
CO YrecMn^
D etectin g and Errors

in Parallel O bject Oriented System s

Jan A. Purchase

A thesis subm itted in partia l fulfillment

of the requirem ents for the degree of

D o c to r o f P h ilo s o p h y

of the

U n iv e r s i ty o f L o n d o n

D epartm ent of C om puter Science

University College London

December 1991

ProQuest Number: 10608857

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10608857

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

D e t e c t i n g a n d L o c a t i n g E r r o r s in P a r a l l e l O b j e c t O r i e n t e d S y s t e m s 2

A bstract

O ur research concerns the development of an operational form alism for the in-source specifica­

tion of parallel, object oriented system s. These specifications are used to enunciate the behavioural

sem antics of objects, as a means of enhancing their reliability.

A review of object oriented languages concludes th a t the advance in language sophistication

heralded by the object oriented paradigm has, so far, failed to produce a com m ensurate increase

in softw are reliability. T he lack of support in m odern object oriented languages for the notion of

‘valid ob ject behaviour’, as d istinct from s ta te and operations, underm ines the po ten tia l power

of th e abstrac tion . Furtherm ore, it weakens the ability of such languages to detect behavioural

problem s, m anifest a t run-tim e. As a result, in-language facilities for the signalling and handling of

undesirable program behaviours or sta tes (for example, assertions) are still in their infancy. This

is especially tru e of parallel system s, where the scope for subtle error is greater.

T he first goal of th is work was to construct an operational model of a general purpose, parallel,

ob jec t oriented system in order to ascertain the fundam ental set of event classes th a t constitu te

its observable behaviour. O ur model is built on the CSP process calculus and uses a subset of

the Z no ta tion to express some aspects of s ta te . This alphabet was then used to construct a

form alism designed to augm ent each object type description w ith the operational specification of

an o b jec t’s behaviour: Event P a tte rn Specifications (EPS). EPSs are a labeled list of acceptable

ob jec t behaviours which form p art of the definition of every type. The thesis includes a description

of the design and im plem entation of EPSs as part of an exception handling m echanism for the

parallel, ob ject oriented language Solve. Using this im plem entation, we have established th a t the

run-tim e checking of EPS specifications is feasible, albeit it w ith considerable overhead. Issues

arising from this im plem entation are discussed and we describe the visualization of E PSs and their

use in sem antic browsing.

D e t e c t i n g a n d L o c a t i n g E r r o r s in P a r a l l e l O b j e c t O r i e n t e d S y s t e m s 3

Acknowledgem ents

I extend my heartfelt thanks to my supervisor, Dr Russel W inder, whose stra teg ic advice has

guided me through the tricks and traps of academic apprenticeship and whose experience has

helped to channel the exuberance of a tyro into this and other works. W ithou t his help and

confidence, much of th is work would have been impossible.

G ra titu d e is due also, in no small measure, to (in alphabetical order): Peter B ates, Steve Cook,

Siam ak M asnavi, O scar N ierstratz and Peter Wegner, who have read earlier d rafts o f th is and

related works and offered much useful criticism.

I would like to than k the Science and Engineering Research Council for providing the g ran t

th a t m ade this research possible.

I dedicate this thesis to my parents, Alex and Priscilla Purchase, and my long suffering girl­

friend, D iane Leung, for em otional and financial support in abundance.

C on ten ts

A b s t r a c t .. 2

A ck n o w led g em en ts ...T 3

1 In trod u ction 15

1.1 T he P ro b le m s .. 15

1.2 T h e s i s .. 17

1.3 S tructu re ... 18

2 D e tec tin g and L ocating C om puter Program Errors 20

2.1 In tro d u c tio n ... ^ 20

2.1.1 Bugs: Cause and E r a d ic a t io n .. 20

2.2 P re v e n tio n ... 21

2.2.1 T he Expensive Inevitability of E r r o r .. 21

2.3 P re -e m p tio n .. 22

2.3.1 Exception H a n d l in g ... 22

2.3.2 T he Case for Exception H an d lin g ... 23

2.3.3 A lternative Uses for Exception H an d lin g ... 24

2.3.4 A Framework for Exception H a n d l in g ... 25

4

D e t e c t i n g a n d L o c a t i n g E r r o r s in P a r a l l e l O b j e c t O r i e n t e d S y s t e m s 5

2.3.5 Placem ent and Language D e s ig n .. 26

2.3.6 D e te c t io n ... 28

2.3.7 L in k a g e .. 30

2.3.8 H andler D e f in it io n ... 31

2.3.9 General Problem s with Exception Handling M ech an ism s.................................. 33

2.3.10 Problem s Introduced by P a r a l le l i s m .. 34

2.3.11 Problem s Introduced by O bject O r ie n ta t io n .. 35

2.4 C u r e .. ^ 36

2.4.1 Debugging: A rt or S c ie n c e ? .. 36

2.4.2 Debugging and Testing ... 37

2.4.3 M ethods and M e a n s .. 37

2.4.4 T he Case for Debugging Tools .. 39

2.4.5 Design R equirem ents of Debugging T o o l s ... 40

2.4.6 A utom atic and M anual Debugging T o o ls ... 41

2.4.7 T he Universal D e b u g g e r ... 41

2.4.8 T he Source M o d e l .. 43

2.4.9 S ta te Vector M o d e l.. 44

2.4.10 Behavioural M o d e l .. 47

2.4.11 Event Based Models of Behaviour ... 51

2.4.12 H um an-C om puter In te r fa c e ... 53

2.4.13 Problem s Introduced by P a r a l le l i s m .. 56

2.4.14 Problem s Introduced by O bject O r ie n ta tio n .. 64

2.5 C o n c lu s io n s ... 65

D e t e c t i n g a n d L o c a t i n g E r r o r s in P a r a l l e l O b j e c t O r i e n t e d S y s t e m s 6

3 A n O perational M odel o f O bject O riented System s 67

3.1 In tro d u c tio n .. 67

3.2 Design of the M o d e l ... 68

3.2.1 U s a g e .. 68

3.2.2 Choosing a Process Calculus .. 69

3.2.3 Requirem ents of Parallel O bject O riented S y s te m s .. 70

3.3 T he M odel ... 70

3.3.1 General S tructure .. 70

3.3.2 O bject C reation and D e s tru c tio n ... 74

3.3.3 O bject Exterior: The Com m unications I n t e r f a c e .. 75

3.3.4 I n h e r i t a n c e .. 81

3.3.5 In tra-O bject B e h a v io u r .. 82

3.3.6 O bject Interior: The Com posite S t a t e ... 84

3.3.7 D ata E n c a p s u la t io n ... 86

3.4 Fundam ental A lp h a b e t... 87

3.5 A pplications of th is M o d e l.. 89

3.6 L im i ta t io n s .. 90

3.7 C o n c lu s io n s ... 90

4 T h e S pecification o f Parallel B ehaviours 92

4.1 In tro d u c tio n ... 92

4.2 T he Benefits of O perational Specification ... 92

4.3 Design R e q u ire m e n ts ... 93

4.3.1 Com m on Design R e q u ire m e n ts .. 93

D e t e c t i n g a n d L o c a t i n g E r r o r s in P a r a l l e l O b j e c t O r i e n t e d S y s t e m s 7

4.3.2 Comprehensive Specification M e d i u m ... 94

4.3.3 Partia l S p e c if ic a tio n ... 95

4.3.4 S p ec ia liza tio n ... 96

4.3.5 R e a d a b i l i ty .. 96

4.3.6 R e a c tiv i ty .. 97

4.3.7 R e u s e ... 97

4.3.8 Debugging Design R e q u ire m e n ts ... 98

4.3.9 Exception Signaller Design R e q u ire m e n ts .. 99

4.4 T he Design of Event P a tte rn S p e c if ic a tio n s ... 100

4.4.1 Prim itive A spects of B e h a v io u r ... 100

4.4.2 Overview of EPS Semantics and S y n t a x ... 101

4.4.3 T y p e s .. 102

4.4.4 N a m e ... 104

4.4.5 T he Relevant Trace ... 105

4.4.6 T he Specification T e m p la te ... 106

4.4.7 A dditional C o n s tra in ts ... ~ 109

4.4.8 Action C la u s e s ... 112

4.4.9 Persistence and Predefined E v e n t s .. 115

4.5 V is u a l iz a t io n .. 115

4.5.1 G raphical V isualization of Behaviour and Behavioural Specifications 116

4.5.2 Visual D e l t a s ... 119

4.6 EPS: Debugging versus In-Language U s e ... 119

4.7 D isc u ss io n ... 120

4.7.1 A d v a n ta g e s .. 120

4.7.2 L im i ta t io n s .. 121

D e t e c t i n g a n d L o c a t i n g E r r o r s in P a r a l l e l O b j e c t O r i e n t e d S y s t e m s 8

5 E xcep tion H andling in Parallel O bject O riented Languages 123

5.1 In tro d u c tio n .. 123

5.2 Design Requirem ents of Exception Handling S y s te m s .. 123

5.2.1 P u r p o s e ... 123

5.2.2 Design C o n s id e ra tio n s ... 124

5.3 T he Solve L a n g u a g e .. 126

5.3.1 Goals and C h a ra c te r is t ic s .. 126

5.3.2 Solve O b je c t s .. 126

5.3.3 Solve Type O bjects .. 128

5.3.4 T he A ddition of E P S .. 129

5.4 Exception H andling in Solve Using E P S s ... 130

5.4.1 Philosophy ... 130

5.4.2 P la c e m e n t... 131

5.4.3 D e te c t io n .. 134

5.4.4 L in k a g e ... 135

5.4.5 Handling ... 136

5.4.6 P a ra m e te r iz a tio n ... 142

5.5 S y n ta x .. 142

5.5.1 S ignature Signal Definitions and D e c la ra tio n s ... 143

5.5.2 Im plem entation S i g n a l s .. 144

5.5.3 L in k s e c tio n .. 145

5.5.4 H a n d le rs e c tio n ... 145

5.5.5 D ispatcher P r im i t i v e s ... 146

5.5.6 E x a m p le ... 146

5.6 L im i ta t io n s .. 146

D e t e c t i n g a n d L o c a t i n g E r r o r s in P a r a l l e l O b j e c t O r i e n t e d S y s t e m s 9

6 Im p lem entin g An E P S-B ased E xception H andling M echanism for Solve 148

6.1 In tro d u c tio n .. 148

6.2 T he S tandard Solve C o m p ile r .. 149

6.3 L a n g u a g e ... 153

6.3.1 S y n ta x .. 153

6.3.2 Exception Signaller Deployment and D e te c t io n ... 153

6.3.3 L in k a g e ... 155

6.3.4 Exception H a n d l in g ... 156

6.4 Im plem enting E P S .. 157

6.4.1 Instrum entation .. 157

• 6.4.2 Parsing the Event S t r e a m ... 160

6.4.3 Unifying C onstrained Shuffle A u t o m a t a .. 162

6.4.4 Im plem enting U C S A s .. 166

6.5 Im plem entation S t a t u s ... 166

6.6 L im i ta t io n s .. 167

7 R e la ted W ork 169

7.1 O bject O riented M o d e ls ... 169

7.1.1 O perational Models ... 169

7.1.2 N on-O perational M o d e ls .. 170

7.2 Behavioural Specification and R e co g n itio n .. 171

7.2.1 P a t h r u l e s .. 171

7.2.2 E B B A ... 172

7.2.3 M u T E A M ... 173

D e t e c t i n g a n d L o c a t i n g E r r o r s in P a r a l l e l O b j e c t O r i e n t e d S y s t e m s 10

7.2.4 D E B L .. 173

7.2.5 Executable System Specification for J S D ... 174

7.3 O bject O riented Behavioural S p ec ifica tio n ... 174

7.3.1 P R O C O L ... 175

7.3.2 Specification for S u b ty p in g ... 175

7.3.3 D ata P a th D e b u g g in g ... 176

7.3.4 Specifying O bject Interactions .. 177

7.3.5 Behavioural I n h e r i ta n c e ... 178

7.4 Exception Handling Systems ... 179

7.4.1 O bjectW orks Sm alltalk ... 179

7.4.2 E iffe l... 180

7.4.3 B E T A .. 181

7.4.4 G u i d e .. 183

7.5 S u m m a r y ... 184

8 C onclusions 185

8.1 S u m m a r y .. ^ 185

8.2 C o n tr ib u tio n s .. 186

8.2.1 Problem s Revealed by the S u rv ey ... 187

8.2.2 Formal M o d e l.. 187

8.2.3 Behavioural S p e c if ic a t io n .. 188

8.2.4 Exception Handling M echan ism .. 189

8.3 L im i ta t io n s ... 189

8.3.1 The O bject M o d e l .. 189

8.3.2 T he EPS F o rm a lis m .. 190

8.3.3 Exception Handling in Solve ... 190

8.4 Future Work .. 191

D e t e c t in g a n d L o c a t in g E r r o r s in P a r a l l e l O b j e c t O r ie n t e d S y s t e m s 11

A G lossary 194

B U sa g e o f M athem atica l Sym bols 196

C Solve E xam ple 198

B ib liography 201

L ist o f F igures

2.1 Phases of Exception H a n d lin g .. 25

2.2 An A bstrac t Model of a M anual Debugging T o o l .. 7".................. 42

2.3 R elationship of Behavioural Models to Debugging T o o l s .. 49

3.1 Model Overview ... 71

3.2 Instance O bject S t r u c tu r e .. 72

3.3 O bject Com m unication I n te r f a c e ... 75

3.4 T he M ailbox Buffer’s Three Channel S p l i t .. 76

3.5 O bject Subordination H iera rchy .. 78

3.6 A M ethod’s View of a Synchronous Com m unication ... 79

3.7 T he System ’s view of a Synchronous C o m m u n ica tio n ... 80

3.8 STA TE-M ETH O D interprocess c o m m u n ic a tio n .. 85

4.1 D istribu tion of Event S tream to EPS P a r s e r s ... 109

4.2 G raphical V isualization of Event A lp h a b e t................................. 117

4.3 G raphical Representation of PushM oniior and subsend Using Iconic L igatures . . . 117

4.4 G raphical V isualization of the EPS Early Large W ith d ra w a l... 118

4.5 G raphical Visualization of P a r a l le l i s m ... 118

12

D e t e c t i n g a n d L o c a t i n g E r r o r s in P a r a l l e l O b j e c t O r i e n t e d S y s t e m s 13

5.1 A Solve O bject a t R u n - T im e .. 127

5.2 T he Relationship between O bjects, Variables and Value in S o l v e 127

5.3 T he Solve T ype Inheritance Hierarchy and Type T y p e .. 128

5.4 Solve T ype O b je c ts .. 129

5.5 Explicit P ropagation Showing the Changing A bstraction of Exception Names . . . 140

6.1 T he Solve Compiler .. 149

6.2 Node S tructu re of Solve T y p e ... 150

6.3 Parse Tree Node Type H ie ra rc h y .. 151

6.4 Solve Exam ple P r o g r a m ... 152

6.5 Node In terp re ta tion of Program “Simple” ... 152

6.6 New Node S tructure of Solve T y p e ... 153

6.7 New Parse Tree Node Type H ie r a r c h y .. 154

6.8 C ontrol Flow Model Im p le m e n ta tio n .. 158

6.9 Instrum enta tion of the Solve Parse Tree N o d e s ... 160

6.10 A u tom ata generated for EPS ‘Exam ple’ ... 165

List o f Tables

2.1 C haracteristics of Language Based Exception Handling S y s te m s 29

2.2 Source Model Support in M odern Debuggers .. 43

2.3 S ta te Vector Model Support in M odern D e b u g g e rs .. 45

2.4 Behavioural Model Support in M odern Debuggers .. 48

2.5 Event-based Specification in M odern D eb u g g ers ... 52

2.6 T he User Interface Facilities of M odern D e b u g g e rs .. 54

2.7 D ependencies of M odern Debuggers .. 61

3.1 Fundam ental Event L i s t ... 87

3.2 Refined Fundam ental Event L i s t .. 88

4.1 Functions Used to G enerate Relevant T ra c e s .. 105

4.2 P a tte rn O perators Used to G enerate Specifications T e m p la te s .. 107

4.3 EPS C onstrain t F u n c tio n s .. 110

4.4 Predefined EPS Fragm ents ... 116

5.1 Inter-usage of Signaller Type and Control M o d e l .. 141

14

C hapter 1

In tro d u ctio n

1.1 T he Problem s

T he tools and techniques used to detect and locate program ‘bugs’ have not evolved a t a ra te com­

m ensurate w ith th a t of program m ing language sophistication. Consequently, they are becom ing

increasingly inadequate. Furtherm ore, these tools have insufficient form ality and rigour to m eet

the challenges posed by m odern program m ing paradigms.

In com puter science, a ‘bug’ is a defect in a program th a t causes it to deviate from the expected

or desired behaviour. Bugs are a result of hum an error and, as such, are an inevitable consequence

of hum an involvement in program m ing. T hey may be detected and located using a range of

techniques: b o th pre-em ptive, e.g. assertions, exception handling and testing; and curative, i.e.

debugging. A t run-tim e, the baneful results of (previously undiscovered) bugs can be m itiga ted by

a lgorithm redundancy or exception handling, until the root cause can be corrected. All m ethods of

detecting and locating bugs concentrate on establishing the existence and the n a tu re of behavioural

deviations. The techniques used to do this vary with the program m ing paradigm in use.

High level languages have developed enormously since the emergence of the first com m ercially

viable exam ples, e.g. FORTRAN and COBOL, in the mid 1960s. These, som ew hat m onolithic,

designs revealed a need for greater support of procedure based abstraction , leading to a m ultitude

of languages supporting procedure oriented (procedural) program m ing, including: FO RTRA N 77,

ALGOL, P L /1 , PASCAL, and C. The procedure oriented (PO) paradigm views program s as collec­

tions o f in teracting functions and procedures. The nesting of procedural invocations is the principal

s tru c tu rin g m echanism and design methodologies are based on functional decom position. In PO

program m ing the em phasis is on the verbs of the problem space, although the aforem entioned

15

1: I n t r o d u c t i o n 16

languages support d a ta abstraction to some extent, d a ta structu res are passive and typically un­

encapsulated . The first language to fully support abstract d a ta types (A D Ts), SIM ULA, began

an evolution in the form of program m ing languages and design techniques, in which th e em phasis

passed from conceptual verbs to nouns. ADTs, encapsulated d a ta struc tu res w ith associated sets

of procedures having exclusive access to this d a ta , were originally defined as special case singletons,

e.g. as in M odula2— in which each defined A D T represents one individual instance of th e entity.

T he trend continued with object based program m ing (O B P), as supported by such languages as

CLU and Ada, in which A D T objects are indistinguishable from the prim itive d a ta types offered

by the language— i.e. they are first class d a ta types. These ADTs can support m ultip le instances

w ithou t a type m anager, are fully encapsulated and separate the specifications of a type (its obli­

gations to its clients) from its internal definition. It was not until the inception of Sm alltalk , th a t

tru e object oriented program m ing (O O P) began. Sm alltalk combines the benefits of O B P w ith:

inheritance, a hierarchical classification and composition mechanism th a t allows factorization of

ob ject com m onality and object reuse; and invocation by dynam ically bound message passing, th a t

p rom otes full polym orphism and heterogeneous d a ta structures. A lthough these individual fea­

tures were not unique to Sm alltalk a t the tim e of its creation, they were combined in a unique

way to form the object oriented com putational model. Since then o ther ob ject orien ted languages

have em erged, e.g. CLOS, Eiffel, C + + , which have perpetuated the object oriented com putational

m odel th rough the provision of first class objects, inheritance and dynam ically bound message

passing [Weg90, PW 91a].

T h is evolution of program m ing language design, or paradigm shift, has been characterized

by increasing abstraction (and levels of abstraction), locality1, po ten tia l for reuse, user im posed

s tru c tu re and reliability of program s. It has produced m any new concepts which are changing the

way in which program m ers and designers work, and the types of m istake they make. U nfortunately,

the functionality of debugging support system s like exception handling m echanism s and debugging

tools are not keeping pace w ith this evolution. They have no new functionality to com bat the new

types of bugs from which object oriented applications are suffering [PW91a].

T he failure of debugging tools to keep pace with developments in language design is no t a new

phenom enon. Over the last two decades, program m ing support tools like debuggers have seriously

lagged developm ents in system s and language design [Mod79, MPW 89], the vast m ajo rity of tools

owing m ore to the assem bly language debuggers of the mid 1960’s th an to any serious s tu d y of m od­

ern debugging requirem ents (e.g., [Mod79, BW83, BS73, vT74, Ves86, GD74]). Debugging tools

seek to convey understanding of program behaviour—bu t they routinely fail to su pport activities

shown to be central to the task of debugging (see Section 2.4): the conveyance of behaviour a t

1 T h e iso la tion of im plem en tation deta ils to avoid im plicit dependencies betw een o b jects .

1: I n t r o d u c t i o n 17

m ultiple levels of abstraction, defined by the paradigm , the language and the user; the com parison

of ac tual and intended behaviour; and the form ulation and testing of bug hypotheses. T h is failure

has been a m ajor shortcom ing in the past; its continuation could be disastrous in th e light of the

new problem s presented by parallel object oriented systems.

T h is problem is exacerbated by the introduction of parallel and d istribu ted object orien ted lan­

guages. T he object oriented model is seen as a ‘n a tu ra l’ means of harnessing parallelism , because

of the analogy between processes and objects (and message passing and inter-process com m uni­

cation). Such languages and system s introduce the problems of asynchrony, non-determ inism ,

latency of com m unication, deadlock and starvation [GKY89]. Furtherm ore, the in troduction of

parallelism may in teract with the object oriented model [NP90] producing more problem s. W hile

a considerable body of research has considered the problems of debugging parallel system s, few have

addressed the problem s of debugging and exception handling in parallel object oriented system s.

Exception handling tools have also developed little since the ir inception w ith the sem inal work

of Goodenough [Goo75] in 1975. Although a great variety of m echanisms have flourished in various

languages, most adhere strongly to the them es raised in G oodenough’s work— m any do no t even

im plem ent this completely [PA90]. One genuine breakthrough was the coalescence of exception

handling and s ta te based assertion proposed by Meyer in the object oriented Eiffel language [Mey88,

Mey89]. Despite the increasing use of such mechanisms in sequential ob ject oriented languages

[Don88], and recent cases of those for d istributed system s [Lac91]— no research, to our knowledge,

has established th a t s ta te based assertion is the optim al m eans of detecting exceptions, or has

exam ined alternative techniques. Furtherm ore, little work has been done to investigate th e effects

of parallelism on exception handling.

How can we detect behavioural deviations (bugs) in parallel ob ject oriented system s and gather

inform ation to assist in their location, while taking into account the unique features possessed by

these system s? How may we indicate to a debugger or exception handling system , w ith some

rigour, w hat behaviours are considered correct? How can they check th a t these, and only these,

behaviours occur? Is it feasible to annotate system s w ith these specifications to make perm anen t

the association between specification and target object and enhance the users’s understand ing of

objects? In short, how can we formalize the detection of bugs in parallel, object oriented system s?

1.2 Thesis

T his work is m otivated by a need to establish a m ethod of improving the power and form ality of bug

detection and location techniques for parallel, object oriented system s. T he crux of bug detection

1: In t r o d u c t i o n 18

and location is a knowledge of intended behaviour, actual behaviour and how they differ. A

general purpose m edium for specifying and describing behaviour in parallel ob ject oriented system s

is, therefore, critically im portan t. A m edium is required, with necessary and sufficient facilities

to describe all possible behaviours and account for all of the special features of th a t paradigm .

Furtherm ore, some m eans of comparing such specifications with actual behaviour and analyzing

the ex ten t to which they are satisfied is needed. T he specification m edium should be com plete,

unam biguous and equally applicable in exception handling and debugging contexts. In addition,

the feasibility of the technique should be dem onstrated though some form of im plem entation .

We assert th a t it is feasible to use unifying, operational specifications as a m eans of enhancing

the power and form ality of bug detection and location. Such a m edium can be used to define

the observational norm for a given application, in both debugging tools and exeeption handling

m echanism s. T he degree of adherence to this norm can then be used to locate bugs, o r d ic ta te

any corrective action required to m itigate the error at run-tim e. Furtherm ore, we subm it th a t the

form al m odeling of a parallel, object oriented system, needed to form ulate such a m edium , is a

valuable exercise in itself.

1.3 Structure

In each of the chapters th a t follow, the points previously presented are sub stan tia ted w ith evidence

and conclusions are draw n which establish the m otivation and background for the following chapter.

T his docum ent, however, does not necessarily reflect the chronological order in which th e work was

conducted, ra th e r it indicates the underlying flow of reasoning.

In the survey (C hap ter 2) we a ttem p t to taxonomize two types of tools used to detec t bugs: de­

bugging tools and exception handling mechanisms. We illustrate: the variety of the available tools;

the dilem m as facing their designers; the commonality between the tools; and the ir deficiencies—

especially those which they share. Having established a need for g reater rigour in bo th types of

tools, we develop a formal, event-based, observational model of a parallel ob ject oriented system

in C h ap te r 3. T h is chapter helps to explain the unique features of such system s and to define

and rela te the term inology used throughout the work. T his leads to the first application o f the

m odel— the basis o f an operational formalism for the behavioural specification of parallel, ob ject

oriented system s. T his formalism, event p a tte rn specification (E PS), is detailed in C h ap te r 4.

T he design of the EPS formalism is presented after a careful discussion of its design goals

and applications. Two applications for EPS are considered: a m eans of behavioural hypothesis

1: In t r o d u c t i o n 19

generation in a debugging tool; and a means of supporting behavioural assertions in an exception

handling mechanism. T he design and im plem entation of the la tte r is presented in C hap ters 5

and 6 respectively. In these chapters, particular emphasis is placed on the design of an exception

handling system w ith m inim al im pact on the underlying language and the separation of p a tte rn

m atching and constra in t proving activity in the im plem entation. In C hapter 7, we consider re la ted

work in the fields of object oriented formal models, specification m edia and exception handling

techniques. We conclude, in chapter 8, w ith a sum m ary of our activities, findings and contribu­

tions. Furtherm ore, we analyze the lim itations of our work and present some directions for fu rther

research.

Various typographical conventions are used in this docum ent in an a ttem p t to enhance its

clarity. All conventional tex t is set in the Roman typeface. Single quotes, ° , are-used to delim it

inform al or unusual usage of a word or symbol, whereas double quotes, signify quotations

from w ritten or spoken works. Use of the b o ld typeface denotes the title of an item in a bullet

list. T he slanted typeface indicates the use of uncommon terminology, or a te rm coined by the

au thor. In the la tte r case, the glossary appendix (A ppendix A) holds a full definition of the term

and its first usage is accom panied by a brief explanation. By com parison, the italic typeface

depicts em phasis or m athem atical entities. Finally, the t y p e s c r i p t and sans-serif fonts are used

to represent program m ing language keywords and variable types (for which an instance of the type

m ust be su b stitu ted) respectively.

C hapter 2

D e te c tin g and L ocating
C om p u ter P rogram Errors

2.1 Introduction

2.1.1 Bugs: Cause and Eradication

As it perta in s to com puter science, a bug is a defect in a program ’s specification, design or imple­

m enta tion th a t causes the la tte r to deviate from the expected or desired behaviour when executed.

T his deviation causes the program to enter an erroneous s ta te and, eventually, to exhib it this error

externally— i.e. to fail. ‘Bug’ is a som ewhat unsatisfactory term , lending a degree o f autonom y

and anthropom orphism to such defects which is inappropriate and suggesting evasion of responsi­

bility on the p a rt of the program m ers [Thi85]. However, by v irtue of its continued acceptance by

the com puter science community, we adopt it here. All bugs are m anifestations of hum an error.

Specifically, they are caused by the “hum an inability to perform and com m unicate w ith perfec­

tion” [Deu79]. Consequently, bugs in com puter program s are an inevitable consequence of hum an

involvem ent in program m ing [Kel88, vT74]. They arise because of hum an lim itations, particu larly

in com m unication, perception, reasoning and memory [Mod79, CBM 90, Sha82, Sen83]. T he tech­

niques used to com bat bugs and to m itigate their consequences can be broadly classified into three

types:

♦ P r e v e n t io n , those which a ttem p t to minimize the probability o f in troducing bugs, e.g.

language design, formal verification, rigorous design procedures, au tom atic program m ing

and the use of executable specification languages;

20

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 21

• P r e - e m p t io n , those which maximize the early detection of bugs in the executable, e.g.

exceptions, assertions, and testing. The former may also allow recovery from bugs or o ther

run-tim e anomalies, e.g. algorithm redundancy; and

• C u re , locating and correcting bugs, once their presence has been determ ined by pre-em ption

or th rough norm al usage—debugging.

T he justification for research into the la tte r two techniques, given the progress m ade concerning

the first, is explained in this chapter. We present a survey of the available tools for im perative

system s which support these la tte r techniques and discuss the problem s they face. We consider

especially the additional problems introduced by the usage of such techniques in parallel, object

oriented environm ents. ^

2.2 Prevention

2.2.1 The Expensive Inevitability of Error

It is tem pting to assert th a t, of the three techniques introduced in the previous section, prevention

alone m erits research because once a foolproof preventive technique is found, the need for others

is obviated . D ijkstra [Dij72] uses th is argum ent to claim “. . .good program m ers should no t waste

their tim e debugging because they should not introduce bugs in the first p la c e .. . ” . Sim ilar views

are asserted by Backhouse [Bac86]. There are three flaws w ith th is argum ent. In p ractice, form al

verification and design techniques are expensive [MH89] and the form er is constan tly o u ts tripped

by developm ents in program m ing language sophistication [CS89, MC88, MFS90, Sch71]. Secondly,

such preventive techniques rely on the correctness of an initial specification and axe them selves

susceptible to hum an error. Consequently, they cannot guarantee absolute correctness [Som89,

Yeh77]. As Van Tassel asserts: “a bug-free problem is an abstrac t, theoretical c o n cep t.. . ” [vT74],

especially w ith large, non-trivial program s [Sen83] and those which make extensive reuse o f existing

com ponents. Finally, design is an iterative process, not a linear one— thus were it to be relied

on completely, the overhead of formal techniques would be infeasibly high, greatly encum bering

design. Clearly, given the inevitability of hum an error, errors should be expected in all non-triv ial

pro jec ts and to deny the usefulness of tools to pre-em pt, detect and locate bugs caused by these

errors is futile. Instead, actions should be taken to facilitate the early detection and correction

of such defects to minimize their cost and increase the likelihood th a t they m ay be avoided in

fu tu re [Kel88, vT74, BS73]. The expectation of bugs is the raison d ’etre of all techniques based on

pre-em ption and cure.

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 22

T he cost of bugs to program m ers and their clients is vast. Com m ercial program m ers spend

in excess of half their tim e debugging software [BS73, vT74, Ves86, Ves89] and over 20% of their

com panies’ budgets [LS80, YC79]. A substantial am ount of software is unusable in its original

form as a result of software bugs. As little as 2% of of the software commissioned by som e sections

of the U.S. governm ent is fit for im m ediate use as intended [Cox86]. O n occasion, even lives are

lost as a result of software bugs [Neu91]. These figures are exceptional, b u t they are dem onstrative

of the fact th a t bugs and their removal are serious issues and not the sole preserve of a m inority

of bad program m ers. A more detailed analysis of the type of bugs th a t occur and th e ir cost can

be found in [MPW89].

2.3 Pre-em ption

It is widely believed th a t the earlier a bug is corrected in a p rogram ’s life cycle the less expensive

th a t bug will ultim ately prove to be [Mye79]. Pre-em ptive techniques are used w ith th e assum ption

th a t bugs will always occur in non-trivial program m ing tasks. T hey have the goal of de tecting and

locating bugs a t the earliest opportunity . One pre-em ptive technique, exception handling, also

provides a means of m itigating the effects of bugs and anomalies1 detected a t run-tim e. It is this

technique th a t we exam ine in this section.

2.3.1 Exception H andling

An exception handling system is an in frastructure which supports a uniform "and disciplined re­

sponse to error, allowing one elem ent of a program which has detected an erroneous condition to

com m unicate w ith, and pass control to, another which is b e tte r qualified to resolve or minimize

the dam age caused by the problem. For example, designers of a m odule or ob ject lib rary are

aware of th e m ain lim itations of their software: they know w hat can go wrong. In th e event of

failure however, it is often the client module th a t best knows w hat to do in response. Exception

handling mechanism s are the ‘glue’ th a t bind these rem ote contexts, w ithout com prom ising the

encapsulation of either.

Typically, exception handling mechanisms support the d istribu tion of signallers, by th e user,

a t s tra teg ic points in the target program . Each signaller has an associated assertion which denotes

a specification and a tim e a t which the target m ust comply w ith th is specification. Should these

assertions prove to be upheld by the target a t this tim e, the program runs as expected. However,

1 U n exp ected errors du e to unforeseen behaviour of an agent beyond the control o f the program , o n w h ich the
program relies— for exam ple hardware, or the user.

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 23

a violation of an assertion causes the signaller to signal an exceptional occurrence. T hereafter,

the signal is propagated across invocation and process boundaries until an appropria te handler is

found. T he handler is a code segment designed to respond to the bug or anom aly which caused

the exceptional occurrence.

It is im portan t to realize th a t the purpose of exception handling system s is no t to behaviourally

‘p a tch ’ the program to com pensate for bugs of which the program m er is aware a t th e tim e of

deploym ent of the signallers. These bugs should always be rectified a t the earliest opportunity .

R ather, it is to p ro tect program integrity from unknown bugs and anom alies and oversee the

invocation of code segm ents, the applicability of which cannot be tested by any m eans o ther than

invocation (e.g. any routines interfacing with users or other hardw are).

M odern exception handling mechanisms still rely heavily on the protocols established by Good-

enough [Goo75], despite the fact th a t some consider the work to be over exhaustive [PA90]. In this

survey we stress the more practical and widely used facets of the work of G oodenough and others.

G oodenough posited th a t like m athem atical functions, m any program operations or m odules are

partial w ith respect to their domain or range (or both) and should have some m eans o f formally

defining th is partia lity (assertions) and w hat happens if it is exceeded.

