “realistic” target LSFs.

Obviously the selection process in [Sün06a] or the conversion process in [Dut07]
affects the result. The upper limit for frame-based selection approaches was ex-
amined in [P4]. Provided that the selection process is perfect, we investigated
whether it would be possible to cover a speaker’s acoustic space (10-dimensional
narrowband LSF vectors) at transparent quality. The definition of transparency
was extracted from speech coding and it was described in Section 3.3.1. The
results from [P4] are summarized in Table 4.1 for seven speakers from CMU
ARCTIC database [Kom03]. It can be concluded that the database sizes of 5–
100 sentences are not enough for representing the speaker’s acoustic space at
transparent quality even in the case of perfect selection and narrowband clean
data.

The results obtained in statistical VC mapping techniques are far from trans-
parent, but guiding the frame selection process is not straightforward and can
cause major errors. Furthermore, if there is a large amount of data, one may con-
sider building a unit selection speech synthesis voice without voice conversion.

4.2 Warping-Based Approaches

The idea of frequency warping is to find an optimal warping function that is
used to warp the frequency axis of a pair of amplitude spectra in a way that
the spectral distance between them is minimized. In speech recognition, vocal
tract length normalization (VTLN) can be used to compensate for the effects of
different vocal tract lengths. VTLN is usually limited to a single parameter α.
Different warping functions related to α can be established and their use in VC
was studied in [Sün03], but dynamic or non-linear warping of the frequency axis
is more common in VC [Val92, Pri06, Shu06, Err10b].
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Non-linear frequency warping can be based on finding a mapping function that
minimizes the distance between two spectra [Val92]. Alternatively, a mapping
function can be estimated based on formants [Shu06, Err10b]. Formants were
found manually in [Shu06] and automatically in [Err10b]. The spectral envelopes
associated with the mean vectors of a joint density GMM were found useful
for extracting warping functions in [Err10b]. The source spectrum was warped
with a warping function that was a weighted sum of different warping functions
extracted for each Gaussian.

The main benefit of warping-based approaches is that they maintain good
speech quality without oversmoothing effects. Nevertheless, the simple reallo-
cation of formants on the new frequency axis does not provide proper identity
transformation. This can be adequate if only certain voice characteristics such
as general gender-transformation or adult-to-child transformation is considered
as in [Pri06]. For obtaining a specific target, also formant intensity, bandwidth
and the spectral tilt must be modified [Err10b]. In [God11], amplitude scaling
functions for the spectral envelope were extracted for each acoustic class. Speaker
identity can be improved by combining the frequency-warped source spectra with
parts of the target spectra selected from the training data [Shu08].

The problems of warping-based approaches arise in preserving the shape of
modified spectral peaks and controlling the bandwidths of close formants. Proper
controlling of the formant amplitudes is also challenging.

Figure 4.1 shows an example of a 16th order LP spectrum from two speak-
ers, a female (red line) and a male (blue line), extracted from the vowel of the
word “this”. The sampling frequency is 16 kHz. The formants (the peaks) are
clearly visible for both speakers in this case. In addition, Figure 4.1 includes the
warped male spectrum (blue dashed line) with a scalar warping factor of 1.19.
The warping factor was obtained by finding the slope between the first five for-
mant positions of the speakers. Although warping can match reasonably well the
formant locations of the two speakers, the relative formant heights are different.

4.3 Mapping Codebooks

One of the earliest VC systems was proposed in [Abe88]. The idea is to vector
quantize the source and target feature vectors with their own codebook and then
find a mapping codebook between the two codebooks based on DTW-aligned
source and target features. This was accomplished by creating a two-dimensional
histogram based on the codevector correspondence of the source-target pairs. The
target codebook was a linear combination of the target codevectors, using the his-
togram as a weighting function. The method is straightforward and can capture
the speaker identity well, but it suffers from frame-to-frame discontinuities and
poor prediction capability on new data.
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Figure 4.1: The logarithmic normalized LP spectrum of a male (blue line) and a
female speaker (red line) and a warped spectrum of the male (blue dashed line).

Arslan [Ars99] tackled the problem of discrete representation of the acoustic
space by using a weighted sum of target codewords. In order to convert a source
vector, a set of weights is determined depending on a similarity measure between
the source vector and the set of centroids in the source codebook. The conversion
is realized by using the weights to linearly combine the corresponding centroids
in the target codebook. While improving the continuity with respect to the basic
codebook approach, the method is subject to oversmoothing by summing over a
range of spectral envelopes. Further improvements are described in [Tur06].

In addition to codebooks containing direct source-target features pairs, a code-
book can provide continuous mapping inside a cluster. In [Val92] and [P5], dif-
ferent linear transformation functions for different classes/clusters were used. In
the local linear transformation approach [Pop12], each spectral vector was con-
verted with an individual linear transformation determined in the least squares
sense from a subset of nearby codewords. The approaches in [Val92, Pop12] can
alleviate the oversmoothing effect but are susceptible for discontinuities. Trellis
structured vector quantization [Esl11] deals with the problem of discontinuities
by using dynamic programming to find the optimal sequence of target codewords.
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4.4 Gaussian Mixture Model Based Mapping

A GMM is a weighted sum of M Gaussian components for modeling the distri-
bution p(x) as

p(x) =
M

∑

m=1

αmN (x; µ(x)
m ,Σ(x)

m ) (4.2)

where αm is the prior probability of the mth Gaussian component and the term
N (x; µ

(x)
m ,Σ(x)

m ) denotes for the multivariate normal distribution with mean vec-
tor µm and covariance matrix Σm, i.e.

N (x; µ(x)
m ,Σ(x)

m ) =
1

(2π)D/2
√

|Σm|
exp

[

−1

2
(x − µ(x)

m )
T

Σ−1
m (x − µ(x)

m )

]

(4.3)

where superscript T denotes for transpose.
The most popular way to estimate the GMM parameters is the expectation

maximization (EM) algorithm [Dem77] that has been also been used in the ex-
periments of this thesis.

4.4.1 Source GMM

Stylianou et al. [Sty98] proposed to fit a GMM to the source feature vectors and
then estimate a conversion function. The conversion function between the source
and the target data is assumed to be linear for each Gaussian and is of the form

F(xn) =
M

∑

m=1

ωm,n(βmxn + bm) (4.4)

where βm is a linear transform matrix, bm is a bias term for cluster m and

ωm,n =
αmN (xn; µ

(x)
m ,Σ(x)

m )
∑M

i=1 αiN (xn; µ
(x)
i ,Σ

(x)
i )

(4.5)

The solution for β = [β1,β2, . . . ,βm, . . . ,βM ] can be found using a least
squares approach

β = ((XX
T

)−1XY
T

)
T

(4.6)

where
X = [X1,X2, . . . ,Xn, . . . ,XN ] (4.7)

Y = [Y1,Y2, . . . ,Yn, . . . ,YN ] (4.8)

Xn = [ω1,nx
T

n , ω2,nx
T

n , . . . , ωM,nx
T

n ]
T

(4.9)

Yn = yn (4.10)
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Note that the bias terms are excluded from the solution. Before extracting β

(4.6), both X and Y are mean-centered.
In practice, the pseudoinverse of XX

T

in (4.6) should be used if the number of
Gaussians is set rather high compared to the size of the training data. Without
the pseudoinverse, the inverse matrix becomes non-positive definite and inaccu-
rate results over new data are obtained. In [Sty98], each feature dimension is
transformed independently if covariance matrices of the source GMM are diago-
nal. Additionally, different scaling of variables is used in [Sty98], but the main
idea is similar to (4.4).

4.4.2 Joint Density GMM

Kain and Macon [Kai98] proposed to model the joint density of the source and
the target features with a GMM. The source features are augmented with the
corresponding target features as zn = [x

T

n ,y
T

n ]
T

, and zn is modeled by a GMM as

p(zn) =
M

∑

m=1

αmN (zn; µ(z)
m ;Σ(z)

m ) (4.11)

where

µ(z)
m =

[

µ
(x)
m

µ
(y)
m

]

(4.12)

Σ(z)
m =

[

Σ(xx)
m Σ(xy)

m

Σ(yx)
m Σ(yy)

m

]

(4.13)

When partitioning the joint density into p(zn) = p(yn|xn)p(xn), both densities
p(yn|xn) and p(xn) are also multivariate Gaussian [Mar79]. This also applies to
finite Gaussian mixtures. The joint density can be written as

p(zn) =
M

∑

m=1

ωm,nN (yn|xn;E(y)
m,n,D(y)

m )N (xn; µ(x)
m ;Σ(xx)

m ) (4.14)

where E
(y)
m,n and D

(y)
m are conditional mean and covariance matrix, respectively

and are given by [Mar79]

E(y)
m,n = µ(y)

m + Σ(yx)
m Σ(yy)−1

m (xn − µ(x)
m ) (4.15)

D(y)
m = Σ(yy)

m − Σ(yx)
m (Σ(xx)

m )−1Σ(xy)
m (4.16)

The converted target ŷn can be obtained based on the minimum mean squared
error (MMSE) solution [Kai98] that is the same as the mean vector of the condi-
tional distribution p(yn|xn), i.e.,

ŷn =
M

∑

m=1

ωm,nE
(y)
m,n =

M
∑

m=1

ωm,n[µ(y)
m + Σ(yx)

m (Σ(xx)
m )−1(xn − µ(x)

m )] (4.17)

34



Assuming diagonal covariance matrices Σ(xx)
m , Σ(xy)

m , Σ(yx)
m , and Σ(yy)

m in (4.13),
all feature dimensions are transformed independently from each other.

The joint density model has been more popular than the source GMM. The
selection of the covariance type has a major impact on the resulting conversion
function. In the literature, both diagonal and full covariance matrix GMMs are
used. Full covariance matrices are slightly more common, but for maximum like-
lihood GMM approach (Section 4.5.1) diagonal covariance matrices are typically
used. The problem of setting the covariance type is discussed in Section 4.5.3.

4.5 Problems of GMM-Based Conversion and

Improvements Proposed in the Literature

The control of model complexity is a crucial issue when learning a model from
data. There is a trade-off between two objectives: the generalization of the
model on unseen data and fidelity. This trade-off problem, also referred to as
bias-variance dilemma [Gem92], is common for all model fitting tasks, such as
GMM-based VC. Simple models tend to have a low variance but a high bias and
they are subject to oversmoothing. On the other hand, the use of complex models
may result in overfitting meaning that the resulting model does not generalize
well for unseen testing data, i.e. has too high variance.

In addition to oversmoothing and overfitting, a major problem in conventional
GMM-based conversion is that it ignores the temporal correlation of speech fea-
tures. The time-independent mapping problem is also common for other tech-
niques such as the most mapping codebook approaches.

GMM-based VC, especially the joint density model (Section 4.4.2), has been
a dominating technique despite of these problems. Many studies aim at improv-
ing the core GMM techniques and/or use them as a benchmark method. In
this section, the problems are reviewed together with improvements proposed to
overcome them.

4.5.1 Time-Independent Mapping

Speech features exhibit strong temporal correlation, but in conventional GMM-
based conversion, features in each frame are transformed independently from the
neighboring frames. This can lead to discontinuities in feature trajectories and
thus perceptual speech quality degradation.

An alternative to MMSE solution (4.17) is to use a maximum likelihood (ML)
criterion [Tod07a]. The MMSE solution ignores the conditional covariance ma-
trices (4.16). If conversion is carried out on a frame-by-frame basis, the MMSE
and ML results are identical, but in [Tod07a] the ML estimation of the converted
trajectory is proposed. The static source and target vectors in the joint density
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model are augmented with dynamics, i.e. the first-order deltas. The resulting
variables are

Xn = [x
T

n , ∆x
T

n ]
T

(4.18)

Yn = [y
T

n , ∆y
T

n ]
T

(4.19)

where a standard configuration for the dynamic features is

∆xn = −0.5xn− + 0.5xn+ (4.20)

∆yn = −0.5yn− + 0.5yn+ (4.21)

A GMM is estimated over the joint density of Zn = [X
T

n ,Y
T

n ]
T

similarly to
the case of not using the dynamic features. The parameter set of the GMM is
denoted by λ(Z), which consists of weights, mean vectors, and the covariance
matrices for each Gaussian component.

The converted static vectors are obtained separately for each utterance by
maximizing the following

ŷ = arg max
y

p(Y|X,λ(Z)) (4.22)

Since the explicit relationship between the static and dynamic features is known,
Equation (4.22) is maximized subject to Y = Wy. The matrix W for transform-
ing the static feature sequence into static and dynamic features contains delta
coefficient weights and zeros as

W = [W1,W2, . . . ,Wt, . . . ,WL]
T

(4.23)

Wt = [w
(0)
t ,w

(1)
t ] (4.24)

w
(0)
t = [

1st

0DxD, . . . ,
(t−1)th

0DxD,
tth

IDxD,
(t+1)th

0DxD, . . . ,
Lth

0DxD]T (4.25)

w
(1)
t = [

1st

0DxD, . . . ,
(t−1)th

−0.5IDxD,
tth

0DxD,
(t+1)th

0.5IDxD, . . . ,
Lth

0DxD]
T

(4.26)

where L is the number of frames in the utterance, and 0DxD and IDxD are a zero
and an identity matrix of size DxD, respectively. The size of W is 2DLxDL.

The converted static sequence (4.22) can be obtained by defining an auxiliary
function and using the EM algorithm for maximization or using a suboptimum
mixture component sequence. In this thesis, only the suboptimum sequence so-
lution is reviewed, since it is computationally feasible and according to [Tod07a],
gives similar results to the EM algorithm. For detailed derivation of both solu-
tions, see [Tod07a].

A suboptimum sequence is determined by

m̂ = arg max
m

p(m|X,λ(Z)) (4.27)
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Using the suboptimum sequence m̂ = [m̂1, m̂2, . . . , m̂T ] the static feature se-
quence is given by

ŷ = [W
T

(D
(Y )
m̂

)
−1

W]
−1

W
T

(D
(Y )
m̂

)
−1

E
(Y )
m̂

(4.28)

where
E

(Y )
m̂

= [E
(Y )
m̂1,1,E

(Y )
m̂2,2, . . . ,E

(Y )
m̂L,L] (4.29)

D
(Y )
m̂

−1
= diag[(D

(Y )
m̂1

)
−1

, (D
(Y )
m̂2

)
−1

, . . . , (D
(Y )
m̂L

)
−1

] (4.30)

The approach is similar to the parameter generation algorithm in HMM-based
speech synthesis [Tok00], but now the means and covariances are obtained from
the conditional distributions. The parameter generation approach was exploited
in text-independent VC using state mapping codebooks [Zha08]. The ML esti-
mation of the converted trajectory can be seen as a form of a Kalman smoother
[Tod07a]. It bears some similarity to [P5] where we proposed a post-processing
technique that balances between frame-by-frame conversion error and temporal
continuity through the minimization of a cost function. The post-processing
technique in [P5] is transparent to the conversion algorithm operating at frame-
by-frame. It is described in Section 4.7.

A simplified and heuristic alternative to introduce correlation between frames
is to smooth the generated parameters by low-pass filtering each feature sequence
after conducting the conversion [Che03]. In [P6] the posterior probabilities (4.5)
were smoothed by a low-pass filter before applying the mapping function. Ap-
plying filtering on posterior probabilities instead of features as in [Che03] ensures
that smoothing does not affect the intra-frame correlations between different fea-
tures and avoids extending the oversmoothing problem. A more sophisticated
way to introduce correlation is to augment the current source frame data with
the previous and next frame data as suggested in [P7]. It is described in the
context of kernel transformed features in Section 6.1.3.

4.5.2 Oversmoothing

Oversmoothing results in muffled-sounding speech. It occurs both in the frequency-
and the time-domain. In frequency-domain, the fine details of the spectrum are
lost and formants become broadened. Post-filtering [Koi95, Hua01] can be used
to emphasize the formants. Combining the frequency warped source spectrum
with the GMM-based converted spectrum [Tod01] provides a way to preserve
more spectral details.

In time-domain, the converted feature trajectory has much less variation than
the original target feature trajectory. According to [Che03], oversmoothing occurs
because the term Σ(yx)

m (Σ(xx)
m )−1 in (4.17) becomes close to zero and thus the

converted target becomes as a weighted sum of the target mean vectors. In
speaker recognition, it is common to adapt only the means of a GMM [Rey00].
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In [Che03], the source GMM was built from a larger data set and only the means
were adapted for the target using maximum a posteriori (MAP) estimation.

The oversmoothing effect is especially severe in the ML parameter generation
approach (Section 4.5.1). The global variance was taken into account together
with the spectral trajectory estimation in [Tod07a]. The use of global variance
allows more precise control of individual spectral features compared to standard
postfiltering. Global variance has been successfully used for both VC [Tod07a]
and HMM-based speech synthesis [Tod05] with cepstral features such as MCCs.
On the other hand, the use of global variance did not improve the performance
when using LSFs as the spectral features [Lin10]. Alternatively, global variance
can be taken into account already in the training phase [Ben11]; the error is mini-
mized between the original and the converted target features under the constraint
that the global variance of the converted features should match to the variance
of the original target features. The use of global variance degrades the objective
results but improves subjective quality [Tod07a, Ben11].

4.5.3 Overfitting

Overfitting can be caused by two factors: first, the GMM may be overfitted to
the training set. Second, when a separate mapping function is estimated (Section
4.4.1), it may become overfitted.

In particular, a GMM with full covariance matrices is difficult to estimate and
is subject to overfitting [Mes07]. With unconstrained (full) covariance matrices,
the number of parameters that needs to be estimated grows quadratically with the
input dimensionality D. The total number is M(1+D+0.5(D2+D)). Considering
for example 24-dimensional source and target feature vectors and a joint density
GMM model (D=48) and eight Gaussian components, the number of parameters
is 9800. To reduce the number of parameters, a mixture of factor analyzers was
applied to GMM-based conversion in [Uto06].

