110,252 research outputs found

    Detecting and correcting errors in parallel object oriented systems

    Get PDF
    Our research concerns the development of an operational formalism for the in-source specification of parallel, object oriented systems. These specifications are used to enunciate the behavioural semantics of objects, as a means of enhancing their reliability. A review of object oriented languages concludes that the advance in language sophistication heralded by the object oriented paradigm has, so far, failed to produce a commensurate increase in software reliability. The lack of support in modern object oriented languages for the notion of 'valid object behaviour', as distinct from state and operations, undermines the potential power of the abstraction. Furthermore, it weakens the ability of such languages to detect behavioural problems, manifest at run-time. As a result, in-language facilities for the signalling and handling of undesirable program behaviours or states (for example, assertions) are still in their infancy. This is especially true of parallel systems, where the scope for subtle error is greater. The first goal of this work was to construct an operational model of a general purpose, parallel, object oriented system in order to ascertain the fundamental set of event classes that constitute its observable behaviour. Our model is built on the CSP process calculus and uses a subset of the Z notation to express some aspects of state. This alphabet was then used to construct a formalism designed to augment each object type description with the operational specification of an object's behaviour: Event Pattern Specifications (EPS). EPSs are a labeled list of acceptable object behaviours which form part of the definition of every type. The thesis includes a description of the design and implementation of EPSs as part of an exception handling mechanism for the parallel, object oriented language Solve. Using this implementation, we have established that the run-time checking of EPS specifications is feasible, albeit it with considerable overhead. Issues arising from this implementation are discussed and we describe the visualization of EPSs and their use in semantic browsing

    Explicit Representation of Exception Handling in the Development of Dependable Component-Based Systems

    Get PDF
    Exception handling is a structuring technique that facilitates the design of systems by encapsulating the process of error recovery. In this paper, we present a systematic approach for incorporating exceptional behaviour in the development of component-based software. The premise of our approach is that components alone do not provide the appropriate means to deal with exceptional behaviour in an effective manner. Hence the need to consider the notion of collaborations for capturing the interactive behaviour between components, when error recovery involves more than one component. The feasibility of the approach is demonstrated in terms of the case study of the mining control system

    Implementing atomic actions in Ada 95

    Get PDF
    Atomic actions are an important dynamic structuring technique that aid the construction of fault-tolerant concurrent systems. Although they were developed some years ago, none of the well-known commercially-available programming languages directly support their use. This paper summarizes software fault tolerance techniques for concurrent systems, evaluates the Ada 95 programming language from the perspective of its support for software fault tolerance, and shows how Ada 95 can be used to implement software fault tolerance techniques. In particular, it shows how packages, protected objects, requeue, exceptions, asynchronous transfer of control, tagged types, and controlled types can be used as building blocks from which to construct atomic actions with forward and backward error recovery, which are resilient to deserter tasks and task abortion

    A Testability Analysis Framework for Non-Functional Properties

    Full text link
    This paper presents background, the basic steps and an example for a testability analysis framework for non-functional properties

    An environment for object-oriented real-time system design

    Get PDF
    A concise object-oriented method for the development of real-time systems has been composed. Hardware components are modelled by (software) base objects; base objects are controlled by a hierarchy of coordinator objects, expressed in an organizational diagram. The behaviour of objects is specified by state transition diagrams. This approach considerably promotes requirements analysis and communication with the customer. A CASE tool has been constructed with diagram editors for graphical specifications of real-time systems. The tool can generate executable code for PLCs from these graphical specifications; reuse of previous results is supported by the repository function of the tool. Experiences attained in practice with method and tool show that time spent in system testing and installation is reduced considerabl

    Experience with statically-generated proxies for facilitating Java runtime specialisation

    Get PDF
    Issues pertaining to mechanisms which can be used to change the behaviour of Java classes at runtime are discussed. The proxy mechanism is compared to, and contrasted with other standard approaches to this problem. Some of the problems the proxy mechanism is subject to are expanded upon. The question of whether statically-developed proxies are a viable alternative to bytecode rewriting was investigated by means of the JavaCloak system, which uses statically-generated proxies to alter the runtime behaviour of externally-developed code. The issues addressed include ensuring the type safety, dealing with the self problem, object encapsulation, and issues of object identity and equality. Some performance figures are provided which demonstrate the load the JavaCloak proxy mechanism places on the system
    • …
    corecore