2.3.2 The Case for Exception Handling

Some feel th a t exception handling features compromise the formality, reliability, readability and

sim plicity of program m ing languages [Hoa81]. We feel the first charge is justified and consequently

address it in th is thesis. However, the last three charges are not a reflection of the inclusion of

exception handling mechanisms per se, bu t of their poor im plem entation. P roperly im plem ented

exception handling regimes enhance program readability, reliability and simplicity. A ssertions re­

flect th e invariants of a system , allowing signallers to be designed as anno tations which help convey

the p rog ram ’s purpose and function—improving readability and ease of understanding . Signallers

are active com m ents which help to docum ent program s and, unlike trad itional docum entation , are

(necessarily) always up to date [Mey89]. Thus, they help to satisfy a general need for b e tte r pro­

gram docum entation [Knu63] and allow “the purpose of the portion (of a program) [to] accom pany

the po rtion” [Sen83]. Handlers protect program s from failure, which m ay arise from it being used in

unexpected ways, by insuring a ‘sane’ response to unusual circum stances [CW89, Goo75, Kel88]—

thereby im proving reliability. They may also be used to support software fault tolerance. Excep­

tion handling m echanism s can help to separate exceptional cases, those requiring ex traord inary

com putation , from conventional code—improving simplicity. Furtherm ore, the effort required to

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 2 4

form ulate assertions during program design can reveal the presence of bugs during b o th design and

coding [Knu63] and give program m ers a new perspective of the target [Lis87]. A t run-tim e, the

violation of assertions can pinpoint a bug more accurately than debugging after p rogram failure

has been noticed.

Should program m ing languages actively support exception handling? M ost o f th e facilities of­

fered by exception handling mechanisms could be achieved using keywords and concepts already

p a rt of m ost program m ing languages. However, syntactic support (providing it in troduces a mini­

m um of new concepts) makes program s more readable, and run-tim e behaviour easier to understand

[PA90, YB85], by em phasizing the docum enting effect of assertions and separating conventional

code from the extraordinary. Furtherm ore, such mechanisms ensure a consistent style of exception

handling by providing a standard , formal mechanism for recovery and term ination [KS90]. Once

an exception handling convention is enforced like th is, the responsibility of each m odule is clearly

defined and fewer assertion checks need be made, therefore improving efficiency [Mey89, DPW 91].

2.3.3 A lternative Uses for Exception Handling

In this survey we consider only those uses of exception handling system s perta in ing to th e detection

and handling of erroneous conditions. A lternative uses for such system s have been suggested.

G oodenough posits th a t exceptions could also be used: as a m eans of m odule in strum entation ;

as a technique for denoting the need for special in terpretation of a m odule’s result; a m ethod of

escape from nested loops; and a means of iteration through a dynam ic, ‘container’ d a ta stru c tu re

(such as a list or bag). Liskov and G u ttag [LG86] believe th a t exception handling should be a

general purpose control s truc tu re . They provide many examples of the usage of exception handling

m echanism s as decision constructs and multi-way case sta tem ents which exaggerate th e separation

o f the case action clauses.

However, the m ajority view is th a t control flow of exception handling m echanism s is complex

enough to w arrant its usage only in extremis [Mey89, KS90]. To use the technique commonly, as

ju s t ano ther language construct, would greatly complicate th e ease of understanding of program

execution. Furtherm ore, resorting to exception handling for the reasons suggested by G oodenough,

Liskov and G u ttag is frequently unnecessary. The special in terp re ta tion of a resu lt can be achieved

by incorporating a flag into its d a ta struc tu re [PA90]. Escape from a series of nested loops by

violation of conventional loop constructs is undesirable in any event and ite ra tion constructs exist

to facilitate the traversal of dynam ic d a ta structures (e.g. C LU ’s ite ra to r function [LS79]). To

conclude, exception handling functionality should be reserved for the signalling and handling of

run-tim e anom alies and bugs [KS90, Mey89].

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 2 5

a

invoke

signal resumedetector

return linker

invoke
handler

Figure 2.1: Phases of Exception Handling

2,3.4 A Framework for Exception Handling

T he issues of exception handling are best considered by analyzing the phases of use of a typical

m echanism . These are pictorially presented in Figure 2.1 and are sum m arized below. In this

exam ple, a program m odule a invokes another module b to perform some processing and the la tte r

fails. T he stages of exception handling and the issues they raise are:

1. P la c e m e n t . T he initial deployment of appara tus to detect (or signal) anom alous behaviour

or conditions. W hat form should this appara tus take and how should signallers be deployed?

How is the struc tu re of exception handling m echanisms related to the broader issue of lan­

guage design? *“

2. D e te c t io n . T he means by which an exceptional condition is recognized and the respon­

sibilities of the recognizing agent (i.e. signalling). How should anom alies be detected and

signalled?

3. L in k a g e . T he process of propagating a signal and finding the appropria te handler to deal

w ith a signalled problem. How should handlers and signals be associated or linked flexibly?

How can the usage of specific signal/handler pairs be associated w ith a given activation

context, to allow context specific handling of certain exceptions?

4. H a n d lin g . Dealing w ith a signalled problem. How can a handler be passed inform ation

concerning the details of th is particular anom aly? W hat stra tegy and control flow should the

handler ad o p t— term ination or resum ption? Some control flow exam ples are shown as grey

arrows in Figure 2.1.

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 26

In the following sections we consider these issues in more detail. We exam ine how they are

addressed by existing system s and summarize the functionality of these system s in T able 2.1. In

th is tab le , as with all others in this chapter, the abbreviation n /s indicates th a t some inform ation

is not specified by the cited publications and n /a shows th a t a classification is no t applicable to

th is exam ple. A blank entry indicates th a t the system in question provides no functionality of the

type specified. In Table 2.1, the first two entries have n /a in their host language colum ns because

they represent general-purpose models and have no host language.

2.3.5 P lacem ent and Language Design

T he language design of exception handling (see the Exception heading of Table 2.1) has yet to be

standard ized and many diverse examples exist. In older models and languages (i.e. G oodenough’s

m odel and those from Poly [Mat85] and CLU [LS79]), signals are untyped nam es, or constan ts,

which enum erate the po ten tial exceptions. These are used in conjunction w ith r a i s e sta tem ents,

to broadcast news of the exception beyond the local block. The appropria te handler is chosen

on the basis of the signal name, as it is m ade available on exit from a block. In m ore recent,

ob ject oriented examples, signals are d a ta objects with type and scope [PA90], which are thrown

from the detecting context to the handling context. These are term ed catch-throw m echanism s

and originate from LISP [DPW91]. This representation, coupled w ith th a t fact th a t exceptions

have to be explicitly declared, makes the entire m echanism more am enable to s ta tic type and

consistency checking. Indeed, the C + + [KS90] and Sm alltalk-80 [Don90] system s use signal type

(or class) to achieve m ost of the compile-time checking of exception handling. As G oodenough

[Goo75] recom m ends, some [Don90] also use signal type as a way of com m unicating w hat control

flow m odel the handler should follow (see Section 2.3.8). A lthough it is often advantageous to defer

choice of the handler to the linkage mechanism (in an execution context poten tia lly far removed

from th e seat of error and w ith greater scope for deciding how to respond), i t is often safer if a

raised signal can ‘insist’ on being handled by a sequence of instructions th a t will lead to its u ltim ate

term ination , as opposed to program resum ption.

In G oodenough’s original model, the param eterization of signals is not considered. However,

as Table 2.1 a ttests , m any m odern system s have adopted param eterized signals as a m eans of

providing a handler with inform ation concerning the context o f an exception. T his helps to avoid

global d a ta struc tu res (in which context inform ation m ight otherw ise be kept), increase m odularity

and enhance the flexibility of handlers. Signal param eterization is particu larly expedient in ob ject

oriented system s. Therein, signal param eters are often rew ritten as constructor argum ents from

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 2 7

which to build a signal object w ith an internal s ta te representing its context (see the colum n labeled

Scope in Table 2.1).

O u t of necessity, the sem antics of some exception handling system s are ra th e r convoluted,

especially if handlers may themselves have exceptions raised within them (labeled recursive in

Table 2.1). However, one of the goals of these system s is to simplify the handling of erroneous

cases; th is can be achieved by separating the seat of detection of a problem from where it is

handled. A few of the surveyed system s aid (or even enforce) this separation (labeled separate

in Table 2.1), by providing syntactic support for it. The optim al ex ten t of th is separation is a

m a tte r for debate (see [DPW91]). However, it is widely recognized th a t signallers and handlers

m ust avoid detracting from, or obscuring, the m ain source code; otherwise m aintenance will be

hindered [PA90]. Com plexity is the single worst enemy of software reliability [Mgy89].

T he unification of a language’s software exception handling system , w ith a m echanism for han­

dling o ther faults such as ‘low-level’ exceptions (failure of the host operating system , or hardw are

faults), was first suggested by Goodenough [Goo75]. Such unification is advantageous since the

two m echanism s have sim ilar goals and, once combined, should simplify the host language [Knu87].

D espite th e advantages of th is uniform approach (denoted unified in Table 2.1), it is absen t in a

surprising num ber of system s. T his is partly because, in all bu t two cases, the surveyed system s are

designed only to detect exceptions synchronously (labeled sync in Table 2.1). T h a t is, a signaller’s

assertions are evaluated only when it is executed, so the signal can only be raised a t a certa in tim e

during the execution of th e host block, as determ ined by its location in th a t block. Asynchronous

detection (labeled async in Table 2.1) adheres more stric tly to the concept of invariants, in th a t

signallers m ay raise a signal a t any tim e during the execution of the host block when th e assertion

th a t they em body is violated. Asynchronous exceptions are generally more powerful. A lthough,

on occasions, blocks may tem porarily violate invariants (legitim ately) during in term ediate stages

of execution and thus the tem poral scope of signallers m ust be subject to user restric tion . In

Eiffel [Mey88], this is achieved by giving each type of signaller a fixed (non-universal) coverage.

All ‘low-level’ errors occur asynchronously w ith respect to the program and thus it is difficult

to unify them w ith entirely synchronous detection schemes. One unification technique involves

establishing a set of predefined software signals (labeled predef in Table 2.1) which represent all

possible low-level exceptions; this is possible since the range of such exceptions is usually small

(e.g. the exception set of the M otorola MC68000 microprocessor num bers only 47 [Wil85]). At

run-tim e, any low level exception th a t occurs is m apped on to the appropriate , predefined high

level exception and signalled asynchronously. Predefined signals may also provide an environm ent

w ith generic exceptions— i.e. those th a t merely indicate the existence of an exceptional condition,

or some broad class thereof, w ithout providing any details—thus helping to enforce encapsulation

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 28

(see Section 2.3.8).

2.3.6 D etection

All curren tly available signallers use s ta te based assertions, i.e. they detect anom alous conditions

by evaluation of expressions in the host language, which check certain aspects o f s ta te . L ittle study

has been done to determ ine if this is the optim al form for assertions. It is certainly an imposing

lim ita tion to restric t the expression of specifications— for th a t is w hat assertions are— to conditions

of system s ta te , defined in the host language.

T he vast m ajority of signalling mechanisms are explicit (labeled explicit in Table 2.1). If an

assertion is violated, a signal is explicitly raised. For example, a signaller s t atem entfm ight resemble:

if (something_wrong(x)) then raise problem

A lternatively, in some object oriented systems, a signal object may be explicitly created and

sen t th e m essage raise.

O nly th e Eiffel system [Mey88] perm its im plicit exceptions, i.e. a signaller which autom atically

raises an exception if its assertion is violated, w ithout the need for a r a i s e com m and. For example:

invariant <Signal Name>: not(something_wrong(x))

T his syn tax variation may seem slight, bu t it does enforce a consistent m apping between assertion

and signal, it is a greater aid to program docum entation and it is more disciplined. In contrast,

the r a i s e s ta tem en t is more likely to be used inconsistently, or for the wrong reasons [Mey89].

Eiffel is also unusual in directly supporting, via its contract m etaphor, G oodenough’s dom ain

and range checking protocol. It does this through its r e q u i r e and e n su re constructs. Furtherm ore,

Eiffel’s asynchronous i n v a r i a n t construct directly supports the partia lity of d a ta representations

cited by G oodenough and Philbrow and Atkinson [PA90]. I t is illustrative of the way in which

Eiffel uses signallers as active docum entation.

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 29

H ost
Language

Exceptions Linkage H andler Ctrl
FlowSignal D efin ition M echanism To H andler E xten t Models Scope

n /a
[Goo75]

typed ,
no param s
predef

explicit
recursive
sync,
unified

dynam ic
by nam e
1:1

block e x it , term inate,
resum e, exp licit
propag

sign al
param s

2-way

n /a
[Knu87]

neimes
typ ed param s

explicit
sync
separate

sta tic
by nam e
1:1

block sm o o th &
im m ed
term in ation

signed
param s

2-way

CLU
[LS79]
[LG86]

nam es
typed param s
predef

explicit
recursive,
separate

sta tic ,
by nam e
catchall, 1:1

expr resum e, loca l
term inate
im plicit propag

sign al
param s

1-way

P oly
[M at85]

unique type
str in g pax am
predef

explicit
im plicit
sync

sta tic
by nam e
1:1

block ex it , im plicit
propag
is term ination

global 1-way

SM L
[W ik87]

declared nam es,
typed param s,
predef

explicit
separate
sync,
unified

dynam ic
by nam e
1:1

fun ction term ination
im plicit propag
as generic

signal
param s

1-way

M esa
[M M S78]

declared, typed ,
typed param s
predef

explicit
sync
unified

dynam ic
catchall
by nam e, n :l

expr resum e, retry,
im plicit propag,
ex it

signed
param s

1-way

A d a
[FM 89]

declared , nam es,
no param s
predef

exp licit
recursive
sync

sta tic
by nam e
1:1

block term in ation
im plicit propag
as generic

g lobal 1-way

P S-
A lgol
[PA90]

declared, typed
typ ed param s
predef

explicit
sync,
async
unified

dynam ic
by nam e
catchall, 1:1

expr retry,
term in ation ,
exp licit propag

signed
param s

1-way

C + +
[KS90]
[Koe90]

declared ob ject
typ ed param s

explicit
sync

d ynam ic
by type
catchall, 1:1

block ex it
im plicit propag

signed
ob ject
s ta te

1-way

Eiffel
[M ey88]
[M ey89]

u n typ ed nam es
no param s
predef

im plicit
unified
sync,
async

dynam ic
by loca tion
1:1

m eth od ,
class

term in ation “
retry, resum e
im plicit propag
as generic

h o st
ob ject
s ta te

1-way

S m allta lk
[Don90]

subclasses o f
excep tion class
predef

explicit
unified
sync

dynam ic
by m eth od
1:1

expr,
class

e x it , retry,
resum e,
exp lic it propag

signed
ob ject
s ta te

1-way

O /W
Sm allta lk
[D PW 91]

signal o b ject,
excep tion
ob ject par am

explicit
unified
sync

dynam ic
catchall, n :l
by nam e

block exp lic it propag,
term inate
resum e, debug
gu ided .

signed
ob ject
s ta te

1-way

B e ta
[M M P89a]
[D PW 91]

nam ed handler
m eth od ,
no param s

explicit
sync
recursive

sta tic
guided
by m eth od
1:1

program ,
class,
o b ject,
m eth od

resum e, retry,
debug,
sm o o th term in
-a tio n , debug,
guided .

h ost
ob ject
s ta te

2-way

Table 2.1: C haracteristics of Language Based Exception H andling System s

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 3 0

2.3.7 Linkage

Linkage concerns the mechanisms used to bind a raised signal w ith an appropriate handler. This

includes the association of handlers with signals and the m eans by which exception handling con­

s tru c ts impose localized signal to handler mappings. M any early exception handling system s favour

a dynam ic association scheme between detected signals and handlers [Goo75], e.g. the com puted

linkage facility of P L /1 [PA90], or those based on searching the invocation stack for handlers a t

run-tim e as in CLU [LS79] or Eiffel [Mey88]. O f late, however, the enhanced accountability of sta tic

linkage , i.e. perform ing the signal-handier binding a t compile tim e ra th er th an during execution,

has won favour [Knu87] and has been adopted by a few of the surveyed system s.

Syntactically, linkage is typically achieved by providing a nam elist of expected-signals (or signal

types) and their associated handlers. T his m apping is then associated w ith the code segm ent over

which th is linkage is required. T his code segment is known as the ex ten t of the signal/hand ler

m apping. T he flexibility and granularity with which the ex ten t can be defined varies w ith the

arch itectu re of the underlying language and the signal propagation scheme in use. Usually, it

is re la ted to the un it of m odularity of the host program m ing language, hereafter abbrev iated to

m odule. Most system s allow mappings to be associated w ith blocks. O ther m ore advanced ones

allow m appings to be associated w ith individual expressions, although this is difficult to achieve

unobtrusively [Goo75] or w ithout violating separation.

A handler search (done a t run-tim e or compile-time) is m ost often guided by signal nam e alone

(labeled by name in Table 2.1). Some searches, like the catch-throw m echanism of C+-1- (see

Section 2.3.5), are type driven and others, like Eiffel, are resolved purely by syntactic location of

the handler.

O ne practical obligation of a linkage system is to provide default exception handlers in case

signals are raised and never ‘claim ed’. In some sta tic linkage system s, raising a signal th a t is not

explicitly handled somewhere is illegal and results in a compile tim e error. Consequently, the need

for default handlers, e ither language or user defined, is reduced. However, m ost linkage system s

have default handlers for unclaimed signals and some allow th e user to define ‘catchall’ handlers

(labeled catchall in Table 2.1). This construct is useful for handling classes of signals which would

be too num erous to handle individually, e.g. in unified system s where m any predefined (low-level)

exceptions may occur, bu t all require the same response. A few system s su p p o rt th is functionality

d irectly by perm itting m ultiple signals to be m apped on to the sam e handler (labeled n :l in

Table 2.1).

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 31

2.3.8 H andler Definition

H andlers differ in three im portan t respects:

• (L e x ic a l) S co p e : how they obtain inform ation abou t the details of the exception (covered

in Section 2.3.5, see column Scope of Table 2.1);

• M e d iu m : how they are defined; and

• M o d e l: the control flow they impose on the host program , after handling is accomplished.

H andlers acquire details about the exception to which they m ust respond in a variety of ways.

Some m echanism s am ass contextual inform ation in a series of globally accessible variables when

a signal is raised (e.g. A da, Poly; labeled global in Table 2.1), some make the s ta te of the failing

m odule accessible to the handler as if it were being executed in-line (labeled host state in Table 2.1)

and o thers use signal param eterization (see Section 2.3.5). In those system s which represent signals

as ob jects, it is m ost convenient to make contextual inform ation a com ponent of the signal object.

T hese la tte r techniques are generally be tte r, because they avoid violation of encapsulation and

they allow the contextual inform ation to be more dependent on the signal.

M ost exception handling system s define handlers as conventional m odules, i.e. blocks or se­

quences of executable code. This increases the orthogonality of the system and avoids th e need to

add new language concepts ju s t for exception handling. L ittle s tudy has been done to determ ine if

th is is th e optim al form at for handlers. If handlers are conventional m odules, should they be able

to signal exceptions, i.e. should exception handling mechanisms be recursive? Some are (labeled

recursive in column Mechanism of Table 2.1), bu t this facility greatly com plicates control flow.

G oodenough’s original proposal is itself unorthogonal in this regard: certain types of handler may

raise signals, b u t some may not.

Six control flow models are commonly used in exception handling m echanism s (see the colum n

headed Model in Table 2.1); these are listed below.

1. T e r m in a te . T he faulty context is abandoned and preparations are m ade to rep o rt the error,

by w hatever m eans are appropriate, before the m odule and program are abo rted completely.

Many exception handling system s default to this m odel as it is undoubted ly the safest. It is

especially appropria te for range errors.

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 32

2. R e s u m e . T he context is repaired and control is returned to a point ju s t after detection of

the error. T his re tu rn point is usually the sta tem ent ju s t after the failed expression, or the

s ta tem en t following the exten t of the handler (see Section 2.3.7). M any consider th is model

unsafe [KS90], as it can—and does— lead to further exceptions. O thers consider it unw orthy

o f direct syntactical support, as it can be sim ulated by conventional language constructs

[PA90]. If the m odule’s purpose was to re tu rn a result, resume may provide its own result in

lieu of the one now lost.

3. R e t r y . Any dam age done by the execution of the faulty module is repaired, or reversed by

rollback (of a checkpoint). Changes are then made to the context to prevent recurrence of the

problem . Finally, the faulty module (the code within the handlers ex ten t) is re-executed, in its

entirety, from the beginning. T his model is especially useful for dom ain failures, particu larly

if the scope of the handler includes the argum ents of the faulty module.

4. D e le g a te . As retry, bu t the re-executed module is not the original, bu t one specified by the

handler [YB85]. This model directly supports software redundancy.

5. P r o p a g a te . T he local context is abandoned and the exception is p ropagated to th e enclos­

ing block or m odule. This reflects a natu ra l and powerful need to deal w ith an exception

first locally, and then globally [Goo75]. Many system s support explicit propagation2 (see Ta­

ble 2.1), bu t the som ew hat less safe im plicit (or blind) propagation, in which all unclaim ed

signals are autom atically propagated w ithout a lteration , is also used. T he la tte r can be

highly disadvantageous, as signals bearing inform ation abou t the failing of an operation can

be inadvertently propagated to a client context which should be unaw are of th e internal

workings of a server, thus violating encapsulation. Some forms of im plicit p ropagation avoid

th is problem by im plicitly propagating only generic signals (see Section 2.3.6). Because these

signals im part no inform ation about the cause of the problem , they may be freely d istribu ted

w ithout risk of violating encapsulation.

6. D e b u g . Suspend the faulty context and spawn a debugger to exam ine th e context of failure.

C learly this is only a development option, bu t some system s support it.

How a given handler establishes which of these models to use, using only conventional m odule

syn tax , is an im portan t consideration. Most system s are obliged to allow syntactical caveats to

circum navigate th is problem .

2 In a sy stem su p p ortin g exp licit propagation a ll signal p ropagation m ust b e done m anually, g iv in g th e user the
o p p ortu n ity to propagate a new signal at a h igher level o f abstraction than th at received by a fa iling server.

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 33

T he model used depends entirely on the handler u ltim ately executed in response to a signal.

However, some system s allow a signal to constrain the models th a t may be used to handle it (labeled

guided in Table 2.1). For example, in O bject Works Sm alltalk [DPW91] (see also Section 7.4.1),

instances of the class Signal have a boolean instance variable mayProceed which indicates w hether

or no t they may be resum ed.

W hatever m odel is used, exception mechanisms a ttem p t to make the control flow explicit.

C ontrol flow discipline is of the utm ost im portance, as is its understandability . G oodenough’s

m odel fails a little in th is regard since, although it lends itself to compiler checking, some of

its m echanism s are analogous to non-local ‘goto’ constructs and are consequently ill disciplined.

G oodenough’s m echanism is also very source code obtrusive because it dem ands a high level of

explicit signal propagation. T his dem and is itself compromised by the p a s s .construct, which

overrides explicit propagation, although it does force a review of involved m odules when a new

exception is added to the system .

To be effective, models involving partia l term ination m ust guarantee consistency of the host

environm ent. This can be difficult if the exception occurs asynchronously. O ne approach called

smooth term ination is described by Knudson [Knu87]. I t allows each term inating block to cleanup

after itse lf autom atically. Knudson argues th a t for sm ooth term ination of all nested, paren t blocks

to an exception context, upward propagation is not enough in sta tic exception system s. U pper

(lexically ou term ost) blocks should be allowed to initialize first, passing control to lower blocks,

which propagate back to the higher blocks. He describes the concept o f prefix sequels to overcome

th is by giving each exception handler an opportunity to cleanup before it is term inated . K nudson’s

system is no t the only system to feature bidirectional control flow, bu t few o thers do (see the Ctrl

Flow heading in Table 2.1) because of the immense complexities involved and the difficulty in

understand ing such system s.

2.3.9 General Problem s with Exception Handling M echanism s

D espite the w ealth of features and benefits offered by the surveyed system s, m any individual

im plem entations seem to justify one or more of Hoare’s criticism s (see Section 2.3.2). In particu lar,

form ality, which none of the surveyed system s address. We believe th a t the m ain problem s w ith

existing exception handling system s are as follows:

• W e a k n e s s o f E x p re s s io n . All system s use the host language to express assertions. Al­

though this greatly eases the use of these mechanisms, it compromises their power and

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 34

formality, lim iting anom aly detection to th a t which can be deduced by boolean, s ta te expres­

sions w ithin the scope of the current module. Assertions are specifications of desired facts,

and as such, may not be best expressed in a program m ing language. O ther m edia offering

b e tte r powers of abstraction and formality might overcome this weakness.

• P o o r S e p a ra t io n . Many exception handling system s, no tab ly th a t o f CLU [LS79], make

little d istinction between signallers, handlers and prim ary m odule code, allowing all three to

be m ixed a t will. T his counters several of the foundations of exception handling m echanism s

and obscures m odule semantics.

• L a c k o f D isc ip lin e . A few exception handling system s override the existing control struc­

tu res of the host language in a som ewhat unsafe m anner. They are open to abuse from

persons wishing to use the mechanism as an easy escape from heavily nested constructs,

especially if signalling is explicit. They leave too much to the discretion of the user, leaving

them open to ill conceived and inconsistent use. T he ‘ra ise’ m echanism of A da typifies this

[Mey89].

• N o n -u n if ie d E r r o r H a n d lin g . To reduce complexity, assertion violations should be sig­

nalled and handled using an identical mechanism irrespective of where they originate. R etro­

fitted exception handling mechanisms (e.g. th a t of C + + [KS90]) often ignore or are unable

to comply w ith this point, resulting in different m echanisms of hardw are, opera ting system

and software exceptions.

2.3.10 Problem s Introduced by Parallelism

Few have yet considered the im pact of increasingly popular concurrent arch itectures, and host

languages, on the characteristics of exception handling m echanisms. Several o f the assum ptions

th a t can be m ade w ith sequential system s—the concepts of determ inism , synchrony, and locality—

no longer apply, exaggerating some of the above problem s and creating new ones, such as those

listed below.

• N o n D e te rm in is m . How can we m aintain rigourous s ta te based assertions, w ith some

su p p o rt for expressing lim ited non-determ inism , in th e host language? How can assertions

express constrain ts on the available parallelism?

• A s y n c h ro n y . Should one process asynchronously spaw n from ano ther and then detect an

exceptional circum stance, th a t it cannot handle, how should it propagate th e signal? Should

it be forced to synchronize with its parent to deliver the signal? W hat if th e p aren t has

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 35

subsequently com pleted or been term inated [DPW91] ? How can the consistency of a system

in which m ultiple exceptions are concurrently signalled be m aintained?

• D is t r ib u t io n . How are signals to be propagated over process, processor and even site

boundaries? If a num ber of th reads are w aiting in a m onitor and the holder of the lock

signals a fa ta l exception, how should the dependent th reads be trea ted [DPW91] ?

T hese problems and others, increase the degree of com plexity required in an im plem entation

o f a parallel language w ith exception handling, m aking it m ore difficult to ensure th a t such a

m echanism does no t make program s more difficult to understand . Ironically, since th e scope for

sub tle errors in parallel system s is greater than th a t in sequential system s, one could argue the

need for exception handling system s is increased. •"

In some ways, parallel system s would seem b e tte r candidates for exception handling system s as

they offer na tu ra l abstractions for software redundancy. Furtherm ore, they m ight allow handlers to

be executed in parallel w ith the exception halted processes [BGH+89]. However, the probe effect

[Gai85] m ight prove to be a problem by radically altering the tem poral behaviour of conventional

and exceptional cases.

2.3.11 Problem s Introduced by O bject O rientation

T he high level of m odularity introduced by object oriented architectures enhances and eases the use

o f exception handling m echanisms in many ways. It provides (apparen tly) na tu ra l constructs— the

class and the m ethod—abou t which to accum ulate stan d ard handlers and dom ain and range based

signallers. Furtherm ore, as these are basically class annotations, they can be separated from the

principal class m ethods w ithout being lost. Inheritance offers a powerful m eans of factoring out

com m onality in handlers and ensuring an orthogonal response to error. Rigourous ob jec t models,

like th a t of Eiffel [Mey88, Mey89], may enhance the form ality o f exception handling. A dditionally,

o b jects form the ideal representation of exceptions. They have an internal representation which can

include details of the context of the signal and any requests or constrain ts abou t how it should be

handled [Don90]. T hey may be assembled into inheritance hierarchies to represent the classification

of exceptional cases and support greater understanding and reuse [KS90].

However, ob ject orientation introduces some problems into exception handling. O b jec t orien­

ta tio n itself reflects a higher level of abstraction , in program m ing, than the trad itional procedural

approach [Weg90]—state-based assertions do not reflect th is enhancem ent. Ideally, we require

some specification technique which provides a level of abstrac tion com m ensurate w ith the abstrac t

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 36

d a ta types (A D Ts) provided through object oriented program m ing. Indeed, an assertion m echa­

nism which could formally express desired program behaviour a t m ultiple levels of abstrac tion is

needed.

Some ob ject oriented languages have exception handling retro-im plem ented3 and this introduces

grave problem s. For exam ple, the C + + exception handling m echanism is weakened by its retro-

im plem entation which: lim its its choice of keywords; requires th a t it support an tiquated linkers;

prevents unification of the mechanism with (hardw are and operating system) signals and prevents

it from supporting the resum ption model.

System s which perform m anual memory m anagem ent also introduce problem s. These basically

concern the occurrence of exceptions during the execution of constructors. How can one recover

a system which may consist of some partially constructed objects? Similar problem s arise w ith

destructors, where mem ory deallocation of partially allocated structu res m ight reduce the in tegrity

of the environm ent.

2.4 Cure

2.4.1 Debugging: Art or Science?

All program s are potentially bugged. The process of locating bugs and am ending program s in order

to e lim inate them , in order th a t the program behave as intended, is term ed ‘debugging’. There

is considerable disagreem ent in the literature regarding the natu re of debugging skill. Analyses,

such as those given by Model [Mod79], indicate th a t debugging is, or should be, based on a

s tr ic t scientific m ethod [BW83, Moh88, BFM+83] and m any such m ethods have been proposed

[BFM +83, BS73, Sch71, vT74]. Typically these are based on a cycle of behavioural observation,

hypothesis and experim entation, until an am endm ent is determ ined which, when applied to the

program , causes it to no longer exhibit the erran t tra it. However, there is evidence to suggest th a t,

in reality, debugging is no t this rigourous. T he experim ental evidence of Vessey [Ves86, Ves89]

indicates th a t while novices use a context-free, model based approach to debugging, for m ost the

process is dependent largely on experience and intuition, not on m ethod. Indeed, Vessey establishes

th a t persons w ith debugging expertise lack any conscious m ethod— lending to the activ ity some

sem blance of an a rt form. Furtherm ore, Beizer asserts: . . Debugging dem ands intu itive leaps,

conjectures, experim entation , intelligence and freedom.” [Bei84].

3 T h a t is, b ein g added as an afterthought, after the core language design was com p leted .

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 37

T here is little disagreem ent th a t the primary, and m ost difficult, goal of all forms of debugging

is understanding [Gai85, Mul83, Sen83]. Specifically, to understand w hat is happening during

program execution, w hether it is correct or not and, if not, how and why the program perform ed

the erroneous actions. Debugging seeks to “a tta in understanding of causes of an erro r, o r a t

least where behaviour of im plem entation varies from th a t desired” [BW83, Moh88, Bal69]. Such

understand ing requires th a t the user can predict the intended effects of program execution and can

establish a relationship between the individual effects of th a t execution and p a rts of the p rogram —

th is is essential in deducing the point of origin of a bug. To facilitate understanding, selected facets

of p rogram structu re , behaviour and sta te have to be rendered more trac tab le to exam ination

and m anipulation th an is norm ally the case. Only when this understanding is com plete can the

secondary debugging goals of proposing a solution, program am endm ent, and confirm ation of th a t

am endm ent, be achieved.

2.4.2 D ebugging and Testing

Debugging shares m any of the a ttribu tes of software testing [ST83], particularly the com parison

of actual program interaction w ith th a t expected. However, there is a d istinct difference between

the tw o which is often m isunderstood [Mul83] (e.g. as in [Bac86, Mod79]). As indicated by Beizer

and o thers [Bei84, Mye79, Bru85], debugging and testing differ in goal, m ethods and psychology.

T esting is the unsolicited a ttem p t to verify program behaviour and to determ ine the presence of

bugs in a planned system atic way; debugging concerns the localization and erad ication o f bugs

once they have been detected (possibly by testing). Debugging requires a thorough knowledge of

p rogram specification, design and im plem entation; some forms of testing (black-box) only require

details of the program ’s specification. The debugging process itself m ight involve m aking m any

tests, b u t such tests are secondary to the task of bug localization and are not conducted for their

own sakes. Consequently, they cannot be considered as testing per se [Mye79, vT74, Deu79, Som89,

GH88, Ham88, Las89]. We regard software testing as a separate issue and do not address it fu rther

in th is thesis.

2.4.3 M ethods and Means

In the m easured, m eticulous world of com puter science, it seems odd th a t a problem facing com­

p u te r scientists themselves should face such little exam ination. Yet, hum an debugging activ ity is

an issue which few have theoretically addressed and even fewer have exam ined m ethodically. Of

these, some use experim ental evidence to determ ine the requirem ents of the debugging process

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 38

[Ves86, Ves89, Bru85, FM89], bu t others extrapolate from their own experience to yield such infor­

m ation [Joh83, ST83, Bat83]. These works are surprisingly scarce and ill referenced by the copious

articles which p u rp o rt to have im plem ented bo th original and useful debugging technology.