Figure 4.2 illustrates the concept of overfitting. A joint density GMM with
full covariance matrices is used in conversion. The experimental setup (database
and parameterizations) is the same as in Chapter 7 and not described here, since
the aim is only to illustrate the overfitting effect. As it can be seen in Figure
4.2, the MCD decreases as a function of model complexity (number of Gaussians)
when converting the same data (dashed line) that was used in the GMM training.
However, for the unseen testing data (solid line) the MCD reaches the minimum
at six Gaussians and then starts to increase.

In the joint density model, all the statistical information of the data is assumed
to be stored in joint density function and no auxiliary conversion functions are
used. Considering the problem with full covariance matrices, diagonal covariance
matrices Σ(xx)

m , Σ(xy)
m , Σ(yx)

m , and Σ(yy)
m can be used but a high number of mixtures

is needed for accurate parameter modeling.
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Figure 4.2: An illustration of overfitting: the Mel-cepstral distortion for the train-
ing and testing data as a function of model complexity (number of Gaussians).

The use of diagonal covariance matrices results in converting each feature
dimension separately. This can be problematic since no direct correspondence
between dth feature of the source and dth feature of the target may exist. This is
investigated in Section 5.1 in the case of MCCs. LSFs, on the other hand, add
another degree of complexity due to intra-frame correlation. An approach for
mapping them with very little training data was proposed in [Hel08]. For each
target LSF a separate GMM was built based on using only the source and target
LSFs that correlated the most with the current target LSF. In [P6], PLS regression
was combined with source GMM-based conversion in order to cope with a limited
amount of data and still avoid restrictions related to the conversion function. The
technique is described in Chapter 5.3.

4.6 Non-linear Techniques

Artificial neural networks (ANNs) offer a powerful tool for modeling non-linear
relationships between the source and the target features, but they have not been
widely studied in the context of VC. In [Nar95], a mapping function between first
three formants is learned using ANNs. Desai et al. [Des10] exploited ANNs for
converting features commonly used in many VC studies. They concluded that
ANN gave similar or even better results than the state-of-the-art GMM-based
conversion approach described in [Tod07a].

In [P7], non-linearities in the data were captured using a kernel transformation
as a pre-processing step and applying a linear technique (PLS regression) to
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extract the mapping function between the kernel-transformed source features and
the original target features. This technique is described in Chapter 6. It bears
some similarity to support vector regression (SVR) that was recently applied to
voice conversion [Son11] and their difference is discussed in Section 6.6. ANNs,
SVR, and the technique proposed in [P7] are able to model non-linear relations
between the source and the target features but the last two require less tuning
and are less prone to overfitting than ANNs.

4.7 Feature Sequence Optimization Algorithm

Using Sequential Monte Carlo Methods

An algorithm for finding an optimal speech feature sequence that balances be-
tween frame-based conversion and temporal continuity was proposed in [P5]. The
sequence optimization is carried out as a post-processing step after converting the
source features in an utterance with an arbitrary frame-by-frame mapping pro-
cedure. The aim is to find a feature sequence that minimizes a cost function
representing a trade-off between frame-based conversion and continuity.

The optimization problem is transformed into a discrete-time dynamical sys-
tem in a state-space form [Míg12]. The model is matched with the cost function
in the sense that the MAP estimate of the system state is a global minimizer of
the cost. Sequential Monte Carlo methodology (particle filtering) is used to ob-
tain a discretization of the state-space and the MAP estimate is approximated by
searching over the discretized space. The best path is searched using the Viterbi
algorithm as described in [God01].

The cost function is defined

Ct(s1:t) =
t

∑

i=1

αi|si − ŷi|p +
t

∑

i=2

γi|si − ρi(si−1)|q (4.31)

where s1:t is the optimal speech sequence to be estimated, ŷi is a converted speech
feature in frame i resulting from a frame-based mapping algorithm, αi and γi are
scale factors to control the trade-off between the quality of the frame-by-frame
conversion and continuity, respectively, ρi is a prediction function that yields the
expected value of si from si−1 and p, q > 0. The cost function (4.31) is defined
for each feature dimension separately but vectors of features can be handled in a
similar way.

The cost function (4.31) can be written in a recursive form

Ct(s1:t) = Ct−1(s1:t−1) + αt|st − ŷt|p + γt|st − ρt(st−1)|q (4.32)
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A posterior probability density function (PDF) can be associated to (4.32) by
means of exponential transformation that is of form

π (s0:t|ŷ1:t) ∝ exp{−Ct(s0:t)}
= exp{−Ct−1(s0:t−1} exp{−αt|st − ŷt|p} ×

exp{−γt|st − ρt(st−1)|q}

where ∝ denotes for proportionality.
The posterior PDF can be decomposed into

π(s1:t|ŷ1:t) = π(s1)π(ŷ1|s1)
t

∏

i=2

π(ŷi|si)π(si|si−1) (4.33)

where the likelihood and transition density are

π(ŷi|si) ∝ exp{−αi|si − ŷi|p} (4.34)

π(si|si−1) ∝ exp{−γi|si − ρi(si−1)|q} (4.35)

and the prior PDF π(s1) is assumed to be uniformly distributed since its value
does not affect the cost of the PDF. Note that the proportionality constants in
(4.34) and (4.35) should be independent of both si and si−1. This can be easily
ensured in most cases of practical interest [Míg12].

To find the MAP estimate, the following procedure was carried out in [P5]:

1. A standard bootstrap filter [Gor93] is used to obtain a sequence of particles
of size LxNp where L is the number of frames in the utterance (t = L
in (4.31)) and Np is the number of particles. The resulting random grid
approximates the state-space model.

2. A Viterbi algorithm is used to find the optimal sequence of particles (size
Lx1) that maximizes the posterior PDF (4.33).

In the experiments of [P5], the dynamics model ρt(st−1) was obtained by
adding an offset term to st−1. The offset term was extracted by copying the
average source dynamics from a few consecutive frames around frame t. The
frame-based conversion algorithm was a codebook containing PLS regression ma-
trices for different classes. The sounds were clustered with k-means algorithm.
The error variance of the state transition process (i.e. 0.5γ−1) was determined
for each cluster and the error variance of the state transition process (i.e. 0.5α−1)
was determined globally.

In subjective evaluation, the proposed smoothing technique was preferred in
86% of the cases when compared to using no smoothing and in 74% of the cases
when compared to the use of linear multivariate regression [P5]. Also objective
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decrease in the MCD was obtained when using smoothing. However, the config-
uration was very simple to fully benefit from the proposed approach. In Chapter
7, the offset term in the dynamics model is predicted from the source features
and the error variances are determined experimentally using cross-validation.

In the experiments of [P5] and Chapter 7, it would have been possible to use
a Kalman smoother. For a Kalman smoother, the dynamics model should be
linear and completely known, and only Euclidean norm (p, q = 2) can be used.
Nevertheless, there is a lot of freedom and flexibility to choose the cost function
in the proposed approach.

4.8 Transformation of Excitation

A residual signal is obtained after suppressing the vocal tract information from
the speech signal, for example by LPC inverse filtering. The residual is important
for achieving good quality. It is possible to operate with the original source
residuals left over from spectral envelope extraction. Copying the source residuals
for the target results in voice quality that sounds neither like the source nor the
target but rather a third speaker [Kai01]. The same techniques that are used for
spectral mapping can be exploited for converting the excitation [Ars99, Kai01].
The residual can be parameterized into e.g. LSFs similarly to spectral envelope.

Duxans et al. [Dux06a] categorized residual transformation techniques to be
based on either prediction or conversion. In residual prediction, a source residual
is modified to match the target residual and in residual conversion, the residual
is estimated based on the resulting converted spectral features. Comparison
between different techniques showed that predicted residuals resulted in better
quality than the converted ones [Dux06a].

Usually a simplified version of the residual is used, since the residual already
contains something unpredictable left over from the more predictable part (spec-
tral envelope). The simplest speech codecs only indicate a frame to be voiced
or unvoiced, i.e. to contain an F0 value or not. Some VC systems even leave
unvoiced sounds unchanged [Err10b] but many unvoiced sounds do have some
vocal tract coloring. The conversion of unvoiced sounds is important especially
in cross-gender conversion [Ye06]. Typically voicing decisions are copied from
the source and F0 is transformed for the voiced frames. An example of voicing
prediction is given in [Yut09], where spectral features were modeled together with
F0 with multi-space probability distribution for getting improved prediction for
F0 and voicing decision. In [P7], we proposed a voicing prediction technique that
is described in Section 6.4.

The STRAIGHT mixed excitation was converted in [Oht06] using the ML
parameter generation described in Section 4.5.1. In [Oht06], aperiodicity and
spectrum were converted independently from each other, but in [P7], we showed
that the use of source spectral features together with the source aperiodicity
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features decreased the objective prediction error. Both [Oht06] and [P7] used the
aperiodicity averaged over five frequency bands, but the error measures and the
scalings were different, so the results cannot be directly compared.

4.9 Prosody Conversion

The most representative parameters of prosody are pitch and duration. Prosody
is affected by syntactic, semantic, and pragmatic content of the sentences as well
as the speaker’s voice characteristics, mental state, etc. This makes prosody
conversion challenging. Moreover, the amount of training data is limited and
hence sophisticated prosody models cannot be built.

Usually the subjects in a VC listening test do not personally know the target
speakers. This may be one reason why most of the approaches focus on segmental
spectral envelope and only scale the F0 level, that cannot be considered true
prosody conversion.

In most studies, speaking rate differences are not modeled or a global speak-
ing rate manipulation factor is used. This does not account for local differences
resulting from different factors such as accent or dialect. Local speaking rate con-
version was obtained by using different scalings for different phonetic codewords
in [Ars99]. Syllable-level duration scaling was used in [P2].

4.9.1 Transformation of F0

The most common way to convert F0 is a simple scaling. For obtaining the target
F0 value f

(y)
0 , the following transformation is applied to source F0 value f

(x)
0

f
(y)
0 = µ

(y)
f0

+
σ

(y)
f0

σ
(x)
f0

(f
(x)
0 − µ

(x)
f0

) (4.36)

where µ
(x)
f0

, σ
(x)
f0

, µ
(y)
f0

, and σ
(y)
f0

represent the mean and standard deviation of the
F0 values for the source and the target, respectively. This is referred to as MV
(mean-variance) scaling method.

The conversion is usually performed in logarithmic domain to enable better
match with human perception. The mean and variance are calculated in loga-
rithmic domain and F0 is converted as

log f
(y)
0 = µ

(y)
log f0

+
σ

(y)
log f0

σ
(x)
log f0

(log f
(x)
0 − µ

(x)
log f0

) (4.37)

A benefit of the MV scaling approach is that parallel data is not required.
More sophisticated F0 transformation techniques for non-parallel data have been
proposed in [Lol08, Wu10]. In [Lol08], syllable-level F0 and duration information
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were obtained for the target using maximum likelihood linear regression. Wu et
al. [Wu10] proposed a frame-level F0 conversion approach where non-parallel F0

training data is first aligned, a GMM is estimated on the aligned data, and F0

histogram equalization is applied to reduce the oversmoothing problem.
Approaches based on parallel data include an utterance level codebook [Cha98],

GMM-based F0 prediction [Nur06], and a codebook based on weighted average
of segmental pitch contours [Tur03]. In [Gil03], separate MV scalings (4.36) were
estimated for hand-marked accents, sentence-initial and sentence-final F0 values.

4.9.2 Proposed F0 Conversion Technique and Results

Prosody is a suprasegmental phenomenon. However, there is not much data
available for training prosody conversion models in VC. A sensible choice is thus
to model prosody at syllable level, since syllable (or mora in some languages) is
usually considered as the smallest prosodic unit in a language [Jun05]. In [P2], a
codebook was generated from syllable-aligned F0 contours of the source and the
target. Due to different lengths of syllables, syllable-level F0 contours from both
speakers were transformed into DCT coefficients and the first eight coefficients
(excluding the bias term) were retained. In addition to DCT contours, syllable
durations and simple linguistic information such as lexical stress and syllable
position in the word were stored.

After collecting the DCT contours together with linguistic and durational
data, a classification and regression tree (CART) was formed [P2]. The CART
was used to help the selection process after candidate contour pre-selection.

The training of the CART goes as follows: a distance matrix A between all
N source DCT vectors is calculated resulting in a matrix of size N2. A similar
distance matrix B is calculated between the target DCT vectors. For the jth

source DCT vector, the closest source DCT vectors are searched from aj,k where
k = 1, 2, · · · , N, k 6= j and the indices of the closest vectors become potential
candidates. For each potential candidate, the corresponding target distance is
obtained. Based on the target distance bj,k, an entry k is considered either as
a “possibly” optimal (small bj,k), a “neutral” or a “non-optimal” (large bj,k)
candidate as an substitute for the entry j. The “possibly optimal” and “non-
optimal” candidates are used for forming the training data for CART, where
“possibly optimal” denotes for one class and “non-optimal” for another class. In
such a manner, the training data is collected for CART forming.

The predictors for the tree are formed for the optimal and non-optimal candi-
dates. Their linguistic information is compared against the linguistic information
of the entry j, resulting in a binary vector where a zero means that there was
a match in the corresponding feature and the value one means that the features
were not the same. In addition, the absolute differences in syllable durations and
in voiced segment durations are computed and stored.
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Figure 4.3: The F0 conversion process for a source F0 contour.

The conversion phase is depicted in Figure 4.3. The aim is to pre-select
good candidates from the codebook based on the distance between the source
contour under conversion and the source contours in the codebook. If there are
not initially enough F0 measurements in the syllable or no candidates are found
in the pre-selection phase, MV scaling (4.36) is used for the current syllable.
Otherwise; the CART is used to predict which target contour could be the best
choice (high probability of being “possibly optimal”) based on the difference in
linguistic and durational information. IDCT is applied to the corresponding
target DCT contour of the chosen index and a bias level is added resulting from
MV scaling (4.36). Smoothing is used if the boundary between two syllables is
initially continuous.

The performance of the proposed F0 conversion was evaluated against GMM-
based F0 conversion [P2]. The source database was a part of a database recorded
for text-to-speech purposes and the target database was spoken in a more vivid
and expressive manner. 95 parallel sentences were used for training and 25 for
testing. The proposed method was rated in 67.0% of the cases to provide more
similar prosody to the target whereas the score for baseline was only 10.3%.
Otherwise they were rated equal. Similarly, the proposed approach was found to
provide less robotic speech quality common in vocoded speech [P2].
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4.10 Summary

GMM-based conversion, frequency warping, codebooks, and non-linear techniques
such as ANNs are most popular mapping techniques for spectral conversion.
GMM-based conversion, as well as many other techniques, suffer from overtrain-
ing, oversmoothing and time-independent mapping. A vast amount of studies
have concentrated on solving these problems. For example time-independent
mapping can cause discontinuities and one solution is to utilize a post-processing
technique [P5]. The post-processing technique optimizes a global cost function
that balances between parameter continuity and conversion accuracy.

An important cue of identity is prosody. A prosody conversion algorithm
selects the best matching target syllable F0 contour from a syllable contour code-
book [P2]. Prosody is likely to play more important role when listeners know the
speaker.
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Chapter 5
Hybrid GMM and PLS Regression Voice

Conversion Algorithm

T
he drawbacks of GMM-based conversion, oversmoothing, overtraining, and
time-independent mapping, and some solution proposals were reviewed in

Section 4.4. In this chapter, solutions for the overfitting and time-independent
mapping problem are proposed based on [P6].

5.1 Motivation

In the joint density GMM approach (Section 4.4.2), the choice of the covariance
matrix has a direct impact on the resulting conversion function. For reference,
it is examined here how the corresponding elements of the source and target
spectral vectors correlate with each other. The evaluations are done for 24 cross-
gender and 24 intra-gender conversion pairs and the data is collected from 50
sentences for each pair. MCCs (24th order) are extracted from the spectra given
by STRAIGHT and aligned using DTW. An absolute correlation coefficient be-
tween all MCC dimensions (energy term not included) of the source and the target
is calculated. The percentage of the dth source MCC having the highest absolute
correlation coefficient with the dth MCC of the target is examined. The results
are shown in Figure 5.1 with red and blue line for cross-gender and intra-gender
case, respectively. It can be seen that especially in cross-gender conversion, the
MCC element correspondence is decreased gradually after the first few MCCs.

In GMM-based conversion, the conversion result is based on several local
conversion functions. Hence, in addition to global correlation statistics, k-means
clustering is carried out for each conversion pair. The number of classes is set to
16 and the percentage of highest correlation coefficients is determined for each
class similarly to the global case. The results are shown in Figure 5.1 with red
and blue dashed line for cross-gender and intra-gender case, respectively. It can
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Figure 5.1: The percentage of cases where the dth MCC of the source has the
highest absolute correlation coefficient with the dth MCC of the target compared
to other MCCs.

be concluded that a specific source MCC may not be the most informative for
predicting the corresponding target MCC neither at local level.

Ideally the GMM-based model should be able to model the correlation be-
tween different feature dimensions but avoid the use of full covariance matrices
in the joint density model or full-rank transforms in the source GMM approach.
The joint density model has been more popular than the source GMM approach,
but they give similar results. Now the source GMM approach is considered. In
the case of diagonal covariance matrices, the conversion function was defined
separately for each feature dimension in [Sty98], but this is not necessary. Here
diagonal covariance matrices are used but the conversion function is estimated
jointly for all the dimensions. However, the size of the transform matrix β in
(4.6) is DxDM , where D is the number of features and M is the number of
Gaussians. The transform matrix β is of full rank.

To overcome the assumption of variable independence in the diagonal-covariance
joint density model and the overfitting problem in the full least squares solution,
PLS regression [dJ93] is used to extract the transform matrix β for the source
GMM approach. It is described in Section 5.3.
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5.2 Partial Least Squares Regression

The goal of regression is to predict the behavior of variables Y from the observed
variables X (matrix of predictors). The regression model is defined as

Y = βX + ǫ (5.1)

where the size of X is IxN and the size of Y is JxN , and the residual term ǫ is of
size JxN . Equation (5.1) assumes that both X and Y are mean-centered meaning
that the empirical means are subtracted prior to processing, and afterwards added
to the regression results.