W h at experim ental evidence there is suggests th a t debugging is a very personal activ ity : there

is much variation in the debugging m ethod used by different persons. Using verbal protocols to

establish the problem solving behaviour pa tterns adopted by program m ers debugging program s,

Vessey [Ves86, Ves89] discovered th a t over 60% of debugging tim e is spent m entally executing the

e rran t p rogram and studying its ou tpu t. The rest is spent planning (setting , canceling and achiev­

ing goals), knowledge building (gathering d a ta about the program) and locating bugs (hypothesis

generation, confirm ation and code correction). Debugging experts, those who are effective (find

bugs quickly and w ithout error) and efficient (rarely have to s ta r t afresh, change .debugging activ­

ity or change the area of program which they are investigating), m entally process code a t a more

ab s trac t level th an source sta tem ents and are better able to chunk4 or cluster such inform ation.

T hey spend more tim e initially comparing intended and actual program o u tp u t, study ing source

code and evaluating this inform ation to form a m ental model of the correct function of a program .

However, novices leap into conjecture and hypothesis immediately. Once they form hypotheses,

experts are more willing to discard them should they prove flawed—often however, th e ir first hy­

pothesis is correct. Vessey also establishes, using tex t com prehension theory on program s, th a t

the fu rther the bug is down the hierarchical struc tu re of the program , the harder it is to detect

and the longer it takes to correct. T he serial location of the bug has no effect, however, because

program m ers do not exam ine program s serially—instead, they go to th e m odule they believe is

bugged w ith a top-down, breath-first search. Ultim ately, the effectiveness of -debugging depends

on the abstrac tion gap between program m ers’ internal knowledge structu res and the inform ation

available from the debugging environm ent.

In his experim ents, Gould defines three types of non-syntactic (he asserts th a t syn tac tic bugs

are triv ial) bugs th a t commonly occur in FORTRAN program s and a ttem p ts to determ ine which

are m ost difficult to locate and w hat debugging strategies are used [GD74]. He hypothesizes

th a t the difficulty of debugging lies w ith the wealth and variety of inform ation available— all of

which can influence a program m er’s strategy. He found th a t a stra tegy is chosen im m ediately,

on beginning the debugging task. Often, program m ers look for cliched violations of language

sem antics initially, and then alter this stra tegy as clues are found. M ental m odels of program

function are very im portan t, and fam iliarity w ith a program speeds up bug location by a factor of

th ree and reduces the error ra te (counterintuitively, the two are associated). Once a bug is located,

4 C hunking is the cogn itive process o f associa ting a series o f o b jects in to one ob ject a t a h igher level o f ab straction
to save sh ort term m em ory [M od79], as one m ight abstract the concurrent letters ‘c \ ‘a ’ an d ‘t ’ in to th e sin g le word
‘c a t ’.

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 39

program m ers are often confident th a t they know how to repair it. Gould concludes th a t, in m any

cases, debugging perform ance could be improved if program m ers checked the differences between

ac tual and expected program o u tp u t more thoroughly. Consequently, the success of a debugging

environm ent is dependent on the extent to which it supports th is activity.

2.4.4 The Case for Debugging Tools

Traditionally , debugging is seen as a private activity which is often tackled, as the above findings

indicate, w ith a set of personal techniques which have been painstakingly acquired by experience.

U ntil recently, debugging tools were rarely used. All debugging was achieved by m anual code

am endm ent: instrum entation of user program s w ith ‘p rin t’ sta tem ents to facilitate a g reater un­

derstand ing of execution progress [vT74, BS73, Sch71, Bat89]. This form of debugging is still

common [AG89, Men87] and tools like cirace [Kel88] exist to au tom ate it. I t is undeniably one of

the m ost flexible debugging strategies.

A utom ated or not, the code am endm ent technique has serious lim itations. Prim arily, it is ra ther

a prim itive, ad-hoc m ethod which prom otes little pre-m editation or planning. O ften it leads to

guess work, tim e consum ing edit-recom pile-test loops and, if the am endm ent is flawed, fu rther error

[vV89, Mye79]. Worse, code am endm ent can hide tim ing bugs due to the probe effect5 [Gai85].

T he am endm ent process requires th a t the user is aware, in advance, of w hat p a rts o f a program

he wishes to gather inform ation abou t—often this is not the case. Lastly, it is incum bent on the

user to remove all am endm ents once the bug is discovered; if by some oversight th is is no t done,

the am endm ents may cause failures of their own. Generally, these problem s are exacerbated when

one is faced w ith the more dem anding job of debugging ob ject oriented, or concurrent program s

[CBM90].

Debuggers have none of the inherent problems of am endm ent. T his is chiefly because m ost

debuggers achieve visualization by tem porarily altering the run-tim e image of a program . F urther­

more, such tools have m any additional uses: they may be used as a teaching aid to dem onstrate

program m ing language sem antics [Chu83]; program m ers can use them to dem onstrate or explain

the behaviour of an algorithm (“an explanation facility for a system is a in tegral p a rt in ensuring

th a t th e system is understood and used correctly” [KG88]); they can be used in program m ing

environm ents to assess the reuse potential of a software m odule; and during program m aintenance

to te s t program alterations.

Debuggers have received poor usage in the past because their im portance has been considered

as secondary to th a t of compiler, environm ent and OS developm ent [M PW 89, Moh88, BFM +83,

6 T h e probe effect is the a lteration in a program ’s tim e characteristics du e to internal in stru m enta tion .

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 4 0

Men87, Bal69]. Consequently, they were usually poorly docum ented, la te in arrival and once avail­

able, partia lly obsolete because of their dependence on rapidly changing hardw are or OS kernels

(see Section 2.4.13). In addition, many debugging tools for high level languages have borrowed

heavily, and inappropriately, from the techniques used in machine code debuggers, instead o f deriv­

ing new m ethods for high level debugging. Furtherm ore, being targeted a t system s program m ers,

their user interface was usually of such a poor standard as to in tim idate novices [ST83]. Thankfully,

there is some evidence th a t these trends are reversing [BEH88, Fel89, DP89]. Some believe th a t no

m a tte r how good the available debugging tools are, hum an natu re will, to some degree, preclude

their use [vT74]. Program m ing skill is frequently a m atte r of great pride for those th a t exercise

i t— to use a debugger m ight be construed by some as evidence of ‘failure’. O thers will regard the

investm ent of learning to use a debugging tool as too high and re tu rn to ad-hoc techniques— to

the ir cost [Bru85].

2.4.5 Design Requirem ents of Debugging Tools

Clearly, debugging tools should aim to enable more users to em ulate debugging experts. T his can

be achieved by the provision of functionality to support:

• m enta l execu tion , through use of sta tic analysis on source code and run-tim e behaviour

m onitoring to outline program structu re and emphasize user abstractions;

• exp erim en tation , by allowing the user to control (w ith repea tib ility6) p rogram execution7

and to m anipulate its environm ent, tim e fram e, s ta te and behaviour on the fly;

• com parison o f real and intended behaviour, though the provision of a m eans of speci­

fying behaviour and the ability to autom atically com pare actual behaviour w ith such speci­

fications [Bat89];

• h yp oth esis generation and confirm ation, by providing a m eans of expressing such hy­

pothesis and an au tom atic way of testing them;

• relating ind ividual behaviours to parts o f program source, th rough co-visualization

of program source, s ta te and behaviour;

• se lec tiv e relaying o f inform ation, by supporting the chunking and filtering of all infor­

m ation types, such th a t its volume is reduced, bu t the sem antic content enriched [Bal69];

and

6 Such th a t identical con d ition s, im posed by th e user, y ield identical resu lts on each such execu tion .
7 W ith no p en alty for such control which m ight itse lf have side effects on program execu tion .

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 41

• t h e in d iv id u a l i ty o f u s e rs , by providing ample scope for custom ization, adap tab ility and

flexibility.

I t should be rem em bered th a t, since usage of debugging tools is driven by adversity and often

a degree of urgency, such usage should not exacerbate the situation . Debugging tools should be

easy to use and of im m ediate help, otherwise users will not persist in their use [FM89, ST83].

2.4.6 A utom atic and Manual D ebugging Tools

Clearly, the optim um debugger design is one th a t provides the best support possible for the ac­

tiv ities outlined above. Two different approaches have emerged: the m anual and th e au tom atic

debugger. A utom atic debuggers are systems th a t detect and locate errors w ith little help from the

user, except to correct the error once found. Typically, they are knowledge based system s which

either: use schem atic knowledge of the host language to hunt for cliche (com m only occurring) bugs

[Wer82, Har83, Sha82]; or make use of user provided, program annotations which describe the

program sem antics, in order to detect application specific bugs [JS85, Ada80]. M anual debuggers,

by far the more common, merely serve to maximize the productivity of program m ers in those ac­

tiv ities described above. O ur work only considers the la tte r in any depth . We feel th a t au tom atic

debugging has severe lim itations. Cliche system s are only of use in educational environm ents,

where they may be applied to the programs of novice program m ers. Frequently occurring cliche

errors (for exam ple the confusion of the equality and assignm ent operators, = and ==, in C) are of­

ten a sign of poor language design and should be dealt w ith by language m odification. A nnotative

au tom atic debuggers suffer many of the drawbacks of prevention m echanisms and, in addition , can

be very obtrusive. C urrently, the best debugging agent is still the program m er [Mul83] and the

m ost prom ising and w idespread progress is from m anual debugging techniques [CBM90].

2.4.7 The Universal Debugger

To exam ine the functionality of debuggers a t a greater dep th and to s tru c tu re the discussion th a t

follows on currently available debugging tools, we describe here an ab strac t m odel o f a m anual

debugging tool and the concepts th a t underlie it. O ther models of debugging tools exist, however

none has yet considered their internal struc tu re or been used as a m edium for conducting a survey

[CBM90, Bru85j.

A debugging system involves five agents, all of which have set m eans of com m unication. These

are: the debugging tool D, the operating environm ent E N V (for exam ple the host operating

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 4 2

environment
ENV

source code
SRC environmental

model E

debugger D

source state behavioural
model model model

S V - B

run-time
image RUN

Figure 2.2: An A bstract Model of a M anual Debugging Tool

system), the source representation of the program being debugged S R C , the run-tim e m anifestation

of the program being debugged R U N (i.e. its process or th read) and m ost im portantly , the user

U . These are depicted in Figure 2.2

In order to help the user understand and m anipulate all aspects of his program , the debugger

in ternally m aintains three models of it, which are partially visible to the user [BTM89]. T h e source

m odel, S , is a symbolic representation of the program source code structu re ; V , the s ta te vector

m odel, represents the d a ta objects of the program and B , the behavioural model, represents the

program s run-tim e activity. A nother model, E , is one the debugger m aintains of the execution

su p p o rt environm ent, which is rarely accessible to the user. Connecting the agents are channels

(solid arrows in Figure 2.2) along which inform ation flows bidirectionally; each channel is nam ed

after the two agents it links. The dashed arrows of Figure 2.2 represent d a ta dependencies.

In the sections th a t follow we consider each of these m odels and as its associated channels in

tu rn , illustrating each feature w ith practical examples and, where possible, contrasting different

approaches. The channel set involving the user (channels US, UV and UB) is dealt w ith in

Section 2.4.12 which directly addresses user interface issues. Tables (w ith references where there

is sufficient room) will depict how the surveyed tools fulfill the requirem ents identified by these

models.

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 4 3

Debugger Source Model Navigation Manipulation Ref
Dbxtool source text line#, procedure, object search [AM86]
Cbug source text procedure [Gai85]
Jdb source text procedure [WN88]
Pi source text line#, procedure [Car86b]
Exdams source text line#, procedure,

object search, cross ref, flowback
edit, recompile

[Bal69]
IDE source text edit [Chu83]
Track source text,

inheritance chart
method, object search
cross reference

edit, recompile [BH90b]
[BH90c]

Ups source text edit [Bov86]
Gdb source text lin e# , function [Sta88]
Object/Action source text class, method [LL89]
IC* source text

schematic outline
data flow, invariant
analogical graph

check consistency
[CC89]

Amoeba source text procedure, data info [Els89]
0 2 source text lin e# , method

object search, data info
edit

[DP89]
PROVIDE source text

function outline
procedure edit, recompile

[Moh88]

Table 2.2: Source Model Support in M odern Debuggers

2.4.8 The Source M odel

T he source m odel is an abstraction of the target source code m aintained by the debugger, through

which program m ers m ay obtain b e tte r s truc tu ra l understanding of and m anipulate tex tu a l aspects

o f the ir program . Typically, the m odel aids user source navigation using a variety of abstractions,

from line num bers to d a ta flow dependencies (as in the flowback system of Excfams [Bal69]) and it

can facilitate am endm ent of a program , once any errors are located. The m odel is usually supported

by s ta tic analysis and through it, some debuggers offer functionality such as: cross referencing

of p rogram objects (i.e. procedures, d a ta item s), by usage or inter-dependencies; ob ject search;

inheritance graphs (in object oriented system s); and syntactic outlining. M anipulation through

th is m odel includes facilities such as source editing and au tom atic recom pilation. Table 2.2 shows

which of the debuggers surveyed possessed any of this functionality8.

A lthough it is argued th a t a key aspect of debugging is understanding a program , few debug­

gers provide any functionality specifically supporting the source model o ther th an a conventional

tex tua l listing (these are not listed on Table 2.2). This is, in p a rt, due to the fact th a t source

understand ing and m anipulation is traditionally supported in software developm ent environm ents,

by tools o ther th an debuggers, e.g. the Smalltalk-80 browsing environm ent [Gol83, K P86, W P88],

8 R eaders m ay n o te th a t the survey is n o t restricted to the debuggers listed in T ab le 2.2, one m ay infer th a t the
debuggers n o t listed here do n o t support the source m odel in any way.

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 4 4

R |N [CCH+87], the Cornell P rogram Synthesizer [TR81], PIG S [PN81], G raphTrace [KG88] and

au tom atic flowchart generators [Knu63]. Despite this, this omission is a failure of th e debugger to

fully su p p o rt the debugging task, especially if the sem antic review of program s is not supported

by any o ther tool available to the user. Debuggers also fail to aid understanding by om itting func­

tionality th a t could be im plem ented by sta tic analysis, to perform such tasks as the ex traction of

variable ‘slices’ [Wei82, Gra83] and consistency checks. O ne in teresting exception is the debugger

for the IC* system [CC89], an unorthodox language based on m ultiple th reads of non-determ inistic

forw ard chaining invariants. S tatic analysis is used in this tool to produce hierarchical, graphical

schem atics of user program s and to offer extensive navigation facilities. If required, these represen­

ta tions may be adorned w ith d a ta flow annotations and the consistency of the program checked.

Sadly, the IC* debugger is currently unique in these respects.

2.4.9 State Vector M odel

T he s ta te m odel is an abstraction through which the user perceives and m anipulates elem ents of

the ta rg e t’s s ta te vector. The model is used to chunk and filter com ponents of system s ta te to

increase user understanding of the dynam ic stru c tu re of p rogram d ata . M anipulation is supported

to facilitate experim entation . S tate models have four main attribu tes:

• E x te n t , the b read th of coverage of the model as com pared to the com putational m odel of

the target;

• L ev e l, the level(s) of abstraction a t which d a ta is presented or m anipulated;

• S p e c if ie r , the m echanism s provided to specify the desired subset of the s ta te vector for a

certain operation; and

• M o d if ie r , the m echanisms available to the user to change its value.

V isualization, the m eans by which this specified facet of the vector is conveyed and rela ted user

interface issues are covered in Section 2.4.12.

These a ttrib u tes are considered for a range of debuggers in Table 2.3. This table has as much

to say by w hat it om its as by w hat it depicts. Many of the tools surveyed do not ca ter for s ta te

m odels in any docum ented form [BFM + 83, RRZ89, SBN89, HC89, Els89, For89]. A lthough some

of these are experim ental tools, this omission is surprising and unfortunate .

T he com putational model of the ta rge t language (the column labeled Language in Table 2.3),

or system , is considered in term s of paradigm (as defined in [Weg90]), level of parallelism and

D e t e c t i n g a n d Lo c a t i n g C o m p u t e r P r o g r a m E r r o r s

Debugger Language Level E xten t Specifier M odifier Reference
Jdb seq, proc high all nam e expression [W N 88]
D b x to o l seq, proc high all expression, active expression [AM 86]
P D F seq, proc low all address value [Car86a]
E xdam s seq, proc high all nam e, tim e,

dependency, range
value

Bal69]
ID E seq, proc m edium all nam e, active expression Chu83]
U ps seq, proc high all nam e, active value Bov86]
T hinkC seq, proc m edium all nam e, active value G A S + 86]
VA X D B G seq, proc low all sta tic p a th , active,

expression
expression

[Int84]
P R O V ID E seq, proc high all icon, tim e

by assertion , active
expression

[M oh88]
D IS con , O -B high all d ynam ic p a th

expression
expressioif^

[BTM 89]
H /T con , proc

real-tim e
high all d ynam ic path

active, range
value,
trigger [Bem 86]

D ISD E B con , proc m edium inter-process nam e, active value [PL86]
C B U G con , proc m edium intrar &

partial inter­
process

nam e, active value

[Gai85]
M ultibug con , proc low inter-process sta tic p a th , tim e

active
value

[C P86]
P i con , proc high intra-process expression expression [Car86b]
R ealbug con , proc

real-tim e
h igh all expression value

[BEH88]
C on D b g con, proc high inter-process nam e, tim e

dependency
value

[Sto88]
Track seq, 0 - 0 high all expression,

active
expression

[BH90b]
ST 80 seq, 0 - 0 high all expression expression [Gol83]
0 2 seq, 0 - 0 high all nam e, icon value [D P89]
G D B seq, 0 - 0 m edium partial

intra-process
nam e, tim e
active

expression ,
trigger [Sta88]

P arasight con , proc high n /a n /a n /a [AG89]
B lackbox con , proc high all nam e, active

assertion , tim e
expression ,
trigger [GKY 89]

O /A con , form al high all nam e expression [LL89]
D P D con , O—B high intra-process expression , tim e expression ,

trigger [HK89]
Igor seq, proc m edium all sta tic p a th ,

tim e
value

[Fel89]
IC * con , formail high intra-process dynam ic path ,

tim e, range
value

[CC89]
Spider con , proc high inter-process nam e value [Smi85]
M A D con , proc. h igh all nam e, active [RRZ89
V oyeur con , proc high intra-process expression value [SB N 89
P ath ru les con , proc high all nam e, dynam ic p a th expression [Bru85]

Table 2.3: S tate Vector Model Support in M odern Debuggers

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 46

any special considerations, e.g. being based on a formal model (e.g. [BFV86]), or the requirem ent

for real tim e operation (e.g. [Bem86, PL86]). W ithin the paradigm classification, Proc denotes

procedural, 0 - B object based and 0 - 0 object oriented. The ex ten t of parallelism is classified as

sequential (seq) or concurrent (con).

T he level o f a debugging tool concerns the abstractions through which the tool allows the user

to access and m anipulate sta te . High level tools are those which support high level languages (e.g.

Pascal, A da) and offer only high level, and user created, abstractions to access and modify s ta te (e.g.

assignm ent to literals, user constructors, function calls). Low level tools are designed to support

the assembly languages of specific microprocessors and offer only m achine based abstractions (e.g.

m em ory access, m achine representations of da ta). M edium level tools are those which su p p o rt high

level languages w ith both high and low level abstractions. A lthough the la tte r ns typically done

for p ragm atic reasons, it often underm ines the com putational m odel of the supported language(s)

and confuses novice users.

T he ex ten t of a debugger (see the extent column of Table 2.3) depicts how much of the target

s ta te vector is accessible by the user through the debugging tool. Debuggers supporting concurrent

ta rge ts can access two dom ains of th a t vector: the inter- and intra- process sta te , sequential targets

have only the la tte r. Intra-process s ta te consists of the values of all program in ternal variables

and any expressions thereof; inter-process s ta te includes objects such as mailboxes, queues, process

flags, sem aphores and shared memory, which are essential to the full understanding o f a parallel

system . As the table shows, not all debugging tools are able to access bo th dom ains of th e ta rg e t

and on occasions, due to incom plete symbol tables, only partia l dom ain access is im plem ented (e.g.

[Sta88]). T his is a severe and exasperating lim itation for which there is seldom any good reason.

T he specifier column describes the mechanisms used to specify a p a r t of the s ta te vector th a t is

to be viewed, altered, or otherwise used by some debugger com m and (i.e. debugger lvalues). O ften

variables are identified (textually, or by selection) purely by nam e or icon (or address in low level

system s). M any system s allow the value of variable expressions to be calculated. More advanced

system s allow the user to specify a pathname which, in addition to variable nam e, specifies the

nested invocation context of the variable concerned to avoid nam e clashes; dynam ic pathnam es

allow the user to specify variables th a t are scoped w ithin, as yet, non-existent stack fram es. T his

allows the user to specify variables th a t may exist only after several levels of recursion have oc­

curred, before execution has even s ta rted [Bem86]. Tim e may also be used as a specifier (to perm it

the viewing of past values of system objects), as may d a ta flow dependency or the value range. A

few system s (e.g. [Moh88]) combine these specifying constraints into an assertion language, allow­

ing such com m ands as “display the value o f x before it last contained a num ber greater than 100n .

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 4 7

Under the specifier column we also indicate whether, or not, the object displays m ain tained by the

debugger are active. T h a t is, are the values depicted correct only a t the tim e of the query, or do

they pre-em ptively a lter to reflect current program sta te .

A m odifier is a value to which a debugger may alter an variable w ithin its ex ten t (i.e. a debugger

rvalue). M any debuggers are only able to assign the values of literal constan ts to specified variables.

Those th a t have an in-built in terpreter (e.g. [BH90b]), may assign the values of expressions (either

in the ta rg e t language, or in one unique to the debugger) to accessible variables. S till greater

flexibility is offered by these tools which perm it pre-program m ed com m and sequences, including

s ta te m odifying com m ands, to be executed when certain s ta te predicates become true. These are

called triggered modifiers (labeled trigger in Table 2.3). For example, the d a ta p a th debugging

system [HK89], as will shall see in Section 2.4.10, is built heavily on data-based pred icates. D PD

has an extensive set of debugger commands (including s ta te a lteration) th a t may be triggered

when d a ta objects change, or adopt certain values. These im m ediate actions are analogous to the

syntax-directed translations of YACC [Joh78] and can be used to visualize, or even a lter, program

behaviour.

2.4.10 Behavioural M odel

T he behavioural model is an abstraction through which the user perceives and controls the ru n ­

tim e activities of her program . Because of the im portance o f these activ ities in achieving some

understand ing of the ta rge t, and in establishing contexts in which hypotheses about failure can be

in teractively tested , these aspects of a debugger’s functionality are the m ost critical. Essentially,

th ree types of behavioural model exist: the lexical model which defines behaviour as a list of source

lines visited, or modules entered—on which most breakpoint models are defined; the data event (or

d a ta flow) m odel, which expresses activity purely in term s of s ta te vector deltas; and th e control

event m odel, which m aps behaviour on to a stream of prim itive param eterized events. T hese ideas

and their relation to some of the tools surveyed can be seen in Figure 2.3.

Table 2.4 contains a more expansive listing of the behavioural models of the tools surveyed,

which includes the paradigm supported (using the same key as Table 2.3), m echanisms used in the

m odel and the visualization and control features it supports.

Traditionally, debuggers have used a lexical behavioural model and m any event-based tools

re ta in one. Event models are classified by the alphabet of events they support. C ontrol events

(C -event) denote atom ic actions associated with control flow: e.g. the en try or te rm ination o f a

m odule, the sending of a message, or the use of a synchronization prim itive. D ata events (D -even t)

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 4 8

Debugger Paradigm M odel Visualization Control R e f
Jdb seq , proc lexical trace cbrk, ls te p [W N88]
D b xtoo l seq , proc lexical trace cbrk, ls te p ,

n step , exec [AM 86]
P D F seq , proc lexical trace, T -filter stop , brk, ls te p [Car86a]
E xdam s seq, proc lexical trace stop , cbrk, ls te p , trigger

replay, reverse [Bal69]
ID E seq, proc lexical trace stop , ls te p , sim u late [Chu83]
U ps seq, proc process, lexical brk, ls te p , sig [Bov86]
T hinkC seq , proc lexical trace stop , ls te p , cbrk [G A S+86]
V A X D B G seq, proc lexical P -trace, E-filter brk, n step , stop

am end, trigger, go to [Int84]
P R O V ID E seq, proc lexical, log,

D -event
trace brk, ls te p , g a it, go to

replay, reverse, am end [M oh88]
D IS con, O -B lexical, C -event

log , process
trace cbrk, sim ulate , stop

[BTM 89]
H /T con, proc

real-tim e
lexical, C -event
process, eventspec

trace cbrk, sto p , tim e
[Bem 86]

D ISD E B con , proc event, process trace, E-filter cbrk, tim e [PL86]
C B U G con , proc lex ica l, process trace cbrk, ls te p [Gai85]
M ultibug con, proc event trace cbrk, ls te p , stop , goto

trigger, sig [CP86]
M uT E A M con, proc process, A -event

eventspec
trace cbrk, com p [B F M +83]

P i con , proc lex ica l, process trace brk [Car 86b]
E B B A con , proc process, eventspec trace, cluster com p, trigger [Bat89]
R ealbug con , proc

real-tim e
process
event, log

trace, T -filter cbrk, tim e,
am end [BEH 88]

M A D con , proc event, log
eventspec

cluster, filter n /s
[RRZ89]

V oyeur con , proc lexical, A -event trace stop , ls te p [SBN89]
C onD bg con , proc even tsp ec, process,

d epend , D -event
brk, replay

[Sto88]
A m oeb a con, proc lexical, eventspec

C -event, process, log
trace, filter,
cluster

brk, com p
trigger, replay [Els89]

T R A C K seq, 0 - 0 lex ica l, log, C -event trace, E P -filter ga it, brk, sto p , l s t e p [BH90b]
ST 80 seq , 0 - 0 lexical trace b r k ,s to p — [Gol83]
0 2 seq , 0 - 0 lexical, log trace brk, ls te p , trigger, skip

sig, tim e, am end, exec [D P89]
G D B seq, 0 - 0 lexical, process trace stop , ncbrk, exec,

n step , trigger, am end [Sta88]
P arasight con , proc

A -event
lexical, process by user-

defined s /w
by user-defined s /w

[AG 89]
A gora con , proc event, process, log cluster cbrk, replay [For89]
B lackbox con , proc lexical, event, log E-filter trace stop , brk, sim ulate ,

replay, com p, gait [GKY89]
O /A con, formal C -event, tim e, log trace, filter ls te p , gait,

sim ulate , reverse [LL89]
D P D con, O -B event, process, log

depend
trace, E-filter brk, ls te p , am en d

com p , trigger [HK89]
Igor seq, proc D -event am end, replay, reverse [Fel89]
IC * con, form al D -event, tim e sim ulate, replay, reverse

am end [CC89]
Spider con , proc C -event, log trace, E P -filter stop , ls te p , event

am end, com p, trigger [Smi85]
P athru les con , proc event, lex ical

eventspec
trace, filter
m ulti w indow

am end, ls te p , cbrk
gait, trigger [Bru85]

Table 2.4: Behavioural Model Support in M odern Debuggers

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 4 9

watchpoint

lexical model data event model control event model
I Multibugsdb

DPD

conditional trigger actionVAX DBG total specification
I DISDEB

dbx
dbxtool 'partial specification

I B lockbox

reversible
execution EBB A ^\GDB unification

Ada Dbg
MuTEAM

IC*
IGOR

PROVIDEExdams

Figure 2.3: Relationship of Behavioural Models to Debugging Tools

represent atom ic d a ta actions: e.g. the access or alteration of a system object; some system s ad­

vance th is, enunciating the d a ta flow dependencies (labeled depend in Table 2.4) betw een events.

A nno ta ted events (A -even t) are those which represent user-defined, in-program instrum en ta tion

and are typically used in program -anim ation system s [LD85, Bro88]. Some alphabets m ay contain

all of these event types (denoted event in Table 2.4). Advanced system s m ay perm it the user to

hierarchically define new events from existing ones (eventspec), which helps to prom ote user de­

fined abstractions (see Section 2.4.11). Furtherm ore, some models record a history of a p rog ram ’s

execution (log) in an appropriate form to facilitate tim e based querying, or include detailed tim ing

inform ation (tim e) to facilitate the testing of real tim e program s. Debuggers for concurrent lan­

guages often support process-oriented events (process), allowing users to directly view and alter

inter-process behaviour of the target.

V isualization, in the context of this thesis, refers to how program activ ity is relayed to an

observer and does not imply any graphical (or o ther) representation for such a display. Here, we

consider w hat inform ation is relayed; in Section 2.4.12 we consider the m edia used to convey this

inform ation. T he m ost common visualization technique is the trace (labeled trace in Table 2.4), a

depiction of all activity a t a fixed level of abstraction determ ined by the model. For exam ple, a

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 5 0

lexical trace typically constitu tes a list of all the source lines being executed. Advanced system s

may enable th is exhaustive (and often voluminous) display to be controlled by tracepoin ts (labeled

P-trace in Table 2.4), which activate traces only after certain conditions have been satisfied. A lter­

natively, m ore general trace filtration and abstraction facilities m ay be offered including: filtering

by en tities of the model th a t are involved (E-filier), i.e. a procedure, source line or d a ta object;

filtering by the type of activity or instruction involved (T-filter), i.e. assignm ent, function call; and

filtering by the param eters of actions (P-filter), especially relevant to event-based system s. Some

filtering system s may combine all of these approaches (filter). O thers may facilitate trace abstrac­

tion by allowing users to hierarchically define ‘higher-order’ events in term s of event sequences.

T his clustering (cluster) helps to reduce the volume of trace inform ation w hilst re ta in ing all of the

sem antics. Any system which allows debugger command sequences to be triggered from specified

conditions (trigger), obviates the need for specific tracing and filtering of behaviour.

T he debugging mechanisms th a t facilitate target control are rem arkably sim ilar, in otherw ise

dissim ilar debugging tools. They allow the user to m anipulate the progress of program execution.

The m ost im portan t facility is th a t allowing the user to halt program execution, a t a location (for

lexical models) or after an event, to establish a context for exam ination and fu rther experim enta­

tion. T he trad itional functionality of debuggers includes unconditional breakpoin ts (particu larly

lexical breakpoints) (brk); breakpoints dependent on some aspect of s ta te (cbrk); breakpoin ts th a t

become active after being activated a certain num ber of tim es (nbrk)] executing single or m ultiple

instructions (ls te p , nstep)] skipping instructions (skip)', in terrup tion of execution by a keypress

(stop); s ta rtin g execution a t a certain point (goto)] executing external m odules (exec); and the

patch ing of the target run-tim e image (labeled amend in Table 2.4, see also below). M any o f these

facilities are merely transla tions of those offered by assembly language debuggers of the 1960’s

[Moh88, M PW 89]. More advanced functionality includes: the ability to trigger sequences of de­

bugger com m ands on exhibition of certain behaviour by the ta rge t (trigger, see Section 2.4.11),

specified using the abstractions of the model; the ability to record execution and then replay,

sim ulate, or even reverse it (replay, sim ulate, reverse see Section 2.4.13); m anipulation of actual

and sim ulated stim uli, ex ternal to the target, such as in terrup ts, signals and the apparen t flow

of tim e (sig, tim e); controlling the rate of execution (gait); and arguably the m ost powerful: the

com parison of actual behaviour w ith a user provided specification (comp, see Section 2.4.11). T he

la tte r can be used to highlight behavioural deviations and support hypothesis confirm ation.

T he la tte r facilities more closely support the dem ands of the debugging task addressed in

Section 2.4.5. T he former, particularly lexical breakpoints, are expected in m odern debuggers

[Car86a] and yet they are a hangover from the assembly language era. T hey are easy to im plem ent

(typically, an instruction is substitu ted with an in terrupt com m and), b u t often painful to use.

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 51

A lthough they can be used to establish a context, one m ust be aware in advance of the tex tua l

location of th a t context and once it is established one may be unaware how and why execution has

progressed to this point. Furtherm ore, they offer a very lim ited perspective of p rogram behaviour,

fixed rigidly to line num ber granularity. In the next section we shall consider a b e tte r approach.

T he ability to patch object code, i.e. to dynam ically and ephem erally alter the ta rg e t to cir­

cum navigate a bug, is a som ewhat misplaced facility in m odern debugging tools. T he initial need

for patching— to am end the target to confirm the validity of an a lteration , w ithout th e overhead

of recom pilation—has been obviated by the in troduction of increm ental compilers. Furtherm ore,

patching object code from an assembler (which is how the technique originated) is only m oderately

dangerous, because the patch is a t the same level of abstraction as the source— the same is not

true of patches applied to object code from a high level language compiler. Consequently, one

has nothing to gain by patching and a great deal to lose: the m ism atch of source sem antics and

run-tim e behaviour is potentially disastrous [Car86a].

2.4.11 Event Based M odels of Behaviour

Event based models of behaviour are becoming increasingly popular w ith debugging tools designers

and are potentially, extrem ely flexible [CBM90]. Param eterized events are a b e tte r basis for a

m odel because: they allow a ‘n a tu ra l’, hierarchical expression of behaviour [Sen83]; provide a

heterogeneous, abstrac t specification m edium free from the vagaries of any one language or system

[Bat89]; and offer a wide range of abstraction levels [Bat87a, LL89]. T he la tte r is particu larly

im portan t since abstraction is the key to m anaging the complexities of debugging [Bat89, Eis89]

and can help users to express behaviour a t the level of the problem dom ain— unlike lexical models.

Event based system s have four im portan t properties which can be used to classify them : the

alphabet o f events (and event param eters) used to describe behaviour; the com position m echanisms

by which prim itive events are compounded into specifications of complex actions a t the problem ’s

dom ain of abstraction; m eans of constraining specifications to define the ir coverage; and the range

of activities th a t may be triggered by the failure or success of a specification [Bat87a]. In Table 2.5

we consider these properties for the event-based specification system s covered by the survey.

T he alphabet of prim itive events (and their param eters) used to express behaviour character­

ize the system for which they are defined and should be chosen w ith great care [Bat87a, LL89,

B FM + 83, RRZ89], especially in tools which enable the com parison of m onitored events w ith a user

specification (e.g. [Bat89]). I t is desirable to invent an event a lphabet custom ized for the ta rg e t

paradigm [BTM89], with equal emphasis on control and d a ta events [Bal69]. P rim itive events may

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 5 2

Debugger Paradigm E vent Alphabet C omposition C onstraints Triggers
DIS con, O -B inform al,

28, ad a specific
single event unified

H /T con , proc inform al,
13, in 4 classes

seq, conj, disj
partial

b reakpoin t
sta rt trace

D IS D E B con , proc inform al,
m em ory & port i /o

seq, conj, disj
parallel

any d ebugger
com m and

M uT E A M con , proc form al & user d e f’d
C SP based

seq, rep, conj,
disj, partia l

unified , b oolean

E B B A con, proc unspecified
& user d e f’d

seq, rep, neg,
conj, disj,
parallel, partial

b oolean
ev en t/p a ra m filter

R ea lb u g con , proc n /s single event
V oyeur con , proc inform al, an notative

& user d e f ’d
sing le event

A m o eb a con , proc inform al, com m s, IPC ,
sys ceill & user d e f’d

seq, rep, d isj, neg
parallel, partial

event filter any debugger
com m an d

B lack b ox con, proc inform al, 5 prim itive
& user d e f’d

conj, disj boolean ,
tem poral logic
ev en t/p aram filter

O /A con, formed inform al, annotative,
4 IPC events

single event ev en t/p aram filter

D P D con, 0 —B inform al
d a ta access, IPC

seq, rep, disj,
conj, parallel

event filter an y d ebugger
com m an d

S pider con , proc inform al, IPC
& user d e f’d

single event boolean
ev en t/p a ra m filter

any debugger
com m an d

P ath ru les con , proc 4 inform al, IPC
d a ta & user d e f’d

rep, seq, parallel
conj, disj

boolean se e /a lte r c lien t
p ath ru le
or en vironm ent

M A D con, proc inform al an notated
d ata , IPC , h /w
user d e f’d

as Pathrules boolean

Table 2.5: Event-based Specification in M odern Debuggers

be system generated, by fixed instrum entation , or added by user anno ta tion as in [SBN89, RRZ89].

T he la tte r supports application specific events and is certainly easier to use, b u t a t the cost o f com­

pleteness, consistency, tim e and efficiency. Such ad-hoc anno ta tion is akin to program am endm ent,

and poten tia lly shares all the disadvantages. As Table 2.5 shows, all o f the surveyed debugging

tools th a t incorporate event-based specification system s, use informally generated event a lphabets,

except M u T E A M [BFM + 83]. These alphabets vary considerably and m any allow user defined,

(source anno ta ted) events to be added to the prim itive set (labeled user d e f’d in Table 2.5).

To su pport abstraction , most of the tools supporting event-based specification provide a lan­

guage w ith which to generate composite events from prim itives. Typically th is language enables

com plex events to be composed of sequences (seq), concurrent conjunctions (con j), d isjunctions

(d is j) , concurrent shuffles9 (parallel), repetitions (rep) and negations (neg) of prim itive events (or

lesser com plex events). Advanced system s allow partia l specification (pariial) and, in some cases,

9 A n op erator sp ecify in g a list o f events that m ay be execu ted , concurrently, in any order.

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 53

the partia lly specified sections may be unified (unified) with the events they m atch in a proven

specification and the resu ltan t m apping used in constraints. C onstrain ts strengthen a specification

m edium otherwise com pletely reliant on p a tte rn m atching. They can be defined as sim ple filters

on event type, or param eter values. Boolean expressions and even tem poral logic equations are

provided by some system s. There is also massive variation in w hat actions debugging tools can

trigger if these specifications fail.

T he abstraction and complexity of complex events is such th a t some system s (e.g. E B B A

[Bat89], Amoeba [Els89] and SP ID E R [Smi85]) offer library facilities to prom ote the storage and

reuse of event specifications [CC89]. There are great difficulties indexing these specifications such

th a t they can be efficiently recalled la ter for reuse. Furtherm ore, no system allows existing speci­

fications to be param eterized or strengthened by new ones.

T he ability to com pare a behavioural specification with the m onitored behaviour of a program is

extrem ely useful debugging aid. As we shall see in la ter sections, it is especially useful in debuggers

for concurrent program s. N aturally this technique is not a panacea, the user’s event specification

may itself be flawed. However, it does offer a potentially vital second opinion, from an operational

view point quite different from the program m er’s. I t is surprising th a t so few debugging system s

su p p o rt th is functionality, and of those th a t do, th a t so few support it well.

2.4.12 H um an-C om puter Interface

T he user interface of a debugging tool has two m ain requirem ents: to m anage the com plexity

of th e debugging tool by providing the user w ith an easily rem em bered in teraction dialogue and

com m and struc tu re (since m ost debugging tools are only used in term itten tly); and to allow th e user

to in te rac t w ith the th ree models of her program in order to a tta in a deeper com prehension of it.

T h is leads to a split in user interface resources between control of the debugger and visualization

of the ta rg e t. The facilities used by debugging tools to support user interaction are listed in

Table 2.6. As the tab le shows, some debugging tools offer no user interface support because they

are no t intended for interactive use.

T he m any different context dependent views th a t are required by the users of debugging system s

(see above) and the inherent complexity of these views makes debugging tool, user interface design

extrem ely dem anding [BEH88]. M odal interfaces lack the required flexibility [Car86b], b u t single

s tream non-m odal designs (such as those based on tex tual term inals) are woefully under-pow ered

and often confusing to use. Interaction through a set of windowed, v irtual term inals (labeled

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 5 4

Debugger Interface
M odalities

Source
Visualization

State
Visualization

B ehavioural
V isualization

D b x to o l cli, w indow , m enu,
prog

tex t tex t te x t, h igh light

Jdb cli, w indow , m enu tex t te x t, ad ap t, cu stom ize
P D F w indow , m enu tex t te x t, adapt,

custom ize, user d e f’d
o b ject te x t , cu sto m ize

E xdam s cli tex t
user d e f ’d

te x t, analog
custom ize

te x t, graphic
cu stom ize

ID E cli, save tex t tex t te x t, analog
U ps w indow , m enu tex t te x t, d -m anipulate tex t
T hinkC cli, w indow , m enu tex t tex t tex t
VAX D B G cli, prog tex t tex t tex t
P R O V ID E w indow , m enu tex t analog, graphic, cu stom ize

user d e f ’d, d -m anipulate
te x t, graphic
high ligh t

D IS lang, cli tex t tex t, graphic, user d e f’d tex t
H /T w indow , Icing, m enu tex t tex t tex t
D ISD E B cli tex t tex t
C B U G w indow , m enu tex t tex t te x t , h igh light
M u ltib u g cli tex t tex t, user d e f ’d te x t
M uT E A M cli tex t tex t tex t
P i w indow , m enu tex t tex t tex t
E B B A n /s te x t
R ealb u g lang, w indow , m enu tex t te x t, analog tex t
M A D w indow , m enu graphic, u ser d e f ’d
V oyeur w indow , m enu tex t, graphic, user d e f ’d
B elvedere window n /s graphic
C on D b g cli, w indow text tex t tex t
A m oeb a n /a n /a n /a n /a
T R A C K w indow , m enu tex t tex t, user d e f ’d, graphic
S T 80 w indow , m enu tex t tex t te x t, h igh light
o2 w indow , m enu tex t graphic, d -m anipu late te x t , h igh light
G D B lang, cli tex t te x t, custom ize te x t , cu stom ize
Paxasight cli tex t te x t, custom ize, user d e f’d te x t , u ser d e f ’d
A gora n /a tex t, custom ize
B lackbox n /a tex t tex t te x t
O /A cli, w indow , m enu tex t tex t tex t
D P D cli tex t tex t tex t
Igor n /a n /a n /a tex t
IC * w indow , cli graphic, analog,

tex t
a d ap t, graphic, analog
te x t, d -m anipulate

a d ap t, graphic,
tex t

Spider cli tex t tex t tex t
P ath ru les cli, window text tex t

Table 2.6: T he User Interface Facilities of M odern Debuggers

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 5 5

window in Table 2.6) partially solves this dilemma, as does the use of hierarchical m enus [BEH8 8]

(menu). Despite th is, m ost debuggers still use standard com m and line interfaces (cli).

T he chief problem s of debugger control are: how does the user specify which aspects o f her

program she wishes to see; how is this information presented in order to avoid overwhelming her

and how is m astery of the tool made both easy to a tta in and rem em ber. T he current consensus is

th a t com m and interfaces should be orthogonal and reflect the abstractions of th e ta rg e t language

as much as possible, m aking the com m ands easy to rem em ber and allowing the user to specify w hat

she wishes to see using these abstractions [BEH8 8 , Bem 8 6] (such system s are denoted lang in the

Interface Modalities column of Table 2.6). Alas, few debuggers a tta in this ideal. Debugging session

m anagem ent is supported in some debuggers by the use of session checkpointing [Car8 6 a, Chu83]

(save), program m ability [Sta88] (prog) and integration w ith software developm ent environm ents

[BH90b, Gol83].

The appropriate graphical visualization techniques can make debugging tools aid the program ­

mer, as effectively as analogical hardware tools (e.g. the oscilloscope) help an engineer [BH90a], It

is frequently argued th a t pa tterns of behaviour are best understood visually— especially through

anim ation. T he advantages offered by graphical m edia (labeled graphic in Table 2.6) is th a t th rough

panning and feature size one can create highly selective displays w ith variable degrees o f em phasis

on each feature. In contrast, tex t emphasizes everything to the same degree (no tw ithstand ing tech­

niques like highlighting, colour and font, which can easily be sa tu ra ted [Mye84, Bal84, Shn87]). The

effectiveness of a display is inversely proportional to complexity [Knu63]; thus selective displays

are essential to avoid overwhelming users w ith too much inform ation [DC8 6].

W hat can be visualized depends on the models supported by the debugging system , the anim a­

tion techniques supported by the debugger and, in an event-based system , the a lphabet o f events

used. M any system s require the user to provide her own visualizations (labeled user d e f ’d in Ta­

ble 2.6) and anim ation rules [RRZ89, SBN89] (customize). W hile this is a flexible technique, the

defining m echanism should be easy to use, and enable the reuse of a host of pre-defined graphical

visualizations. Given the reluctance of m ost people even to use a debugger, custom visualizations

will be of in terest to a sm all m inority of users. The very best visualizations have some innate sim­

ilarity w ith th a t which they represent. Such analogical visualizations (labeled analog in Table 2.6)

are notoriously difficult to design. Enhancing this analogy still fu rther, there are system s which

allow visualizations to be directly m anipulated (d-manipulate), such th a t changes in their visual

s tru c tu re result in analogous changes being wrought on the en tity they represent. An excellent

survey of visualization techniques can be found in [DC8 6].

It is a considerable sham e th a t the m ajority of debugging tools do not a tta in these ideals. It

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 56

is also disconcerting th a t many debuggers which claim to provide graphical visualization, do n o t10

[DC8 6 , DP89]. O f the debuggers surveyed, only four (IC* [CC89], O 2 [DP89], Track [BH90b] and

PR O V ID E [Moh8 8]) are capable of analogical, graphical s ta te visualization of the quality pioneered

by Myers [Mye83]. Several displayed a potential to visualize behaviour using an event based model

[Bat87a].

T he poten tia l of graphical visualization is vast, bu t bounded. V isualization only relays the ef­

fects o f execution, no t the causes. A lgorithms can not be directly visualized, only the consequences

of their execution. T hus, it provides understanding of program s’ effects w ithout necessarily relating

it to causes in the program . A lthough there are many claims th a t graphical debugging improves

program m er productiv ity (e.g. [BEH88]), no experim ental evidence exists to prove this assertion.

2.4.13 Problem s Introduced by Parallelism

T he in troduction of parallelism greatly complicates debugging [BTM89, Bat89, For89] chiefly be­

cause: the asynchrony of parallel systems makes their behaviour more difficult to understand

[RRZ89, SBN89, HC89]; parallel system s can fail in more in tricate ways such as tim ing errors,

deadlock or starvation [GKY89]; and an overwhelming array of inform ation needs to be digested

before the s ta te of a d istribu ted program can be appreciated. Ironically, these problem s m ean th a t

the need for debugging tools in parallel system s is greater th an th a t in sequential system s. T hus

far, th is need has been poorly served [For89].

T he problem s of parallelism can best be viewed by analyzing the assum ptions m ade for sequen­

tial system s which are no longer valid [BFM+ 83]—these include those listed below.

• D e te rm in is m . T he non-determ inism of parallel program s is a severe handicap to repeatable

execution which is essential to hypothesis confirmation in debugging. As a result, a host of

mechanism s have been invented which a ttem p t to assert determ inism .

• D e b u g g e r F u n c t io n a l i ty I n d e p e n d e n t o f A r c h i te c tu re . A lthough this can be guaran­

teed in m ost sequential systems, parallel architectures show much more diversity. T h is diver­

sity includes fundam ental concepts th a t effect debugging behaviour such as synchronization

constructs, m eans of inter process com m unication and the granularity of parallelism . This

m eans th a t debuggers are less portable in parallel environm ents.

10 T here is a tem p tation to s ta te th a t a debugging to o l is graphical m erely because it su p p orts b itm a p p ed w indow s.

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 57

• D e b u g g e rs M a y A l te r th e T a r g e t ’s T im e C h a r a c te r is t ic s W i th Im p u n i ty . Such

alteration , usually as a side effect of code instrum entation or a deliberate action to slow or halt

a program for debugging purposes is, a t worst, a m a tte r of mere inconvenience in sequential

system s; in parallel system s any pertu rbation of inter process tim ing can com pletely alter

system behaviour. The Probe Effect [Gai85], as th is is known, is a serious lim itation in

parallel debugging.

• O n e F o c u s o f I n te r e s t . Parallel system s em body m ultiple th reads of control. C onsequently

some powerful user interface techniques will be needed to ensure the user is not overwhelmed

by inform ation, does not miss v ital details and is able to co-assimilate inform ation from

m ultiple concurrent sources.

We consider some of these points in greater detail below. Some of them constitu te such prob­

lems, th a t no single debugger can provide a complete solution and retain all the functionality

trad itionally associated w ith sequential debugging. This has prom pted the developm ent of ‘m ulti­

s tag e ’ debugging models [LL89, Smi85] in which traditional debugging tools are used to debug each

process on a stand-alone basis (an intra-process tool), and then the processes are com posed and

debugged by tools which deal only w ith inter-process abstractions [BFM + 83]. Some argue th a t

th is approach is too m odal, or has too high an overhead, and th a t such functionalities should be

com bined [BTM89, Els89, C ar8 6 b, Bat89]. O thers argue th a t, like the architectures of the host

system s, a debugging tool should be d istribu ted [Bat89].

N o n -D e te rm in is m

R epeatab ility of program behaviour is an essential part of debugging, ju s t as experim ental re­

producibility is v ital to scientific m ethod. A continuum of m ethods exists to enforce repeatable

behaviour by replaying programs: spanning from full sim ulation, to event-driven, constrained re­

execution. These include those listed below.

• S ta t i s t ic a l R e -e x e c u tio n , unconstrained re-execution of a non determ inistic p rogram w ith

sufficient frequency as to sta tistically ensure the eventual replay of previously observed be­

haviour. T his, som ew hat exhaustive technique, was first formally suggested by G ait and used

in his CBUG debugger [Gai85].

• G u id e d R e -e x e c u tio n . The program is re-executed under constraint. T h a t is, norm al

execution is allowed to proceed until some junctu re a t which inter-process com m unication,

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 5 8

or a non-determ inistic choice is to be made, then the program is constrained to behave as

previous executions did. Examples include S tone’s speculative replay and Miller and C hoi’s

increm ental tracing m echanism based on flowback analysis [Sto8 8 , M C8 8]).

• F u ll S im u la t io n . The program run is fully sim ulated, by-passing any non-determ inism . For

exam ple, K epeklian’s DTM L debugger [Kep87]).

G a it’s m ethod aside, all forms of re-execution depend on the generation of history logs during

an in itia l execution of the erran t program [LL89]. The concept of history tapes is not new —they

were in troduced by Balzer in the Exdams debugger [Bal69]. Furtherm ore, they have m any other

uses; for exam ple, in Blackbox [GKY89], they are used to m aintain a history of execution which

can be queried, later, w ith tem poral assertions. Ideally, such logging would always be enabled,

allowing im prom ptu debugging sessions. U nfortunately, this is usually infeasibly expensive, and

consequently, non-determ inism still constitutes a problem if an instrum ented re-run of a program

behaves differently from the original.

T he form and ex ten t of history logs varies w ith the replay m ethod employed. Logs are often

param eterized event lists. Those logs generated to facilitate sim ulation m ust represent all of the

details concerning the run-tim e behaviour of the program . Such exhaustive logs are often enorm ous

(the efficiency of history logs is discussed later in this section). By com parison, logs for guided re-

execution merely have to provide partial details concerning process tim ing and dependencies (i.e.

record all the non-determ inistic choices), such th a t determ inism can be asserted over the re-run

program to provide repeatability. T his is achieved by executing the program under a supervisor

process and using breakpoints to block for inter-process dependencies. O ften, execution order

does no t have to be fully specified and a partia l record is sufficient— knowing when the order is

significant is a problem in itself. Consequently, the logs are reduced in size, as is the level of

control over the re-run program . T he disadvantages of sim ulation are offset by the fact th a t it does

not require specialist hardw are and one can experim ent in ways th a t are otherw ise im possible, for

exam ple: reverse execution.

D e p e n d e n c e o f D e b u g g in g T o o ls o n A r c h i te c tu r e

Replay m echanism s are a good illustration of how debugger requirem ents vary heavily w ith the

degree of parallelism , frequency and style of comm unications and type of architecture. How replay

may be achieved is very dependent on these factors. LeBlanc and M ellor-Crum m ey [LMC87]

achieve it by versioning shared variables and delaying variable access until its version is ready during

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 5 9

replay. Elshoff [Els89] re-uses th is mechanism in his debugger for Amoeba. However, due to an

asynchronous construct unique to Amoeba, the m ethod is not wholly effective [Els89]. Forin [For89],

also uses versioning, bu t his im plem entation is more restrictive and does no t su pport the concurrent

read exclusive w rite (C R EW) protocol because of the la tte r ’s inefficiencies; indeed, under some

circum stances, it uses write-once memory instead (thus reducing size of event h istory log). Stone

[Sto8 8] uses a speculative replay mechanism, which detects instances in which replay sequences

violate a recorded dependency. In such a case, the scheduler is rolled back and ano ther event

sequence is tried . SPID E R [Smi85] works in a non memory sharing environm ent and consequently

m ust record and replay behaviour guided solely by logs of inter-process com m unication.

T he degree of dependence of a debugging tool is the range of external agents it relies on and

the ex ten t to which this reliance causes changes in struc tu re of the agent to necessitate changes in

the debugger. These agents include, bu t are not lim ited to those listed below.

• H a rd w a re . Low level debuggers, like PD F and A FD [Car8 6 a], directly sup p o rt the in­

struction set of the microprocessor on which they run and are thus dependent on it. Many

high level debuggers for parallel systems rely on ad-hoc hardw are a lterations (or additions) to

achieve some desired functionality, or to provide sufficient efficiency to reduce the probe effect.

For exam ple, DISDEB [PL8 6] avoids software and kernel dependencies by using custom -built

bus m onitors to ascertain the s ta tu s of nodes in a d istribu ted system . B em m erl’s real tim e

debugger for h o s t/ta rg e t environm ents [Bem8 6] and the MAD [RRZ89]'debugger use a sim­

ilar scheme. Generally, hardw are dependencies are more prevalent in debugging tools for

parallel or real-tim e systems.

• K e rn e l . Some debugging tools utilize custom kernel alterations to acquire the necessary

efficiency, for exam ple M uTEAM [BFM+83] and M ultibug [CP86]. O thers use it to achieve

functionality which would be unatta inable otherwise, e.g. the increm ental, page-based check­

pointing of IG O R [Fel89] which supports its rollback mechanism. O ther tools reply on the

facilities of a particu lar operating system to such an extent th a t they cannot easily be ported

to another. Elshoff’s Am oeba debugger [Els89] has a replay facility th a t is severely weak­

ened due to the design of the host operating system . Similarly, CBU G , G a it’s p ro to type C

debugger [Gai85], is heavily dependent on UNIX.

• C o m p ile r . Like hardw are dependencies, reliance on compiler internals is confined largely to

parallel debuggers. It is often caused by im plem entation of the instrum enta tion required to

achieve adequate behavioural inform ation. For example, Bem m erl’s real tim e debugger relies

on an instrum ented compiler to ou tp u t event param eters to the custom hardw are discussed

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 60

above [Bem86] and IG O R [Fel89] works with a compiler which has been altered to make

in ternal d a ta structu res easier to access. Brindle et a l.’s A da debugger [BTM89] uses a

custom compiler to facilitate program m ing a t breakpoints.

• L a n g u a g e . Many sequential debuggers are specifically targeted a t one program m ing lan ­

guage, providing functionality uniquely relevant to th a t language. O ften, such tools are

dependent enough on the abstractions of their language as to compromise the ease of porting

the tool. Exam ples include: TRA CK , which is deeply entwined w ith Sm alltalk80 [BH90b];

the T hinkC debugger which cannot even be used w ith o ther variants o f the C language

[GAS+8 6]; and PRO V ID E which supports its own subset of C [Moh88]. Parallel debuggers

are more language dependent than sequential ones, due to the g reater diversity o f parallel

languages. Synchronization schemes, com m unication mechanisms and tha- grain of paral­

lelism are all factors which can change radically between concurrent languages and on which

debuggers depend [BFM+83, BEH 8 8 , RRZ89]. This lim itation is addressed to som e extent

by m ulti-lingual debuggers [ST83]. In practice, these are im plem ented by supporting a series

of different, bu t analogous, languages through a flexible user interface and language inde­

pendent code and symbol table structures, e.g. [Car83a]; or by encapsulating m odules of

different languages with a communications interface which makes them appear homogeneous

[RSHW W 8 8 , For89]. Event-based models also help to reduce the language dependency of

parallel debugging tools [Bat89, LL89, HK89].

• P a r a d ig m . T he paradigm [Weg90] of a language, or set of languages, is such a fundam ental

concept th a t no debugger is independent of it. T he au thor is unaw are of any debugger which

supports m ultiple languages of a different paradigm , and doubts th a t such a tool would ever

be feasible. Debugging is paradigm specific [DC8 6]: as is the choice of debugger functionality.

T he advantages of debugger dependencies are discussed above. T he drawbacks are largely

unrelated to the type of dependency and include: lim itation of d istribu tion (a m ajor reason why

debugger usage is not more widespread, see Section 2.4.4); increased expense of developm ent

and m aintenance—especially if the debugger m ust be altered whenever a new kernel is produced

[Els89, Bov86]; and lim ited scope of application. The dependencies of th e debuggers surveyed are

shown in Table 2.711.

11 T h e reader shou ld bew are th a t th is table reflects those dependencies adm itted by th e authors o f th e works
concerned . W here such dependencies were not d iscussed , or cou ld not b e inferred from d eta ils o f th e im plem en tation ,
it is assu m ed — op tim istica lly— th a t they do n o t ex ist. Table 2 .7 consequently represents a b est case for dep en d en cies
and the reality o f th e s itu a tio n m ay b e som ew hat worse.

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 61

Debugger Dependencies Reference
Jdb kernel, paradigm [WN88]
Dbxtool kernel, paradigm [AM 86]
PDF hardware, kernel, paradigm [Car 8 6a]
Exdams language, paradigm [Bal69]
IDE language, paradigm [Chu83]
Ups kernel, language, paradigm [Bov86]
ThinkC kernel, compiler, language, paradigm [GAS+86]
VAX DBG compiler, language, paradigm [Int84]
PROVIDE language, paradigm [Moh88]
DIS compiler, language, paradigm [BTM89]
H /T hardware, compiler, paradigm [Bem86]
DISDEB hardware, paradigm [PL86]
CBUG kernel, paradigm [Gai85]
Multibug hardware, kernel, paradigm [CP86]
MuTEAM kernel, language, paradigm [BFM+83]
Pi kernel, compiler, paradigm [Car86b]
EBBA kernel, paradigm [Bat89]
Realbug hardware, compiler, language, paradigm [BEH88]
MAD hardware, compiler, paradigm [RRZ89]
Voyeur paradigm [SBN89]
Con Dbg paradigm [Sto88]
Amoeba hardware, paradigm [Els89]
TRACK language, paradigm [BH90b]
ST80 language, paradigm [Gol83]
o2 kernel, compiler, paradigm [DP89] “
GDB kernel, language, paradigm [Sta88]
Parasight hardware, paradigm [AG89]
Agora Language, paradigm [For89]
Blackbox paradigm [GKY89]
O /A kernel, paradigm [LL89]
DPD paradigm [HK89]
Igor kernel, compiler, language, paradigm [Fel89]
IC* hardware, kernel, paradigm [CC89]
Spider kernel, paradigm [Smi85]
Pathrules compiler, paradigm [Bru85]

Table 2.7: Dependencies of M odern Debuggers

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 62

L atency and T im e

The in ter-dependent na tu re o f d istributed parallel system s compromises some trad itio n a l debugging

techniques and reduces the effectiveness of others. Acquiring a consistent snapshot o f the global

(d istribu ted) s ta te is very difficult [Bat89, Els89] due to latency and the perpetual evolution of

such system s. A related problem is th a t of breakpoints. P artia l breakpointing of parallel system s

is ham pered by inter-process tim eouts. A process has no a priori way of checking w hether a

process on which it is waiting has legitim ately tim ed out or is breakpointed [Els89]. T his causes

breakpoints to pertu rb the behaviour of processes dependent on th a t which was breakpointed . R P C

based system s do not have th is problem , since w ithin a program , process dependencies are explicit.

However, ex ternal tim eouts still pose a dilemma. Com plete breakpointing of a d is tribu ted system

m ight overcome these difficulties, were it not for the fact th a t it cannot be done instantaneously and

thus the above problem s are introduced again. Process logical clocks over which user has control

is one solution [For89], b u t these are inefficient and dependencies m ust be calculated [AG89].

M onitoring the parallel behaviour of d istributed system s (for replay or o ther purposes) is also

fraught w ith problems. In order to determ ine the tem poral order of the events recorded, events need

to be tim estam ped. M aintaining any m utual consistency between these tim estam ps is hindered by

the lack of a globally consistent clock. This can be partially solved through the use of a L am port

clock [LL89, Lam78].

Efficiency

Efficiency is an especially im portan t issue in the design of parallel system debuggers, no t least

because of the probe effect (see Section 2.4.13). T he surveyed system s use a com bination of

arch itecture and special techniques to improve efficiency—usually a t the cost of dependencies (see

Table 2.7).

Two activities notorious for their processing dem ands are scanning symbol tables (which can be

very large in non-trivial program s) and generating an event-based history log (see N on-D eterm inism

above). T he first is usually overcome by using lazy evaluation of symbol table nodes to avoid the

overhead of exhaustive stric t evaluation [AM8 6 , C ar8 6 b, S ta8 8] which is rarely required during

norm al debugging sessions.

T he tim e and space inefficiency of event capture is a more problem atic issue. Event cap tu re

is inherently very intrusive, especially d a ta events, and th is had led some designers to exclude

such events from their log alphabets [BTM89]. However, d a ta events are a powerful form alism

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 63

[LL89, HC89] and m any seek to retain them and to try and reduce their inefficiencies. M any

debuggers for d istribu ted system s are themselves d istributed [AG89], or are im plem ented such th a t

they can access the m ultiple constituents of m ost program s (i.e. run-tim e image, scheduler, sym bol

table) in a decentralized way [Car8 6 b], O bject oriented im plem entations are na tu ra lly inclined

this way. Hierarchically d istributed event-based system s can often d istribu te event cap tu re and

thus improve efficiency [Bat89]. This distribution has another advantage: it separates th e address

spaces of a debugger process from the target, preventing any corruption from rogue processes

during debugging [Els89, Bru85, Smi85]. Efficiency can be further improved if only a m inim al set

of events are recorded and, a t replay tim e, th is program behaviour is dynam ically reconstitu ted

by s ta tic analysis and dem and driven extrapolation of detail. This is term ed lazy-tracing. An

exam ple of this is Miller and C hoi’s increm ental tracing [MC8 8]—a replay technique so optim ized

through the use of symbolic, sta tic dependence and d a ta flow analysis th a t its tracing m echanism

rem ains perm anently active by default (see Section 2.4.13). T he instrum entation of increm ental

tracing segregates problem s into em ulation blocks which are individually port trapped (events are

generated on thread en try and exit to the block) with param eters concerning which d a ta it is

dependent on and which it alters. During replay, these blocks can be selectively re-executed to

enhance th e available inform ation on the running program w ithout th e expense of executing th em

all or storing all the interm ediate values otherwise needed. Block size is tailored to the host system .

Trace overheads of less th an 15% can be achieved in this way.

T he space efficiency of history logs is also im portan t, especially in system s which support

full sim ulation. Such exhaustive logs are often enormous and techniques exist to res tric t their

size [Lar90]. H ardware is the u ltim ate answer to bo th space and tim e efficiency; in [RRZ89] an

auxiliary processor is used to achieve m onitoring in a shared memory environm ent. In addition ,

the MAD processor also perform s event clustering, filtering and graphical visualization. A sim ilar,

if m ore dynam ically configurable approach is adopted in [AG89].

Some argue th a t, to enhance efficiency, run-tim e m onitoring (to m aintain a history log) should

be removed once program s are released after testing [Els89]. However, this can be dangerous

because to remove m onitoring after testing constitutes a change which m ight reveal bugs previously

hidden by the probe effect and to disable the history log prevents ‘im prom ptu’ debugging sessions

[ST83]. O ne solution is to make m onitoring so com putationally ‘cheap’, th a t perm anently enabled

logging is feasible [For89] (see above).

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 6 4

V isu alization

V isualization of parallel behaviours and design of the user interface m odalities required to support

concurrency is also a significant problem. To avoid overwhelming the user, debuggers need to

selectively exam ine behaviour, s ta rting w ith an outline of the program behaviour and then steadily

increasing the degree of detail as the user focuses on the bug [BH90a]. Thus, system s have to be

(unobtrusively) m onitored and then their behaviour visualized using a technique w ith a large

capacity for abstraction . The facts th a t parallel systems introduce elem ents of behaviour of far

lower level th a t those encountered in sequential system s (e.g. synchronization, tim e) and th a t

debuggers need to analyze th is behaviour a t varying levels of abstraction , make a good case for using

event based models of behaviour [BFM+83]. “Parallel algorithm s are best understood in tferms of

p a tte rn s of IPC events” [HC89]. To avoid overwhelming users w ith a surfeit ofTnform ation, the

filtering and clustering operations th a t events facilitate are essential [Els89, For89]. Event based

system s may also be used to compare real and intended behaviour [Bat89, HC89]. T he event

a lphabet will be influenced by architecture: debuggers for non-shared m em ory system s, such as

Belvedere [LMC87], will use alphabets based on inter process com m unication [HC89], as opposed

to the versioning events used by shared memory system debuggers like A m oeba [Els89].

M any proposals exist to support the graphical visualization of concurrent behaviour [Fid89,

S to 8 8 , RRZ89, Agh90]. G raphical approaches are even more necessary for parallel system s, as sim ­

ple tex tu a l traces would generate far too much inform ation [RRZ89]. T he m ost difficult problem s

in th is regard are: representing the tem poral order of processes; depicting dependencies; showing

po ten tia l concurrency; and ensuring complete visualization. Basing a visualization on a form al

m odel improves its rigour, e.g. Stone [Sto8 8] bases her visualization on a d a ta s tru c tu re which

represents dependencies between concurrent processes. Like the more general concurrency m odel

of Voyeur [SBN89], th is ensures th a t the visualization is independent of language and operating

system .

2.4.14 Problem s Introduced by O bject Orientation

T he ob jec t oriented com putational model is considerably different from the p rocedural norm

[Mey8 8 , C0 0 8 6 , GR83, S tr8 8], and although some sim ilarities may be cited, the parad igm gap

is wide enough to be considered significant by debugging tool designers. These differences and the

ram ifications they have on debugger design are explained in [PW91a] and sum m arized here.

O b jec t oriented system s have many features which act to prevent bugs. T he active separation

of ob ject signatures from im plem entations helps to reinforce the program m er’s in ternal m odel of

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 6 5

her code. T he encapsulation and locality [Lis87] of the paradigm reduce in ter-object dependencies

and make rem aining dependencies explicit. This eases the location of bugs and localizes the effect

of any (bug-ridden) code alteration. Unfortunately, this locality is som ew hat com prom ised by

inheritance and parallelism .

The ob ject oriented paradigm brings new problems caused chiefly by inheritance and dynam ic

binding. T he former, especially m ultiple inheritance, allows bugs to be propagated down the in­

heritance hierarchy and allows them to m anifest themselves far from where they reside. Sem antic

in teraction between m ethods co-inherited from different classes may easily result in ob jects w ith

m ethods which use their representation in conflicting ways. Dynamic binding, as supported by

techniques such as v irtual functions (in C++ [Str86]), as its name suggests, is no t trac tab le to

checking a t compile tim e and can make program s very difficult to understand . Language environ­

m ents th a t fully support dynam ic binding (LISP, Smalltalk80) consist of m appings of nam es to

values. Consequently, predefined functions can alter in behaviour unpredictably because names

in ternal to their definition have been unwisely reused.

D ebuggers for object oriented system s should accentuate the object m odel of the language for

which they are designed; some debuggers based on hybrid object oriented languages th a t have

evolved from procedural languages [Sta8 8] overlook this sim ple fact. Furtherm ore, m any fail to

use any ob ject oriented abstractions in the models they present to the user [DP89, BH90a]. A

visualization model of object oriented program execution has yet to be agreed. O pinion differs

as to w hether d a ta and behaviour should be combined in a debugger’s visualizations [BH90a] or

separa ted [LL89]. ^

2.5 Conclusions

In this survey we have com pared and contrasted a representative sam ple of exception handling and

debugging tools. We have defined w hat constitu tes such system s, provided justifications for their

usage, explained w hat com m onalities they have and some of the ways in which curren t system s

are still deficient. This thesis concentrates on the common problem s of form ality and abstraction .