If variables in X are correlated, the error variance of the ordinary least squares
(OLS) solution for β (4.6) can become high. This results in degraded prediction
ability over new data. There exists a number of biased estimators dealing with
problem of multicollinearity instead of the unbiased OLS estimator. PLS regres-
sion is one of them.

PLS is a family of regression-based methods for modeling and analyzing rela-
tionships between observed variables by means of latent variables. PLS has been
especially popular in chemometrics [Bre07], but also in many other areas such as
social science [Hul99], econometrics [Boo80], bioinformatics [Ngu02], marketing
[Vin10], medicine [Kri11], and recently in speaker recognition [Sri11]. In chemo-
metrics, PLS is used as a regression and prediction tool whereas in e.g. marketing
and social science, PLS is used as an approach for structural equation modeling
(called PLS path modeling) for explaining causal relations [Vin10]. In this thesis,
PLS is considered from a regression and prediction aspect.

The aim of PLS regression is to find new factors, called latent variables or
components, that are a linear combination of the original X1,X2, . . . ,XN . PLS
regression is similar to principal component regression (PCR), where principal
components of X are used as regressors on Y. The main difference is that in
PCR, the principal components are determined by X only whereas in PLS, the
aim is to extract components that capture most of the covariance between X

and Y. If the number of components is equal to the number of predictors, PLS
regression performs similarly to standard multivariate regression but without the
problem of matrix inverses. However, the optimal number of latent variables is
usually lower. The optimal number of latent variables can be chosen by cross-
validation described in Section 6.3.

The idea of PLS is to decompose both X and Y as a product of scores and
loadings as

X = QR + E (5.2)

Y = PR + F (5.3)

where R is a HxN matrix of score vectors, Q and P are loading matrices of
size IxH and JxH, respectively, H is the number of latent components, and E
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Figure 5.2: The cumulative variance percentage explained by each latent compo-
nent for predictors (X) and responses (Y).

(size IxN) and F (size JxN) are matrix residuals. Note that the bias terms are
removed before decomposition. The regression matrix β is obtained as

β = RQ
T

(5.4)

Two of the most widely used techniques for obtaining R, P, and Q are NI-
PALS (non-linear iterative PLS) and SIMPLS (simple PLS) [dJ93]. The SIMPLS
algorithm is used in this thesis due to its computational efficiency. The algorithm
is given in [P6, P7].

Consider the following conversion example with a training data of only one
sentence. The speech features are 24th MCCs (energy term not included) ex-
tracted from STRAIGHT analysis/synthesis framework. The data is aligned
with DTW and the number of frames after the alignment is 574.

The cumulative percentage of variance explained by each PLS latent vector
is shown in Figure 5.2 for both X and Y where X and Y include the aligned
source and target MCC vectors, respectively. The first 3 latent vectors explain
77.3% of variance in Y. With 13 and 24 components the percentage is 83.0%
and 84.0%, respectively, meaning that not much improvement is achieved after
13 components.

A PLS regression model is calculated for different amount of latent com-
ponents varying from 1 to 24. The obtained regression models are tested on
49-sentence testing data. Figure 5.3 shows the MCD (3.4) as a function of the
number of latent components. As it can be seen in Figure 5.3, the optimal num-
ber of latent components is 7 (MCD 5.76 dB). If a full transform is used (24
latent components), the MCD is 6.02 dB.
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Figure 5.3: The Mel-cepstral distortion on the testing data as a function of the
number of latent components.

5.3 Combining GMM and PLS

When PLS is applied to the original source and target features, a global lin-
ear regression matrix is obtained. If there is enough training data (more than
two sentences), the benefits of applying PLS on the original data are lost. A
full rank regression matrix can be used since for example MCCs do not contain
multicollinearity.

PLS was used as a regression technique in GMM-based conversion [P6] and the
procedure goes as follows. First a source GMM (diagonal covariance matrices)
is trained. Alternatively, a joint density GMM can be estimated to guide a
more judicious allocation of mixtures. After training the GMM, the posterior
probabilities (4.5) are obtained. The predictor matrix X is the same as in (4.9)
but repeated here for clarity

Xn = [ω1,nx
T

n , ω2,nx
T

n , . . . , ωM,nx
T

n ]
T

(5.5)

and the output is the original target vectors

Yn = yn (5.6)

The transform β is now found with PLS regression (5.4). The bias terms are
again removed from both Xn and Yn before estimating the regression matrix.
The training phase is depicted in Figure 5.4.

Given the testing data, a similar matrix to (5.5) is formed based on posterior
probabilities. By multiplying the matrix with the PLS regression matrix β, the
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Figure 5.4: Overview of the training procedure using GMM and PLS.
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Figure 5.5: Overview of the conversion/testing procedure using GMM and PLS.

predicted target ŷ is obtained. Bias terms are then added to the result. The
conversion (testing) phase is depicted in Figure 5.5.

Consider the same example as in the previous section, but now the training
and testing data consists of 10 and 30 sentences, respectively. A joint density
GMM with full covariance matrices and a source GMM with PLS regressions as
described in this section were formed for a different number of Gaussians. Figure
5.6 shows the MCD for the testing data as a function of number of Gaussians
with the two GMM approaches. It can be seen that the error of the conven-
tional GMM-based technique is increased steeply when increasing the amount of
Gaussians after the optimal number (2). For the proposed technique, the error is
only slightly increased when increasing the amount of Gaussians after the optimal
number (7). Thus the selection of the number of Gaussians is not extremely cru-
cial for preventing the overfitting when using the proposed technique. Moreover,
the proposed technique is able to obtain lower MCD.
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Figure 5.6: The Mel-cepstral distortion as a function of model complexity (num-
ber of Gaussians) using a conventional full covariance joint density GMM (dashed
line) and a GMM with PLS regression (solid line).

5.4 Soft Alignment Assumption and Posterior

Probability Smoothing

Although overfitting can be effectively avoided when using PLS regression to
extract the transformation matrix in GMM-based conversion, the problem of
temporal continuity still exists. Until now, no explanation has been given on why
conventional GMM-based conversion does not work well, since it is supposed to
divide the acoustic space into overlapping classes, i.e. make a soft classification.
In [P6], this assumption is revised and a crucial conclusion is drawn that in most
of the frames, only one Gaussian is active meaning that its posterior probability
is close to one and for other Gaussians close to zero. When the highest posterior
probability is changed, the change is very rapid. This makes the conventional
GMM-based approach to shift from a soft acoustic classification method to a
hard classification method. It is thus susceptible to discontinuities similarly to
the codebook-based methods.

The problem is illustrated in Figure 5.7 that depicts the posterior probabilities
for the frames in one sentence. A 32-mixture joint density GMM (diagonal cross-
covariance matrices) is trained for 24th order MCCs extracted from 20 parallel
sentences. The posterior probabilities are now extracted from the source features
only, but the sentence in Figure 5.7 was included in the training data. As it can
be seen, there is usually a single Gaussian dominating in a frame and when the
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Figure 5.7: Posterior probabilities of a GMM (32 mixture components) for a
sentence. Different colors describe different mixture components, but they are
only used for illustration purposes.

dominant component is changed, the transition is not smooth. The frame shift
is 5 ms.

To overcome the problem, posterior probability smoothing was proposed in
[P6]. The posterior probabilities ωi,n were smoothed in the conversion phase by a
low-pass filter before applying the regression matrix and they are normalized to
one within a frame. In [P6], the low-pass filter was a finite impulse response filter
of order 10 with a cut-off frequency 0.1 relative to the sampling frequency (the
number of frames in a second). The specific selection of the cut-off frequency is
not expected to be highly crucial. Note that smoothing at posterior probability
level does not result in oversmoothing as such.

5.5 Simulation Results

In [P6], the spectral mapping performance of the proposed technique (referred to
as GMM-PLS ) was compared against a baseline technique. The baseline tech-
nique was a conventional joint density GMM-based conversion [Kai98]. For the
baseline (referred to as GMM-D), all covariance matrices, Σ(xx)

m , Σ(xy)
m , Σ(yy)

m ,
and Σ(yy)

m , were diagonal and the number of Gaussians was 16. For the proposed
technique, the number of Gaussians for the source GMM was 8. The number
of training sentences was 10. In addition, the performance of linear multivariate
regression (referred to as LMR) was evaluated in the objective experiments. In
this case, LMR corresponds to using a joint density model with a single Gaussian
and a full covariance matrix.

Four speaker pairs, a female-to-female (F-F), a male-to-male (M-M), a female-
to-male (F-M), and a male-to-female (M-F) from CMU ARCTIC database [Kom03]
were considered in conversion [P6]. STRAIGHT A/S system was used to extract
the spectral envelope and F0. Spectral envelope was parameterized in 24th or-
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Table 5.1: The Mel-cepstral distortion in dB using linear multivariate regression
(LMR), a joint density GMM (GMM-D) and the proposed technique (GMM-
PLS ).

LMR GMM-D GMM-PLS
M-F 5.76 5.79 5.61
F-M 5.69 5.69 5.54
M-M 6.00 5.94 5.83
F-F 5.31 5.23 5.22

Average 5.69 5.66 5.55

der MCCs. For both baseline and the proposed technique, F0 was transformed
according to (4.37) and voicing values were copied from the source.

In the objective evaluation, posterior probability smoothing was not used.
The spectral conversion results are shown in Table 5.1. As it can be seen, GMM-
PLS resulted in lower MCD than the other techniques except for the F-F case
where it performed similarly to GMM-D. LMR was able to perform as well or
even better than GMM-D in cross-gender conversion (M-F and F-M). This may
result from the fact that GMM-D assumes that target features in each dimension
can be obtained by using the corresponding source feature dimension only. This
assumption is likely to be more erroneous in the case of cross-gender conversion
as it was depicted in Figure 5.1. On the other hand, LMR is too simple to fully
exploit the training data. The use of GMM-PLS provides a way to use a more
complicated model but still without the problem of overfitting.

The subjective quality was evaluated using a preference test [P6]. The qual-
ity of the proposed technique (GMM-PLS ) with posterior probability smoothing
was compared against the quality of the baseline technique with and without
posterior probability smoothing. In addition, a similar comparison test was con-
ducted concerning the identity but only for the baseline technique with posterior
probability smoothing. The results are summarized in Table 5.2. It can be seen
that there was a clear preference for the proposed technique over the baseline
with and without using posterior probability smoothing. In cross-gender and M-
M conversion, the proposed technique achieved higher preference scores for both
identity and quality [P6]. For the F-F conversion case, the smoothed baseline
and the proposed technique were preferred equally according to 95% confidence
intervals [P6]. Thus, the results were in line with the objective measures.

5.6 Summary

GMM-based voice conversion is prone to overfitting. The overfitting problem can
be alleviated by using diagonal covariance matrices instead of full matrices. It,
however, restricts the conversion function. Overfitting can be effectively avoided
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Table 5.2: The results from a preference test on quality and identity when com-
paring the proposed GMM-PLS technique with posterior probability smoothing
against a baseline technique with and without posterior probability smoothing.

Technique Test Prefer proposed
in comparison for technique (GMM-PLS ) [%]
Baseline without smoothing Quality 84.2
Baseline with smoothing Quality 67.0
Baseline with smoothing Identity 62.8

by replacing the ordinary least squares estimation with PLS regression [P6]. The
problem of determining a suitable amount of Gaussians is also alleviated with this
technique. There is usually a single Gaussian component that dominates in each
frame that makes GMM-based approaches susceptible to discontinuities. In order
to improve continuity between frames, posterior probabilities can be smoothed.
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Chapter 6
Dynamic Kernel PLS Regression Based

Voice Conversion

T
he GMM-PLS technique described in the previous chapter effectively pre-
vents overfitting. A GMM was used to extract the probabilistic cluster

memberships in the data, but the memberships were found to be hard rather than
soft. Thus the technique as well as other GMM-based techniques are not able to
approximate non-linear functions using multiple local linear transforms. In ad-
dition, the temporal continuity should be taken into account in a consistent way
in both training and conversion instead of smoothing used at the post-processing
phase as in [P6].

A variety of techniques have been proposed to extend the linear PLS algorithm
into a non-linear algorithm, for example by modeling the relationship between
latent variables with a neural network [Qin96]. In this chapter, an efficient and
straightforward technique for non-linear mapping is proposed and the same model
is extended to take into account the temporal continuity [P7]. The main idea is to
extent a linear regression method to a non-linear method by carrying out a kernel
transformation as a pre-processing step [Emb05]. After the data has been trans-
formed, linear PLS regression is applied on kernel transformed data. Non-linear
aspects of the problem can be captured in the kernel but the simplicity of linear
regression techniques is retained. Tuning of the algorithm is easy; the only vari-
able that needs to be optimized excluding the kernel parameters, is the number of
latent vectors for PLS regression. To take the dependencies between consecutive
frames into account, the kernel transformed source data was augmented with the
kernel transformed source data from previous and next frames.
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6.1 Dynamic Kernel PLS Technique

6.1.1 Kernel Transformation

A kernel is a matrix containing similarity measures for a dataset. The similarity
measures are obtained between the data itself or with other data. In this thesis,
the kernel matrix K is formed using the source features xn and a set of reference
vectors cj

K =











k11 k12 . . . k1N

k21 k22 . . . k2N
...

... . . .
...

kC1 kC2 . . . kCN











(6.1)

where kjn are entries of a kernel matrix and C is the number of reference vectors.
In this thesis, a Gaussian kernel is used and it is defined as

kjn = e
−‖xn−cj‖2

φ (6.2)

where φ is a scaling parameter. The selection of φ is crucial for pattern classifi-
cation approaches [Wan09], but for prediction, there is usually a relatively broad
range for φ where stable quality is obtained [Emb05].

6.1.2 Applying PLS on Kernel-Transformed Data

The kernel-transformed source data is multicollinear and the regression problem
cannot be solved with standard linear regression. PLS regression offers a good
solution for handling multicollinearity. The approach used in this thesis is referred
to as kernel PLS (KPLS). An alternative is to directly kernelize the PLS algorithm
[Ros02] but the approach is more complicated and limited to square kernels.

Before carrying out PLS regression, the kernel matrix must be centered both
row- and column-wise. Centering in the kernel space is not as obvious as in the
original feature space, since the mean cannot be computed directly [Sch98]. A
similar strategy is used as for kernel principal component analysis in [Sch98], but
kernel centering is done in a computationally more efficient way. It goes as follows
[Emb05]: for centering a training kernel, the average of each row is subtracted
and the averages are stored for later use. Then the average of each column is
subtracted from the obtained row-centered training kernel. The centered kernel
is denoted by K̃ = [k̃1, k̃2, . . . , k̃n, . . . , k̃N ] where k̃n is the nth column of the
centered kernel matrix similarly to non-centered kernel matrix (6.1).

For the test data, the kernel is formed using the testing data and the ref-
erence vectors, and the following centering operations are applied: the stored
row-averages from the training kernel are subtracted from the testing kernel.
Then the average of each column is calculated and subtracted from the obtained
row-centered testing kernel.
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6.1.3 Incorporating Dynamics

The problem of time-independent mapping applies to KPLS as well, although it
is a global model and does not have the hard clustering problem of the GMM.
By simply augmenting the original source data with previous and next frame
data, dynamic relations can be modeled [Ric88, Qin96]. In addition to improving
perceptual quality with smoother transitions from frame to frame, neighboring
frames offer information that enables building better conversion models.

Taking the previous and the next frame into account, the predictor variables
become

Xn = [x
T

n−,x
T

n ,x
T

n+]
T

(6.3)

or when the centered kernel vectors are used

Xn = [k̃
T

n−, k̃
T

n , k̃
T

n+]
T

(6.4)

The approaches using (6.3) and (6.4) are called DPLS and DKPLS, respectively.

6.1.4 Reference Vectors

Each entry of the kernel matrix (6.1) is a similarity measure between an original
source vector and a reference vector (6.2). In the benchmark studies of [Ben03], all
original predictor vectors xn were used as reference vectors. In VC applications,
N becomes rather high and using all original vectors as reference vectors is not
computationally efficient.

In [P7], k-means algorithm was used to cluster the original source vectors into
C classes and the cluster centers acted as reference vectors. The same reference
vectors were used in constructing kn, kn−, and kn+. About 100-200 reference
vectors were enough for 20-sentence training data (∼11000 vectors) [P7].

6.2 Example Using Kernel PLS

The benefit of using KPLS (no consecutive frame information used) is illustrated
in the following example. Consider the same conversion pair as in Section 5.2
with the same training and testing data. All 574 source MCC vectors act as
reference vectors resulting in a square kernel matrix, i.e. C=N=574 in (6.1).
The scaling term φ in (6.2) is set to 10. Here the suitable range for φ is obtained
by summing the standard deviations of each feature together.

Figure 6.1 shows the MCD on the testing data as a function of the number of
latent components used in PLS regression. The highest possible number of latent
components is 573 but for illustration purposes, only 200 first components are
shown. The result for using all 573 components (corresponding to the solution
obtained by using a pseudoinverse) is the same as for 200 components, 5.72
dB. By restricting the amount of latent components, overfitting is effectively
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Figure 6.1: The Mel-cepstral distortion on the testing data as a function of num-
ber of latent components. The prediction model was built on kernel-transformed
data extracted from one sentence.

prevented. The optimal amount of PLS components is 17 with the MCD of 5.55
dB. Comparing to Section 5.2 where PLS regression was applied to the original
source data, the resulting values were 7 and 5.76 dB. Hence, the use of kernel
transformed source features improves the performance.

6.3 Cross-Validation of Speech Features

Cross-validation (CV) is a statistical method for model evaluation. The data is
divided into two parts: one is used to train a model and the other is used to
validate the model. The optimal number of latent components for PLS can be
chosen by CV as it is done in this thesis. Regression models are built on the
training data using a various amount of latent component. The number of latent
components used to build the regression model that gave the minimum error on
the test data is selected for building the final model from all training data.

The temporal correlation of speech features must be taken into account. If
samples collected from a set of sentences are divided randomly into a training and
a testing set, CV may give a too optimistic error estimate with a high number of
latent vectors. The prediction for yn is more accurate, if yn− and yn+ that are
temporally correlated with yn, have been available for constructing the regression
matrix. The resulting model may still not generalize well for the new data.

In [P7], we proposed to divide the data into sequential CV sets. For example
in the case of 10-fold CV of 20-sentence training data, sentences 1 and 2 are
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left out in the first round and the regression matrix is computed using sentences
3-20 and so on. The proposed CV scheme is also important for GMM-based
conversion, since the optimal number of Gaussians can be chosen by CV [Shi10].

The CV issue was assessed in the context of spectral features in [P7]. The
MCD for the real testing data was almost 0.2 dB lower when extracting the
optimal number of latent components from the proposed sequential CV scheme
instead of using random CV.

6.4 Aperiodicity and Voicing Prediction

For a high-quality VC system, also the excitation parameters should be converted.
The aperiodicity map of STRAIGHT averaged over five frequency bands (Figure
3.3 in Section 3.1) was used as an excitation parameter in [P7]. Usually excitation
and spectral envelope are assumed to be uncorrelated, but in practice this is not
completely true. In [Sil11], the BAPs were predicted from the spectral features
of the same speaker in HMM-based speech synthesis. In [P7] a prediction model
for converting the BAPs was constructed with DKPLS using the source BAP and
MCC values. Separate kernel matrices were formed for different features.

Voicing decision prediction was proposed in [P7]. Conventionally the voicing
decisions are copied from the source. Random voicing errors can occur in feature
extraction and by voicing prediction the appearance of such errors can be allevi-
ated. The idea is similar to aperiodicity prediction. Voicing prediction utilized
source voicing decisions, kernel transformed source MCC and BAP features and
they were augmented with the data from the consecutive frames [P7].

The predictor vectors Xap
n and Xv

n for aperiodicity and voicing features, re-
spectively, are

Xap
n =








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(6.5)

where k̃sp
n and k̃ap

n denote the centered kernel vectors extracted from the spectral
and aperiodicity source vectors, respectively, and vn is a binary source voicing
value (either 0 or 1).
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Table 6.1: Description of the VOICES database.

VOICES Speakers Males Females Sentences
Count 12 7 5 50

6.5 Simulation Results

In this section, the most important results from [P7] are summarized. The
VOICES database [Kai06] summarized in Table 6.1 was used in the evaluations.
STRAIGHT was used as an analysis/synthesis framework and the parameteriza-
tions were made according to Table 3.1.

6.5.1 Objective Mapping Performance

Eight M-M, eight F-F, eight M-F, and eight F-M conversion pairs were used
in objective evaluation. The objective evaluation of spectral, aperiodicity and
voicing mapping performance was averaged over these 32 conversion pairs.

In kernel matrix calculation (6.1), the scaling parameter φ was set to 10 and
30 for MCCs and BAPs, respectively. The number of reference vectors was 200
for both MCC and BAP kernel matrices.

Spectral mapping performance was evaluated for a variety of methods. The
MCD obtained by the most important methods are summarized in Table 6.2
for the case of 20-sentence training data. In addition to DKPLS and DKPLS
without dynamics (KPLS ), Table 6.2 shows the MCD for

• GMM-D : Standard joint density GMM technique with diagonal cross-covari-
ance matrices [Kai98]

• MLGMM-D : The ML parameter generation (a state-of-the-art GMM tech-
nique) with diagonal cross-covariance matrices [Tod07a]

• GMM-PLS : The technique combining GMM (diagonal covariance matrices)
and PLS (Section 5.3)

The optimal number of Gaussians was chosen from a set M={1,2,4,8,16,32,64,128,
256} based on testing data.

The results in Table 6.2 are in line with the results presented in [Tod07a] and
[P6], that compared GMM-D against MLGMM-D and GMM-PLS, respectively.
The databases used in [Tod07a] and in [P6] were different, but the performance
ordering of the techniques was similar to Table 6.2: both MLGMM-D and GMM-
PLS outperformed GMM-D. However, Table 6.2 shows that DKPLS obtained the
lowest MCD. Comparison between KPLS and DKPLS implies that the use of
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Table 6.2: The Mel-cepstral distortion in dB from 32 conversion pairs using 20
training sentences.

Technique
Number of

MCD
Gaussians

GMM-D 64 5.29
MLGMM-D 128 5.24
GMM-PLS 8 5.20
KPLS (-) 5.15
DKPLS (proposed) (-) 5.10

neighboring frame information improves the prediction although the errors were
calculated on a frame-by-frame basis.

The BAPs were predicted with and without MCCs. Different techniques were
examined. All of them gave a major improvement to the case of using the original
source BAPs. The use of MCCs played a more important role than the use of
kernel transformation: the average RMSE was smaller when using MCCs with-
out kernel transformation compared to the use of kernel transformation without
MCCs [P7]. Nevertheless, the combined use of kernel matrices and MCCs (6.5)
resulted in the lowest RMSE. At the first frequency band (0–1 kHz), a decrease
of 7.8% in the RMSE was obtained when comparing to a joint density GMM
without MCCs. The lower the band, the bigger was the difference between these
techniques. At the last frequency band (6–8 kHz) the performance was equal.
The last band typically contains more non-predictable (noiselike) information.
The more structured sound information especially present in voiced sounds is at
lower bands.

Using the proposed voicing prediction (6.5) versus copying the source voic-
ing decisions decreased the voicing decision error by almost 20% for 20-sentence
training data [P7].

6.5.2 Subjective Quality Evaluation

Three different systems were evaluated in a MOS test [P7]. Table 6.3 summa-
rizes the three systems and their conversion strategy. If DKPLS was used for
aperiodicity and voicing prediction, the predictor vectors (6.5) are used. Other-
wise; a joint density GMM with full covariance matrices (GMM-F ) was used for
aperiodicity prediction without any auxiliary information from spectrum. The
term “Copied” in Table 6.3 means that the binary voicing decisions are copied
from the source. The term “Log MV” denotes that F0 is converted using the MV
scaling in a logarithmic scale (4.37).
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Table 6.3: Systems evaluated in a MOS test and their conversion strategy for
spectrum, aperiodicity, and voicing.

Spectrum Aperiodicity Voicing F0

Baseline MLGMM-D GMM-F Copied Log MV
Proposed - spectral only DKPLS GMM-F Copied Log MV
Proposed DKPLS DKPLS DKPLS Log MV

Table 6.4: Mean opinion scores with 95% confidence intervals obtained by three
different systems.

System MOS
Baseline 2.21±0.05
Proposed - spectral only 3.28±0.06
Proposed 3.51±0.06

The number of training sentences was 20. Eight randomly selected test sen-
tences from eight different speaker pairs from four categories (M-M, M-F, F-F,
F-M) were generated by the three systems of Table 6.3.

The results from the MOS test are shown in Table 6.4. As it can be seen,
there is a major difference between the Proposed - spectral only and the Baseline
system. This indicates that the spectral features play an important role. How-
ever, the Proposed system was rated the highest and the difference between the
Proposed and the Proposed - spectral only system were statistically significant in
terms of 95% confidence intervals on the means. The confidence intervals were
obtained by assuming a normal distribution with the mean given in Table 6.4
and unknown variance. Detailed description on calculating the confidence in-
tervals can be found in any introductory statistics textbook, e.g. [Joh09]. The
results in Table 6.4 imply that further improvements can be achieved with better
aperiodicity and voicing prediction techniques.

6.5.3 Identity Evaluation

The success of identity conversion was evaluated both objectively and subjec-
tively, i.e. conducting identification with a speaker recognition system and an
ABX test.

A simple speaker identification system was built and used similarly as de-
scribed in Section 3.3.2. Samples generated by two systems, Baseline and Pro-
posed (Table 6.3), were recognized by the identification system. MFCCs and
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Table 6.5: Average θst values for the converted sentences specified into inter-
and intra-gender conversion pairs, and into male-to-male and female-to-female
transformations.

All
Inter- Intra- Male- Female-
gender gender to-male to-female

Proposed +4.46 +5.35 +3.56 +2.80 +4.33
Baseline +3.83 +4.60 +3.05 +2.41 +3.69
No conversion –4.22 –5.06 –3.39 –2.92 –3.86

their deltas were extracted from the samples. The original source and target files
were analyzed and synthesized with STRAIGHT before MFCC extraction. The
number of sentences for training the speaker identification models was twenty and
the same amount of sentences was used to train a VC system. For the speaker
identification system, 128 Gaussians and diagonal covariance matrices were used
in training the GMM for each speaker. The number of EM iterations was 50 and
the results were averaged from five different trials. Twenty converted sentences
from 32 speaker pairs were recognized by the identification system.

The identification was performed either using the source and the target mod-
els only or the models of all twelve speakers in the database. The proposed
system achieved a recognition rate of 99.9% and the baseline 99.6% when only
the target and the source models were considered. Using the models of all twelve
speakers, the recognition rate was 99.3% and 98.8% for the proposed system and
the baseline system, respectively. Thus, both systems succeeded well in spoofing
the identification system. Mouchtaris et al. [Mou06] used the same database
in VC evaluations. Despite of proposing an algorithm for non-parallel VC, they
also gave identification results on the case of having parallel data available. Their
recognition result for using all twelve speaker models was about 97%.

In addition to binary recognition results, the performance measure θst (3.5)
was calculated. The averaged results for both systems are shown in Table 6.5.
The results are separated for inter- and intra-gender conversion pairs as well
as for male-to-male and female-to-female conversion pairs. The higher the θst,
the more successful is the identity transformation. A negative θst indicates that
the sample is closer to the source. In all cases, the proposed system obtained
higher θst compared to the baseline system indicating a better identity conversion
performance.

In a subjective speaker identity test, listeners identified intra-gender conver-
sion pairs. Only the proposed system was evaluated and the listeners were not
given any training examples. A listener was asked which one of the samples, A
or B, sounds more like the person in sample X. A and B contained samples from
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source and target speaker, and X was a converted sentence. The sentences were
the same for all A, B, and X, since prosodic differences were not obvious due to
mimic-style utterances included in the VOICES database [Kai06].

The recognition rate of the desired target speakers was 77.1% but there were
significant differences between M-M and F-F conversion pairs [P7]. In F-F con-
version, the rate was 90.2% whereas for M-M conversion only 64.0%. This is in
line with the objective results of Table 6.5: on average, the male speakers were
initially (before conversion) much closer to each other than the female speakers,
and after conversion, they still remained closer to each other. Furthermore, one
M-M speaker pair obtained a recognition rate of only 23.5% indicating failure of
conversion. The objective results did not give any explanation for this. Excluding
the specific pair, the overall recognition rate was 80.7%.

Schmidt-Nielsen and Crystal [SN00] compared the speaker verification perfor-
mance of human listeners and computer algorithms. They concluded that there
was a major difference between individual listeners’ performance but generally
human performance was rather robust to degradation. In [P7], the individual lis-
tener recognition rates varied between 0.5 and 0.9. However, one must note that
in voice conversion the sample is not originally spoken by the desired speaker but
modified to sound like him/her. The data in [P7] was clean speech that proba-
bly made the automatic identification to perform so well. Furthermore, listeners
typically use also speaking habits as cues for speaker identification [SN00] but
speaking style was not transformed in [P7].

6.6 Discussion

The support vector regression approach [Son11] mentioned in Section 4.6 bears
some similarity to the technique presented in this chapter. In SVR, the learning
is carried out in high-dimensional space and the model only depends on a subset
of the training data (support vectors). In SVR training, the aim is to minimize
the generalized error bound, that is a combination of training error and a regu-
larization term that controls the complexity. In PLS regression, the selection of
the number of latent variables constitutes the regularization.

A major benefit in PLS is that the only choice that needs to be made is
the number of latent components. It is a discrete variable that is easy to opti-
mize. The performance of applying PLS on kernel-transformed data in several
benchmark classification and regression tasks was equal or even better than other
kernel-based support vector approaches but tuning is much easier [Ben03].

The handling of dynamics is different in this thesis. Song et al. [Son11] used
the first- and second-order dynamics together with original source features. In
conversion, they had to use adaptive median filtering to smooth the converted
spectral trajectories. The modeling they used does not solve the temporal cor-
relation problem, since the first- and second-order dynamics become different for
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each frame, unlike when using information from the neighboring frames directly.
The use of first- and second-order dynamics were not taken explicitly into account
such as for example in the ML parameter generation approach [Tod07a].

6.7 Summary

DKPLS is a mapping technique that allows non-linear conversion and improves
temporal continuity [P7]. The source features are kernel transformed as a pre-
processing step and the mapping function between kernel-transformed source
features and original target features is estimated with standard linear PLS regres-
sion. Moreover, temporal continuity is taken explicitly into account by concate-
nating the kernel vectors from adjacent frames. Various subjective and objective
experiments confirmed the effectiveness of the technique. DKPLS requires very
little tuning. Sequential CV is recommended instead of random CV for choosing
the number of PLS components with temporally continuous features.
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Chapter 7
Spectral Mapping Performance

Comparison

T
o make a comprehensive evaluation of the techniques in [P5, P6, P7] and the
most widely used GMM approaches, spectral mapping performance results

which have not been published in the author’s publications, are reported in this
chapter.

All 12 speakers from VOICES database (Table 6.1) serve as a source speaker
four times and the target speakers are randomly chosen twice from a set of male
speakers and twice from a set of female speakers resulting in 48 conversion pairs.
The number of training sentences is either the first five or the first twenty sen-
tences of the database. The remaining 30 sentences are used for testing. The
sentences are aligned with DTW. The STRAIGHT spectral envelope is parame-
terized into 24th order MCCs.

7.1 Mapping Techniques in Comparison

GMM-based techniques used in the evaluation are summarized in Table 7.1. The
optimal number of Gaussians is chosen from a set M={1,2,4,8,16,32,64,128,256}
based on the testing data.

The predictor vectors Xn for techniques using PLS regression differ depending
on the approach but the original target vectors are always used as output variables
(Yn = yn). The predictor vectors for each PLS-based approach is summarized
below with additional settings:

• PLS : Xn = xn

• DPLS : Xn = [x
T

n−,x
T

n ,x
T

n+]
T

• GMM-PLS : Xn = [ω1,nx
T

n , ω2,nx
T

n , . . . , ωM,nx
T

n ]
T

and M=4 for five training
sentences and M = 8 for twenty training sentences
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Table 7.1: GMM-based approaches used in the evaluation. The numbers denote
for the number of Gaussians for five (5) and twenty (20) training sentences.

Covariance Number of
type Gaussians

GMM-D [Kai98] Diagonal 16, 64
GMM-F [Kai98] Full 2, 4
MLGMM-D [Tod07a] Diagonal 32, 128

• GMM-DPLS :

Xn = [ω1,n−x
T

n−, ω2,n−x
T

n−, . . . , ωM,n−x
T

n−, ω1,nx
T

n , ω2,nx
T

n ,

. . . , ωM,nx
T

n , ω1,n+x
T

n+, ω2,n+x
T

n+, . . . , ωM,n+x
T

n+]
T

and M=4 for five training sentences and M=8 for twenty training sentences

• KPLS : Xn = k̃n and φ=10, C=200

• DKPLS : Xn = [k̃
T

n−, k̃
T

n , k̃
T

n+] and φ=10, C=200

In addition, a speech sequence optimization approach using particle filtering
(referred to as PF-PLS ) [P5] is evaluated. The number of particles is set to
150. For static feature conversion, k-means algorithm is used for clustering xn

augmented with yn into K classes and a PLS regression model for each class is
built. Class-dependent error variances are determined using CV. The number of
clusters is five and ten for five and twenty training sentences, respectively. It was
chosen from a set K= {1,2,5,10,15,20} based on the test data. The model for
dynamics is an offset term that is now predicted from the source features as

ρt(st−1) = st−1 + β

[

xt

xt − xt−1

]

(7.1)

where the transform β is learned between the source data and target dynam-
ics using PLS regression. For each target MCC dimension, a separate model
ρt(st−1) is formed but all static and dynamic features of the source are used in
the prediction. The error variance of ρt(st−1) is frame-independent as in [P5].

7.2 Simulation Results

Table 7.2 shows the averaged MCD for 5- and 20-sentence training data. As it can
be seen, all the proposed techniques (PF-PLS, GMM-PLS, GMM-DPLS, KPLS
and DKPLS ) result in lower MCD values compared to GMM-based techniques.
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Table 7.2: The Mel-cepstral distortion in dB for different techniques averaged
from 48 speaker pairs using five (5) and twenty (20) training sentences. For each
technique, the 95% confidence interval is the MCD average plus or minus 0.003
dB. Before conversion the average MCD was 7.89 dB.

Training
5 20

sentences

PLS 5.57 5.30

DPLS 5.53 5.24

GMM-D 5.59 5.20

GMM-F 5.55 5.14

MLGMM-D 5.52 5.15

PF-PLS 5.51 5.09

GMM-PLS 5.50 5.10

GMM-DPLS 5.47 5.06

KPLS 5.41 5.04

DKPLS 5.37 5.00

With five sentences, simple techniques (PLS and DPLS ) perform reasonably
well but with twenty sentences, they are too simple to fully exploit the training
data. In both training data cases, the lowest MCD is obtained with DKPLS. The
margin of errors (95% confidence intervals) for each technique is relatively small,
ranging from 0.0030 to 0.0033. The confidence intervals are very small compared
to the MCD averages indicating that the results are statistically significant.

Speaker-pair specific MCD results using GMM-F, ML-GMM, and DKPLS are
shown in Figure 7.1 and Figure 7.2 for 5 and 20 training sentences, respectively. It
can be seen that the performance order is not dependent on a particular speaker
pair; DKPLS performs the best regardless of the speaker pair or the amount
of training sentences. Due to limited space, Figure 7.1 and Figure 7.2 do not
contain confidence intervals. At speaker level, DKPLS was compared to GMM-F
and ML-GMM in terms of statistical significance of the MCD result. The smaller
MCD of DKPLS was found to be statistically significant for all 48 speaker pairs
when comparing to ML-GMM or to GMM-F in the case of 5 training sentences.
With 20 training sentences, there was only one speaker pair where the difference
was not statistically significant.