T he event-based model of behaviour is obtaining growing acceptance as the m ost able means

of describing the behaviour of concurrent d istributed system s. I t is being used as a m eans of

recording, visualizing and specifying such behaviour. However, no a ttem p t has yet been m ade

to formalize the alphabet of events used to express the behaviour of any particu lar system , or

to perm anently associate event-based specifications with the code they concern to prevent the

2: D e t e c t i n g a n d L o c a t i n g C o m p u t e r P r o g r a m E r r o r s 66

constan t need to reproduce them . In addition, given the im portance of the com parison o f desired

and ac tual behaviour during program debugging, few debuggers directly facilitate it. Finally, few

debuggers for object oriented languages offer any direct support for object oriented abstractions.

Exception handling system s are also becoming increasingly accepted. Like debuggers, they
\

seek to detect and locate bugs (although they have o ther functions). Such bugs are detected by

d istribu ting s ta te specifications w ithin program s. These specifications are of lim ited form ality and

applicability in parallel or object oriented system s. We have established the need for a behavioural

specification m edium to enhance formality and express the desired behaviour of concurrent objects.

In the rem ainder of this thesis we hope to explain how we have overcome the above problem s

by in tegrating some of the functionality of debugging tools and exception handling m echanism s,

while enhancing the form ality of both.

C hapter 3

A n O perational M od el o f O b ject
O rien ted S ystem s

3.1 Introduction

Tw o issues raised in chapter 2 are addressed specifically in th is chapter: the need for a s tru c­

tu red , form al m odel to facilitate reasoning about specification m edia for parallel, ob jec t oriented

languages; and the need to deduce the minimal a lphabet required for such a specification m edium ,

to minimize the bandw idth of the event stream representing behaviour. These goals are related: a

m inim ized event a lphabet can be derived from a consistent model— this is, in essence, the purpose

of th is chapter. We briefly recap on the m otivations for building a form al m odel of o b ject oriented

system s here, before describing the model itself.

The advent of more sophisticated program m ing languages, caused by the recent popularity

of the ob ject oriented paradigm [C0 0 8 6 , Mey8 8 , Cox8 8 b, Cox90, BGM89], brings an increasing

need for form alism s th a t are capable of expressing the struc tu re and behaviour of objects. T his

need is m ost acute where parallel object oriented languages [RWW 8 8 a, Ame87, Ame89a, CBM 90,

Hew77, Mod79, NH8 6 , NP90] are used to harness multi-processor system s, because of the additional

com plexity involved (see chapter 2). Such formalisms could, if incorporated in to program m ing

languages, act as life-script mechanisms and be used to define or convey an o b jec t’s process-based

and sta te-based behaviour. This m ight constitu te the basis of an in-source specification technique

to check the correctness o f run-tim e behaviour, constrain the available parallelism [Car89] or act

as the basis of a ‘sem antic’ browser. However, before such a form alism can be devised, a ob ject

oriented m odel is required as a framework.

67

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 68

O ne of the advantages of the object oriented conceptual model is the apparen t elegance w ith

which it can harness parallelism in m ulti-threaded systems. There is an inherent analogy between

encapsulated objects, and inter-object message passing, and processes and interprocess com m uni­

cation [Car8 6 b, RW W 8 8 a]. This struc tu ra l isomorphism is bidirectional, implying th a t some of

the existing formalisms and theories which have been used to define and evaluate process-based

system s, are relevant to their object oriented analogues. A process calculus can, for exam ple,

be used to m odel object oriented systems. T his would allow the full analytical power of such a

form alism to be utilized in order to reason about the behaviours of such system s.

T he goal of this work is to construct an operational1 model of a general purpose, parallel, object

oriented system . Also, we seek to ascertain the fundam ental set of event classes th a t constitu te

its observable behaviour. T he definition of this event alphabet is an essential p rim ary stage in

defining a form alism [LL89] th a t may be used to express object behaviour. O ur m odel is built

on the CSP process calculus [Hoa85] and uses a subset of the Z notation [Spi89] to express some

aspects of s ta te .

In the next section we explain why we chose CSP and list the salient features of a parallel object

oriented system . In Section 3.3 the model is detailed, starting with an overview and a description of

in ter-object com m unication, before considering internal m atters such as encapsulation, inheritance

and the m odeling of in ternal s ta te . A detailed formal analysis follows in Section 3.4. T his includes

some discussion of the m odel’s alphabet. The rem aining sections: 3.5 and 3.6 cover the applications

and lim itations of th is work.

3.2 D esign o f the M odel

3.2.1 U sage

T he value of sem antic models for language proofs and verification is well established [A D K R 8 6 ,

Ame89b, W0 I8 8]. Event-based operational models have the advantage of having a higher level of

abstrac tion— indeed, it has been suggested th a t event histories may be the m ost n a tu ra l abstrac tion

of d istribu ted system s [MH89]. T he use of event-based system s for behavioural specification and

analysis is w ide-spread [Bat89, Bat87b, LL89, MH89] (see also chapter 2). Furtherm ore, th ey can be

used as a technique for reasoning about the externally observable behaviour of objects—essential for

testing the behavioural conformance and reusability of certain objects [VJN+90] w ithout violating

encapsulation. At the core of any such model is the fundam ental set of event classes, th e instances

1 T h a t w hich m odels extern ally observed behaviour rather that internal form or sem antics.

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 6 9

of which describe the m odel’s behaviour. Such an alphabet will be an im portan t by-product of

this chapter.

3.2.2 Choosing a Process Calculus

To facilitate the behavioural analysis of any system , an appropria te calculus m ust be used to

m aximize the efficacy of the study. In this case, the calculus should be capable of expressing

observational behaviour independently of any detailed tim ing constraints. I t should be event-based,

to allow behavioural specification to variable levels of abstraction; the advantages of event-based

m odels are well docum ented [Bat87b, Lar90, Bat87a, LL89, Smi85, M oh8 8]. I t should provide

inherent support for encapsulation and message passing—essential to ob ject oriented system s.

Finally, it should support all of these requirem ents as simply as possible. O n"the basis of all

these criteria, the CSP [Hoa85] process calculus was chosen. W here essential, the Z nota tion

[Spi89] is used to supplem ent C S P ’s power to express com ponents of sta te . Note th a t we have not

com bined C SP and Z, we have merely used both to specify a com plete model. C SP to describe the

dynam ic, process based elem ents of the model and Z to describe d a ta types. These p a rts supplem ent

each o ther, b u t there is no interaction between the formalisms and the separate consistency and

coherence of bo th are preserved.

C SP aside, m any o ther m odel substrates were considered, and rejected, on the basis of a sho rt

feasibility s tudy m ade at the onset of the project. We considered the following calculi: Petri-Nets

[Pet77, DG M 8 8], which were abandoned due to their excessive genericity; P R O T nets [BB8 8],

which we considered to be too specific; Finite State Machines, which we rejected by v irtue of the

fact th a t they are unable to m odel all d istributed system s [Bat87b]; L O T O S [Bri87], was discarded

on account of its inordinate complexity; and the Calculus of Com m unicating System s (CCS) [Mil89]

which, is som ew hat weaker than CSP for expressing process specifications [Bel89].

T he choice of CSP, a process based calculus, as an analytical tool for m odeling ob jec t oriented

system s m ight seem counter-intuitive. Its rudim entary data-typing facilities would seem to offer

poor su p p o rt to a paradigm in which da ta is param ount (hence the use of Z). We assert th a t

although C SP does suppress some aspects o f object oriented system s, it em phasizes m ore im po rtan t

ones— those relevant to the externally observable behaviour of such system s w ithin a parallel

environm ent. By concentrating on this high level view of behaviour, we re ta in the abstrac tness of

the m odel and thus its flexibility [Yel89].

It is assum ed th a t the reader has a working knowledge of both CSP and Z. A lthough th e list

of sym bols used is defined in Appendix B, we provide no in troduction to the sem antics of either

formalism.

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 70

3.2.3 R equirem ents of Parallel O bject Oriented System s

T he object oriented paradigm is used widely for a diverse range of applications ranging from

databases to program m ing languages. Some have even proposed it as a general m odel for com puting

and yet its precise definition remains elusive [BGM89, Ren82]. A m enagerie of techniques abound,

all claim ing to use an object oriented m ethod or to be a vital p a rt of an object oriented system ,

b u t no clear consensus exists on w hat constitu tes such a system . T here are m any c rite ria sets

for ob ject oriented languages, some based on the mechanisms and syntactic constructs offered by

languages [Weg90] and others based purely on the properties of these system s [BGM89]. We have

consolidated these views to yield a working consensus of the required features of ob ject oriented

system s. These properties constitute the core of our model. They are:

• E n c a p s u la t io n , through the use of objects;

• S e t-B a s e d A b s t r a c t io n , through the use of p rototypes or classes;

• B e h a v io u r S h a r in g , through the use of inheritance or delegation; and

• O p e r a t io n P o ly m o rp h is m , through the use of message passing and receiver side binding.

In purely sequential environm ents, message passing is not essential. T he use of strong typing

m eans th a t all m ethod invocation can be reduced to procedure calls. However, parallel system s

necessitate message passing in order to avoid costly alternatives, for exam ple shared m em ory (as

d istinc t from shared address spaces which makes things sim pler) [Ame89b].

In our m odel we endeavour to support all o f these facilities, im buing it w ith an operational

conform ity to a wide range of object oriented system s. In addition, it will su p p o rt parallelism to

m ethod level using asynchronous message sending.

3.3 T he M odel

3.3.1 General Structure

Fundam entally, th e m odel consists of an object space E and a supervisor— a process which initial­

izes and m aintains the space. T he supervisor has two subordinate processes: the generator and

the scavenger, which respectively oversee the creation and destruction of d a ta ob jects w ith in the

space. T his relationship is depicted in Figure 3.1. The supervisor exists, no t as a top level of

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 71

GENERATOR oo Classes
SUPERVISOR

SCAVENGER Instances

OBJECT SPACE

Figure 3.1: Model Overview

the hierarchy of control (as Meyer observes: object oriented architectures are decentralized and

have no ‘to p ’ [Mey8 8]), bu t as a support service. It is a means of overseeing object allocation and

deallocation. As such, it reflects a necessary en tity in many parallel im plem entations to perform

tasks such as load balancing or performance m onitoring.

£ contains a set of classes C : PCLASS and a set of instances I : PINSTANCE, indeed £ = J u C .

Classes are tem plates for instance creation. A given class c : CLASS defines the subset of I,

I c : PINSTANCE, such th a t I c contains only instances of c. Since each object is an instance of a

class then:

/ = U J« (3 1)
c£C

T he binary in stan tia tion function a : INSTANCE —► CLASS links any instance i : INSTANCE

w ith its p aren t class c:

Vi.cr(i) = c & i E I c where i E I A c E C A I c C / (3.2)

Conversely <r~(c) = I c.

To avoid the conceptual problems of m etaclasses (or o ther circulaxities), w ith an arguable loss

of orthogonality, m any object oriented models assert th a t classes are not ob jects [Mey8 8 , CRS89].

Specifically, classes and objects may use an analogous message passing interface— bu t they are

d istinct en tities related only by instan tiation . We also adopt this policy, chiefly because we believe

th a t classes are merely tem plates from which new instances are produced and because it simplifies

the m odel. If, like objects, they are subject to change a t run-tim e then system behaviour is more

difficult to represent and m anipulate. Indeed, w ithin parallel system s we consider it is necessary

to assum e the invariant S C — the set C remains unchanged whilst the system is used [Ame89b].

This yields a system which is more tractab le to formal verification.

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 72

INCOMING
MESSAGE

COMMUNICATIONS INTERFACE

BINDER
METHODS

STATE

OUTGOING
MESSAGE

Figure 3.2: Instance O bject S tructure

O bject instances are represented as CSP processes. Each encapsulates four separa te parts:

• a c o m p o s i te s ta te , which is visible only from inside the object;

• a s e t o f m e th o d s which, when actuated , may alter or convey a facet o f th is s ta te ;

• a b in d e r , which actuates m ethods depending on the messages it receives; and

• a c o m m u n ic a t io n s in te r fa c e which handles the posting and receipt o f messages betw een

objects (the sole means of communication).

T his four layer architecture is depicted in Figure 3.2, each layer encapsulates those w ithin.

O bjects request actions of each o ther by message passing. T he receiver of a m essage responds

by ac tua ting one of its m ethods, according to a set of bindings defined by the receiver’s class.

T herefore, a message send is little more th an a request for a certain in ternal behaviour. Incom ing

m essages m ust pass through three layers of the object before they cause any activ ity in th e host.

Similarly, outgoing messages traverse two levels before they are broadcast.

All m em bers of I are created on dem and by the generator, in response to a request issued to

m em bers of the set C by o ther instances. Each instance responds to messages in a m anner defined

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 73

by its class. All instances are m utually analogous in external form and behaviour, except for the

set o f messages to which they respond. Each may therefore be related to o thers by C S P ’s change o f

symbol operator. If the form of all instances can be generalized by the process P , th en the m inim al

set o f event classes which characterize object behaviour can easily be deduced, since th e behaviour

o f P is uniquely specified by (a P , t r a c e s (P)) [Hoa85].

Because our model focuses on the run-tim e properties of parallel, ob ject oriented program s, the

creation of new classes or the modification of existing classes is no t addressed. Indeed, classes are

no t m odeled as processes and their dynam ic properties are no t considered. T hey are considered

to be s ta tic tem plates which respond to requests (notably the function ‘new ’) for in stan tia tion by

yielding new instances.

T h e parallel, object oriented run-tim e system is modeled as a parallel com position of a set of

labeled O B J E C T processes— an array2 of com m unicating subsystem s m ain tained by th e S U P E R ­

V IS O R process. O bjects com m unicate using a com m unications bus, or M E S S A G E B U S (defined

in Section 3.3.3). The system may be expressed by composing, using rem ote subord ination , this

collection of objects with a com m unication system based on M E S S A G E BU S, thus:

S Y S T E M = (mb : M E S S A G E B U S)/ / SU P E R V IS O R (3.3)

where:

S U P E R V IS O R = (IN IT \ \ (^ n : O B J E C T))A (S H U T D O W N ; S K IP) (3.4)
A/(> n > 0

E ach O B J E C T process executes concurrently and each has th e sam e a lphabet. However, because

th ey are composed w ith ||| they are not lock-step synchronized. T he m essage bus, a global resource

for all objects, is the only o ther external process they jointly perceive.

I N I T and S H U T D O W N are auxiliary processes responsible for the correct in itialization and

te rm ina tion of the system . Their definition is system specific and tangentia l to our m odel. I t is

im p o rtan t to note th a t I N I T m ust make appropriate use of the generator to create the m inim um set

o f ob jects needed to b oo tstrap the system. Similarly, it is incum bent on the S H U T D O W N process

to in te rru p t the recursive O B J E C T processes a t the appropriate tim e, to bring down th e system

gracefully by garbage collecting all objects out of existence. Because of the m ajor consequences of

I N I T and SH U T D O W N , they may be guarded with an event such as catastrophe (^) .

2 T h e o b ject array is bounded by the theoretical m axim um M in our m odel. T h is reflects a pragm atic lim ita tio n
o f resources.

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 74

3.3.2 O bject Creation and D estruction

O bjects are modeled by the process O B JE C T , defined:

n : O B J E C T = f*X.(n.st : S T A T E / /
(((n : A L L O C A T E (0 n i j n)] jn : R U N O B J) (3.5)
An : D E A L L O C A T E ^ n))] X))

T his process set is a support service th a t allocates, m aintains and deallocates ob jects to or­

der. I t is controlled by its environm ent. T he event n.allocate(0) causes the process n : O B J E C T

to create and m aintain a new object instance of class 0— providing th a t it is not a lready m ain­

tain ing one. This instance may la ter be deallocated by the event n.deallocate, after which th a t

in stan tia tion of the O B J E C T process is free to allocate and m anage a new instance (since it is

recursive). T he function3 new{0) triggers th is behaviour to yield fresh instances, by offering the

event \\M>n>on.allocate(0) to the environm ent via the IN I T process. T he use of non-determ inistic

choice ensures th a t only an O B J E C T process th a t is ready to allocate an ob ject is used and frees

us from having to explicitly enum erate it. Each object has an encapsulated s ta te m odeled by the

subord inate S T A T E process (as defined in Section 3.3.6).

O bject allocation and deallocation are handled by the A L L O C A T E and D E A L L O C A T E pro­

cesses, which encapsulate functions governing the behaviour of the generator and scavenger pro­

cesses respectively. A L L O C A T E (0 , i) generates a new object of class 0 and places a reference to

it in i. For a trace, t r , it is specified:

A L L O C A T E (0 , i) s a t (i r 0 = / =» (<r(S) = 0 A ^ C A i ^ / A € / ')) (3-6)

D E A L L O C A T E ^) disposes of the reference j in an analogous way, freeing the m em ory thus

occupied. I t is sim ilarly specified:

D E A L L O C A T E (j) s a t (tr0 = / => (a (j) e C A j e l A j & l ')) (3.7)

These processes are im plem ented thus:

A L L O C A T E (0, i) = allocate(0) (i := r}(0); I := I U t; (s t . i n iM -*■ S K IP)) (3.8)

D E A L L O C A T E (i) = deallocate — (s t .des t!0; I := I \ i - + (i j (i) ,S K IP))) (3.9)

T he events allocate and deallocate directly guard the activ ity of the generator and scavenger

respectively. Allocate prefixes th e generation of a new instance i G 1$ (th e actual generation of an

3 T raditionally , new is a m essage u nderstood by a il class ob jects. However, as classes are n o t m o d e led as ob jects
(see S ection 3 .2 .3) o r as processes (see Section 3 .3 .1) th is representation is n o t app licab le here.

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 7 5

Object Mailbox
m

out

MESSAGE BUS

Figure 3.3: O bject Com m unication Interface

instance is perform ed by the prim itive generator function *7(0)) and postfixes it w ith s ta te in itial­

ization by com m unication on the channel in it (see Section 3.3.6). Deallocate guards the success

((/)) and subsequent term ination of S T A T E , and the use of the scavenger to reclaim m em ory

(achieved by the prim itive scavenger function iv). It in terrup ts all activ ity w ithin an ob jec t— an

essential precaution to ensure safe deallocation. An object cannot refuse to be deallocated since

(because of the A operator):

Vs : s £ traces(O B JE C T) . deallocate £ r e f (O B J E C T /s) (3.10)

Once spaw ned, each object instance is handled by its own R U N O B J process which scans in­

coming message traffic and reacts to it. It is defined:

R U N O B J = M A IL B O X || (B IN D E R || F R E S U L T || H E R R O R) (3.11)

Here, the M A IL B O X process (defined in Section 3.3.3) splits incoming message traffic according

to its type. Process B IN D E R accepts execution requests and schedules the app rop ria te m ethod,

process F R E S U L T forwards incoming execution results to the appropriate M E T H O D process

and H E R R O R ensures th a t error notifications are handled correctly. All are fully defined in

Section 3.3.5.

3.3.3 O bject Exterior: The Com munications Interface

All in ter-ob ject message traffic is handled by a message bus to which they are all connected via

the private channels in and out. Each object broadcasts messages directly to the bus (via out) and

receives them from its m ailbox buffer, which in tu rn reads them from in as depicted in F igure 3.3.

T h e message bus is a set of processes th a t m aintain object com m unications and rou te all

messages to their destination mailboxes. It may be thought of as a finite num ber4 of concealed

4 T h e num ber o f channels is b ounded by the theoretical m axim um C.

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 7 6

Me
OBJECT

Mr

Me

MAILBOX

Figure 3.4: The Mailbox Buffer’s Three C hannel Split

relay channels, which may be non-determ inistically allocated to facilitate a tem porary link betw een

one o b jec t’s out channel and ano ther’s in. The alternative strategy, m axim al interconnection, has

a channel complexity 0 c(n) = n (n — 1). For the message bus, however, it is only of order n. T his

technique also has the advantage of circum navigating the need for dynam ic channel allocation,

which is prohibited by recent versions of CSP [Hoa85]. T he message bus is a global resource,

shared by object processes using rem ote subordination. A detailed analysis of the message bus

im plem entation is not germ ane to this work, a t a rudim entary level it may be specified:

M E SSA G E B U S = (̂ y ,X(y .out?m —► ((m .des t) . in \m —► A))) (3-12)
C > y > 0

W here m is an arb itrary message and m.dest is the message destination which, as we will see la ter,

is one of the fields of the message packet itself. C is the m axim um num ber of concurrently available

channels w ithin the model. Theoretically, C may have any positive value, although system s w ith

a C of un ity would not benefit from message passing parallelism . Each object is locked in to cyclic

in teraction w ith the message bus. W ithin an object, the bus is referred to by the label m b and is

used by a sta tem ent conforming to:

. . . (̂ mb.y.out\x —*■ (3.13)

Here x is the message to be broadcast and y is the non-determ inistically selected, message bus

channel which conveys th is message.

All messages consist of packets, the contents of which are explained la ter in th is section.

a in (O B J E C T) = a o u t(O B JE C T) = a m (O B J E C T) = P A C K E T (3.14)

T he m ailbox buffer is an essential aspect of the m odel’s support o f asynchronous m essage send­

ing and it prevents sporadic bursts of incoming message traffic from unduly loading O B JE C T

processes. Because of the requirem ent for asynchrony, the m odel abandons the usual rem ote pro­

cedural call (R PC) protocol. As a consequence, some m ethod of differentiating between incom ing

messages and incoming results from messages already broadcast is needed. O ur solution is to

provide each message with a type. All messages is one of the following th ree types:

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 7 7

• C o n v e n t io n a l M essa g e s , which are legitim ate requests for m ethod execution;

• R e t u r n M e ssa g e s , which contain results in response to those above; and

• Error M e ssa g e s , which signal the failure of the binder or an ac tuated m ethod .

T he m ailbox splits all incoming messages, on the channel in , according to type and o u tp u ts

them on three channels: M c, M r and M e (represented as the com pound channel m in Figure 3.3),

as shown in Figure 3.4. T he M A IL B O X process is defined by the equations:

M A IL B O X = (B U F F E R > M) '<(error(x) -► S T O P) (3.15)

where: ^

B U F F E R {) = l e f t l x -► B U F F E R {x) (3.16)

B U F F E R , a (x} = l e f t l y — B U F F E R ^ a / (i) |right'.x -► B U F F E R, (3.17)

and:
M = pX.(lef t?x —+ ((M c\x —► X) •£(x.type = conventional) .

^■{{Mr\x —*■ X) -^(x.type = return) ^ (M e\x —► A)))) ^

where x.type is the type of message x.

Evidently for the process i : O B JE C T , messages are broadcast on i.out and received on M c,

M r and M e via i.in, thus:

oci.out = {x|c!x (E a (i : O B J E C T)} (3.19)

a i . in = {x\c?x G «(* : M ailbox)} = a i .M c U a i .M r U oti.M^. (3.20)

All objects are instan tia ted w ith channels M c, M r , M e and i.in. T he channel i.out is v irtua l

and triggers message bus activity. Consequently, all channel allocation is s ta tic . T he concept of

v irtua l channel and non-determ inistic channel selection can be used in any application where some

form of proof is required, bu t s ta tic channeling is overly restrictive.

Each message com m unicated on these channels is a 6 -tu p le (of type PACKET), defined:

PACKET = = (SRC x DST x T Y P x C x CAT x TIME) (3.21)

W herein each subcom ponent is defined:

• SRC: S o u rc e , the identity of the object, m ethod, th read and fu tu re channel, if appropria te

(see la ter), from which the message was originally broadcast;

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 7 8

OBJECT
KEY

A spawns BBINDER

A - < -----------------
B subordinate to ASTATE METHOD

SMSG FMSG AMSG

Figure 3.5: O bject Subordination Hierarchy

• DST: D e s t in a t io n , the identity of the target object;

• TYP: T y p e , the type of the message, as defined above (see page 76);

• C: C o n te n ts , the contents of this field are type dependent. Conventional messages contain

a message selector and zero or m ore argum ents, re tu rn messages contain a resu lt and error

messages contain an error notifier;

• CAT: C a te g o ry , in a parallel object oriented system , where invoked m ethods m ay be run

concurrently w ith their callers, it is often necessary to distinguish between th ree types of

m ethod scheduling behaviour:

— S y n c h ro n o u s M e ssa g e s , which block the caller until the callee re tu rns a resu lt [GR83].

— A s y n c h ro n o u s M essag es , which allow the caller to continue im m ediately and ignores

any generated result [Car89].

— F u tu r e M e ssa g e s , which allow the caller to continue until the result is required. W hen a

result is required, if the callee has not finished the caller is blocked aw aiting it, otherwise

the result is im m ediately accessible [HW89]; and

• TIME: T im e s ta m p , the tim e the original conventional message was b roadcast. T h is acts as

a unique identifier for each message and is a means of ordering them . T h is poses difficulty

in a d istribu ted system s where meaningful tim estam ps cannot be achieved w ithout the use

of a logical (Lam port) clock [Lam78, LMS85].

All message sending activity is in itiated during the execution of m ethod codebodies (m odeled

by instances of the M E T H O D process, defined in Section 3.3.5). D epending on the category of

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 7 9

n.out s.smsg

s.rignt

’s.left

MAILBOX

FRESULT

s:SMSG METHOD

Message
Bus

Figure 3.6: A M ethod’s View of a Synchronous C om m unication

message scheduling desired, M E T H O D processes may invoke one of three subord inate processes:

SM SG , F M SG and A M S G to cope w ith synchronous, future and asynchronous com m unications

respectively. T he relationship between these processes is depicted in the subord ination hierarchy

of Figure 3.5. Each of these processes broadcasts an outgoing packet on i .ou t , b u t only S M S G and

F M SG aw ait a result on channel M r . In this case, when a result arrives, it is re tu rned to th e scope

of the sending subord inate through the process F R E S U L T ’s channel l e f t (see Section 3.3.5) and

to the calling m ethod via channel r igh t— as depicted in Figure 3.6. T he subord inate s : S M S G is

defined5:

s : S M S G = sm sg?packet3 —*• (̂ mb.n.out\packet3 —* (l e f t l r s —► (r igh t\r3 —► S M SG)))
C>n> 0

(3.22)

and used:

sync(packet) = s.smsglpacket —► (s .r ig h t! re su it —► . . .) - (3.23)

so th a t the m ethod and its subordinate SM SG are blocked whilst aw aiting a resu lt on s . l e f t .

F uture message scheduling is handled in an analogous m anner. However since fu tu res do not

block initially, a num ber of outstanding futures may exist a t any given tim e (to perm it only one

is to invite deadlock). Consequently each M E T H O D process needs a finite collection6 o f fu ture

message handlers in its / : F M SG subordinate:

/ : F M SG = p ^ ^ f m s g . x 7 p a c k e t j x —►

(r / x := 0; c J ^ >Qmb.q.out\packetfx (so u rce . fu tu re = x) —► (3.24)
(l e f t . x ? r jx —*■ (r ight.xW jx —* FMSG)))

F M S G processes are used in two phases: f s e n d and f r e e , defined:

f s e n d (p a c k e t ,x) = ^ ^ ^ f . f m s g . x ^ . p a c k e t f rec(x) = / .right, x l resu lt (3.25)

5 In all these equations, 0 represents a nil value appropriate to the type concerned.
6 T h e num ber o f ou tstand in g futures is bounded by the theoretical m axim um T .

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 8 0

Mc.b

Mr.a
ObjecLb Mailbox.b Objecta

MESSAGE BUS
initial message send

return result

Figure 3.7: The System ’s view of a Synchronous C om m unication

A F M SG subordinate defines a group of servers, each f s e n d use allocates one server (non-

determ inistically) and sends the message. On execution, f s e n d instan tia tes x — the fu tu re channel

identifier, which uniquely identifies the waiting future. F ree m ust guard all usage of the result

thereafter. Between the usage of f s e n d and f r e e , FM SG server x is blocked aw aiting the resu lt—

bu t the client M E T H O D may continue execution immediately. If the result is re tu rned before f r e e

is used, M E T H O D will experience no delay when f r e e is finally used to read the resu lt, otherw ise

when f r e e is used M E T H O D will block. This action models the protocol o f fu tu re messages. Note

th a t the fu tu re channel identifier, x, forms part of the packet of outgoing future com m unications (it

is p a r t o f the source field), hence the param eterization of mb.q.outl in Equation 3.24. Consequently,

re tu rn messages know which future channel to be directed to v ia F R E S U L T (see Figure 3.6 and

Section 3.3.5).

A synchronous message scheduling is the sim plest as no re tu rn is expected. T he packet is

forwarded and the sender term inates immediately. I t is defined as a subord inate a : A M S G :

a : A M S G = am sg lpacke ta —► (c > ̂ mb.n.out\packeta —* A M S G) (3.26)

and used:

async(packet) = a.amsglpacket (3.27)

Once launched, a message is routed, by the message bus, to the m ailbox of the ob ject to which

the packet field destina tion refers. Consequently the sending object, x (w ith nam e space J f x , see

Section 3.3.6), m ust have a reference to the target object. More form ally7, for an a rb ita ry object

x, executing a m ethod process y, involving packet p and future channel z, we assert th a t:

5)(st/nc(p)) = tD (f s e n d (p , z)) = V(async(p)) = (p .destination E (r a n S x U r a n « . ,)) (3-28)

7Q is th e C SP dom ain operator.

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 81

Conventional messages may cause the destination object to spaw n new M E T H O D processes

and re tu rn their results, if any. A lternatively, it may retu rn an error message if the message selector

is outside the dom ain of selectors it understands (D m , see Section 3.3.6) or subsequent execution

of the bound m ethod generates an error condition. Result and error messages are forwarded to

the process th a t requires them asynchronously. T he send and receive cycle for a synchronous

(or fu ture) conventional message send (from an object a to an object 6) is depicted pictorially in

Figure 3.7.

3.3.4 Inheritance

Inheritance is prim arily a composition mechanism [C0 0 8 6 , Ame89b, Cus89], which allows classes

to be partia lly ordered according to the relations of inclusion between their properties. Thus, as

each instance of an object has its own instance variables modeled on those of its class, so subclasses

of a class have their own m ethod protocol which includes th a t of their superclasses. T here are two

principal m ethods of achieving this w ithin our model:

• A d d it iv e In h e r i ta n c e . Each classes’ m ethod dictionary, D m (see Section 3.3.6), contains

copies of the entries existing in their superclass’s dictionary, in addition to the ir own. M ethod

lookup need thus consult one dictionary only: the local one, and d a ta encapsulation is not

violated. Furtherm ore the im plem entation of such a system does no t require shared memory.

T he PO O L model is based on this concept [Ame87].

• D e le g a tiv e I n h e r i ta n c e . Each class has its own dictionary and a reference to its superclass,

to which instance m ethod binding lookup may pass if it has failed locally. In th is way, the

search continues until the root superclass is reached. This m ethod is very flexible, especially

if the E C invariant (see Section 3.3.1) is relaxed. Furtherm ore, it m ay be used to represent

delegation. The Sm alltalk and SOLVE models are based on th is concept [GR83, RW W 8 8 b].

B oth of these techniques are essentially representations of im plem entation inheritance [BGM89,

PW 91a]; specification inheritance is widely condoned, bu t no consensus yet exists o f its m ost ap t

u tility and form. We use the delegative inheritance form at prim arily because of its flexibility.

T his can be modeled using a class delegate sequence (CDS) process which is a subord inate to the

B IN D E R process defined in Section 3.3.5. A CDS is a sequence, defined:

C D S = cds : S E Q n (3.29)

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 82

where it is the inheritance trace, a sequence of classes of length m, such th a t Uq is the in stance’s

own class and:

V i j : 0 < i , j < m . (*<[*] C it\j] =>•*'< j) (3.30)

Here ‘C ’ is a reference to any partial ordering relation suitable for behavioural inheritance,

e.g. C usack’s relation [Cus89]. For single inheritance, the sequence represents a successive series

of superclasses d ictating the order of m ethod lookup. For m ultiple inheritance it is m erely the

norm alized8 list of superclasses from an acyclic graph. For system s using delegation it simply

represents a delegation sequence (or graph).

O ther approaches to modeling inheritance in CSP (e.g. [Cus89]) g raft the concept o f inheritance

onto the CSP language itself. We did not use this approach for two reasons. Firstly , such a graft

would fix the sem antics of inheritance and hide its explicit use by m aking inheritance lookup a

prim itive of CSP. Secondly, by altering CSP in this m anner, one may invalidate the rules th a t

bind various aspects of the language—thus compromising the whole. W ithout a form al review, the

ram ifications of such alterations are unknown.

3.3.5 Intra-O bject Behaviour

Recall how we described, a t the end of Section 3.3.2, how an R U N O B J process splits messages

into th ree channels and responds differently to messages on each channel. In fact:

• Incoming message selectors on the channel M c are bound to the relevant m ethod (which is

scheduled) by the B IN D E R process;

• Incom ing results on the channel M r are forwarded to the appropriate subord inate by the

process FRESU LT; and

• Incoming notifiers on the channel M e are handled by the H E R R O R process.

These processes are further defined:

b : B IN D E R = fxX .(M c?m b —
(BIN D (m .conten t, 0) || |X))A(erro r(cd s) —* S T O P)

f : F R E S U L T = f iX . (M r?m j —► ((if D m j.so u rc e t h e n l e f t . (m j .source) \m j) —► X) (.
A(error(x) —► ST O P)) ' ‘ '

8 Such n orm alization is a norm al part o f conflict rem oval in m ultip le inheritance sy stem s, w herein the linearized
p ath ob ta in ed by DAG norm alization is u sed to determ ine th e order o f priority o f co-nam ed m eth o d s in h erited by
an in stan ce.