In addition, an average variance ratio (VR) is calculated. VR has been used
to assess the oversmoothing effect in [Tod07a, Ben11, God11]. However, it should
be noted that the VR is somewhat misleading, since undesired abrupt changes in
the converted trajectory make it higher. The VR is calculated for each MCC by
dividing the variance of the converted target MCCs by the variance of the original
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Figure 7.1: The Mel-cepstral distortion for different speaker pairs with 5 training
sentences using GMM-F, ML-GMM, and DKPLS.

target MCCs in a sentence. The VRs are averaged over all testing sentences and
speaker pairs. The VRs for different MCC dimensions are shown in Figure 7.3
for GMM-D, MLGMM-D and DKPLS using 20 training sentences. The VR of
MLGMM-D is the smallest indicating that it suffers the most from oversmoothing.
DKPLS succeeds in obtaining both high VRs and the smallest MCD (Table 7.2).

The mean of VRs from each MCC was used as an objective measure in [God11,
Ben11]. It can be observed in Figure 7.3 that the last MCCs have the lowest VR.
However, the last MCCs are not as important as the first ones. The last MCCs
had initially smaller variance and thus were given less weight in the mapping
function estimation. Hence, they should not be given too much weight when
assessing the oversmoothing effect either.

Figure 7.4 shows an example of the converted and the original target trajec-
tory for the third MCC. MCCs were converted using GMM-D, MLGMM-D, and
DKPLS. There are no major jumps in the DKPLS trajectory but GMM-D some-
times suffers from those. The trajectory of MLGMM-D is at times too smooth
and does not capture big variations. Further, small sawtooth-like fluctuation is
observed in the trajectory. The problem was reported by Chen et al. [Che10] and
they suggested to avoid the problem using acceleration parameters or alternative
delta window coefficients.

71



4.5

4.7

4.9

5.1

5.3

5.5

5.7
M

el
−

ce
ps

tr
al

 d
is

to
rt

io
n 

[d
B

]

 

 
GMM−F ML−GMM DKPLS

4.5

4.7

4.9

5.1

5.3

5.5

5.7

M
el

−
ce

ps
tr

al
 d

is
to

rt
io

n 
[d

B
]

Male−to−male Female−to−female

Male−to−female Female−to−male

Figure 7.2: The Mel-cepstral distortion for different speaker pairs with 20 training
sentences using GMM-F, ML-GMM, and DKPLS.
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Figure 7.3: The variance ratio between the converted target and the original
target for each MCC.
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Figure 7.4: An example of (a) converted and (b) original target trajectories for
3rd MCC corresponding to the same phoneme sequence. Note that phoneme
durations and timings are different.

7.3 Summary

Spectral conversion techniques proposed in this thesis as well as three reference
techniques were compared using the same dataset and the same A/S system
and parameterization. Objective spectral conversion performance was evaluated
for 48 speaker pairs. All proposed techniques obtained lower cepstral distortion
value than the reference techniques for both 5- and 20-sentence training data
cases. DKPLS described in Chapter 6 performed the best.
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Chapter 8
Conclusions, Discussion and Future Work

T
his thesis has presented several mapping techniques for voice conversion.
GMM-based conversion has been a dominating technique for a long time

despite its problems. This thesis has considered the problems and proposed a
solution that combines a GMM with PLS regression (GMM-PLS ). In addition, a
new technique (DKPLS ) has been proposed. Both of them are based on trans-
forming the original source features into another domain either with the help
of data division given by a GMM (GMM-PLS ) or with a kernel transformation
(DKPLS ). Then a regression matrix is estimated. This is accomplished by PLS
regression in order to avoid overfitting. The use of the proposed sequential cross-
validation gives realistic estimates of the performance over unseen speech data.
Both the techniques require very little tuning and are most effective when there
is a relatively small amount of training vectors available. How useful they are for
a large amount of training data requires further investigation.

The temporal continuity of speech features is important. An algorithm to
balance between frame-based conversion error and temporal continuity through
optimization of a cost function was proposed. More research is needed for tuning
the cost function to fully exploit the technique. In addition, posterior probability
smoothing was proposed for GMM-based conversion. To improve temporal con-
tinuity more explicitly and elaborately, the source data from the current frame
was augmented with the data from the previous and the next frames.

The proposed techniques and well-known GMM-based benchmark methods
were compared. All the proposed methods were found to decrease the objective
spectral distortion value compared to the GMM-based approaches. A large va-
riety of speaker pairs was used in this thesis in order to provide more reliable
results. It was shown that DKPLS performed the best in terms of objective
measures.

To make a complete voice conversion system, also excitation needs to be con-
verted. The BAPs of the target were predicted from both source BAPs and
MCCs using DKPLS. The binary voicing decision is usually copied from the

74



source, but in this thesis, it was predicted with DKPLS by using source voicing
decisions, BAPs and MCCs. Improved prediction of BAPs and voicing decisions
gave a statistically significant improvement in the subjective quality. This thesis
also proposed a prosody conversion algorithm operating at syllable level. It was
found to outperform a conventional F0 conversion algorithm. Prosody conver-
sion is likely to be more important when the target speakers are familiar to the
listeners.

The effect of different A/S framework and parameterization has not been con-
sidered in the literature, although they play a major role in the speech quality. It
is likely that the converted samples using a different A/S framework differ from
each other more than the samples converted by different statistical mapping tech-
niques. The artifacts in the converted speech may result from the failure of the
A/S framework. Furthermore, the specific selection of the features representing
the spectral envelope has not been addressed. A potentially important future di-
rection is enhanced parameterization. For example MCCs may not give enough
information of inter-speaker vocal tract correlation. In addition, since the third
and the fourth formant are the most important vocal tract features for speaker
individuality, their frequency region could be given more weight.

The techniques described in this thesis are based on the assumption that par-
allel databases are available. When using parallel data, the alignment procedure
is important and should not be ignored but it is enough to carry out a simple
DTW algorithm. Text-independent VC is a topic of interest since in real-life
situations parallel corpora is not easy to obtain. Nevertheless, most non-parallel
approaches treat the data alignment as a separate step before estimating the
conversion function for segmentally aligned source and target features. The tech-
niques described in this thesis are thus applicable after solving the alignment
problem. The ideal goal would be to exploit target speech data from various
environments and for example collect training data when a person is speaking on
a cellular phone [Hel10]. No effort from the user would be required. However,
the development of better and better VC technologies also poses a threat for
applications relying on speaker verification systems. It is important to study this
topic in the future.

The lack of benchmark databases and techniques is problematic. Most stud-
ies use the conventional joint density GMM approach as a baseline technique,
which cannot be considered as a state-of-the-art technique due to many problems
attached to it. It can be concluded that other benchmarks techniques should
be used or at least use PLS regression in GMM-based conversion together with
posterior probability smoothing or source data augmentation from consecutive
frames.

Finally, the Blizzard Challenge [Bli] is a yearly organized “competition” for
comparing different speech synthesizers based on the same data. This kind of
evaluation campaign would be beneficial for voice conversion to compare different
techniques and parameterizations.
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Abstract
Many of the current techniques and systems that deal with
speaker identity do not regard detailed prosody as a crucial
source of speaker-dependent information. The reasoning be-
hind this relates to the common assumption that the F0 level and
the spectral data carry all or almost all of the speaker-dependent
information. But is this assumption really valid? We have inves-
tigated the importance of prosodic information in the perception
of speaker identity by conducting a test where the listeners tried
to identify people they know after hearing only delexicalized
pure prosody signals. The findings presented in this paper show
that even a very rough prosodic representation consisting only
of a single sinusoid can contain information on speaker iden-
tity, giving motivation for the development and wider usage of
techniques that better exploit the prosodic aspects.
Index Terms: prosody, speaker identity

1. Introduction
Voice conversion techniques aim at converting a speech signal
to sound as if it was uttered by another speaker. This research
topic has gained a lot of interest during recent years, e.g. [1],
[2], [3], [4]. Most voice conversion systems published in the
literature neglect detailed prosody modeling and concentrate
mainly on spectral conversion. Fundamental frequency (F0)
contours are usually modified in a very simple manner using
e.g. Gaussian mixture modeling (GMM) based conversion or
a simple mapping based on the mean F0 values and the vari-
ances of F0 [1], [3], [4]. The lack of wider interest towards
more sophisticated prosody conversion techniques could orig-
inate from the fact that researchers have typically focused on
the problem of changing some stranger’s voice into the voice of
another stranger. In this kind of cases the detailed conversion
of prosodic features may not be highly crucial. However, when
thinking about the potential applications of voice conversion, it
seems quite likely that the users would be interested in applica-
tions where they can convert some source voice into the voice
of a person they know (friends, family, celebrities, etc.). In this
scenario, the user is quite familiar with the person’s speaking
style and our assumption is that the user might be quite likely to
detect peculiarities in intonation patterns or tempo if prosody is
not properly converted.

We have recently introduced a novel approach for convert-
ing prosody in voice conversion [5]. This new approach was
evaluated in a listening test in connection with a complete voice
conversion system [6] and it was found to clearly outperform the
conventional GMM based F0 conversion scheme. In fact, the
results presented in [5] indicated that the more accurate model-
ing of prosody increased the performance of voice conversion
in two ways: the speaking style in the converted samples was
found to be closer to the target, and the converted speech was

found to be less robotic or monotonic. In the listening test,
the target speaker was allowed to speak more freely than the
source speaker from the prosodic point of view. While this is
well in line with the potential use case where a text-to-speech
(TTS) system acts as the source, it may also raise an important
question: could the observed enhancement be caused by the in-
creased expressiveness in the converted speech? Furthermore,
can we be sure that the prosody contains person-dependent in-
formation that should be converted, other than the F0 level and
the rough speaking style that could also be approximated us-
ing the variance of F0? The listeners judging the success of
prosody conversion in [5] were not previously familiar with the
target speaker and thus they evaluated more the speaking style
than the real identity.

To further support our claims on the importance of prosody
from the viewpoint of speaker identity, we show in this paper
that people can identify themselves or persons they know on the
basis of pure prosodic stimuli, although the average F0 levels of
the different speakers are very close to each other. The pure
prosody signals are obtained by estimating F0, duration and in-
tensity information from the original signals and by creating a
signal containing a single sinusoid whose frequency follows the
F0 contour and whose amplitude follows the intensity contour
of the original speech signal. This simplified pure prosody sig-
nal generation approach is very close to that proposed in [7].
The results, together with the earlier results presented in [5],
give a clear indication that the prosodic aspects would deserve
more attention in the voice conversion related research and de-
velopment work.

This paper is organized as follows. In Section 2, some is-
sues related to prosody and speaker identity are discussed. Sec-
tion 3 describes the listening tests and the results obtained in the
test. The discussions and the conclusions presented in Section
4 and Section 5, respectively, conclude this study.

2. On prosody and speaker identity
Prosody is a supra-segmental phenomenon that is not conveyed
through a single phonetic segment but through larger units like
words, sentences, utterances or even paragraphs. A vast amount
of research has been devoted to prosody in relation to text-to-
speech systems during the previous decades, especially related
to intonation that is considered perhaps the most important as-
pect of prosody. Intonation can have linguistic, paralinguistic
or extralinguistic functions [8]. Linguistic functions comprise
of the morphological and lexical levels of phrase, as well as of
discourse and dialogue levels. Emotions and mental states are
categorized as paralinguistic. Extralinguistic factors like age
and sex are personal and physical characteristics. These differ-
ent linguistic sources of information are resolved in the ear via
perceptual processing. Based on the formant frequencies and
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the pitch, the listener usually forms an estimate if the speaker
is a male, female or a child, even if he/she does not know the
speaker.

2.1. Prosody and speaker identity in the literature

It is widely accepted that prosody plays an important role in
naturalness of speech. In text-to-speech systems, the aim is to
generate a ”good” and acceptable prosody. However, in natu-
ral speech there exists a great deal of inter-speaker and intra-
speaker variations in prosody [9]. An interesting experiment
was made in [10] where five speakers of the same sex and age
were presented to familiar listeners in different forms of natu-
ral and synthetic stimuli. It was shown that the speakers were
highly identifiable on the basis of their fundamental frequency
characteristic even when the spectrum was generated artificially.
A slightly similar experiment was carried out in [11] where the
spectral information related to speaker individuality was hidden
using the average envelopes of all speakers. The pitch contours
were shown to make a difference from the viewpoint of speaker
individuality.

Many voice conversion systems transform the F0 contours
through simple scaling between target’s and source’s mean F0
value and the standard deviation of F0. Some experiments with
more detailed pitch conversion have been reported [2],[12],[13]
but compared to the total number of voice conversion papers
published so far, the topic of more detailed F0 modeling in voice
conversion has not received much attention.

In addition to F0 contours, another important aspect of
prosody are the durational issues: the durations of segments
and pauses that are usually referred to as speech tempo. In voice
conversion, the durations are usually modeled by simple scaling
of the target’s and source’s utterance lengths. However, it was
shown in [14] that there are inter-speaker differences between
sound classes. This will not favor uniform speaking rate mod-
ifications. Rate modifications, global or local, are not entirely
linear due to the properties of human speech production, but af-
fect vocalic segments more than consonantal segments [9]. In
[4], the durational modifications are separated into three distinct
classes, silent, unvoiced, and voiced. It was claimed that more
detailed modeling, i.e. phoneme level, would be too inaccu-
rate but in [1] context-dependent duration difference modeling
between speakers in phone or triphone level was suggested.

When looking outside the topic of voice conversion, most
speaker recognition systems also ignore the prosodic features
and concentrate only on the short-term spectral features. How-
ever, the addition of short-term [15] or long-term [16] prosodic
information has been shown to improve the performance. Re-
lated to speaker identification, an interesting finding was made
in [17] where an imitator was asked to mimic two subjects.
Human listeners did not recognize the difference between the
imitator and the real speaker nearly as well as a speaker ver-
ification system that did not use prosodic information. From
the viewpoint of voice conversion, this supports the assumption
that it could be possible to convince a human listener with even
a slightly imperfect spectral conversion as long as the prosody
is converted more accurately.

2.2. Some experimental findings

We have studied the prosodic features in the speech of different
speakers and found that there are clear speaker-dependencies
in speech signals that should be modeled for example in voice
conversion. An example case including F0 contours from two
speakers uttering the same sentence is shown in Figure 1. The
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Figure 1: Partial F0 contours of two speakers (solid lines) from
a Finnish sentence ”Meiän äiti ei ikinä tekis mitään sellaista”
(Our mother would never do anything like that) and the trans-
formed F0 contours (dashed lines)

straight lines represent the measured F0 contours and the dashed
lines indicate the transformed F0 with the second speaker’s
mean and variance applied to the first signal and vice versa.
In the transformed signals, the different durations were taken
into account by applying dynamic time warping to the speech
signals. It can be observed that there are similarities due to the
same context but some clear speaker-specific differences can
also be found. Furthermore, it is also possible to see that the
mean and variance based approach does not achieve very good
results.

Further experimental findings were presented in [5]. In that
paper, we proposed a new prosody conversion scheme that uses
a syllable-based prosodic codebook. The selection from the
codebook employs not only the source contour but also lin-
guistic information and segmental durations with the aid of a
trained classification and regression tree. The new method was
included as a part of the voice conversion system originally pre-
sented in [6] and it was evaluated in a listening test. The re-
sults clearly indicated that more detailed prosody conversion
enhanced the quality of the converted samples when compared
to the conventional GMM based approach: it increased the nat-
uralness (or made the output sound less robotic or monotonous)
and the identity mapping was improved through the better mod-
eling of the person-dependent speaking style.

Even after these findings and good results, one important
question remains. Does our prosody conversion approach im-
prove the results through better prosody modeling in general or
does the prosody really contain some person-dependent features
that can be modeled in voice conversion? The rest of this paper
demonstrates through a listening test that the prosody indeed
contains person-dependent information.

3. Listening tests

To get more evidence on the speaker-dependencies in prosody,
a listening test involving pure prosodic signals was carried out.
This approach was chosen to be able to really focus on the
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prosodic aspects and to avoid any influence from other features
in speech signals or from the voice conversion system.

3.1. Test arrangement

Several neutrally spoken sentences from 16 different native
Finnish speakers were recorded in a quiet room. The recorded
signals were analyzed automatically to obtain F0 and energy
contours and these contours were used in the generation of pure
prosody signals. In these signals, the voiced regions contain
a single sinusoid whose frequency follows the F0 contour and
whose amplitude is in line with the energy contour, while the
unvoiced and silent regions are represented as silence. An ex-
ample including a speech signal and the corresponding pure
prosody signal is shown in Figure 2.

In total 14 native Finnish listeners participated in the
test. Each listener heard sinewave signals generated from
speech spoken by people she/he knows (possibly including
her/himself) in random order and was asked to identify the
speaker. For some of the sinewave signals, the listener was
shown the textual form of the corresponding sentence while for
other sinewaves no supplementary information was given. Be-
fore starting the actual test, each listener was given a chance
to get familiar with the sinewave representation. In this train-
ing phase, each listener was able to listen to both the original
recorded form and the corresponding sinewave form of some
example sentences as many times as she/he wanted. One sen-
tence from each speaker was included in this training material.

Many of the listeners also served as a speaker and vice versa
since we also wanted to examine how well people recognize
themselves from the sinewave based prosodic representation.
The speakers were grouped into three categories based on the
gender and age: in total there were 6 female, 8 male and 2 child
speakers. The speakers were also further divided into groups
of people who knew each other. Each listener heard only sam-
ples from her/himself or from speakers that she/he knows from
some context: either as a family member or a close relative, as a
friend, or as a colleague. Each listener was explicitly given the
list of speakers that could appear in the samples. If we assume
that the listener can always recognize the correct category (fe-
male, male or child voice), there were always either two or three
alternatives to choose from. This assumption was found valid
with only a couple of exceptions that were most likely caused
by unfamiliarity with the sinewave representation. The two or
three alternatives were chosen using two criteria: the listener
has to know the speakers and their F0 levels were very close to
each other. This applied in all the cases except for the children.

3.2. Results

Table 1 illustrates the overall result obtained from the whole
test. The notations ”From 2” and ”From 3” denote the number
of alternatives the listeners can choose from provided that the
answer falls in the correct category (male, female, or child). As
can be seen from the average identification rates obtained from
a total of 524 answers, it can be concluded that even the very
rough representation of pure prosody including only a single si-
nusoid contains speaker-dependent information. Even though
the sinewave representation was a rather odd and unfamiliar
representation for the listeners, it still helped significantly in
the speaker identification. For comparison, the table also shows
the average rate that would be achieved by guessing (with the
assumption that the listener can always recognize the speaker
category correctly). The difference between the test result and
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Figure 2: (a) a speech segment, (b) the corresponding prosodic
signal, and (c) common F0 contour for both (a) and (b).

Table 1: Overall results
From 2 From 3

No. of sentences 284 240
Total recognition 70.4 % 47.9 %
Lover conf. interval 64.7 % 41.4 %
”Guessing rate” 50.0 % 33.3 %
Upper conf. interval on guessing 56.0 % 39.7 %

the average guessing rate is statistically significant based on the
fact that the upper bound of the confidence interval in the case
of guessing is lower than the lower confidence interval of the
test results. We also observed that there was no difference on
how listeners recognized themselves compared to others.

The potential influence of having the textual version of the
sinewave signal available is analyzed in Table 2. Indeed, the
identification rate seems to slightly improve when the listener
knows the sentence that is spoken but this result is not statisti-
cally significant considering the confidence intervals.

4. Discussion
Although the results are favorable as such, some further issues
should be pointed out. First, the language used in the experi-
ments was Finnish that is regarded as a rather monotonic lan-
guage in terms of F0 contours. This was especially true in
the case of some male speakers. Additional results using some
other language could reveal even more evident findings. More-
over, we also observed that the presence of the microphone and
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Table 2: The effect of having the text available
From 2 From 3

No. of sentences without text 209 105
Recog. without text 66 % 47 %
Upper conf. interval 72 % 57 %
No. of sentences with text 75 135
Recog. with text 81 % 49 %
Lower conf. interval 71 % 40 %

the usage of pre-defined sentences did not help in capturing nat-
ural prosodies that would make the identification easier.

It was also found out that special attention should be paid
to the planning of the text materials when studying the prosodic
effects. This also applies more widely e.g. to voice conversion
since the planning of a limited number of sentences that could
capture the spectral, the prosodic and the speaking style related
individualities poses a real challenge. Voice conversion prompt
sheet planning is not covered well in the literature.

We believe that the results were affected by the fact that
pure prosodic signals were strange and unfamiliar to the lis-
teners. Some people adapted to listening to the sinewave rep-
resentations faster than others but further training might have
helped all the listeners. In fact, many listeners commented that
more practice with the sinewave signals could have improved
their performance substantially. The listeners found dealing
with pure prosody signals more comfortable and easier when
they had the opportunity to see the texts. However, the gen-
eral recognition rate was not significantly improved, as shown
in Table 2.

Finally, it should also be noted that the F0 levels of the
speakers in the same category (male, female or child voice)
were often very close to each other. The listeners had to identify
speakers whose F0 levels were as little as 3 Hz apart.

5. Conclusions

In this study, we have discussed the importance of prosody in
the perception of speaker identity. We conducted a listening test
in which 14 listeners were asked to identify speakers based on
simplified prosodic signals. Each utterance consisted only of
a single sinewave following the F0 and energy contours of the
corresponding recorded sentence. It was shown that it is pos-
sible to identify familiar people on the basis of pure prosody.
From the viewpoint of voice conversion, the result, together
with the results we have presented earlier in [5], highlights
the potential advantage that may be gained in voice conversion
through proper treatment of prosody. This will presumably be
especially true in relation to commercial voice conversion appli-
cations since the consumers are likely to be interested in having
a voice converted to the voice of a person whose prosodic pecu-
liarities they know very well.
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Abstract
Most of the current voice conversion systems model the joint
density of source and target features using a Gaussian mixture
model. An inherent property of this approach is that the source
and target features have to be properly aligned for the train-
ing. It is intuitively clear that the accuracy of the alignment
has some effect on the conversion quality but this issue has not
been thoroughly studied in the literature. Examples of align-
ment techniques include the usage of a speech recognizer with
forced alignment or dynamic time warping (DTW). In this pa-
per, we study the effect of alignment on voice conversion qual-
ity through extensive experiments and discuss issues that should
be considered. The main outcome of the study is that alignment
clearly matters but with simple voice activity detection, DTW
and some constraints we can achieve the same quality as with
hand-marked labels.
Index Terms: voice conversion, alignment, DTW

1. Introduction
The aim in voice conversion (VC) is to convert speech from
one speaker (source speaker) to sound like the speech of an-
other particular speaker (target speaker). VC consists of two
phases: training and conversion. Training usually relies on par-
allel data from the source and target speakers, although some
approaches for non-parallel VC data alignment have also been
proposed. An interesting framework for voice conversion is of-
fered by voice adaptation with hidden Markov model (HMM)
based speech synthesizer [1] that does not require parallel sen-
tences for training. Many VC systems are based on applying
a conversion scheme directly to the source speech or its para-
metric representation. The most popular conversion scheme is
to use a Gaussian mixture model (GMM) to model the joint
density of aligned source and target features [2]. Thus, before
training the GMM it is necessary to align the training data, i.e.
to find a corresponding target frame for each source frame.

The alignment process has been studied little in the litera-
ture. Nevertheless, there are several techniques that can be used
for carrying out the alignment. The simplest alignment tech-
nique is linear interpolation that works under the assumption
that speaking rate variation is only global, not local. Non-linear
warping can be obtained using dynamic time warping (DTW)
that finds an optimal path through a difference matrix computed
between the source and target features. It is also possible to use
a speech recognizer with forced alignment. Compared to this
solution, DTW has the advantage that alignment can be done
without knowing the content of the sentence. Moreover, there
is no need to have a speech recognizer available.

In this study, we consider the conventional GMM based

voice conversion that uses parallel sentences for training data
generation, and we analyze how the alignment process affects
the conversion result. We carry out experiments and point out
alignment related aspects that may improve or degrade the con-
version performance. The results support our hypothesis that
it is possible to affect the conversion quality through alignment.
We also show that a reasonably simple alignment procedure can
be used for obtaining a quality level similar to the level that can
be obtained using manually annotated labels.

This paper is organized as follows. Section 2 describes
DTW in general whereas the usage of DTW in VC is discussed
in Section 3. Experimental results related to alignment accuracy
are presented in Section 4. Section 5 presents voice conversion
experiments with different alignments and provides analysis of
the results. Section 6 concludes the study.

2. Dynamic time warping in speech
alignment

The objective of DTW is to find an optimal alignment between
speech patterns X and Y . Speech patterns X and Y are rep-
resented by short-time feature vector sequences. The feature
vectors typically relate to the corresponding speech spectra.
The overall distortion d(X ,Y) is a sum of the local distances
d(ix, iy) computed over the path. The optimal alignment basi-
cally minimizes the overall distortion with some constraints.

Constraints on the warping function are required in order to
provide a meaningful alignment. Constraints also save compu-
tational resources. But the use of strict constraints can introduce
problems if the ”correct” path cannot fit into the allowed area.
Examples of typical warping constraints include [3]

• Endpoint constraints define that the alignment starts at
the first frame pair d(1, 1) and the stops at d(N,M)
where N and M are the number of source and target
frames, respectively.

• Monotonicity constraints do not allow the warping path
to have a negative slope.

• Local constraints define the set of allowed predecessors
and transitions to the current node.

• Global constraints define the region of nodes that are
searched for the optimal path.

3. DTW in voice conversion
Usually the training data in VC is not as corrupted as the sig-
nals that speech recognition systems have to deal with. Thus,
voice conversion is a relatively easy use case for DTW. More-
over, there is no single ”correct” time alignment between the
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Figure 1: Example of distance matrix, labels (circle), DTW
(solid) and linear interpolation (dashed) result.

sentences from two different speakers and thus there may be
several acceptable alignments. However, there are still some
aspects that should be considered when implementing DTW for
voice conversion purposes.

3.1. Alignment features

In alignment, parallel speech waveforms are converted into se-
quences of features that can be compared with each other. The
alignment searches for the source-target feature path that min-
imizes the overall distortion. The closer the speaker character-
istics are to each other, the better the features are likely to be
aligned. It is somewhat paradoxical that in VC we try to cap-
ture the differences between the source and the target speaker
characteristics but at the same time the alignment process tries
to minimize the difference. To minimize the effect of this para-
dox, the features used in the alignment should be as speaker-
independent as possible.

In speech recognition, Mel-frequency cepstral coefficients
(MFCCs) are commonly used features. Thus, they should also
be suitable for the alignment. Linear prediction related features
such as LSFs are more complicated to use since the kth LSF
from the source may not correspond to the kth LSF of the target.

3.2. Problems with DTW in the context of VC

There are some potential problems when DTW is used to align
signals for VC. These inherent problems that are discussed later
in this section can be dealt with by additional constraints or by
removing ”bad” frame pairs. Although VC systems need to be
able to cope with small amounts of training data and an increase
in the training set size is likely to enhance the conversion qual-
ity, single frame pairs can be safely removed from the training
data when necessary. Removing badly aligned frames may even
increase the resulting speech quality.

3.2.1. Silent segments

When recording a sentence, some silence is usually included
before and after the meaningful speech content. Silence seg-
ments represent non-interesting information and can sometimes
confuse the performance of DTW depending on the constraints.
Exploitation of end points is highly crucial for good DTW per-

formance. However, unreliable estimation of end points is also
a problem, if strict end point constraints are used.

The most severe problems arise when there is silence at the
beginning and/or at the end of a speech pattern X but no silence
at the beginning or the end of a speech pattern Y . If the silent
parts are not removed before the alignment and the end point
constraints are strict, the alignment will go wrong, most likely
for the whole sentence. Even if the alignment could seek its
way into the ”correct” path at some phase, the alignment will
still produce silence-speech frame pairs that should preferably
be removed from the training data.

3.2.2. Global optimization

DTWprovides a globally optimal alignment through the source-
target difference matrix. However, this does not mean that each
frame pair would represent a decent feature pair for GMM train-
ing. For example, DTW can handle short silence segments be-
tween words even if the silence is present only either in the
source or the target speech. Nevertheless, it is questionable if
we should use that kind of pair for training where the source part
is silence and the target part is speech or vice versa. Moreover,
the local performance needs to be sacrificed for the global op-
timization, i.e. some clearly voiced frames become paired with
some clearly unvoiced frames. Including such data for GMM
training may not be meaningful.

3.2.3. One-to-many and many-to-one mappings

The purpose of DTW is to generate a non-linear warping func-
tion of feature sequences along the time axis. This means a
target frame may become mapped to more than one source
frame. Also, a source frame can have more than one target
frame mapped into it. This results in one-to-many and many-to-
one mappings. Such data is ambiguous for the GMM. In gen-
eral, the main problem of GMM in VC is oversmoothing and
if one-to-many or many-to-one mappings occur systematically
(e.g. in the case where the speaking rates of source and target
differ significantly) the oversmoothing may become worse.

4. Experiments on alignment accuracy
4.1. Database and alignment features

The database consists of a set of the Berlin sentences taken from
the German speech database The Kiel Corpus of Read Speech
(KCoRS) [4] sampled at 16 kHz. All the sentences have been
manually labeled by experts and in the alignment experiments
we assume these labels to be precise.

For the alignment, 13 MFCCs at 5 ms steps with an analysis
window of 25 ms were extracted. The first MFCC was omitted
and the other 12 MFCCs were normalized to zero mean.

4.2. Schemes included in comparison

There are many alternatives concerning the different constraints
for guiding the optimal path search with DTW. In addition, the
selection of the alignment features can affect the result as dis-
cussed in Sec. 3.1. However, according to our experiments, the
use of different local constraints (I, II, V and Itakura) [3] did not
make much difference on the alignment performance. Further-
more, we compared the use of only static features (12 MFCCs)
with the use of both static and dynamic features (12 MFCCs,
their delta and delta-delta coefficients). Incorporating dynamic
information had only minor effects on the results. Thus, local
constraint type II and 12 MFCCs without dynamic information
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are used.

Two different methods for the alignment of two utterances
were compared, namely linear interpolation and DTW algo-
rithms. Linear interpolation is a basic method that can be used
to lengthen or shorten any sequence. In Figure 1, an example
of linear interpolation is shown as well as a non-linear mapping
given by DTW. The alignment given by DTW varies depend-
ing on the selection of the constraints and the assumptions de-
scribed in Sec. 2.

The problem of having silent frames at the beginning and
end of sentences was discussed in 3.2.1. We used a simple voice
activity detection (VAD) technique based on a heuristic energy
threshold to find the silent frames at the beginning and at the
end of the sentences. This type of processing could not remove
all the breathing effects that sometimes appear at the beginning
or the end of the sentences for example with speaker k65. How-
ever, we wanted to examine whether this had an effect on the
voice conversion quality.

4.3. Results on alignment accuracy

As a preliminary step for assessing the alignment in VC, we
measured the misalignment given by linear interpolation and
different DTW approaches with respect to the manual labels.
The alignment analysis comprised 100 sentences spoken by 5
different speakers (2 female (k04, k06) and 3 male (k05, k61,
k65) speakers). Table 1 lists the results using different ap-
proaches to align two utterances. It shows the mean misalign-
ment in ms and the percentages of misalignments greater than
20 ms, 50 ms and 100 ms. Linear interpolation (D0) was tested
against different DTW approaches that differed firstly in terms
of the use of global constraints (GC) and forced end-point con-
straints (EC). In Table 1 n means that the particular constraint
was not used while y means it was in use. Regardless of the use
of EC, the DTW algorithm always assumed that the first feature
vector of the source and the target form a pair. In addition to
the two constraints, three types of DTW schemes were included
in the test. The first one (D1) had no silence removal. The
second one (D2) removed silent frames before path calculation
from the beginning and the end using a simple VAD based on an
energy threshold. Finally, the third case (D3) used the starting
and ending points given by the manually annotated labels. The
results are commented together with VC results in Sec. 5.4

Table 1: Misalignment caused by linear interpolation and dif-
ferent DTW approaches.

Algorithm Mean Misalignment [%]
GC EC [ms] > 20ms > 50ms > 100ms

D0 – – 132.4 91.7 79.9 56.4
D1 y y 11.0 11.1 3.6 1.7
D1 n n 63.1 12.1 5.7 4.8
D1 n y 11.0 11.1 3.6 1.7
D2 y y 19.4 19.3 10.9 5.4
D2 n n 107.4 30.2 24.3 19.8
D2 n y 19.4 19.3 10.9 5.4
D3 y y 7.2 5.0 1.0 0.6
D3 n n 7.2 5.1 0.9 0.5
D3 n y 7.2 5.0 1.0 0.6

5. Experiments on voice conversion
performance

5.1. Voice conversion framework

In the analysis and synthesis, a VC framework similar to the one
presented in [5] is used but now for wideband signals (sampling
rate is 16 kHz). The alignment was performed using several
different alignment schemes and separate GMMs were trained
using the different alignments. 12 MFCCs were applied as
alignment features. For GMM training the corresponding 16-
dimensional LSF vectors computed from the source and the tar-
get signals were used. The joint density of the aligned source
and target LSF vectors was modeled with a GMM as explained
in [2]. In conversion, all the other speech parameters (voicing
information and harmonic amplitudes for the residual spectrum,
pitch and energy) were handled in an identical way. In addi-
tion to the LSF modification, pitch level adjustment and residual
spectrum resampling was carried out.

The resulting voice conversion quality was evaluated for 9
different alignment schemes, as summarized in 2. All 9 align-
ment schemes were evaluated using objective metrics. The main
techniques (gmm1, gmm2, and gmm3) were also evaluated in a
listening test. Global constraints were not used and bad data
removal was used only with gmm2. Cases gmm8 and gmm9
correspond to a fictional situation where the source had silence
removed from the beginning and the end while the target did not
(gmm8) and vice versa (gmm9).

Speaker pairs k04–k05 (female-male) and k61–k05 (male-
male) were used in the evaluation. 70 sentences were used in
training of the GMM models.

Table 2: Alignment schemes tested with voice conversion.
gmm1 DTW goes through manual labels (”ideal” case)
gmm2 DTW + simple VAD, forced end, data removal
gmm3 Linear interpolation, endpoints from manual labels
gmm4 Linear interpolation, endpoints with simple VAD
gmm5 Same as gmm2 but no data removal
gmm6 DTW + simple VAD, no forced end
gmm7 DTW + no VAD, forced end
gmm8 DTW + silence removed from source, forced end
gmm9 DTW + silence removed from target, forced end

5.2. Listening test results

The VC performance achieved using the alignment given by
DTW and linear interpolation was evaluated in a listening test.
17 native German listeners were asked to judge the quality of
the transformed voice by doing a comparison category rating
(CCR). The listeners were asked to compare the voice conver-
sion quality of ten sentence pairs not included in the training
set from two speaker pairs in two different comparisons. DTW
with simple VAD and forced endpoint (gmm2) was compared
against the ”ideal” case that utilizes the manually annotated la-
bels (gmm1). In addition, gmm2 was compared with linear in-
terpolation (gmm3). Additional data removal was also applied
when training gmm2: unvoiced-voiced pairs were discarded as
well as pairs where at least one of the frames had an energy level
less than 10% of the mean energy. The results for the preference
test are shown in Table 3.
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Table 3: Results of the CCR test.
gmm1 – gmm2 gmm2 – gmm3

gmm1 gmm2 identical gmm2 gmm3 identical
better better better better

k04k05 10.0% 4.1% 85.9% 94.1% 1.2% 4.7%
k65k05 7.7% 4.1% 88.2% 98.8% 0.6% 0.6%
total 8.8% 4.1% 87.1% 96.5% 0.9% 2.6%

5.3. Objective voice conversion results

We also evaluated the voice conversion quality by measuring
spectral distortion (SD) between the converted target and real
target features. The alignment that goes through real labels was
assumed to be the correct one. We compared the LSFs of con-
verted target and real target features using mean spectral distor-
tion. The average SD in 30 test sentences not included in the
training set was calculated at two different bands (125-3100 Hz
and 0-8000Hz). The results are shown in Table 4. The number
of GMM mixtures was 8 in all cases except with gmm7 (4 mix-
tures). The selection of the number of mixtures was optimized
by selecting the number of mixtures resulting in the lowest SD.