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 83

H E R R O R = (M e?x —► (error(x .content) —► N O T I F Y (x .conten t))) . .
|(error(x) -► N O T IF Y (x))

B IN D E R accepts inpu t from the channel M c and spawns a B IN D process to in itia te the m ethod

signified by the selector in m.content. T he BIND process searches th e local and non-local m ethod

dictionaries for the selector. If it is found, a M E T H O D process is spawned to execute the codebody

associated w ith it and the BIN D process term inates. By this tim e, B IN D E R has already spaw ned

another.

B IN D (x ,n) = lo o k u p (x ,n) —+
((s : SM SG / / / : F M S G /(a : A M S G / / M E T H O D (i r, cds.i<[n])) , .

<\ix e d o m D Mcd. ,tln] $ B I N D (x ,n + 1))
<{:D cds.it \n] ^ (erro r(cd s) —► S T O P)

Here, the event lookup(x, n) denotes the search in DMitln] for message identifer x l Because of the

interleaving used in Equation 3.31 it is possible for more th an one M E T H O D process to execute

a t once. S tarting w ith the class of the receiver, cds.t<[0], B IN D progressively probes deeper into

cds until a m atch is found. If the bounds of cds is exceeded before a m atch occurs, th e event

cds.error(cds) will occur, interrupting B IN D E R and triggering H E R R O R . T he M E T H O D process

e x trac ts the relevant codebody from the class defining the m ethod , executes it and re tu rn s a result

packet rm (inheriting the source, category and tim estam p of its orig inator m), which is forwarded

to th e m ailbox of the object originating the com m unication (providing the originating m essage was

no t asynchronous):

M E T H O D (m , 6) = execute(m , 9 ,rm) —► ((a sy n c (rm) —► S K IP) <{: . .
(m.category ^ async) i^SK IP) ' ’ '

As a result of the use of function new(9) (see page 74) by executing codebodies, new variables may

be effectively introduced into M E T H O D processes. These represent bindings (of nam es to object

identifiers) local to the M E T H O D process and outside of S x (see Section 3.3.6). For a process

y : M E T H O D , spawned from x : O B JE C T , these ex tra m appings are denoted S xy . Note th a t:

ran S xy C ran S (3.36)

and:

acc(y : M E TH O D) \ { m , 6, rm) = d o m S xy = M xy (3.37)

See also E quation 3.28.

F R E S U L T accepts input from M r . It ex trac ts the source field inform ation from th e incoming

result and forwards the result to the channel associated w ith it (see Figure 3.7). In th e way

prescribed by equation 3.32, F R E SU L T returns results to the th read (and where necessary the

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 84

fu ture channel) indicated only if this thread still exists. Like B IN D E R , F R E S U L T is ha lted by

the occurrence of an error(x) event.

H E R R O R accepts input from the channel M c, in response to which it generates an error(x)

event which eventually halts both B IN D E R and F R E SU LT. The process reacts identically if an­

o ther process generates the error(x) event (e.g. BIN D E R). The handler then inform s the user

th a t the system has failed using the N O T I F Y process, which is param eterized by th e fau lt cause.

For exam ple, N O T I F Y (cds) m ight inform the user th a t a failure occurred because an incoming

selector could not be bound correctly. N O T IF Y is not further defined here, except th a t it should

end in S T O P so th a t the ‘d ea th ’ of the faulty O B J E C T is complete. T his te rm ination response

seems pessim istic, bu t often it is the most prudent course of action [KS90], especially in a heavily

parallel system in which recovery might jeopardize the consistency of processes dependent on the

failing one.

3.3 .6 O bject Interior: The C om posite State

A n o b je c t’s po ten tial behaviour depends entirely on two interdependent aspects of its construction:

the sta tic parts of its structu re which depend on the class of which it is an instance, e.g. its m ethod

and instance variable type dictionaries D m and D j ; and the dynam ic constituents, the contents of

these variables a t run-tim e— i.e. state. Assuming the d a ta type definitions [Spi89]:

NAME = = seqi CHAR ARGTYPE = = seq CLASS
RESULTTYPE = = CLASS INSTANCE = = (STATE x CLASS) (3.38)
METHODTYPE = = (ARGTYPE x RESULTTYPE)

W here CHAR represents the alphanum eric character type and ARGTYPE and RESULTTYPE are

the types of the argum ents for conventional and return message sends. T hen D m > D j , and STATE

can be represented as the mappings:

D m : seq ((NAME x METHODTYPE) *-► CODEBODY) D j : seq (NAME - - CLASS) , ,
STATE : seq (NAME OBJID) { }

Here, OBJIDs are object identifiers or references. Note th a t the cartesian dom ain of D m sup­

p o rts m ethod polym orphism and overloading by increasing the significance of type over nam ing

conventions. Each class, 6, defines its own dictionaries Dmb and D ie . Indeed, as classes are no t

represen ted as processes, they are completely defined by their nam e and dictionaries.

I t is im portan t here to distinguish between the function STATE and the process S T A T E . STATE

is a graph of NAMEs and INSTANCES, a function which m aps identifiers onto the INSTANCES they

represent, thus defining an object binding environm ent. To avoid confusion we shall in fu tu re refer

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 8 5

init

1
getbind

STATE ^ putbind M E T H O D S
result ^

OBJECT

A dest

Figure 3.8: STATE-M ETHOD interprocess com m unication

to it as S and note th a t I = r a n S . S T A T E is the CSP process th a t supports the ab strac tion S.

STATE is a partia l function, its dom ain, N, is called the name space of an object*.

W ith in each object process, x : O B JE C T , the subordinate process x.st : S T A T E supp o rts and

encapsulates an ob jec t’s s ta te S x— th a t subset of S visible from object x. Note th a t:

S — (JtG /Si and N x = d o m S x (3.40)

S T A T E is responsible for:

• A t the ou tset, allocation and initialization of object state;

• A t any subsequent time, s ta te selection and alteration— the yielding and forging of bindings;

and

• Finally, deallocation and destruction of the object.

A llocation and deallocation is perform ed by the A L L O C A T E and D E A L L O C A T E processes

(as defined in Section 3.3.2).

T he function id m aps (surjectively9) identifier names onto instance references, given a particu lar

sta te :

id : (STATE x NAME) OBJID (3.41)

This is an essential p a rt of s ta te selection.

T he S T A T E process is controlled from the process O B J E C T and from spaw ned M E T H O D

processes, though five channels. These are pictorially represented in Figure 3.8.

9 T h is fun ction is a partia l surjection because its range is com p lete whereas their d om ain is n ot [Spi89].

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 86

It is defined for an object x of class 6:

S T A T E = (i n i t l z — (S x := {};
foreach ((£ ~ x) : D IB) .{A L L O C A T E {x , j) - S x := £ * © (£ * - j) }

—*• S T A T E))
| {des t lz — (foreach ((£ ~ j) : S X) .{S X := S* \ (£ — j); D E A L L O C A T E ^)}

— SK IP))
| (getbind?£ —►

((resu lt\ id (Sx ,£) —*■ S T A T E) ^ (n a m e G A/"*) if*
(resu/<!0 STATE))

| (putbind?£ —*• (p u tb in d l j —>
(Sx := Sr e j) -H. STATE)))

(3.42)

Here the operato r fo re a c h ((a: : xs).{action(ar)}) is an ite ra to r, which perform s the specified action

(param eterized in x) for each item x in the sequence xs , such tha t:

foreach (x : (r0 , X i , . . . , xn)).{A (r)} = A(ar0); A (x i) ; . . . ; A (zn) (.
where Vr . / G aA (x) ̂ ' '

Note th a t, in Equation 3.42, object s ta te allocation is guarded by the event in i t l . W hen triggered,

all the instance variables pertinen t to the instance (as defined by Dig) are allocated and added to

the s ta te S x . Event dest? guards the converse process. T he event getbind? guards a nam e lookup,

the nam e £ is supplied as an argum ent and the object reference w ith th is nam e (if it exists) is

re tu rned on channel resu lt . Event putbind? guards the assignm ent of a new binding j to nam e £.

3.3.7 D ata Encapsulation

D ata encapsulation between objects is modeled very naturally on the inherent process encapsula­

tion of CSP. N otw ithstanding the ability of a process to subord inate o thers, or to com m unicate

inform ation to others via the prescribed channels, concurrent com position dem ands th a t for (P ||Q)

the set of variables accessible by process P may not include any of these w ritable by process Q

and vice versa [Hoa85]. Formally:

acc(P) fl var(Q) = var(P) fl acc(Q) = {} (3-44)

and

var(P) C acc(Q) (3.45)

S ta te encapsulation is achieved by having each o b jec t’s visibility lim ited to the nam e space of

its subord inate S T A T E process (see Section 3.3.6) and any object names passed to it by message

passing. However, concurrently composed m ethods of the sam e object, which share access to th a t

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 8 7

Parent Process CSP Event Semantics
MESSAGE BUS Qn>0m6.n.o«t! message broadcast
STATE initl state initialization
STATE dest\ state destruction
STATE getbindYl state selection
STATE •putbindW state alteration
STATE allocate{x, *) object allocation
STATE deallocate(*’) object deallocation
METHOD smsgl, fmsgl, amsg\ sync, future and async communication
METHOD f.right.xl future synchronization
METHOD execute{m, 6, r) method executes
METHOD </) method terminates
BIND lookup(x, n) inheritance lookup
BIND error(cds) error during inheritance lookup
FRESULT M r ? object receives a result
BINDER M o ? object receives communication
HERROR M o ? object receives error notification

Table 3.1: Fundam ental Event List

o b jec t’s s ta te via C S P ’s shared resource by interleaving model, obviously cannot be p ro tec ted from

m utual interference by these means. Serialization of object s ta te access may be provided through

the use of sem aphores, m onitors, or an acquire-release m echanism [Hoa85].

3.4 Fundam ental A lphabet

From a tex tu a l exam ination of the CSP rules of our model, a fu n d am en taP a lp h ab et o f object

behaviour m ay be built. The use of such m odel alphabets is discussed in Sections 3.2.1 and 3.5.

An event a lphabet is built by traversing the C SP description, noting each event th a t occurs con­

ditionally from those th a t preceded it. This criteria removes redundant events, for exam ple the

event 6 in a —► (b —► SK IP), bu t not in (a —► (6 —► SKIP)\(c —> SK IP)) . Using th is m ethod , the

salient events of the model can be isolated. They are listed in Table 3.1.

T here is still some redundancy in the event list of Table 3.1 because it considers each C SP rule

in isolation. Due to the relationship between various rules and the arch itecture of the m odel, some

events can be pruned from th is table to produce a refined list. For exam ple, the event f . r i g h t . x l is

p a rt o f the f r e c (n) future synchronization sequence; in practice it is always followed by a variable

binding event putbindW and is thus redundant. In an analogous m anner M c?, M r ? and M e? are

obviated by M E T H O D com m unications (on sm sg , f m s g and am sg), (/) m e t h o d and e r ro r(x)

•respectively. We further assume th a t s ta te initialization and destruction are always accom panied

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 88

CSP Event Semantics Parameters
init\ Object creation object class, reference to new instance
dest\ Object destruction object class, object reference
bind State access object reference, read/write access
msgl Message send message selector, arguments, source,

destination, category, timestamp
execute Method execution method name, class, host instance
S M E T H O D Method termination method name, class, host instance,

result
lookup Inheritance or delegation lookup object class, superclass
error System Error object class, instance reference, reason

Table 3.2: Refined Fundam ental Event List

by the relevant m em ory m anagem ent, therefore allocate{x,i) and deallocate(i) Sre no t required.

All of these omissions simplify the resulting alphabet and raise its level of abstrac tion , w ithout

com prom ising its expressive power.

F urther refinem ent is possible since many events are very sim ilar and w arran t a single, param ­

eterized event in their stead. For example, the events sm sg\, f m s g \ and amsg\

all represent the sending of messages of various categories and are b e tte r grouped in to th e param ­

eterized event m sg\. Also, getbindYl and putbindW signify read and w rite access to ob jec t s ta te

and are best unified as bind. This simplification and refinem ent is only possible because of the

form al n a tu re of our model. Event alphabets axe by no means unique (alphabets are presented in

[BTM89, CW 89]), b u t no o ther alphabet we have seen has been custom ized for an o b jec t oriented

system and form ally exam ined and refined in such a m anner.

A fter th is refinem ent, the fundam ental events of Table 3.2 rem ain. T he eight events, param e­

terized as shown, uniquely define the behaviour of the model. No two different behaviour pa tte rns

m ap to the sam e event sequence: the alphabet is behaviourally injective w ith respect to th e model.

By im plication, since our model exhibits all of the common features of ob ject oriented system s,

th is a lphabet applies to them .

T he existence of the create object event may seem redundant as, in m any system s, it m ay be

represented by the partia l specialization of the method termination event10:

C R E A T E (c la ss , obj) = T E R M IN A T E (‘new ’, class,* , obj) - (3.46)

W here the result o f the m ethod term ination , obj, is the new instance. We distinguish between

th em because m any languages perm it the sta tic allocation of class instances v ia m eans o th er than

the class m ethod new [RWW8 8 b, S tr8 6 , Cox8 6].

10 * is u sed here a s a w ildcard instance.

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 89

3.5 A pplications o f this M odel

T he m odel has yielded a num ber of useful facts about the im plem entation of parallel ob ject oriented

system s. For exam ple, it dem onstrates the facility of allocating messages a type, as shown in

Section 3.3.3, if the architecture of a system cannot directly support rem ote procedural call (see

also [YT87, AH87, Agh90]). T his system also provides a unified framework for the use o f exceptions,

signals and assertion failures through the message type error. Furtherm ore, the m odel dem onstrates

the. need for effective deploym ent of buffers to speed up system response. M ost significantly, it

establishes th a t, from an operational perspective, object behaviour m ay be expressed as a sequence

of param eterized events of ju s t eight classes.

Once equipped w ith the complete a lphabet of a system and a suitable language to facilitate

the creation of powerful abstractions over the prim itive events, any behaviour of the system may

be expressed. Such expression may be used to:

• m onitor and convey actual behaviour;

• define desired behaviour; or

• create behavioural m appings between otherwise non-isom orphic behaviours.

T his thesis concerns only the former two applications.

An object oriented system may be instrum ented to generate the events we l\ave defined in order

to relay details of its behaviour to an external m onitor. T his would allow tools such as debuggers,

or perform ance analyzers, to present a tex tual display of program behaviour a t a higher level

of abstrac tion th an program statem ents [Cox8 8 a], Perhaps more usefully, event stream s may be

m apped onto graphical representations of system behaviour, facilitating algorithm anim ation (e.g.,

[BH90b, K G 8 8]). T he completeness of the alphabet ensures the continued consistency between

system s ta te and its visual representation. Currently, visual event m onitoring system s use small,

unproven alphabets which restricts their u tility and rigour.

In addition to providing a framework by which debuggers and o ther tools m ight m onitor ac­

tu a l behaviour, their functionality might fu rther be enhanced by allowing them to specify desired

behaviour using th is alphabet. Differences between actual and desired behaviour can also be ex­

pressed. [PW89] uses th is work to design a debugger for a parallel object oriented system which

has a full a lphabet. Specifications may also be used as a means of error handling in parallel object

oriented system s [PW90].

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 9 0

Event-based behavioural definitions based on this a lphabet m ight be used to circum navigate

protocol incom patibilities between objects—facilitating reuse where otherw ise it would have been

im possible [VJN+90]. Event sequences of the client object are m apped to those of the server and

vice versa, thus overcoming the different protocols w ithout altering the ob jects them selves. Here

the behaviour descriptions are used as ‘glue’ between the objects. T he com pleteness of th e alphabet

is essential to the power of th is glue.

3.6 L im itations

C urrently , our m odel does not directly address issues such as garbage collection, the handling

of m om entous system wide events (^) , the im plem entation of channel allocatiofT techniques and

s ta te access serialization. All of these issues are significant problem s in real system s and need

to be m ore thoroughly examined. The advent of m ultiple inheritance and conform ance throws

the weaknesses of th e CDS into sharp relief. A more ab strac t model of behaviour sharing is

required, ideally one which supports specification inheritance in addition to code sharing. The

recent popu larity of language support for reliability [Mey89, KS90] indicates the need for the

in teg ration of preconditions, postconditions and exception handlers in to our m odel.

O ur m odel makes many simplifying assum ptions which counteract its generality. F irstly, in

offering no sup p o rt for metaclasses we have lim ited its ability to m odel th e set o f system s based on

languages which support th is singularity (e.g. C oncurrent Sm alltalk [YT87]). However, we cannot

informally conceive of this having any effect on the resu ltan t a lphabet. T he m odel also assumes

th a t environm ents w ith m ultiple inheritance linearize their hierarchy (see Section 3.3.4), before

lookup, to detec t clashes (e.g. as in Solve, C oncurrent Sm alltalk [RWW 8 8 b, YT87]), b u t there are

environm ents w ithout this common behaviour (e.g. O rient64/K [TI8 6 a, T I8 6 b]).

3.7 Conclusions

T his chap ter shows how we have constructed a model of a sim ple parallel, ob ject o riented system

using th e form alism s o f CSP and Z. In addition to dem onstrating how these calculi m ay used to­

gether, we have dem onstrated how the need for dynam ic channel allocation can be circum navigated

in CSP. Analysis o f our model has allowed us to enum erate the fundam ental a lphabet o f object

behaviour and the need for message typing. We find th a t all ob ject behaviour m ay be represented

as a p a rtia l ordering of events of only eight types.

3: A n O p e r a t i o n a l M o d e l o f O b j e c t O r i e n t e d S y s t e m s 91

T he fundam ental a lphabet of event classes, produced as a by-product o f th is m odel, suggests

another avenue of research in itself. Specifically, it prom pts the developm ent of a calculus which

is capable of expressing object behaviour in term s of these events; and the design of a m edium for

com posing partia l specifications from event sequences and for filtering, clustering and constrain ing

any event stream s th a t m atch such a specification.

C hapter 4

T h e S p ecification o f P ara lle l
B eh aviou rs

4.1 Introduction

In C hap ter 2 we described the failings of the few debugging and error handling system s th a t

currently exist for object oriented languages and we briefly covered the advantages of operational

specification, in these applications, in C hapter 3. In this chapter, we present a technique, relevant

to b o th debugging and exception detecting, to describe and specify the behaviour of software a t the

level o f individual objects. O ur goal is to dem onstrate the feasibility of an operational form alism

as the basis of a technique for in-source specification, bug hypothesis testing and run-tim e error

handling. We present EPS— Event Pattern Specifications1—a facility for the enunciation of ob ject

behaviour. EPS augm ents a ‘h ost’ object oriented language (or a debugging system) and allows

the user to express the desired conduct of each defined object in term s of one or m ore Event

P a tte rn s , using a language based on CSP [Hoa85]. Here, we detail the theory and usage of Event

P a tte rn Specifications and later, in C hapter 5, we explain how EPS specifications can be used to

improve object reliability as the basis of a unified, behavioural exception handling m echanism . A n

im plem entation of EPS is described in C hapter 6 .

4.2 T he B enefits o f O perational Specification

T he need to enunciate the correct behaviour of an object, as explained in C h ap ter 2, implies the

use of a specification language. However, a ttem p ts to use an established specification language like

1In previous pu b lication s, e.g . [PW 90, P W 91b], these were known as M PS— M essage P a ttern S p ecification s. T h e
n am e change reflects m inor sem antic changes m ade since then.

92

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 93

O B J [Shu89], Z [Spi89] or Clear [BG81], or an object oriented equivalent, would be im practical

and inappropriate. Such languages are designed to perform verification a t the design stage of

software developm ent, not to m onitor or describe parallel run-tim e behaviours. Ideally, a m eans of

expressing behaviour using full predicate calculus or tem poral logic should be provided. A las, this

too is beyond the realm of current pragm atism [Mey8 8 , K J8 8 , CW 89, Fid89]. Indeed, any m ethod

of specification th a t concentrates on internal form and sem antics is likely to be non-viable because

of the dearth of popular, m athem atically rigorous, parallel object-oriented languages. Instead , we

use a language-independent m ethod based on object behaviour.

O perational specifications are expressed solely in term s of the events undertaken by objects.

O bject behaviour, in a parallel system, is specified by a partia l ordering on th is sequence of

events. T he power of th is m ethod is chiefly responsible for the w ealth of event-J>ased debugging

and m onitoring techniques th a t exist for parallel and d istributed system s [Bat87b, B at89, BH83,

LL89, Smi85, BLW89]. Event-based models of behaviour may be expressed at m any levels of

abstraction and event filtering may be used to support program slicing [Wei82], a behavioural

analysis technique. Furtherm ore, such models are entirely independent of the source language and

su pport concurrency w ith relative ease. Several concurrent calculi exist abou t which a operational

specification language can be built; CSP [Hoa85], CCS [Mil89] and LO TO S [Bri87] axe b u t a few

obvious candidates.

4.3 D esign Requirem ents

T he design goals considered here are consistent with a desire to build a specification n o ta tion th a t

is capable of concise, easily built and readable specifications. We sought to develop a powerful

specification m edium th a t could be easily understood by users. T h is reflects the duel role of EPS

as a specification and a docum entation tool. In addition, the requirem ents m ust take into account

the environm ents in which EPS will be used. Two such environm ents are discussed: using EPS as

an exception signalling mechanism in a parallel object oriented language to improve the behavioural

rigour of objects; and its use within a debugger to directly support hypothesis confirm ation and

complex context generation. Each environm ent has considerations, and therefore functionality,

unique to it. However, the vast m ajority of E P S ’s design decisions are pertinen t to bo th .

4.3.1 Common Design Requirem ents

For the purposes of this discussion, we can view each specification as a set o f rules for a parser. At

run tim e, each such parser ‘sees’ the stream of events representing the behaviour of the object(s)

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 9 4

w ith which they are associated and attem p ts to satisfy its rules in the light of th is observed

behaviour. In fact, th is viewpoint is a simplification and the its lim itations are discussed in

C hap ter 6 . Parser rules need to be expressed in a small, rigorous and succinct g ram m ar, capable

of describing any partially ordered, jux taposition of prim itive events th a t constitu tes a possible

concurrent behaviour. The need for a formal gram m ar w ith well understood sem antics can be

satisfied, as suggested above, by using an established event calculus as the basis for its design. T he

g ram m ar should be easy to understand and easy to transcribe to a graphical m edium to facilitate

visualization.

To satisfy these dem ands and to m atch the flexibility of the features discussed in our taxonom y

of event based system s (see Section 2.4.11), we require a gram m ar th a t facilitates:

• C o m p re h e n s iv e S p e c if ic a tio n . Allowing users to specify m ulti-th readed behaviour w ith

events and s ta te assertions;

• P a r t ia l i ty . Allowing the user to imbue her specifications w ith varying degrees of partiality ,

in order th a t the behaviours of the object can be partitioned w ith some generality;

• S p e c ia l iz a t io n . Perm itting specifications to be lim ited to one facet of an o b je c t’s behaviour;

• R e a d a b il i ty . Enabling specifications to serve their second role as ‘active docum enta tion’;

• R e a c tiv i ty . Enable each specification to trigger activity on its success or failure; and

• R e u s a b il i ty . Perm it specifications to be used flexibly in m ore th an one context.

In the sections th a t follow, each of these requirem ents is justified and elucidated.

4.3.2 Com prehensive Specification M edium

It is clear th a t to support concise specifications, the gram m ar should be capable of expressing

any aspect of the behaviour of an object oriented system . This requires an event class set (such

as th a t developed in C hapter 3) th a t fully and unam biguously cap tures all p rim itive aspects of

object behaviour and a set of constructors th a t can build specifications from these events. Such

constructors should be able to describe the full gam ut of tem poral relationships betw een the events:

from the sequential behaviour of m ethods, to the synchronization of separa te th reads active w ithin

an object. Using them , one should be able to assert tem poral (bo th sequential and concurrent)

relationships between processes and m ethods, a t a level of abstraction close to the problem dom ain.

4 : T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 95

In C hap ter 3, we established th a t the behaviour of an object oriented system could be com­

pletely specified by a stream of ju s t eight types of control event. However, program execution is

a dichotom y of actions (control and d a ta events) and s ta te . A lthough one can specify behaviour

exclusively in one medium, it is more elegant and powerful to use bo th . T his implies th a t some

provision for s ta te assertions would enhance the elegance of our gram m ar. T he po ten tia l disad­

vantage of such annotations is th a t they could introduce, in the specification, dependencies on the

im plem entation of the host object th a t prevents them being used as axioms for an ab s trac t d a ta

type and lim its their reuse potential. This can be avoided if s ta te checks are gran ted no special

access privileges to the im plem entation, beyond these enjoyed by o ther objects. However, there

are occasions when such privileges are useful, e.g. while debugging.

Coupled w ith partia l specification and unification (see Section 4.3.3), s ta te assertions allow one

to specify how an ob jec t’s sta te alters as a result of m ethod execution or com ponents thereof. This

usage of s ta te assertions within behavioural specifications subsum es the functionality of precondi­

tions and postconditions.

4.3.3 Partial Specification

T he requirem ent for p artia l specification arises from the need for specifications to p a rtitio n sets

o f behaviour, w ith some generality, w ithout resorting to a lengthy series of to ta l specifications.

Relying only on to ta l specifications would cripple the expressive power of a gram m ar. Typically,

pa rtia lity should enable a set of events, or event interleavings, to be specified in one expression. Its

provision implies a requirem ent for unification, to perm it analysis o f how the partia l com ponents

o f a specification were satisfied by a m atching behaviour. This inform ation, called the particulars

of a m atch , precisely locates the m atching behaviour w ithin the set of behaviours p artitioned by

the original specification. Particulars also constitu te useful param eters for constrain ts (see below)

or action clauses (see Section 4.3.6) which respectively strengthen the specification and handle its

violation.

To enhance the power of specification, some behavioural calculi allow additional constrain ts

to be expressed on subtraces of behaviour, or o ther particulars, acquired from unification [Hoa85,

Bri87]. T his increases the elegance of specification, as it allows the user to define and p artition

the behavioural pa tterns of an object using inequalities in addition to p a tte rn m atching. Further­

more, constrain ts provide a hook via which boolean and tem poral algebras m ay be introduced

[Bel89]. T hey can also help to improve efficiency: since they need no t be checked until a successful

p a tte rn m atch occurs, one can defer all com putationally expensive calculations by placing them

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 96

w ithin constrain ts. One disadvantage of using constraints is th a t, because they are n o t com pletely

orthogonal to p a tte rn m atching (bo th techniques define a set of behaviours), there will be some

behaviours th a t can be specified in two or more ways. Indeed, v irtually all specifications th a t use

p a tte rn m atching can be re-expressed using a simpler p a tte rn , unification and constrain ts— w ith

some loss of brevity.

4.3.4 Specialization

As partia l specification a ttem pts to enhance the range of behaviours covered by a specification,

specialization seeks to reduce or refine it. Users are seldom sim ultaneously in terested in all aspects

of an o b jec t’s behaviour. Focusing atten tion on behaviour pertain ing to a certa in activ ity is often
w-~

necessary to avoid overwhelming users w ith inform ation—hence the requirem ent for specializa­

tion. It represents a na tu ra l ‘selective’ approach to the assim ilation of related inform ation. Note

the d istinction between strengthening a specification and specializing it; the form er restric ts its

likelihood of satisfaction whereas the la tte r limits its applicability. To support specialization, we

require a m eans to filter the scope of a specification such th a t it applies only to one aspect of an

o b jec t’s behaviour. To prom ote m odularity, the applicability of a specification should be subject

to a lteration w ithout any need to alter the parser rules themselves. One flexible way of achieving

th is is to require th a t the gram m ar have some separate facilities to m anipulate each pa rse r’s input

event stream .

4.3.5 R eadability

T here are few formal requirem ents th a t guarantee readability and ease of use— except th a t each

implies the other. Keeping a gram m ar small makes it easier to use as there is less for the user

to rem em ber. Some m eans of associating specifications w ith sem antic inform ation like names

or com m ents is also required— both as a means of labeling specifications for m an ipulation (i.e.

searching, identification and grouping) and for increasing readability. However, labels can not

be checked for genuine aptness or relevance and can consequently be m isleading. Specifications

them selves, however, can be checked and this, whilst not effecting the case for bo th com m ents and

nam ing, does imply the need for a self docum enting gram m ar.

It has been established th a t debugging is largely a problem of com prehension (see Section 2.4.1).

Successful specification m edia m ust aid comprehension, bo th of them selves and th a t which they

specify. I t is to the advantage of both to support common hum an com plexity m anagem ent tech­

niques like chunking. Humans ‘chunk’ [Mod79] in an a ttem p t to cluster prim itive elem ents of

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 9 7

behaviour into one atom ic activity at a higher level of abstraction . A specification m edium should

offer some m eans of supporting this by allowing specifications to be reused in defining m ore com­

plex, higher order ones. This hierarchical abstraction greatly aids understanding, reduces the

com plexity of specifications and avoids repetition of commonly used sub-specifications.

4.3.6 R eactivity

I t is required th a t these specifications are capable of reacting to their violation. Consequently,

when a specification fails (or even succeeds) a wide choice of responses should be available to the

checking mechanism. Merely to report all violations is not adequate. T he failure of a specification

should be capable of triggering any effect th a t can be achieved within the environm ent in which

the specifications appear. However, it is im portan t th a t this flexibility of response is no t gained

a t the cost of com plicating the syntax or sem antics of the gram m ar unduly. To rem ain useful,

the gram m ar m ust be kept small. Consequently, the action clause of a specification (w herein its

responses are defined) should derive its power by delegating to the support environm ent, ra ther

th an providing functionality of its own. In a debugging context, this m ight include in itia ting a

sequence of debugger commands and, as p a rt of an exception system , executing a handler m ethod.

Inevitably, some useful action clauses cannot be derived from the support environm ent alone.

Particu larly those th a t m anipulate entities introduced by the gram m ar, e.g. the a lte ra tion or

querying of the s ta te of o ther parsers. This is required to enable ‘cooperation’ between specification

parsers. I t m ust be supported by adding the required functionality to the host environm ent, or by

im buing all specifications w ith an action clause syntactic com ponent.

4.3.7 Reuse

To achieve a high degree of usability, specifications m ust be easy to find, understand and re-apply.

To enhance the first of these, specifications should be assembled into persistent collections th a t may

be classified, browsed and searched through using database operations or conform ance analysis.

How easily specifications are understood is determ ined by the ir readability, which is already a

requirem ent (see Section 4.3.5). Re-application, the m ost dem anding requirem ent, d ic ta tes th a t the

specification m edium is sufficiently abstrac t to enable specifications to be reused in behaviourally

analogous situations— w ithout significant alteration . This m ight require the standard iza tio n of

message protocols of analogous d a ta structures, bu t this is far from a disadvantage, and is catered

for directly by some variants of inheritance.

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 98

4.3.8 D ebugging Design Requirem ents

In its obligation as an aid to debugging, the gram m ar should have functionality ta rge ted a t enabling

g reater understanding of the target and supporting hypothesis testing and confirm ation. T he la tte r

is an im portan t p a rt of debugging th a t is currently ra ther poorly supported by debugging tools (see

Section 2.5). In support of these activities, the action clause of the gram m ar (see Section 4.3.6)

will have to support some additional facilities th a t cannot be delegated to the debugger. Two

notable examples involve the representation of behavioural traces for which m ost debuggers have

no facilities. These are: the description of how a partially specified behaviour was satisfied (i.e.

the particulars of a m atch, see Section 4.3.3); and an im portan t varian t—th e ‘difference p lo t’,

an explanation of how the actual behaviour deviated from the specified behaviour to cause a

violation. B oth are used to visualize behaviour. Also, an action clause th a t results in program

suspension is required, although this m ight be difficult to im plem ent in a parallel environm ent (see

Section 2.4.13). Using this clause, a specification can be used to establish a debugging context a t

the point of m atch or m ism atch— it is effectively a behavioural breakpoint. Because m any of the

specifications will be created ‘on the fly’, the gram m ar should optim ize the sem antic content of

specifications while minimizing the cost of composition in preparation tim e, sh o rt-te rm memory

and keystrokes. Such a cost should not greatly exceed th a t of specifying a lexical b reakpoin t in a

conventional debugger.

T he form alism should support the enunciation of pa tte rn s of behaviour involving m ultiple

objects, some of which may not have activation records associated w ith them , or even exist a t the

tim e of specification. T his implies the need for a nom enclature to uniquely identify ob jects th a t

will exist a t some tim e in the fu ture, bu t may not currently. Also, th is m echanism will, in nam ing

a class, need to distinguish between the unique class object and th e notional wildcard (i.e. th a t

which m atches any instance of a given class).

O ften, as w ith lexical breakpoints, two or more specifications m ay be used together to ensure

a com pound behaviour difficult to specify using one alone, even w ith the benefits of hierarchical

definition. O n other occasions some way of associating a set of specifications is required as, unlike

the exception handling context where they belong to objects, they have no organizing s tru c tu re

when used w ithin a debugger. In lieu of paren t objects, these gram m ars should have some concept

of groups: allowing sets o f specifications to be addressed as one en tity in a relationship outside

th a t of hierarchical inclusion (see Section 4.3.5).

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 99

4.3.9 Exception Signaller Design Requirem ents

Specifications are constraints on the behavioural concretization of abstrac t d a ta types. T hey detect,

or signal exceptions when these constraints are violated. They need to be able to represent the

sea t of all error checking within the object, leaving the m ethod code clear of sanity checks and

o ther verbosities. This separation allows each m ethod to be im plem ented using only the code th a t

derives directly from its formally rigorous description, even if this m ethod has a p artia l dom ain or

range.

T he addition of specifications to objects is an a ttem p t to improve the exactitude of program s

through enhanced accountability, to improve the readability of class definitions and to m ake system s

more ‘debuggable’. T he approach requires a three tier object design strategy, as- opposed to the

trad itional, two tier approach [Pun90] in which signatures and then im plem entations are considered

separately. O bject specifications introduce a behavioural phase, betw ixt the o ther two, such th a t

the design considerations for each object type become:

• S ig n a tu re . To w hat m ethods can the object respond? W hat types of argum ents and results

are involved?

• B e h a v io u r . W hat are the (parallel) behavioural constraints of the m ethods presented?

W hat axioms relate the m ethod set?