5.4. Analysis of results

The results for subjective and objective voice conversion qual-
ity are very consistent with each other. The listeners could not
observe a clear difference between the samples generated using
the GMM based on the ideal alignment (gmm1) and the GMM
with a simple VAD and data removal (gmm2). Although gmm1
was preferred more often, the difference was not significant ac-
cording to a two-sample t-test (p=0.08 for k04–k05 and p=0.40
for k65–k05). Thus, the objective results indicate that gmm1
and gmm2 have roughly equal performance.

There was a clear difference between the performance of
gmm2 and gmm3. It is interesting to note that according to Ta-
ble 4, linear interpolation (gmm3) with k04–k05 seems to be
slightly more successful than with k61–k05 and this can be also
concluded from the objective results. This may be explained
with the fact that speaker k65 had a quite unique speaking style
compared to k04 and k05 and thus the global speaking rate as-
sumption was far from valid. Results in Table 1 also confirm
that errors can be rather high. If simple VAD was used in-
stead of correct starting and ending points for linear interpo-
lation (gmm4), the quality was degraded.

The use of data removal in gmm2 increased the quality
over the case where no data removal was employed (gmm5).
The use of a simple VAD did not automatically remove all
silence-speech pairs, and removing them improved the qual-
ity slightly, at least based on the objective results. Also some
voiced-unvoiced and silence-silence pairs were removed with
gmm2.

The performance of gmm8 and gmm9 was very poor. This
indicates that silent frames can be problematic for DTW and
this will degrade the performance significantly if they are not
taken into account. In contrast, the performance of gmm7 was
rather successful. In the training, some problems with covari-
ance matrices occurred. This is due to the high number of
silence-silence pairs in the training. Nevertheless, the perfor-
mance of DTW in that case seemed to be successful as could
be predicted also from the results shown in Table 1. There was
silence with both speakers and no strict constraints were given
which enabled DTW to find a decent path. However, in prac-
tice we should at least verify the existence of silence for each

source-target sentence (compare to the cases gmm8 and gmm9).
On the contrary, using VAD without forcing the endpoint per-
formed poorly (gmm6). This is also indicated by the results in
Table 1.

The spectral distance between the original source and the
target was also shown in the last row of Table 4. Since the target
is a male, it was expected that source k65 (male) was closer to
the target than source k04 (female). However, this applied only
to the frequency band 125-3200Hz and not for the whole speech
band.

The conversion error can also be expressed as mean-
squared error normalized to the difference between the source
and the target. For the ideal case (gmm1) this conversion error
was 0.35 and 0.46, for gmm2 0.36 and 0.47 and for gmm3 0.46
and 0.80, for the speaker pairs k04–k05 and k65–k05, respec-
tively.

It should also be noted that the database had its impact on
the results. The database used in the experiments did not con-
tain very long sentences or noise but there were some breathing
effects that can affect the results. Finally, it should be noted that
the alignment results are speaker-pair specific.

Table 4: Results for mean spectral distortion (dB).
k04–k05 k04–k05 k65–k05 k65–k05
125-3100Hz 0-8kHz 125-3100Hz 0-8kHz

gmm1 4.57 4.63 4.61 4.60
gmm2 4.65 4.69 4.66 4.65
gmm3 5.40 5.31 6.39 6.14
gmm4 6.34 6.15 7.22 6.80
gmm5 4.77 4.79 4.74 4.73
gmm6 5.50 5.35 4.81 4.79
gmm7 4.87 4.92 4.89 4.86
gmm8 11.38 10.39 12.38 11.25
gmm9 6.94 6.46 6.13 5.87
source 8.17 7.25 6.60 7.11

6. Conclusions
The experiments presented in this paper have verified that the
quality of GMM based voice conversion can be significantly en-
hanced by improving the alignment. However, the results also
indicate that a combination of DTW and a simple VAD can be
used for successful alignment in most cases. It also seems to be
beneficial to remove inappropriate data: frame pairs containing
clearly non-matching data and silence-silence pairs should be
removed from the training data. On a higher level, the main con-
clusion that can be drawn based on our study is that while the
main challenges in voice conversion are elsewhere, alignment
is still an important piece of the puzzle that should be taken into
account in the development of voice conversion systems.
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Abstract 

In practical applications of voice conversion, it is necessary to be able to cope with small 
amounts of speaker-specific training data. Consequently, most of the proposed voice 
conversion algorithms are based on probabilistic conversion functions. Recently, however, 
there has been increased interest in unit selection based approaches for voice conversion. It is 
evident that typical training sets are too small for enabling meaningful selection of large units 
such as diphones. But would it be possible to use smaller segments like frames for high quality 
results provided that the selection is handled very well? In this paper, we analyze the 
performance of the frame selection approach in ideal conditions. In the experiments, line 
spectral frequencies of test sentences are replaced with the best matches from different 
training sets. The results show that perceptually transparent quality cannot be achieved with 
realistic database sizes.  

1. Introduction 

In unit selection speech synthesis [1], speech is produced by selecting segments from a 
recorded  database and by concatenating them together. The database is large, typically 
consisting of several hours of speech, sometimes even tens of hours for providing an optimal 
unit sequence. The most popular unit sizes used in the selection are diphones and triphones. 
Voice conversion (VC) provides means for generating new text-to-speech (TTS) voices in a fast 
and easy manner using only small training sets. Voice conversion (or voice morphing) has 
inspired many researchers during the last two decades. The aim in VC is to convert speech 
from one speaker (source speaker) to sound like the speech from another particular speaker 
(target speaker).  

Most voice conversion systems proposed in the literature are based on applying a 
conversion scheme directly to the source speech or its parametric representation. Typical 
examples of conversion schemes include Gaussian mixture model (GMM) based conversion [2] 
and the use of codebooks [3, 4]. Another approach for voice conversion is the parametric 
adaptation in a hidden Markov model (HMM) based speech synthesis framework [5]. All of the 
approaches share the same fundamental requirement: they have to be able to cope with small 
amounts of speaker-specific training data. Due to this requirement, the unit selection idea 
cannot be directly used with conventional unit sizes in voice conversion because there simply is 
not enough data to select from. 

Speaker identity can be partially characterized using formant positions and bandwidths. 
Since it is very hard to handle the estimation of formants in a reliable and robust manner, the 
features most often used for conversion in VC systems are the line spectral frequencies (LSFs). 
LSFs are features that are derived through linear prediction (LP) where speech is modeled 
using a filter given by the LP coefficients and a residual. In most VC studies, the residuals are 
left unconverted, but there are strong arguments for converting residuals and some techniques 
have been proposed for this task for example in [6]. LSFs have also been used widely in 
speech coding, where typically large amounts of data from various speakers and languages is 
used for the training of LSF quantizers to obtain a good representation of the LSF space of all 
speakers. In speaker identification, high order LSFs have been reported to perform well as 
speaker identification features [7] and they have been used in many related studies (e.g. [8]). 
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Although LSFs seem to carry a lot of speech identity information, only a few personalized 
speech coding approaches have been proposed ([9, 10]).  

The ultimate goal in voice conversion is to convert the speaker identity as accurately as 
possible while maintaining high speech quality. However, these requirements have been found 
to be somewhat contradictory in practice; better identity conversion usually requires more 
signal modifications that may cause more distortions. The main problem of the current VC 
techniques is that they are not very successful in changing the identity. Good results are 
mainly obtained because of forced ABX tests; the speech sample may sound more like target 
speech than source speech but it does not mean that it would ultimately sound like speech of 
the target speaker. All of the current techniques, including the GMM based conversion and the 
use of codebooks, have inherent drawbacks from this point of view. 

Recently, Dutoit et al [11] proposed to first use a conventional GMM based approach to 
convert source LSFs to target LSFs and then search from the target speech database for the 
closest match to the converted LSFs in order to obtain more “realistic” target LSFs. The idea is 
attractive but can it help in achieving high quality conversion? In this study, we analyze if it is 
possible to select LSFs from a target database of a realistic size in such a manner that the 
quality of the converted speech would be very high or even indistinguishable from the target 
speech. The results of our experiments reveal how accurately LSFs could be chosen provided 
that the conversion is successful. Multiple speakers, different test sentence sets and different 
sizes of target databases are examined and the results are presented in the light of quality 
criteria used widely in speech coding.  

This paper is organized as follows. In Chapter 2, the basic properties of LSFs and the 
related distance metrics and quality criteria are discussed. The experiments and results 
demonstrating the idealized frame selection performance are described in Chapter 3. Chapter 4 
provides a short discussion on the results and Chapter 5 concludes the study.  

2. Linear prediction and line spectral frequencies 

Linear prediction is one of the basic techniques used in speech processing. This source-
filter model can be used for separating a speech signal into linear prediction coefficients that 
model the vocal tract contribution and into an excitation signal. More precisely, the excitation 
signal, also referred to as the residual signal, can be obtained through LP analysis filtering, 

∑
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−−=
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k
k ktxatxtr

1
)()()( , (1) 

where x(t) is the input speech signal and m is the order of the analysis filter A(z). The linear 
prediction coefficients {ak} are usually estimated in a frame-wise manner using either the 
autocorrelation or covariance methods. The autocorrelation method is widely used because it 
always ensures that the resulting filters are stable. 

For further processing, the linear prediction coefficients are often converted into the line 
spectral frequency representation. The fully reversible conversion can be carried out by first 
calculating the roots of the polynomials 

)()()( 1)1( −+−+= zAzzAzP m , 
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Then, the LSF representation is formed simply by the angular positions {ωk} of the 
complex roots in ascending order. The LSF representation is favored in different areas of 
speech processing for many reasons. For example, this representation offers advantageous 
properties from the viewpoint of quantization, interpolation and other processing, and it can 
guarantee filter stability.  
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The LSF representation has also been widely used in voice conversion. In selection based 

voice conversion, some distance measure is needed. The distance between two LSF vectors 
can be computed e.g. using weighted squared error with a diagonal weighting matrix, 
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The weights can be used for approximating the properties of human hearing. We use the 
weights given in [13] defined by  

( ) 6.0/2 sk ffj
kk eHcw π= , (4) 

where fk denotes the frequency of the kth LSF element, fs is the sampling frequency, and H(z) 
denotes the synthesis filter H(z) = 1/A(z). Furthermore, when dealing with 10-dimensional LSF 
vectors at a sampling frequency of 8 kHz, ck is set to one for all k except for c9 = 0.64 and 
c10 = 0.16, as proposed in [13]. 

In addition to the weighted squared error distance, another useful and popular metric for 
measuring the distance between two LP spectra is spectral distortion (SD). It is defined in dB 
as 
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where fl and fu denote the lower and upper frequency limits of the integration. A convenient 
property of this measure is the fact that there are generally accepted SD based criteria for 
perceptual spectral transparency, i.e. criteria that guarantee that two spectra are 
indistinguishable through listening. In [13], it was concluded that transparency is achieved if the 
following three criteria are met: 1) average SD is less than 1 dB, 2) there are no outlier frames 
having SD above 4 dB, and 3) less than 2% of frames have SD in the range from 2 to 4 dB. 

3. Experimental results 

To study the performance level achievable in voice conversion using the frame-based 
selection approach, we carried out experiments in idealized conditions. The main idea in these 
experiments was to focus only on the frame selection by making the assumption that other 
parts of voice conversion would perform perfectly. In practice, we achieved this perfect 
conversion using recorded sentences from the target speaker as "converted test sentences". 
Frame-based selection was then applied on these recorded test sentences by replacing the LSF 
vectors in the test sentences with the best matches found in a selection database. The 
selection database was formed using uncompressed LSF vectors estimated from the speech of 
the target speaker. We experimented with various selection database sizes but different 
sentences were always used in testing and training, making the experiment realistic apart from 
the above-mentioned assumption of idealized conditions. Thus, the results achieved in these 
experiments demonstrate the upper bound for the performance of frame-based selection in 
voice conversion.  

The experiments were carried out using the publicly available CMU Arctic database [12], 
a database of 1132 utterances spoken by 7 different speakers, 2 female and 2 male American 
English speakers, 1 Canadian English male, 1 Scottish English male, and 1 male speaker with 
Indian accent. The waveforms in the databases were downsampled to 8 kHz and 10th order LP 
analysis was performed at 10-ms intervals with overlapping 25-ms analysis frames, using the 
analysis module of the voice conversion system presented in [14]. Each analysis frame was 
windowed using a Hamming window and the LP coefficients were computed using the 
autocorrelation method.  
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Each speaker served as a reference speaker (speaker in test sentences) and as a 

selection database speaker for him/herself. In addition, each speaker was also used as a 
database speaker for the other speakers for comparison purposes. The number of sentences in 
the selection databases was varied (5, 10, 20, 50 and 100) by including new sentences in such 
a way that larger sets always also contained the sentences included in the smaller sets. All 80 
reference sentences and the database sentence sets were selected randomly but they were 
kept the same for all speaker combinations.  

The new LSFs replacing the LSFs in the original reference sentences were selected from 
the selection database using the weighted squared error distortion in Eq. (3) together with the 
weighting in Eq. (4). This scheme was used to obtain a reasonable computational complexity. 
The final results were evaluated using the spectral distortion formula in Eq. (5) since it 
provides the best comparison capabilities. Frames classified as silence were not included in the 
results. The average spectral distortion, measured in the range from 0 to 3.2 kHz, and the 
percentage of 2 and 4 dB outliers were calculated for two different categories: i) the reference 
speaker is the same as the database speaker (7 cases) and ii) the reference speaker is 
different than the database speaker (42 cases).  

The mean SD averaged over all speakers is shown in Figure 1 for categories i) (solid line) 
and ii) (dash-dotted line). The best and worst results in category i) are also shown (dashed 
lines). The dotted line represents the mean values of each reference speaker’s best results 
when selecting from another speaker’s database, i.e. the result with another speaker’s 
database that gave the lowest average spectral distortion values for the reference speaker. 
The mean percentage of 2 dB and 4 dB outliers is shown in Figure 2 and Figure 3, respectively. 

As can be seen from Figure 1, the best matching LSFs were on average far away from ideal 
transparent quality. There are large differences between the speakers but even the best results 
were not very good. The low number of 4 dB outliers with larger databases is encouraging, but the 
requirement of having less than 2% of 2 dB outliers is far from being fulfilled. As expected, using 
other speaker’s database was not as successful as using the speaker’s own database, indicating 
that there are strong speaker-dependencies in LSFs. An interesting observation not directly visible 
in the figures was that the best results with other speaker’s LSFs were always achieved when the 
LSFs were selected from a speaker with a matching gender. This is in line with the fact that the 
formant frequencies of female speakers are generally higher than the formant frequencies of male 
speakers due to the shorter vocal tract. 

We also examined whether the quality would be much better if the number of sentences 
in the database was significantly increased. A set of 250 sentences resulted in an average SD 
of 1.3 dB for category i) with 7% and 0.1% of 2 dB and 4 dB outliers, respectively. The best 
result among the speakers was 1.15 dB. In addition, we tested if the usage of the whole Arctic 
database (1132 sentences minus one reference sentence) as the selection database could 
result in low spectral distortion. The mean of averaged SD was 1.09 dB for all speakers and 
the best speaker obtained an average SD of 0.97 dB, measured using 20 different reference 
sentences. There were 2.2 % of 2 dB outliers and no 4 dB outliers. Using the whole database 
offers almost transparent quality. For the best other speaker, the average SD was 1.45 and the 
percentage of 2 dB outliers about 14%. Nevertheless, the database of this size would not be 
suitable for practical voice conversion. 

4. Discussion 

LSF selection from a single frame does not seem to provide very high spectral quality if 
the size of the database is realistic from the viewpoint of practical applications. In [11], the 
authors do mention that there is a relatively large non-parallel database available – which 
means in their case over 12 minutes of data. It can be considered as a very large database for 
voice conversion. This would equal to almost 250 sentences if a sentence is on average 3 
seconds long. The results presented in this paper show that transparent quality cannot be 
achieved even with this kind of relatively large database in idealized conditions. 
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Figure 1. Spectral distortions of LSF databases 

gathered from the same speaker or from other speakers. 

 
Figure 2. The mean percentage of 2 dB outliers for all speakers 

 
Figure 3. The mean percentage of 4 dB outliers for all speakers. 
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Even if there would be enough sentences to fulfill the requirement of transparent or 

otherwise very high quality, there is no target signal available during the conversion and thus 
the selections must be based on the source speaker’s sentence. This moves the realistically 
achievable quality even further away from the transparent level. Moreover, we have only 
considered LSFs in this study. In reality, there is also a need for transforming the residual. 
Residual selection techniques have been proposed to be based on the LSF vector and its 
corresponding residual. In [6], residual selection was analyzed and it was found that the 
selection of an optimal LSF sequence similarly as in unit selection can be more preferable than 
direct selection without considering neighboring frames. Nevertheless, the residual selection 
was ultimately based on the converted LSF vector, and it is reasonable to assume that residual 
selection will be even more challenging than LSF selection.  

5. Conclusions 

In this paper, we analyzed whether it is possible to select LSF vectors from a small 
database with very high quality in the scope of voice conversion. The CMU Arctic database 
with 7 speakers was used to test if a small set of sentences could act as an effective selection 
database in a voice conversion. We found that small database sizes commonly used in voice 
conversion are not adequate for representing the LSF space of a speaker and the achievable 
quality is far from transparent quality even in ideal conditions.  
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Abstract
Many voice conversion algorithms are based on frame-wise
mapping from source features into target features. This ignores
the inherent temporal continuity that is present in speech and
can degrade the subjective quality. In this paper, we propose to
optimize the speech feature sequence after a frame-based con-
version algorithm has been applied. In particular, we select the
sequence of speech features through the minimization of a cost
function that involves both the conversion error and the smooth-
ness of the sequence. The estimation problem is solved using
sequential Monte Carlo methods. Both subjective and objective
results show the effectiveness of the method.
Index Terms: voice conversion, maximum a posteriori, Viterbi
algorithm, smoothing, particle filter

1. Introduction
Voice conversion aims at modifying speech spoken by one
speaker (source) to give an impression that it was spoken by
another specific speaker (target). The voice conversion process
consists of two phases: training and conversion. In training, a
mapping model from source features to target features is created
based on training data from both speakers. In the conversion
phase, any unknown utterance from the source speaker can be
converted to sound like the target speaker. Speech is usually pa-
rameterized into excitation and spectral envelope for enabling
modifications and mapping functions on feature level.

Many voice conversion methods proposed in the literature
are based on frame-wise mapping of features. They do not
take into account the inherent correlation between consecutive
frames. In the case of multiple conversion functions, e.g. mul-
tivariate regression in a codebook based mapping [1], disconti-
nuities may occur in the boundaries of a conversion function
change. This can decrease the subjective quality. A widely
used approach, Gaussian mixture model (GMM) based map-
ping (e.g. [2]) is assumed to make transitions smoother. How-
ever, there is usually only a single GMM component that dom-
inates in each frame and the transitions from one frame do not
take place smoothly [3] leading to discontinuities. An approach
for solving the time-independency problem was proposed in [4]
through the introduction of maximum likelihood estimation of
spectral parameter trajectory based on GMMs. In [5], the con-
verted features were low-pass filtered after conducting the trans-
formation. Alternatively, the GMM posterior probabilities can
be smoothed before making the conversion [3].

In this paper, we introduce an approach that tries to balance
between the quality of the frame-based converted speech and
the natural continuity of the target speech features. In particu-
lar, we propose to select the sequence of speech features through
the minimization of a cost function that involves both the con-
version error and the smoothness of the sequence. We apply the

method for spectral features but it can be used with any type of
continuous features.

The proposed sequence optimization is carried out as a
post-processing step that follows a frame-based standard algo-
rithm. Here, we obtain conversion functions which are learned
from the data using partial least-squares regression models with
cross-validation, but the methodology introduced in this paper
is by no means restricted to this specific technique. Indeed, any
frame-by-frame conversion procedure can be applied prior to
the optimization.

Assuming that the different spectral features are indepen-
dent, we can improve each sequence of converted features in-
dividually. To be specific, the aim is to find a spectral feature
sequence that minimizes a cost function representing a trade-off
between frame-based conversion and continuity. This is typi-
cally a high-dimensional optimization problem that often can-
not be solved with classical techniques. Our approach is taken
from [6] and involves the transformation of the cost minimiza-
tion problem into one of maximum a posteriori (MAP) estima-
tion in a dynamical system. The estimation problem, in turn,
can be solved using sequential Monte Carlo methods.

The rest of the paper is organized as follows. Section 2
describes an algorithm for constructing the local regression ma-
trices for frame-based mapping. Section 3 is the core of the
paper and describes the class of cost functions we consider,
how the optimization problem is transformed into one of esti-
mation and the particle methods applied to approximate the op-
timal sequences of features. Some results are shown in Section
4, including both objective and subjective experiments to com-
pare the proposed method with two techniques that carry out
frame-based conversion using regression matrices but no post-
processing. Finally, Section 5 is devoted to the conclusions.

2. Cluster Partial Least Squares Regression
To avoid the problem of discontinuity, a global transformation
function can be used for mapping aligned source speech fea-
tures ssrc

i into target speech features s
tgt
i . However, this may

be ineffective. E.g., the optimal mapping functions for vowels,
where the effect of the vocal tract is clearly visible, are rather
different from the optimal mapping functions for fricatives.

We propose to use partial least squares (PLS) regression to
build local models for different clusters. The idea of PLS is to
create orthogonal score vectors (latent components) by maxi-
mizing the covariance between predictors and responses. The
only thing that needs to be chosen is the number of latent com-
ponents. If it is set to the number of predictors, PLS is the same
as multivariate regression. Otherwise the regression matrix is
of lower rank. There are many ways to extract the latent vec-
tors, e.g. the SIMPLS algorithm [7] that we use. The optimal
number of components can be chosen using cross-validation.
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The algorithm for cluster partial least squares (CPLS) can
be outlined as follows.
1. Initialize cluster memberships randomly or with k-
means for each datapoint for clusters Gi, where i =
1, 2 . . . , K .

2. Build local models βi for each cluster Gi using PLS re-
gression with hi latent components chosen from cross-
validation results.

3. Calculate the prediction error for each local model and
update the memberships as

s
src
t ∈ Gi if ‖s

tgt
t − βis

src
t ‖

2
< ‖s

tgt
t − βjs

src
t ‖

2

(1)
for all j = 1, 2, . . . K .

4. Calculate new cluster centers for each cluster Gi

μi =
1

|Gi|

X

ssrc
t
∈Gi

s
src
t (2)

5. Assign memberships according to the cluster centers as

s
src
t ∈ Gi if ‖s

src
t − μi‖

2
< ‖s

src
t − μj‖

2 (3)

for all j = 1, 2, . . . K . The objective function to mini-
mize is

J =

KX

i=1

X

ssrc
t
∈Gi

‖s
tgt
t − βis

src
t ‖

2 (4)

6. Repeat steps 2-5 until there is only a small decrease in
the objective function or the maximum number of itera-
tions is achieved.

3. Post-processing of converted speech
3.1. Optimization criterion

After converting the source speech sequence by frame-by-frame
transformation techniques e.g. as described in Section 2, there
is no guarantee of temporal continuity of the features. Tempo-
ral continuity is inherent in speech and our goal is to balance
between the quality of frame-based mapping and the continu-
ity of the features. To jointly handle these two figures of merit,
we build a cost function for a target spectral feature sequence
s1:T = {s1, . . . , sT } (note that we drop the tgt superscript in
the sequel), where the integer T is possibly large but finite. The
function up to time t has the form

Ct(s1:t) =
tX

i=1

α|si − yi|
p +

tX

i=2

γ|si − ρi(si−1)|
q
, (5)

where yi is the converted speech for the i-th frame, α and γ

are scale factors chosen to trade off between the quality of the
frame-by-frame conversion (first term) and continuity (second
term), ρi is a prediction function that yields the expected value
of si from si−1 and p, q > 0. Note that in this paper we focus
on the post-processing of each feature sequence separately, but
vectors of features can also be handled jointly in a similar way.

The post-processing of the converted frames y1:T is per-
formed by choosing a sequence ŝ1:T that minimizes the pro-
posed cost, i.e.,

ŝ1:T ∈ arg min
s1:T

CT (s1:T ). (6)

3.2. MAP estimation

Following [6] we transform the problem (6) into one ofMAP es-
timation in a dynamical system matched to the cost CT . Specif-
ically, consider the sequence of probability density functions
(pdf’s)

πt(s1:t|y1:t) ∝ exp {−Ct(s1:t)} , t = 1, 2, ..., T, (7)

where we are assuming the integrability of every
exp{−Ct(s1:t)}. Obviously, the minimization of Ct is
equivalent to the maximization of πt, i.e.,

arg min
s1:t

Ct(s1:t) = arg max
s1:t

πt(s1:t|y1:t).

Moreover, since the cost function is additive,

Ct(s1:t) = Ct−1(s1:t−1) + α|yt − st|
p + γ|st − ρt(st−1)|

q
,

(8)
it is straightforward to obtain a recursive decomposition of πt,
namely

πt(s1:t|y1:t) ∝ πt−1(s1:t−1|y1:t−1)λt(yt|st)τt(st|st−1),
(9)

where λt(yt|st) ∝ exp{−α|yt − st|
p
} plays the role of

the likelihood of st given the converted frame feature yt and
τt(st|st−1) ∝ exp{−γ|st− ρt(st−1)|

q
}, t ≥ 2, is a transition

density that determines the dynamics (time evolution) of the se-
quence st. The pair λt, τt, together with a uniform density
s1 ∼ U(S1) in some suitable interval S1 describes the dynamic
state-space model

st ∼ τt(st|st−1), yt ∼ λt(yt|st), t ≥ 2 (10)

which has

πt(s1:t|y1:t) ∝ λ1(y1|s1)τ1(s1)

tY

k=2

λk(yk|sk)τk(sk|sk−1)

(11)
as a posterior pdf of s1:t given y1:t.

Therefore, the desired sequence of features ŝ1:T ∈

arg maxs1:T
πT (s1:T |y1:T ) is actually a MAP point-estimate

for the system (11).

3.3. Implementation by particle approximations

As shown in [6], ŝ1:T can be approximated using sequential
Monte Carlo methods, either with a straightforward extension
of the standard particle filtering algorithm or with a combination
of the latter with the Viterbi algorithm, as originally proposed
in [8]. In both cases, almost sure convergence of the approxi-
mation is guaranteed.

3.4. Setting of parameters

The sequence s1:t in (5) is the target spectral feature sequence
that we want to estimate. The error variance of the state transi-
tion process (i.e., 0.5γ−1) is determined from the data. In addi-
tion, the state-space model is able to take into account the errors
made at the conversion (”measurement”) phase. The variance of
the conversion error can be determined for each cluster k sep-
arately and change the α in (5) to be dependent on the current
frame. In this paper, we used a common α for all the data and
determined the conversion error variance (i.e., 0.5α−1) jointly
for all clusters. The conversion error can be calculated using
PLS with cross-validation resulting more realistic values.
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The prediction function ρi in (5) describes the desired
change between frames. It is not known for the target speaker.
There are two main options. One is to predict it for the target
by building a model. In [4], target dynamics are modeled to-
gether with statistical features in GMM-based conversion. Our
approach is not restricted to GMMs that pose challenges related
to covariance matrices. Nevertheless, the models may be rather
difficult to obtain from a small amount of data, though, and
they tend to become rather averaged. Alternatively, we can as-
sume that the spectral feature dynamics are somewhat speaker-
independent and copy the dynamics from the source features.
In order to avoid too detailed dynamics, we decided to model
ρi(si−1) as si−1 added to an offset term. The offset term is
taken from the average dynamics of the source speech features
ssrc

i from P previous and P next frames of a current frame.
Hence, the prediction functions become

ρi(si−1) = si−1 +
1

2P + 1

t+PX

i=t−P

(ssrc
i − s

src
i−1) (12)

4. Experiments and results
Both objective and subjective results were carried out to eval-
uate the performance of the proposed method. We conducted
tests for two speaker pairs: male-to-female (M-F), and female-
to-female (F-F). The target speaker was the same in both.

The analysis-synthesis system STRAIGHT [9] was used
for extracting F0, aperiodicity and the spectral envelope at 5
ms steps. The spectral envelope was represented with 24-order
Mel-cepstrum coefficients (MCCs) resulting in 25 cepstral pa-
rameters. The first term describing the energy was not used and
in the sample generation it was copied from the source. Aperi-
odicity was calculated at five bands and it was converted using a
single regression matrix calculated with PLS regression where
both source MCCs and 5-band aperiodicity served as predic-
tors for 5-band aperiodicity of the target. F0 was converted by
transforming the mean and variance in a logarithmic scale and
voicing decisions were copied from the source speaker.

4.1. Objective results

For each speaker pair, conversion functions were built based on
30 sentences and 10 sentences were left for testing. MCCs were
aligned with dynamic time warping and some data pairs were
omitted based on heuristic energy threshold since they were
thought to be silent frames. The objective results were run four
times where each time 30 sentences were used for training and
10 for testing. Each of the 40 sentences served once as a test-
ing sentence. For the test data, the post-processing procedure
described in Section 3 was conducted for the whole sentence
but the objective results were calculated based on data that had
gone through a similar selection and alignment process as the
training data.

We compared the mapping algorithm described in Section
2 with and without MAP sequence estimation, referred to as
MAPCPLS and CPLS, respectively. The results are compared to
the usage of one global regression matrix (referred to as GRM)
and to the usage of full rank matrices (referred to as CRM) in-
stead of PLS for each cluster. The amount of training data used
in each training set was on average 16000 frames.

First we evaluated the performance without post-
processing. The effect of the number of clusters on spectral
distortion averaged for the two speaker pairs is shown in Figure
1 for CPLS (solid line), CRM (dashdotted line), and GRM
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Figure 1: Mean spectral distortion using a different number of
clusters.

Table 1: Mean spectral distortion in dB using 5, 10, 20, and 30
clusters.

5 10 20 30
GRM 5.25 dB 5.25 dB 5.25 dB 5.25 dB
CPLS 5.08 dB 5.08 dB 5.16 dB 5.22 dB

MAPCPLS 5.01 dB 4.99 dB 5.01 dB 5.04 dB

(dashed line). It seems that a rather low number of clusters
is a best choice. This can be explained by the fact that the
data is multidimensional and the cluster centers may become
overlapping in the case of many clusters. If the number of
clusters is high, there are big differences between the CPLS
method and the CRM method. For a low number of clusters
this effect is not clearly visible.

We evaluated how the number of particles affects the error
when using the MAPCPLS method. The MAPPLS method was
implemented using the particle filter combined with the Viterbi
algorithm [8]. The mean squared error (MSE) results for post-
processing the 1st, 4th, and 10th MCC are given in Figure 2 in
solid, dashed and dotted line, respectively. The MSE is calcu-
lated relative to the MSE in the case where post-processing is
not used (i.e. CPLS) shown as dashdotted line in Figure 2. The
results are obtained from the F-F case. As can be seen, the first
MCC achieved the highest relative improvement using post-
processing. Improvement is achieved also with other MCCs,
but differences are smaller. The computational complexity of
the Viterbi algorithm for one sentence of T frames, N particles
andM MCCs isO(N2TM). Figure 2 indicated that after hav-
ing 100 or more particles, the result is not improved anymore.
We can also use a different amount of particles for different
MCCs depending on their importance to decrease the computa-
tional complexity. In the experiment, we used Euclidean norm
in the cost function (p, q = 2) and P in (12) was set to 2. This
configuration was also used in the rest of the experiments.

Table 1 gives the results using 5, 10, 20, and 30 clusters.
The number of particles in this case was 100. Note that the
results are frame-based errors. Nevertheless, MAPCPLS obtains
the lowest average spectral distortion and can even compensate
well for the error when the number of clusters was too high (20
or 30 clusters) for the CPLS method.
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Figure 2: The effect of the number of particles on mean squared
error for the 1st, 4th, and 10th MCC relative to the mean
squared error of not using post-processing.

Table 2: Quality preference percentages from a listening test
with 95% confidence intervals.

Quality Methods MAPCPLS
preferred

M-F MAPCPLS vs. CPLS 82.5±8.5%
M-M MAPCPLS vs. CPLS 90.0±6.7%
In total MAPCPLS vs. CPLS 86.3±5.4%
M-F MAPCPLS vs. GRM 77.5±9.4%
M-M MAPCPLS vs. GRM 70.0±10.3%
In total MAPCPLS vs. GRM 73.8±6.9%

4.2. Subjective results

The objective quality is usually measured in frame-wise mea-
sures and does not indicate continuity between frames. Al-
though the objective results are promising, it is difficult to say
what kind of changes make the speech sound natural and what
kind of changes annoy.

We conducted a listening test to compare the quality of the
methods. The test consisted of quality comparisons between
the CPLS and the MAPCPLS method as well as between the
GRM and the MAPCPLS method. Aperiodicity and f0 were
transformed similarly in both sentences. Postfiltering of MCCs
was not employed. The number of clusters was 10. A few
examples are provided in http://www.cs.tut.fi/sgn/
arg/IS2010_VC/map.html.

Ten subjects participated in the listening test and compared
in total 32 randomly chosen sentence pairs in terms of voice
conversion quality. The results are shown in Table 2. Accord-
ing to the results, MAPCPLS was preferred the most. It was
clearly better than the CPLS where no post-processing was con-
ducted. The difference was not that clear when comparing it to
GRM that preserves the continuity rather well. In many papers
the quality of a new voice conversion algorithm is compared
against the conventional GMM methods. We suggest to com-
pare against the GRM method, since it is likely that GRM most
often beats the conventional GMMmethods that do not preserve
continuity [3].

5. Discussion and conclusions
We have proposed a novel post-processing method for voice
conversion features. It is based on minimizing a cost func-
tion that tries to balance between frame-by-frame mapping and
temporal continuity. The mapping method used in the paper
was based on locally built partial least squares regression matri-
ces. Nevertheless, the proposed post-processing procedure can
be used in conventional GMM-based conversion or with code-
books as well.

The cost function provides flexibility on balancing between
the converted sequence and the natural evolvement of target pa-
rameters. Further investigation on the scaling factors as well as
for the continuity model in the cost function can lead to better
performance. In addition to having cluster-specific conversion
error variance, the data could be divided into clusters in terms of
temporal predictability. In the experiments, we used Euclidean
norm and a linear model for continuity. In this case, it would
have been possible to use Kalman smoothing. However, we
chose the more general particle filtering approach to account
for the possibility of setting different norms and non-linear con-
tinuity model as well as the potentiality to extend the problem
into multiple dimensions.

A similar cost optimization procedure can be used in unit
selection speech synthesis to reduce the mismatch between the
boundary of consecutive units. The cost function is flexible and
more emphasis could be given on the observations in the middle
of a unit whereas near boundaries more weight could be given
to the continuity.
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