• Im p le m e n ta t io n . How does each m ethod achieve its ends?

In addition , specifications m ust be capable of constraining the parallelism available to object

m ethods. They emphasize the fact th a t, for objects in a parallel system , the shopping list criterion

[Mey8 8]— which asserts th a t all m ethods of an object may be applied a t any tim e— does not

always hold. The need to th ink about the usage pa tte rns of a ob ject to form ulate specifications,

enhances the user’s model of th a t object and reduces the probability of error. I t also allows object

accountability to be less reliant on s ta te based checks and instead to use behavioural checks which

are a t a higher level of abstraction and, because of their independence of ob ject im plem entation,

m ore open to reuse between objects with analogous sem antics.

T he design of specifications should be congruent w ith the object m odel of the host language,

w ith a need for as few ex tra concepts as possible. Unlike the debugging context, the s ta te based

elem ents of the gram m ar m ust not violate any language principles, for exam ple encapsulation or

locality.

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 100

It is prudent to discuss some of the exception handling m echanism design issues covered in

C hap ter 2 here, notably those of signaller placem ent and association (detection, linkage and han­

dling regimes are further discussed in C hapter 5). To faithfully reflect the concept o f axiom , it is

required th a t specifications are defined (placed) as p a rt of a class description and are associated

w ith all instances of th a t class. A lthough it is advantageous for specifications to be able to isolate

the behaviour of a particu lar m ethod, they cannot directly be associated w ith it per se. Since all

expressions in pure object oriented languages (except raw assignm ent) are com posed of message

sends, there is no need for a more finely grained handler association th an this.

A nother feature raised in C hapter 2, th a t of passing param eters from the signaller’s environm ent

(i.e. from the action clause and violation context) to the exception handler, so th a t som e of the

context of the exception is visible from the handler, is a desirable feature. I t allows m ore generic

exception handlers th a t can individually correct an entire class of related problem s, the particu lars

of which are passed as argum ents. This requirem ent m ust be weighed against th a t of congruency

w ith the host language. For were param eterized action clauses to be introduced, the host language

would need to be capable of m anipulating all of the entities th a t are available to the specification

environm ent, e.g. events, traces, s e ts . . . (see Section 4.4.3). To avoid this, and to ensure th a t

encapsulation is not violated, param eterization needs to be designed such th a t only aspects of

s ta te visible to the object owning the specification may be passed. Such a design will need to avoid

im plicit language dependence.

4.4 T he D esign o f Event Pattern Specifications

4.4.1 Prim itive A spects of Behaviour

Before the behaviour of objects can be operationally specified, the event a lphabet in which they

indulge m ust be determ ined [LL89]. T hrough the creation and analysis of a parallel, ob ject oriented

system model, in C hapter 3, we have derived th is fundam ental a lphabet of primitive events. The

m odel dem onstrates th a t, in such a system , the entirety of object behaviour can be expressed as

a sequence of events of only eight classes. Defining and minimizing th is a lphabet helps to satisfy

the requirem ents for a sm all gram m ar w ith well defined sem antics (see Section 4.3.1). Each event

class and the a ttrib u tes (param eters) th a t distinguish individual instances are described below,

w ith the primary attribute first. All events have, in addition to the explicit a ttrib u te s listed below,

the im plicit a ttribu tes of tim e (i.e. when they occurred) and process identifier.

• O b je c t A llo c a tio n . The event class create, param eterized by the newly created instance.

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 101

• S t a t e A c c e ss . The event class access, param eterized by the instance involved and the type

o f access (read or w rite).

• O b je c t D e s t r u c t io n . The event class destroy, param eterized by the instance destroyed.

• M e s s a g e S e n d . T he event class send , param eterized by the selector, its argum ents, the

sender, the recipient and the category of synchronization used by the com m unication (see

Section 3.3.3). T his is the only event class param eterized by references to m ultip le object

instances; consequently it can be used to facilitate in ter-object specifications.

• M e th o d E x e c u t io n S ta r t . The event class execute, param eterized by m ethod nam e, host

instance and defining class.

• M e th o d E x e c u t io n T e rm in a t io n . The event class terminate , param eterized by m ethod

nam e, host instance and defining class.

• D e le g a t io n (o r S u p e rc la s s L o o k u p) . The event class lookup. Instances of th is event

occurs when a selector from an incoming message fails to m atch any m ethod in the local

dictionary, resulting in it being forwarded to the proxy (or superclass). I t is param eterized

by selector, argum ents, original recipient and proxy.

• E r r o r . T he event class error. This event covers a m ultitude of system failures and exceptional

behaviours. For exam ple, an error event is generated if, during an a ttem p ted selector lookup,

the roo t o f the inheritance hierarchy has been reached w ithout a successful m atch . I t is

param eterized by the nam e of the error, the m ethod nam e, th e host instance and the h o st’s

defining class.

All ob jec t behaviour constitutes sequences (or parallel com positions thereof) of instances of

these eight event classes.

4.4.2 O verview of EPS Sem antics and Syntax

A n EPS is a m odular specification of the operational behaviour of an ob ject. I t defines a ‘valid’

set of event interleavings for the object w ith which it is associated and, optionally, procedures to

follow if th a t ob ject should succeed or fail th is specification. An EPS is said to fail if tr , th e trace

o f all events actually exhibited by an object, does not conform to the behaviour p a tte rn th e EPS

describes. Each EPS consists of five parts:

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 102

• L a b e ls . All specifications are labeled w ith user-defined nam es and com m ents to enhance

their readability. Names are essential in identifying those specifications th a t fail a t run-tim e

and as ‘handles’ though which to identify individual (or groups of) EPSs for various reasons;

• T h e R e le v a n t T ra c e . The Relevant Trace expression allows the in p u t event s tream of the

EPS parser to be m anipulated before the specification parsing begins. Essentially, it defines

the subtrace of tr pertain ing to the specification and thus perm its m odular specialization

(m eeting the requirem ents of Section 4.3.4), in much the sam e way as a generator does in

a set comprehension [Spi89]. Many specifications can be simplified by local filtra tion of the

irrelevant events from the stream t r ;

• T h e M a in S p e c if ic a tio n T e m p la te . The ordered event p a tte rn to which tr m ust conform,

in order to satisfy the specification. It is constructed from prim itive events and tem poral

operators. Partia l specifications can use wildcard traces to express their partia lity . These

w ildcards may be nam ed, bound variables. If tr conforms to the event p a tte rn , these nam ed

variables become instan tia ted with those particulars they represent (see Section 4.3.3).

• A d d i t io n a l C o n s t r a in ts . These are optional conditions th a t s treng then a specification.

T hey are analogous to the postconditions in a set com prehension. Expressed in a language

sim ilar to the specification clauses of CSP [Hoa85], these clauses often express fu rther speci­

fication requirem ents in term s of the variables bound by unification (see above).

• A c t io n C la u se . This is the response of the specification— the behaviour th a t is triggered

if the specification succeeds or fails. The exact natu re of the response is dependent on the

environm ent in which EPS are used. This is an optional com ponent of each specification and

a default behaviour is triggered if an action clause is not provided.

T he overall EPS syntax is:

Name
Comment.
[g ro u p s Group list]
s a tis f ie s Relevant Trace
in w h ic h Template
[iff Constraints]
[th e n Action Clause]
[else Action Clause]

4.4.3 Types

Before exam ining the com ponents of event pa tte rn specifications in detail, the types of d a ta m anip­

u lated by EPS are discussed. EPS operators and constructs act on a variety of special d a ta types.

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 103

Some of these are already available in the language (or debugging) environm ent, specifically:

• N u m e r ic s . For example, integers I, reals R;

• A lp h a n u m e r ic s . For example, strings S;

• B o o le a n s (B);

• P r o c e s s Id e n t i f ie r s (P); and

• O b je c t Id e n t i f ie r s (O). Precisely how object references are specified is im plem entation de­

pendent. Typically some composite means is used to uniquely identity objects (e.g. nam e and

address, or nam e and value), although the user may not perceive all fields of th is com posite

(see Section 6.4.1).

Some types are no t available in the host language. EPSs (internally) use five d a ta types

uncom m on in program m ing languages or debugging environm ents:

• E v e n t (E). Events are n-tuples consisting of an event class specifier (one of the eight classes

nam ed in Section 4.4.1) and the a ttrib u tes they require. For example: lo o k u p (a b s , () ,

r e a l , n u m eric) indicates th a t a search of the selector abs (w ith no argum ents, hence *()’),

failed in the d ictionary of the class real and is passing to th a t of class numeric. T he high

level o f abstrac tion helps to satisfy the goals of readable, well-formed specifications a t a level

of abstrac tion close to the problem dom ain (outlined in Sections 4.3.2, 4.3.5 and 4.3.8). I t is

im p o rtan t to note th a t objects indulge in events, EPS parsers and filters m an ipu late them

and constra in ts may compare them , bu t users form specifications from templates (see below)

not events.

• T ra c e ([E]). Traces are sequences of events; a list of events in tem poral order, w ith the

sem antics o f C SP traces (see [Hoa85]). The trace tr represents the entire behaviour of the

host object and is the default input stream for all EPSs. Syntactically, where they appear in

constrain ts, literal traces are sequences of events separated by commas and delim ited w ith

angled parentheses ‘o ’.

• A lp h a b e t ({E}). A lphabets are sets of events which have the sem antics o f C SP alphabets

(see [Hoa85]). They represent the event repertoire of an object or trace. Syntactically, they

are identical to traces, except th a t they are delimited by curly braces ‘{ } \

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 104

• T e m p la te P a r t ic le (TP). These are the atom s of specification tem plates—each m atches

w ith one event in the input stream . They have a syntax th a t is a superset of the event tuple,

shown above. In addition to the event syntax, tem plate particles may in troduce partia lity

through the use of abbreviation, or wildcard operators. Using abbreviation, one m ay specify

an event using only the type and prim ary a ttribu te , or ju s t the former. Hence the exam ple

event given above could be specified by lo o k u p (a b s) , or ju s t lookup . T hree types of w ildcard

exist: anonymous, value and trace wildcards. T he anonym ous w ildcard ‘? ’ can replace any

argum ent of a particle, relaxing the m atch requirem ent w ith respect to th a t com ponent of

the tuple. The anonym ous wildcard can also replace an entire tuple, yielding a partic le th a t

m atches any event. Value wildcards consist of a ‘$ ’ followed by a name. They may be used

in place of tuple argum ents and act as a wildcard; when the particle is m atched, they adopt

the value of the argum ent they represented. Trace wildcards (which have the sam e syntax)

also unify on a m atch, bu t they represent entire event tuples or traces thereof.

• T e m p la te (T). A specification tem plate is a series of one or more particles bound by tem poral

and s ta te operators. Tem plates form the core of an EPS; they define a legal partia l ordering

of events. The syntax of a tem plate is a variant of th a t for traces. Tem poral partia lities are

introduced by various operators and tem plate wildcards th a t help to relax a specification.

T he anonymous wildcard m atches any sequence of events and trace and value wildcards

are available as above.

Instances of each of these types are m anipulated solely w ithin the confines of EPS expressions

and have no effect on the host language or debugging environm ent itself. These types are small

in num ber and m any are derived from C SP—satisfying the requirem ents of Section 4.3.1. How

instances of these types are used is defined in the sections th a t follow.

4.4.4 Nam e

Names are the labels, provided by the user, by which EPSs are identified by and to the system

(thus m eeting the early requirem ents explained in Section 4.3.5). In addition , the user can provide

a com m ent which extensively details the purpose of the specification. To su pport association of

cooperating specifications (in the debugger environm ent only, as justified in Section 4.3.8), each

EPS has a group list which enum erates those groups to which it belongs. Several predefined

groups exist: active, matched and unmatched respectively contain those EPSs th a t are active,

those th a t have ever m atched and those th a t are being parsed bu t have so far failed to m atch (see

Section 4.4.6). It is im portan t to realize th a t m em bership of the la tte r two groups is not m utually

exclusive. The user may create her own groups merely by adding a nam e to th is list.

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 105

Operator Semantics
Syntax Type CSP English
tr r e s t r ic t £ [E] - {TP} [E] tr f £ yield subtrace of tr containing

only the events (or classes)
in the set £

tr e lim in ate £ [E] - {TP} - [E] tr \ {ot(tr) \ £} yield subtrace of tr containing
all but the events (or classes)
in the set £

head tr [E] —■ E tr0 the first element of tr
t a i l tr [E] - [E] tr' the first element of tr

is removed

Table 4.1: Functions Used to G enerate Relevant Traces

4.4.5 The Relevant Trace

T he relevant trace is an expression in term s of ir, the to ta l behaviour of an ob ject, th a t denotes

these aspects of behaviour th a t are of interest to a particu lar specification. F iltra tion is an es­

sential feature of event m onitoring system s [Bat89] (see also Section 4.3.4), which enhances their

ability to specify system behaviour a t different levels of detail and specialty. F iltra tio n avoids the

consideration of irrelevant events, improving the efficiency of m an and m achine. Relevant trace

expressions yield sub-traces th a t can be m atched against the specification tem plate .

The sim plest relevant trace is tr itself, indicating th a t the entire behaviour of the ob ject will

be considered by the specification. F iltering may be achieved though use of the tr r e s t r i c t I

construct, which restricts the relevant trace to events (or event types) contained w ith in th e set I.

T his function has sem antics identical to the CSP operator T - Similarly, tr e l im in a te I , filters all

the events in the set I ou t of the trace tr. O ther operators include those listed in Table 4.1.

For exam ple, the relevant trace for an EPS belonging to a stack object m ight be:

(tr restrict {execute(push), execute(pop)})

T his is the subtrace of tr representing all push and pop operations on the stack. Having lim ited

the view of the specification to these operations, we can go on to specify (in the m ain tem plate)

th a t the num ber of pop operations should never exceed th e num ber of push operations. Similarly:

head (tr restrict {lookup(foo,(),?,?), error(doesNotUnderstand,foo,?,?)})

is a s tream of ju s t one event: the first delegation of th e incoming selector foo. T he specification

may then , for example, establish constraints on the proxy for th is m ethod.

4 : T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 106

4.4.6 The Specification Tem plate

T he m ain body of an EPS is a tem plate, constructed from instances of the prim itive event classes

(tem pla te particles) using p a tte rn operators. It serves an analogous purpose to th a t o f a syntactic

regular expression in LEX [LS75], w ith the exception th a t, ou t of necessity, th e syn tax is som ew hat

different and extended to allow partia l ordering and s ta te constrain ts on events (to satisfy the

requirem ents outlined in Section 4.3.2). Also, unlike LEX, the specification is designed to aid

sem antic review (see Section 4.3.5): to help users to quickly determ ine how an ob ject is used and

its lim itations. These functions are vitally im portan t to software reuse [SBK81].

To ensure some degree of congruence with the event model of C hap ter 3, the tem pla te language

is derived from C SP and adopts m ost of the power thereof (thus satisfying the expressive power of

parallelism as defined in Sections 4.3.1 and 4.3.9). A lthough it lacks any inheritance operators, the

fundam ental a lphabet of events w ith which behaviours are specified includes inheritance lookup

(see Section 4.4.1).

Each p a tte rn operator takes one or more tem plates or tem plate particles (p) and yields a more

complex tem plate from them . T he operators are listed in Table 4.2, wherein the process denoted

A is a don’t care term , N i is the set of all strictly positive integers and the s ta te expression (3 is

a boolean assertion (in the host language) binding the observable s ta te of the ob ject concerned.

S ta te assertions are used to support s ta te oriented tem plates. E ncapsulation m ust no t be violated

in verifying s ta te assertions (see Section 4.3.2), so the boolean expressions are form ed from non

privileged message passing sta tem ents th a t have no side effects. Readers m ay notice th a t the

sym bol appears in Table 4.2 representing the repetition operato r. T his is no way conflicts

w ith its earlier definition (in Section 4.4.3) as the anonymous trace w ildcard, because the two

representations can be distinguished by context and can not be used together.

T he sim plest tem plate is merely a single particle. For exam ple te r m in a te (p u sh) , which signi­

fies the term ination of the m ethod push. T he EPS language supports the specification of sequential

and concurrent sequences (, , . . . , I I) , determ inistic and non-determ inistic choice (\ /) and ite r­

ation (*, *n), to compose useful behaviour pa tterns from these particles (see th e requirem ents in

Section 4.3.1).

For exam ple, consider an object representing a screen th a t has subord inate ob jects representing

things displayed on th a t screen. A specification to ensure th a t, in a m ethod redraw, the screen is

cleared before the flood of redraw messages is sent to subord inate displayed objects m ight read:

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 107

Operator Semantics
Syntax Type CSP English
P* T —► T pX.(p - X) the template p occurs

an unspecified number
of times in succession

p*n T —► 1 —► T pn where (n € N i) n successive instances
of the template p occur

~P T —► T x : (air — p) —► ... any template except p
Pi »P2 T —► T —► T Pi -► P2 template p2 occurs

immediately after pi
P 1 - P 2 T —► T —► T Pi X \ {p 2 } ;P 2 template p2 occurs

after pi
P l \ / P 2 T — T — T (pi - X M P 2 - X) template pi or p2

occurs
P l| |P 2 T —► T —► T P l| | |P 2 the templates p\ and p2

are interleaved ^

p#n T —► 1 —► T 0 < « < n P W h e l e (n ^ N i) n interleaved occurrences of
the template p

P/[P] T —► B —► T p W as the template p
occurs, the state /?
is attained

Table 4.2: P a tte rn O perators Used to G enerate Specifications Tem plates

EPS: FinishClear
“ Ensure screen wipe is complete before re-drawing child windows.’’

satisfies tr restrict {send, execute, terminate}
inwhich execute(redraw).execute(wipe), ^

terminate (wipe) — (send(redraw))*, terminate (redraw)

In m any specifications, there is a need to distinguish instances of the sam e event occurring

w ithin partially concurrent, overlapping threads active w ithin the sam e object (see Section 4.3.2).

T his is achieved by labeling events w ith value wildcards which are unified w ith the process identifier

(an im plicit a ttr ib u te of all events, see Section 4.4.1) a t run-tim e. Such labeling is accom plished

through use of the optional operator ‘ : ’. Hence to indicate a sequence of events sen d , lookup and

execute , in which send and execute are generated by the same th read *, one may use the tem plate:

$i:send, $j :lookup, $i:execute

Here, after the occurrence of an event such as 1201: send (re d ra w , () , f o o ,b a r , s y n c)2, the

value w ildcard $ i is instan tia ted with the value 1201. Consequently, for the tem plate to m atch

2 W e assum e in this exam ple that process identifiers are represented as a series o f contiguous, un iquely a ttr ib u ted
in tegers.

4 : T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 108

the final event, execute, it m ust also have a process identifier of 1201. Note th a t $ j may or may

not equal $i, since it is not used again it could be replaced w ith the anonym ous wildcard ‘? ’ or

the en tire ‘ : ’ label om itted altogether. Both are instances of unified value wildcards. To illustrate

th e ir value, consider a stack object. In order to ensure serialization of the push m ethod (i.e. to

ensure th a t the m ethod push can hold a t most one th read), one m ight use a specification:

EPS: PushMonitor
‘‘Ensure that only one thread enters push at a time.’’

satisfies tr restrict {execute(push), terminate(push)}
inwhich $i:execute(push), $i:terminate(push)

W hen an object is created and its EPS ‘parsers’ are initialized, all tem plates cfre pre-dorm ant,

i.e. they are neither m atched or unm atched. As the host instance indulges in events, its event

s tream is fed to each parser (through their respective relevant trace filters) as shown in Figure 4.1.

Unless the EPS is pre-strict (i.e. it begins with a period ’), the parser will ignore all events in the

relevant trace until one occurs th a t confirms to the first particle in the tem plate. W hen th is occurs

(or w ith p re-stric t tem plates, after the receipt of the first relevant event), th e parser becomes

active. As further relevant events become available, the parser advances th rough the tem plate.

Eventually, the EPS will fail because one relevant event will no t conform to the tem pla te , or it will

succeed as the end of the tem plate is reached. If the EPS fails, it is m arked as unm atched (it joins

the group of the same name) and the e l s e action clause is acted on. If it succeeds, it is m arked

as m atched and the th e n clause is taken. If the m atched tem plate is post-stric t (i.e. it ends w ith

a period ‘ . ’) the EPS becomes post-dorm ant and is never checked again, however non post-stric t

tem pla tes are reset to their starting condition after a m atch.

T em plates s ta rting w ith an unspecified particle, i.e. those th a t begin w ith th e anonym ous

w ildcards ?, *, or w ith a nam ed trace variables, m ust be pre-strict. Similarly, those ending with

a w ildcard th a t is no t right bound3 m ust be post-stric t (since they can never te rm inate). Indeed

in the la tte r case the tem plate, if satisfied to the point of the final w ildcard, will en ter a perpetual

m atch condition. Each new event th a t arrives will be appended to the growing tail sequence

m atching th e wildcard, bu t the end of the tem plate will never be reached. T his, apparen tly baneful,

condition is sometimes useful—especially when combined w ith constrain ts as shown below.

3 A w ildcard is sa id to be right bou n d if it has a defined en d p o in t, i.e . there ex is ts a con d itio n w hereby the
w ildcard w ill b e satisfied and its parser w ill a ttem p t to satisfy the p article th a t follow s it .

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 109

relevant
traceevent

input

event
strearr

host 1
object*

Figure 4.1: D istribution of Event S tream to EPS Parsers

4.4.7 A dditional Constraints

Relevant traces and specification tem plates are not enough to describe all behaviours (see Sec­

tion 4.3.3). T hey can filter and specify the ordering of perm itted events, b u t are unable to express

the inequalities th a t often comprise real-world specifications. Also, the p artia lity in troduced by

wildcards and the opera to rs ‘ . . . ’ and ‘ I P cannot be constrained as p a rt o f the specification— a

fu rther lim itation. To overcome these lim itations, an optional constrain t clause can be used to

supplem ent EPSs. M uch of the expressive power of CSP can be added to EPS through constraints.

Using constrain ts, any partially specified sections of the tem plate, on which it is desirable to

impose further constra in t and th a t h itherto had been represented w ith w ildcards or opera to rs ‘ . . . ’

or ‘ I P , is instead denoted by a nam ed trace wildcard. Similarly, any tup le argum ent previously

represented as ‘? ’, may be replaced by a nam ed value wildcard. T hen, after m atching, if tr

conforms to the tem pla te , these variables are instan tia ted w ith the traces o r values they represented.

The constrain t clause m ay then strengthen the EPS by expressing additional conditions for its

acceptance in term s of these traces, values and their derivatives. Table 4.3 depicts the operators

th a t constrain ts use, in addition to these shown in Table 4.1, to m anipulate trace variables or

calculate their properties.

The traces and alphabets generated by constraint functions (th rough the use of trace variables

and the opera to r ‘0’) can be tested using a range of set operators including in , subsetof and

equals (which have th e sem antics of the m athem atical relations £ , C and = respectively) and

their negations. T hey m ay be compared w ith o ther traces or alphabets, or w ith literals like <>,

the em pty trace, and {}, the null alphabet. Trace and alphabet lengths (found using #) and

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 110

Operator Semantics
Syntax Type CSP English
<r[ra] [E] - 1 - E tr[«]

where (n € N i)
the nttl element
of trace tr

tr[n...m] [E] _ | _ | [E] ^ n < i < m ^ r [l]

where (n, m € N i)
a subtrace a tr
consisting of the nth
through to the mth
element of tr

@tr [E] - {E} air the alphabet of trace tr
#<r [E] —*• 1 # tr the length of trace tr
tr\£ tLUTLU

(i r r 0 the number of
occurrences of £
within tr

trx/ \ t r y [E] - [E] - [E] trxAtry trace (or event)
concatenation

Table 4.3: EPS C onstraint Functions

instan tia ted , nam ed, value wildcards can be likewise com pared using s tan d ard m agnitude relations

(< , > = . . .). In a constrain t expression, the semantics of any relation may be negated by prefixing

it w ith the symbol

A dditional constraints are so powerful th a t some specifications may be expressed using them

alone. For example, to ensure th a t an initially em pty stack is never requested to pop when empty,

one m ight use the EPS:

EPS: NotEmpty
‘‘Ensure that pop is not called more often than push.'

satisfies tr
inwhich $a
iff $a!{execute(push)}>=$a!{execute(pop)}

T his is a simple exam ple of a tem plate th a t is not right bound . T h a t is, since it ends in a

wildcard it can not term inate until it fails or until the associated object is destroyed. T his exam ple

is extrem e in th a t it is also pre-strict and will consequently enter the perpetua l m atch ing condition

im m ediately. In this condition, the tem plate m atches (and the constrain t is checked) as each new

event occurs. A lthough this is not the m ost efficient m ethod, it alleviates th e need for a m ethod

precondition in this case. Assum ing the existence of a m ethod size, ano ther specification achieving

the sam e goal is:

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 111

EPS: NotEmpty
‘‘Ensure that pops are only conducted on non-empty stacks.’’

satisfies tr
inwhich ~execute(pop)/[(self«size) <= 0]

W here a<-b denotes a message send to object a of selector b (as in Sm alltalk-80 [GR83]). This

m essage send is synchronous, for obvious reasons, and only accessor m ethods4 should be used in

th is way. Postconditions may be sim ulated in EPS in a sim ilar fashion to the precondition above.

For exam ple, to ensure the push m ethod increases stack size:

EPS: PushGrows
‘‘Ensure that after a push the stack has grown. ’ ’

satisfies tr restrict {execute, terminate}
inwhich $i: execute (push) / C$1 = (self <-size)] ...

$i: terminate (push)/[$2 = (self <-size)]
iff $2 > $1

Here, the s ta te opera to r *=’ forces the value wildcards $1 and $2 respectively to be in stan tia ted

to the values yielded by the message sends. For an example of the usage of trace variables, consider

th a t for a window object to assert th a t it should be moved only when opened and destroyed only

when closed, one m ay specify:

EPS: MoveWin
‘‘Ensure window can be manipulated only whilst open.’*

satisfies tr restrict {execute, destroy}
inwhich (execute(open)... execute(close), $z)*,

destroy
iff execute(move) notin C$z

In m any cases one can express the sam e specification sem antics using a com plex tem pla te or a

sim ple tem pla te w ith a constrain t. Often, although the choice between the alternatives m ay seem

hard , there are subtle reasons for choosing one m ethod as opposed to the other. Consider an object

capable of sending messages a, b and c. Consider the two specifications given below to ensure th a t

b is sent a t least four tim es between the sending of a and c.

4 A ccessor m eth o d s relay som e facet o f th e receiving ob ject’s sta te , w ithou t changing th a t s ta te [M ey88].

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 112

EPS: Protocoil
‘‘Ensure b is executed the minimum number of times.’’

satisfies tr restrict {send}
inwhich send(a),send(b)*4, send(b)*, send(c)

EPS: Protocol2
‘‘Ensure b is executed the minimum number of times.’’

satisfies tr restrict {send}
inwhich send(a),send(b)*$n, send(c)
iff n>4

T he form er is more efficient and might be used if efficiency were a prim e concern. The la tte r is

more complex, bu t allows a be tte r and more flexible form of expression which is easier to change.

For exam ple, to additionally constrain the repetition according to an argum ent of the m ethod a,

one m ight change the specification to:

EPS: Protocol3
‘‘Ensure b is executed the minimum number of times.*’

satisfies tr restrict {send}
inwhich send(a,($x),?,?,?),send(b)*$n, send(c)
iff n>4 \/ x>=n

4.4.8 A ction Clauses

No definitive syntax for action clauses is given here, since handling the problem signified by a

failing specification is highly dependent on the environm ent supporting th e specifications.

In a debugging environm ent the useful actions th a t could be triggered by specifications can be

placed in to three categories:

• Executing user defined sequences of debugger commands

• A ltering the input event stream of associated parsers

• A ltering the s ta te of associated parsers

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 113

W ith in a debugging environm ent such as th a t provided by GDB [Sta88], D PD [HK89] or

Spider [Smi85], all of which support the creation of nam ed sequences of debugger com m ands

(m acros), an action clause could invoke such a macro by nam e. More advanced host debugging

system s m ight support param eterized macros. T his type of action clause delegates the functionality

to the host environm ent, allowing EPS to remain environm ent independent. T hrough m acro

calls, EPS can tap the entire functional repertoire of a debugging tool (see the requirem ents

in Section 4.3.6) and use it to facilitate experim ents—from printing the value of a variable (thus

using the specification as a behavioural filter), to increm enting a debugger m aintained counter (to

determ ine how often the specified behaviour occurs). The single, m ost effective debugger action

clause for EPS is the ubiquitous ‘s to p ’ directive (m eaning halt execution and render the current

context open to exam ination), enabling EPS to be used as a very sophisticated breakpoint facility

(see Section 4.3.8).

A nother feasible action clause, w ithin a debugging environm ent, is to append to an o b jec t’s

event s tream a user defined, param eterized higher order event. In effect, the EPS ceases to be a

stand-alone specification and becomes a definition of a higher order event th a t contributes to the

event stream s of o ther EPSs. O ther EPSs may then specify th is event in the ir tem plates, increasing

the level o f abstraction and readability therein (see Section 4.3.5). For instance, consider th a t the

read and write cycles of a file object m ight be defined:

EPS: Readcycle
‘‘open a file and read from it.’’

satisfies tr restrict {send(open).execute} _
inwhich send(open,("r"),?,?,$sync).execute(read)*,execute(close)
then append read($sync)
else append access_error("read")

EPS: Writecycle
‘‘open a file and write to it.’’

satisfies tr restrict {send(open).execute}
inwhich ($i:send(open,("w"),?,?,$sync) \/$i:send(open,("a"),?,?,$sync)),

$i:execute(write)*,$i:execute(close)
then append $i:write($sync)
else append $i:access_error("write")

Here th e action clause append, appends the higher order event to the in p u t stream for th a t

object. Notice how the synchronization mode is propagated as a param eter o f the new high order

events read and write, and similarly the access type for the high order event access.error. To ensure

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 114

th a t a m ultiple read and exclusive write protocol (M REW) is adhered to by a file, one m ight use

the readable specification:

EPS: MREWProtocol
‘‘ensure the file follows the MREW protocol.’’

satisfies tr restrict {read,write,access_error}
inwhich .read(sync)\/write(?)

Note th a t when a higher order event is used in an append clause it autom atically creates a new

high order event type. The relevant traces for higher order events usually reflect th is higher level

of abstraction .

To facilitate behavioural experim entation it can be useful, w ithin a debugging context, to

forcibly alter the s ta te of one EPS parser from the action clause of another. Since each EPS is

uniquely identified by the object w ith which it is associated and its nam e, such a ltera tion is achieved

by specifying the na tu re of the change and the EPS(s) affected. A lterations m ay include (b u t are

no t lim ited to): disabling, enabling, enforced success, enforced failure and term ination of individual

parsers or groups thereof. For example, whilst debugging a suite of objects th a t represent a bank

account, one may have a suite of EPS-breakpoints belonging to the group bankdebug. O ne o f these

m ight be5:

EPS: EarlyLargeWithdrawal
“ breakpoint large transactions occurring early in an account lifetime.’’

groups { bankdebug}
satisfies tr restrict {send(withdraw)}
inwhich .send(withdraw,($n),?,?,sync)/[$n«lt(500)]*$m,send(withdraw,(?),?,?,sync).
iff $m<10
else large_withdrawal_alert

an EPS th a t fires when a new custom er makes a large withdrawal (m ore th an 500 pounds in this

exam ple) in the first ten w ithdrawals. The action clause largejwithdrawaLalert is a debugger m acro

th a t breakpoints the object, allowing the user to examine the details and ensure th a t th e bank

o b jec t’s security features behave as intended. However, these security features may only exhibit

a failure after a considerable num ber of accounts have been processed. I t m ay not be desirable

to enable EarlyLargeW ithdrawal until a large num ber of records have been processed. One may

disable the EPS (from the debugger) and enable it autom atically using a second specification:

5In the exam ple we assum e th e ex isten ce o f th e m eth od lt(x), for integer ob jects , th a t returns true on ly if the
receiver is less th a t the argum ent x.

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 115

EPS: EnableEarlyLargeWithdrawal
“ enable ELW after 500 operations.’’

satisfies tr restrict {send}
inwhich .7*500.
then enable bankdebug

T he orthogonality of this sort of experim entation is im proved if parser m anipulation is added

to the debugger com m and language itself.

Com m and ‘m acro’ sequences and parser a lteration are unavailable and inappropriate in the

more form al language exception handling environm ent. Since the specifications m odel A D T axioms

in this environm ent, the m anipulation of parser sta tes is bo th irrelevant and dangerous, given

the invariant na tu re of axioms. The usefulness of higher order events is som ew hat obviated by

the existence of stronger struc tu ring mechanisms i.e. object and class hierarchies. T he principal

exception handling oriented action clause is the invocation of a handler m ethod, the EPS in this

case is a sophisticated exception definition. However, to nam e the handler m ethod as p a rt of

the specification restricts flexibility and could be considered as a violation of encapsulation (see

definition of linkage in C hapter 2). In C hapter 5 we define the design and function of an exception

handling system built around EPSs.

4.4.9 Persistence and Predefined Events

To aid reuse of E PSs (see the requirem ents outlined in Section 4.3.7), especially jv ith in a debugging

context, they may be saved to disc in libraries. Simple search and browsing tools may be used to

view saved EPSs to look for reuse candidates. N aturally, these procedures are unnecessary in the

language environm ent where the abstractions are reused, as opposed to the axioms th a t belong to

them .

A num ber of predefined EPSs exist to aid the form ation of frequently used tem plates. These

include those covered in table 4.4. These events differ from higher order events; essentially they are

ju s t rew rite rules, bu t they improve the readability and succinctness of specifications in a similar

m anner (see Section 4.3.5).

4.5 V isualization

T he ease of use of EPS and its effectiveness, especially w ithin a debugging tool, can be consider­

ably improved by careful a tten tion to the way in which behaviour, specifications and the differences

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 116

Operator Semantics
Syntax Event English
s e l f (x ,a r g ,s) s e n d (x ,a r g ,y ,y ,s) send a message request to self
s u b se n d (x ,a r g ,s e ,r ,p ,s) sen d (x , arg , s e , r , s) ,

lookup (x , arg , r , p)
defer incoming message
to superclasses

$ i:d o (m ,i) $ i :e x e c u te (m ,i,?) . . .
$ i :term inate(m , i ,?)

successfully execute
a method

Table 4.4: Predefined EPS Fragments

between them are visualized. The former two are identical in all respects, bu t the differing visual­

ization requirem ents of traces and tem plates. V isualization of behaviour differences m ust highlight

the ex ten t and natu re of differences between actual and specified behaviour, which requires a vastly

different approach. Thus far, we have only considered the tex tual representations of behaviour and

specifications. Here we discuss briefly the promise and problem s of graphical visualization and

‘difference p lo ts’.

4.5.1 Graphical V isualization of Behaviour and Behavioural Specifica­
tions

G raphical visualization of behaviour is currently an area of intense research [CB86, KG88, Sto88].

T here is cognitive evidence to suggest th a t it aids debugging [DC86, Car83b, Sen83] and although

the em pirical evidence is som ewhat rare [FM89, CBM90], m any im plem entors of debugging software

have a ttem p ted to use it [BH90b, Bov86, BTM89, CC89, RRZ89, SBN89, B.at87a] in order to

improve the ease and enjoym ent of using their products. Despite the advantages of graphical

v isualization, experts often prefer tex tual m odalities for interacting w ith com puters [BEH88], and

for some advanced functionalities it is the only m edium [BH90a].

Some possible iconic visualizations for tem plate particles are included in Figure 4.2. Clearly,

some m echanism to allow user defined icons is required to support higher order events. In addition,

some m eans of iconic com bination is needed to visualize tem plates—straightforw ard expansion into

the icons of Figure 4.2 will produce overwhelming am ounts of visual inform ation for non trivial

tem plates. One possibility is the use of iconic ligatures, i.e. au tom atic com bination and placem ent

of certa in icon sets into single icons, according to a fixed set of rules based on events and their

tem poral relationships. Figure 4.3 depicts an example of this. I t represents the specification

tem plates of the tem plate P ushM onitor and the predefined EPS subsend. In th is way a com bination

of ligatures, user defined icons, placem ent and special symbols can be used to represent tem plates.

V isualizing the relevant trace, s ta te assertions or EPS constraints is more difficult. Figure 4.4

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 1 1 7

/ — \
create(u)

access(u)

v 1 u 2
send(p,a/u1 ,u2,s)

lookups,a,u,t)

execute(rj,u,c)

destroy^
© n Jj
error(e,t|,t),c) terminate^,u.c)

Figure 4.2: G raphical Visualization of Event A lphabet

PushMonitor subsend(p,(),v2)

Figure 4.3: G raphical Representation of PushM onitor and subsend Using Iconic L igatures

shows one possible technique which relies on tex tual m edia to relate the constrain ts and uses a

graphical representation of the specification and synchronization constraints.

Visualizing parallelism is fraught w ith problems (see the subsection en titled “ Visualization” in

Section 2.4.13), no t least because it requires large am ounts of screen estate . A bstraction is one

solution: event icons such as these listed above can be used to provide detailed representations of

behaviour, while trad itional concurrency diagram s such as those proposed by Stone [Sto89], A gha

[Agh90], Fidge [Fid89], H ewitt [Hew77] or Feldman and M oran [FM89] can be used to describe

synchronization. In the com putational model to which EPS is tailored (see C hap te r 3), parallel

synchronization is determ ined by three types of communication: synchronous, asynchronous and

fu tu re . In Figure 4.5 we show possible ways of visually depicting these th ree types of synchroniza­

tion and Figure 4.4 shows how this might be used w ithin a whole EPS.

V isualization of the potential parallelism perm itted by a specification is more difficult th an

visualizing the actual parallelism exhibited by a live object and is a problem worthy of fu rther

work. I t is not addressed by this thesis.

T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s

EarlyLargeWithdrawal (bankdebug, active}
breakpoint large transactions occuring early

s a t is f ie s tr r e s tr ic t (send(withdraw)}
inwhich (pre.post) str ic t synchronization

$n<-l1(500) withdraw(Sn)

withdnw(7)

self

self

i f f $m<10

then large_withdrawal_alert

withe iw ($n)

'?

withe zw(7)

Figure 4.4: G raphical V isualization of the EPS EarlyLargeW ithdrawal

a

c t
send(p,(),a,b,sync),c send(p,(),a, b,future),c send(|i,(),a,b,async),c

Figure 4.5: G raphical Visualization of Parallelism

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 119

4.5.2 V isual D eltas

T he culm ination of visual specification, especially in a debugging context, is to be able to depict

in a high level graphic to w hat ex ten t the actual behaviour of an object satisfies a specification.

T h a t is, to visually dem onstrate why— and when— an ob jec t’s conduct violated its specification. As

EPS tem plates are partia lly ordered, this cannot be achieved by linear L A L R (l) parsing algorithm s

such as those used to verify YACC input [Joh78] or the send-expect sequences of UN IX ’s uucico

u tility [OT89]. Furtherm ore, since higher order and prim itive events will be m ixed, some form of

abstrac tion is needed or the visual deltas will convey little useful inform ation. One solution is to

use a ongoing conform ance test on corresponding nodes of the specification parse tree and thread

traces exhibited by the object. T his would be especially effective if it were graphically anim ated.

The design of such an algorithm is beyond the scope of th is thesis.

4.6 EPS: D ebugging versus In-Language U se

D espite the pertinence of the EPS mechanism to both language based axiom support and sophisti­

cated assertions for debugging, some differences exist in the requirem ents between the two contexts

th a t reflect their disparity. Firstly, there are differences in the techniques used to associate objects

and specifications. W ith in a language context, the association is s ta tic and the EPS axiom s are

provided w ithin a type definition. W ithin a debugger using EPS, the associations are typically

w ith instances (since it is rarely useful to apply debugging assertions to all instances of a type

a t one tim e) which m ay be uniquely identified by name, context and (when otte is specifying the

behaviour of an ephem eral instance th a t may not exist yet) by tim e or circum stances o f creation

([BTM89] for exam ple).

In-language specifications usually only concern the behaviour of the ob ject w ith which they are

defined (although m ulti-object behaviours can be specified) in order to maximize their po ten tia l

for reuse. However, assertions form ulated within a debugger have no such constrain ts, behaviours

involving more th a n one nam ed instance may be asserted using the send event.

T he action clauses available to EPSs in the different environm ents will differ to a g reater extent

th an any o ther feature of the formalism. T he motive behind and facilities available to the clauses

are easily distinguished. In a language context, the goal of the clause is to recover or am eliorate

the problem causing a violation of a specification. W ithin a debugging fram e of reference, specifi­

cations are used to tra p a desired context (using EPS as extended breakpoints) to gather program

4 : T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 120

inform ation or to alter program behaviour. To avoid incorporating context dependent functional­

ity, EPS action clauses defer much of their functionality to the host environm ent (as explained in

Sections 4.3.6 and 4.4.8) which be tte r facilitates the disparate goals of clauses in th e two contexts

and accentuates the difference between them .

4.7 D iscussion

4.7.1 Advantages

In a debugging context, EPSs are a stronger formalism than alternatives, such as lexical breakpoints

o r source am endm ent, for the following reasons: they relate more closely to the problem domain;

th ey have a higher sem antic bandw idth; and they are not ad-hoc—forcing some though t abou t the

behaviour of user defined objects on the p a rt of the user. EPS directly supports hypothesis testing

and confirm ation. EPS allows control and execution contexts to be established th a t rival m ethods

could not. For example only EPSs can:

• Establish contexts associated w ith inheritance lookup;

• Ensure th a t an A D T ’s tem poral protocol is adhered to;

• A ctively support hierarchical abstraction;

• P erm it direct specification of behaviour w ithout the need to tran sla te in to a line of source

code;

• Be reused in analogous circum stances w ith little change; and

• Serve as a docum entation aid. This is mainly because, unlike breakpoints, EPS can be easily

back-translated into the hypothesis th a t they were created to establish.

In a language context, EPS offers several advantages over existing exception handling system s,

as C h ap te r 5 will show. Furtherm ore, EPS is a more portable specification technique th a n th a t of­

fered by any exception handling mechanism because it is, although custom ized for object-oriented

languages, language independent. The formalism aids type docum entation w ithou t violating en­

capsulation and is am enable to visualization. Use of EPS obviates the need to in troduce special

variables to reflect key aspects of behaviour, for example the redundant variables size and isEm piy

th a t are often m aintained in stack ADTs and required by s ta te based exception m echanisms.

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 121

4.7.2 Lim itations

T he flexibility and facility of EPSs introduces several problems th a t can be avoided by careful

usage. Ideally, one ought to provide a rewrite mechanism th a t transla tes EPSs exhibiting these

problem s into equivalents th a t do not. However, such a system would require as much real world

knowledge as one designed to form ulate EPSs from scratch and is beyond the scope of th is thesis.

Because they are asynchronously parsed (and checked) some EPS are immensely inefficient.

For example, the first EPS N otEm pty(see Page 110) triggers a parsing and constra in t check for

every event reported by stack instances (it is no t right bound). There is no doub t th a t such a

specification (indeed m ost non right bound specifications with constrain ts) would levy a crippling

overhead on any system on which it was instantiated . Rewrites such as th e second-EPS N otE m pty

(see Page 111) are generally more efficient, albeit less expressive and reliable (as it depends on the

correct function of the m ethod size which may itself be flawed).

Some specifications are phrased such th a t violations can only be realized long after the cause

o f the problem . T his can make recovery difficult and retrieving the correct debugging contex t

impossible. For example, the EPS M oveW in will only ‘realize’ th a t a window has been sen t a

move message whilst it is closed when the $z trace variable is in stan tia ted by the occurrence of

its boundary event (in this case execute(open) or destroy). Since th is is after the occurrence of

the erroneous event, the debugging context th a t can be raised using this specification m ay not

be useful. T his can be avoided by pu tting specifications into the perpetual m atch ing condition,

th a t is, constraints are checked during the growth of trace variables instead of ju s t when the ir

in stan tia tion is complete. U nfortunately, this has grave repercussions on efficiency; indeed th e re is

frequently a tradeoff between efficiency and immediacy.

In a debugging context, type checking of EPS specifications could be difficult. In system s

w ith true dynam ic binding, type checking specifications will be compromised since, a t the tim e of

specification, the type of an object may not be uniquely defined. T h is poses serious lim ita tions on

any sta tic checking of specifications.

C urrently, each defined EPS represents one instance of a parser ‘listening’ to the events of the

object(s) w ith which it is associated. There is no m echanism for in stan tia ting two or m ore identical

parsers, for the sam e object, from one definition. Furtherm ore, there is no m eans of facilitating

m ultiple concurrent parsers th a t ‘look’ for the same behaviours in different th reads of one ob ject.

Perhaps the most severe problem is th a t not all EPS definitions make sense or can be parsed.

Consider for example the EPS:

4: T h e S p e c i f i c a t i o n o f P a r a l l e l B e h a v i o u r s 122

EPS: Silly
‘‘This EPS cannot parse or instantiate its trace variables.’’

satisfies tr
inwhich send(x), $1I|$2, send(y)

T here is no a priori technique of partitioning the events occurring between the two send events

betw ixt the trace variables. This type of mistake m ust be trapped by the im plem entation and

flagged as a user error.

C hapter 5

E x cep tio n H andling in P ara lle l
O b ject O riented L anguages „

5.1 Introduction

In th e previous chapter we introduced the EPS formalism and detailed its general usage as a

specification m edium and a specific application as a debugging aid. In th is chapter, we present

a design which grafts an exception handling mechanism based on EPS onto an existing parallel

o b jec t oriented language, Solve. In doing this, we hope to dem onstrate its im m ediate facility as

an exception detection form alism and to investigate the po ten tia l o f behavioural abstractions for

aiding sem antic review and searching. -

M odern ob ject oriented languages stress the operations th a t type instances m ay undergo and

the correct argum ent types and s ta tes involved, bu t offer no concept of correct behaviour p a tte rns.

T h is oversight weakens the po ten tial power of the abstraction (especially in parallel system s) and

the ability of such languages to detect behavioural problems m anifest a t run-tim e. W ithou t this

facility, error detection schemes in these languages—where they exist— are weak and undisciplined.

5.2 D esign R equirem ents o f E xception H andling System s

5.2.1 Purpose

T h e general purpose of exception handling mechanisms is defined in Section 2.3.1; in sum m ary,

they detect and m itigate the effects of m ethod failure, or misuse, a t run-tim e. T hey support reliable

123

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 124

typ es , instances of which behave correctly within their dom ain and do not fail catastrophically , or

s ilen tly1, otherwise.

W ith in th is context, the purpose of EPS is to define assertions which p a rtitio n an o b jec t’s

behavioural and sta te dom ain, separating conventional behaviour from the exceptional. If the

ta rg e t system is event instrum ented, these assertions can be used to detect all forms of anom alous

behaviour. In addition, they can supply ‘active docum entation’ which may be used to enhance

understanding of types, to facilitate semantic search of a type repository and assess a ty p e ’s reuse

po ten tia l in a given circum stance.

5.2.2 D esign Considerations

T he design requirem ents of an exception handling system are best analyzed by exam ining the stages

of exception handling introduced in Section 2.3.4: specification placem ent, exception detection ,

linkage and handling. One fundam ental requirem ent is th a t of congruency. In adding an exception

handling mechanism , one should pertu rb the base language as little as possible and add to it as few

new concepts as is feasible. A nother im portan t consideration is correctness: an exception handling

system should never allow software to violate its specifications w ith im punity.

P lacem ent covers those elements of language design involving the deploym ent of assertions to

check for anom alous behaviour. Ideally, placem ent should make these assertions unobtrusive, m od­

u lar, ab strac t (to prom ote reuse) and physically separate from conventional code. T his separation

should be d istinct enough to avoid dependencies between, or interwoven contrfil flow of, m ain and

exception detection code, bu t not so d istinct th a t the relationship between the two becom es ob­

scured. Separated from these assertions, conventional code can be m ade sim pler to u n d erstand and

easier to m aintain . Assertions should also serve to actively docum ent program sem antics, affording

the user w ith a greater appreciation of the lim itations of a type. Users should be encouraged to use

assertions in their own objects as widely as possible and the m echanism should be flexible enough

to support assertion of any aspect of program behaviour or s ta te .

D etection concerns how and when exception assertions are evaluated and the conditions under

which the search for a handler begins. Detection should be as im m ediate as possible, such th a t

the search for a handler is engaged before the original problem has avalanched beyond repair. T he

detection of software exceptions should adopt the sam e form as th a t of hardw are exceptions to

allow unification of the two schemes and a reduction in language complexity. A ssertion evaluation

should be autom atic and follow a stric t (regim ented) convention, establishing clear responsibilities

1A ob ject fails silen tly if i t v io lates it specification in a way th a t can n ot easily b e observed a t th e tim e o f failure.

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 125

between objects, to prevent the user from om itting or m aking redundant checks. T he generation

of signals should be autom atic to prevent user error or undisciplined signal ‘stifling’.

Linkage refers to the language mechanisms employed by the user to m ap exception violations

onto handlers, i.e. th a t which directs the search for a handler once a v iolation is detected . I t involves

the specification of exception-handier pairs (m appings) and the association of such m appings w ith

specific execution contexts. Linkage should be as flexible as possible while re ta in ing readability

and run-tim e correctness. T h a t is, it should be relatively easy to read from the source tex t which

handler will be invoked from a particular context after a given violation. Furtherm ore, a compiler

should be capable of deducing th a t a handler exists for every conceivable exception violation. The

granularity of m apping association should be the minimum needed to maximize flexibility, w ithout

com prom ising the underlying language or introducing excessive verbosity.

Handling m echanisms concern the scheduling of exception handlers and their control and d a ta

flow. T his m echanism should pass all the required inform ation abou t the circum stances of the ex­

ception into the scope of the handler, w ithout violating encapsulation. In addition, if the context

o f the failing m ethod offers inadequate scope for inform ation or control to decide and im plem ent a

final handler response, then the exception should be propagated— w ithout violating encapsulation.

A wide range of disciplined, yet flexible control flow models should be available to handler imple­

m entors to facilitate a choice of explicit exception responses: from graceful failure to algorithm ic

redundancy. The form er is m ost commonly used (see Section 2.3.8) and should be well supported .

Again the issue of physical separation is im portant. All handlers should be m odular. Each should

be d istinct enough from the error th a t it addresses, so th a t it may be reused^in a different (bu t

analogous) s ituation , bu t in tim ate enough to address the signalled problem . Separation has two

advantages. F irstly, the tex tual dem arcation often greatly simplifies m ethod code, which makes it

easier to understand and review. Because exceptional cases, by definition, occur infrequently, little

sem antic knowledge is lost by relocating the clu tter of exception handling from th e m ain m ethod

body. Secondly, th e scope in which an anomaly is detected is frequently no t the m ost effective one

in which to handle it and separation can make handlers more disciplined by restric ting th is scope.

Iii an environm ent w ith inheritance, this discipline helps to prom ote reusability.

T he detailed design considerations of EPSs in an exception handling environm ent were consid­

ered in Section 4.3.9. W hilst they are fundam entally the sam e here, the Solve language will have

some influence on the dem ands m ade on the formalism. Furtherm ore, some knowledge of Solve is

im portan t to understand the significance of the features proposed later. Consequently, we include

here a brief discussion of the salient features of the language.

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 12 6

5.3 T he Solve Language

5.3.1 Goals and Characteristics

Solve is one of the languages of CoSIDE (C + + or Solve Interactive Development Environ­

m ent) and was developed a t University College London as p a r t of the E S P R IT SPAN project

[RSHW W 88, RW W 88a, RWW88b]. Solve is a parallel, object-oriented language designed for use

w ith parallel, m ulti-processor systems. It supports fully active (autonom ous) ob jects w ith concur­

rently executing m ethods. Furtherm ore, Solve provides a message passing subsystem which allows

applications running outside its run-tim e system , perhaps in different languages or system s, to

inter-com m unicate. In general, object inter-com m unication can be achieved synchronously, asyn-

chronously or w ith futures. Solve supports type conformance, param eterized types, and m ultiple

inheritance w ith p a th linearization to resolve conflicts.

Work on the Solve language aimed to determ ine the arch itectural features necessary to support

ob ject oriented program m ing in a parallel system and the feasibility of using a message passing

subsystem to in tegrate diverse software elements. Solve was designed: to harness th e isom orphism

between objects and processes, and message passing and inter-process com m unication; to support

high level m anipulation of complex architectures (w ith m inim al dependencies on those architec­

tures); and to enable the definition of an application, in term s of objects, to im plicitly identify

application processes th a t can be executed in parallel.

T he language is very flexible and m any aspects of it can be fundam entally a ltered by the user.

For exam ple, the mechanism s controlling inheritance lookup, m ethod scheduling, and selector-

m ethod binding are essentially m ethods of the type object and can be replaced by the user. This,

coupled w ith the fact th a t the Solve language was developed locally and is still evolving, makes it

a good su bstra te on which to determ ine the efficacy of EPSs.

5.3.2 Solve O bjects

In th e Solve run-tim e system , objects are autonom ous entities which m anage zero or m ore m ethod

processes. These processes may access and a lter host ob ject s ta te or com m unicate w ith other

objects by message passing. M ethod processes are in itia ted by incoming message traffic received

a t the com m unications interface (see Figure 5.1). Each object encapsulates a s ta te , which consists

of an environm ent which binds names to variables. These bindings collectively denote th e o b jec t’s

value; each variable itself references an object (see Figure 5.2).

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 127

Object
Process State

m m
Message

Drop

Object
Address

Shared Code

Object Manager
aaasa ■ aaaiu— aaaa

Figure 5.1: A Solve O bject a t R un-T im e

bindbound to
denote

reference

contain
Object

V alu e

Variable

Name

Figure 5.2: T he Relationship between O bjects, Variables and Value in Solve

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 128

Type Collection

1
etc..

Figure 5.3: T he Solve Type Inheritance Hierarchy and T ype Type

All objects are characterized by their type, which is denoted by the eponym ous ob ject variable

type. If an ob jec t’s type variable references a type object x, th a t object is said to be an instance

of x . Similarly, the m ethods for performing name binding and m onitored access to variables are

referenced by the object variables lookup and m onitor. An ob jec t’s type defines which messages

it understands and how it reacts on receiving them . Types m ay be composed from o ther types by

inclusion (is-part-of relationship) or inheritance (is-a relationship).

T he type inheritance hierarchy is a very im portan t part of Solve. It is a directed acyclic graph

(DAG) w ith concrete types near the leaves and abstrac t types near the root. Concrete types have

instances th a t are directly m anipulated by applications to m eet the ir ends, whereas ab s trac t types

canno t be instan tia ted and serve only to represent the com m onality or default behaviour o f their

subtypes. Types are themselves instances of type type (see Figure 5.3) and the la tte r is an instance

of itself. -

5.3.3 Solve T ype O bjects

Like o ther objects, types have variables, two of the most im portan t of which are Signature and

Im plem entation (see Figure 5.4). T he first declares the messages to which the type ob jec t and its

instances can respond (the protocol), and the second defines the im plem entation of the internal

s ta te , type m ethods and instance m ethods. Specifically: the signature tells us the nam e of the

type, the types it inherits from, the messages it understands and the num ber and types o f their

argum ents; th e Im plem entation tells us the type and initial values of the s ta te instance variables

and th e m ethods of the type and its instances. Signatures are the public p a r t o f a type, they

advertise its facilities to all potential clients and the compiler uses the inform ation therein to

perform type checking and increm ental compilability. T he Im plem entation of types is hidden from

their clients to prom ote encapsulation and locality.

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 129

SuperTypes

Type
Object Signature

ObjectVariables

Implementation
Object

SubTypes

Figure 5.4: Solve Type O bjects

All ac tiv ity in Solve is in itiated by message passing which ac tuates the execution of m ethods.

M ost m ethods lead to further message passing and the cycle is eventually broken by prim itive

m ethods which are single purpose operations on the underlying v irtual m achine and in itia te no

fu rther message passing activity. Prim itive methods are the instruction set of the Solve v irtual

m achine th a t enhance its portability. Typically they include atom ic operations like addition or

reading a character from a d a ta stream .

All non-prim itive m ethods are defined using a small, orthogonal group of constructs: assign­

m ent, loops, if-then-else, executable closures2 (i.e. blocks), sequences and message passing. T he

m ethod sim plicity rule of Solve d ictates th a t each m ethod has one goal and is usually less th a t a

page of tex t, although this is not enforced by the compiler. *~

A ssignm ent, in Solve, is achieved by altering a variable’s bindings ra th e r th an the values of

ob jects to which those bindings refer. This, combined with the com m it sem antics of assignm ent,

which m ean th a t the effects o f an assignment are invisible until it is com plete (com m itted)— m aking

it appear atom ic, helps to ensure object consistency in a parallel environm ent.

5.3.4 The Addition of EPS

We have augm ented the Solve language to support in-source specification through th e EPS for­

m alism as p a r t of an orthogonal, general-purpose assertion/exception m echanism . T he addition

enables Solve to express behavioural semantics as part of the signature of each type. In addition,

we have added the more trad itional concepts of precondition, postcondition, dom ain and in-line

2T h e m eth o d s o f a type ob ject are variables which reference executab le closures.

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 130

assertion to su pport a regim ented exception handling system (see Section 2.3.5). T he result is a

new variant of Solve, referred to locally as “Solve III” . The new features of Solve III (henceforth

abbrev iated to Solve) are optional, the compiler is capable of processing trad itional Solve code.

T he e x tra features have been designed to have a minimal effect on the underlying com putational

m odel on which Solve is based and no effect on the sem antics of existing constructs or operators

(in accordance w ith the requirem ents of Section 5.2.2).

5.4 E xception Handling in Solve Using EPSs

5.4.1 Philosophy

In Solve, the correctness of a type is defined in term s of labeled assertions, b o th trad itio n a l s ta te

based assertions, and as behavioural assertions using EPSs. Assertions relate closely to axioms

in A D T theory— they are rules th a t docum ent source code. Exceptions are in ternal notifications,

or signals, th a t occur when violations of these assertions are detected. They allow detection of

a problem to be broadcast to contexts able to handle it. Solve assertions are w ritten w ith the

prim ary goal of forcing any program error (th a t which prevents software m eeting its specification)

to cause an exception before it m anifests itself as a failure. Handlers serve to restore order, m ain tain

correctness, help debugging and support fault tolerance by bringing a program to a point o f graceful

failure, or if possible, to a point where it once again conforms to its specification.

Each object is responsible for handling its own exceptions and, if they are unable to effect a

com plete recovery, notifying their clients of their failure in a uniform and disciplined way. The

Solve exception handling mechanism is designed to ensure th a t a m ethod suffering an exception

either: repairs itself, achieves its goal and then passes all the checks it previously failed; or reports

a failure to its client. No other courses of action meet the correctness requirem ent of Section 5.2.2.

In Solve, assertions and exceptions are not objects. Assertions are rules th a t su p p o rt the

correctness of ob jects and exceptions are messages which report problem s. B oth help to define

an ob ject, b u t, like a ty p e’s nam e or a message, they encapsulate no m ethods or in ternal s ta te of

their own and thus are not objects in their own right. T hey cannot stand alone as independent

en tities or be modified a t run-tim e. Consequently, we find ourselves unable to su p p o rt the popular

argum ent, adopted by many o ther languages (see Section 2.3.5), th a t either assertions or exceptions

are objects. We feel th a t such an view is driven more by convenience of im plem entation (e.g. of

features like exception param eterization) than any design based reasoning.

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 131

Exception handling is supported in Solve using new language keywords to aid separation , read­

ability and compile time checking. We feel the alternative: an exception handling m echanism of

sim ilar functionality provided using continuations and no explicit syntactic support (as proposed by

[Goo75] and im plem ented in [Knu87]) is not tenable. The la tte r approach reduces the readability of

exceptions, the ease of separating them from conventional code and their value as ‘docum enta tion’

because they are couched in the same syntax as the rest of the m ethod. Frequently, new concepts

like continuations and non-local goto have to be introduced into the host language to m anage the

control flow of exception handling. The addition of these concepts can have detrim en ta l effects on

the discipline of the language. We believe the in troduction of keywords and m echanism s local to

exception handling is a far safer technique.

Solve exceptions can be disabled, we consider this as a pragm atic concessio iw ather th an one

w ith any form al justification. We view such an activity much as one m ight view disabling type

checking during com pilation to speed up the process. T he benefits are guaranteed, im m ediate—

bu t slight— and the drawbacks potentially subtle and costly. R ather than allowing various levels

of activation, as o ther languages do, Solve exceptions are either fully enabled, enabled only a t

the detection level (all exceptions resulting in reporting and term ination) or disabled. We do not

believe th a t selective enabling of assertions of a certain type, a facility offered by some program m ing

environm ents, is safe or desirable.

5.4.2 Placem ent

Placem ent, in Solve, is supported by signallers which detect anom alies in objects. Each signaller

encapsulates a requirem ent of the o b jec t’s s ta te or behavioural dom ain and each has a nam e. Five

types of requirem ent can be used, four sta te based and one behavioural. T he type of a requirem ent

determ ines when it is evaluated by the system. Each signaller is, by v irtue of its requirem ent type,

associated either w ith a m ethod of the object (a m ethod bound signal) or w ith ob ject instances (a

instance bound signal). If any signaller detects th a t its requirem ent has been vio lated, it generates

a signal o f a type derived from the requirem ent and bearing the nam e of the signaller. T he

requirem ent types axe:

• P r e c o n d i t io n . Preconditions are m ethod bound s ta te requirem ents. T hey consist of an

executable closure (block) containing a Solve boolean expression th a t is evaluated prior to

m ethod execution. T he only objects in scope w ithin this block are the host ob ject prior

to m ethod execution and the argum ents of the m ethod invocation. P recondition require­

m ents usually express those conditions which m ust prevail for m ethod execution to have any

5 : E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 132

meaning, i.e. they ensure th a t the m ethod is being applied w ithin its dom ain. Because pre­

conditions cannot directly access the type im plem entation, they are not dependent on it and

may be located in type signatures w ithout violating encapsulation.

• P o s tc o n d i t io n . Postconditions are m ethod bound s ta te requirem ents sim ilar to precondi­

tions. Their closures are evaluated after m ethod execution. T he scope of the closure includes

the host object, the argum ents of m ethod invocation (as they were bo th before and after the

m ethod execution) and the result of the m ethod. Postcondition requirem ents ensure th a t the

m ethod execution succeeded and produced a result w ithin its range.

• In - l in e a s s e r t io n . In-line assertions are m ethod bound s ta te requirem ents sim ilar to pre­

conditions. T hey are constraints on the ephem eral aspects of s ta te which exist only as an

in term ediate product of m ethod execution. The scope of in-line assertion closures is th a t of

the m ethod w ith which they are associated, consequently they are im plem entation depen­

dent. In-line assertions are used to ensure th a t the increm ental progress of a m ethod is as

expected.

• D o m a in . Domains are instance bound s ta te requirem ents which are evaluated before and

after all m ethod executions. They are im plem entation dependent, Boolean expressions. They

express the dom ain of an ob jec t’s representation: the constraints on the values held by the

o b jec t’s com ponents th a t m ust be satisfied for them to represent a valid instance. Domains

m ay be tem porarily violated during the execution of any m ethod, b u t when the m ethod

com pletes dom ain requirem ents m ust be satisfied (even if o ther m ethods are concurrently

active). T his does not apply after the execution of the m ethod destroy^, in which case the

object s ta te is deallocated.

• E v e n t p a t t e r n sp e c if ic a tio n . EPSs are used as instance bound behavioural requirem ents,

each of which embodies a legal pa tte rn of behaviour for the instances of the type to which it

belongs. The full syntax is as explained in C hapter 4. Solve has no use for action clauses and

they have been om itted. EPSs are compiled into parsers, the s ta te of which are reevaluated

on the occurrence of each relevant event the object engages in. EPSs have no access to the

type im plem entation and thus they may be placed in the signature of a type.

All signallers, except those having in-line assertion requirem ents, are physically separa ted from

the im plem entation of the m ethods, despite being defined as p a rt of the sam e object. In accordance

w ith placem ent design requirem ents, their affiliations are reflected syntactically w ithout sacrificing

their m odularity or their ability to be reused directly or through inheritance. In-line assertions

m ust be inserted inside the bodies of m ethods in order to access interm ediate values generated

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 133

therein . For th is reason, signallers based on in-line assertions are conceptually less elegant th an

o ther types and are only used when the requirem ent cannot be expressed by any o ther m eans.

T he w ealth of requirem ent types may initially seem over complex, and redundant. EPSs al­

ready possess the functionality of preconditions and postconditions (see C hap ter 4), b u t they have

been included separately to enhance ease of use3 and efficiency. Also, the violations of protocol

indicated by an EPS failure are generally more severe than the dom ain and range failures trapped

by preconditions and postconditions and therefore m erit different handling. Dom ains may seem

noth ing more th an a m ethod of expressing requirem ent com m onality in the preconditions and

postconditions of a m ethod, bu t this is not the case. They constitu te a valuable docum entation

tool in their own right, are defined in a unique m anner and indicate errors of ob ject in tegrity which

may need to be handled in a special way, som ewhat different to errors w ith m ethod applicability

or success. The net result of supporting these requirem ent types is th a t any m anifestation of error

can be caught when it occurs using signallers (see Section 5.2.2).

Being expressed in term s of the ob jec t’s encapsulated s ta te , bo th dom ain and in-line invariant

signallers are p a rt of the im plem entation of a type. However, o ther signaller types are p a rt of the

signature of a type w ithout violating encapsulation. This has three advantages:

• T h e fa i lu r e m o d e s a r e ‘d e c la r e d ’. To ensure th a t each client of an ob ject is aware of its

possible run-tim e failings and th a t it handles them , one has to declare the signals a ty p e ’s

instances may propagate. In Solve, the place for such declarations is w ithin the signature.

By defining certain signallers in the signature, this declaration is achieyed w ithout further

effort.

• R e a d a b i l i ty is e n h a n c e d . By m aking both the declaration and definition of signallers

public, the self docum entation of the language is improved.

• S ig n a lle rs a r e re u s a b le . By forcing these requirem ents to be independent of the represen­

ta tion of the object, they are more abstrac t and may be reused on types w ith an analogous

protocol.

N aturally , any o ther propagated signals (which cannot be defined in the signature) also need

to be declared in the signature so th a t clients may expect and handle them . T h e compiler can

only deduce th a t a handler exists for all run-tim e eventualities, if each type declares a list of the

exceptions it can generate in its signature. This is the no surprises rule. T he alternative: requiring

3 M any users w ill already b e fam iliar w ith the concept o f preconditions from form al tex ts , or practiced use in such
sy stem s as Eiffel [M ey88],

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 134

no declaration, m eans th a t the client is unaware of w hat exceptions to expect and cannot respond

to th em w ith any certainty. Each client m ust elect to term inate (see Section 5.4.5) all unexpected

exceptions (a som ew hat lim ited response) or allow such exceptions to be propagated to its client

in th e hope th a t it can handle them . The disadvantages of such im plicit propagation are its lack

of inherent discipline and the possibility of violating encapsulation [Goo75]. Instead , our approach

dem ands th a t all exceptions be explicitly propagated (see blind propagation in Section 5.4.5). The

user intensive n a tu re of th is approach may be am eliorated w ith good developm ent environm ents,

b u t none the less forces a healthy review of all objects effected by the addition of a new exception.

5.4.3 D etection

In Solve, the detection and signalling of exceptional conditions is done autom atically . T h a t is,

requirem ents are checked a t a tim e determ ined by the run tim e system and the type of require­

m ent and if the requirem ents are not upheld, exception signals are asynchronously delivered to the

host ob ject. Consequently, the user is only able to choose when in-line assertion requirem ents are

evaluated (during execution of a m ethod), all other requirem ents are checked in a s tric t order de­

term ined by the run tim e system . Furtherm ore, raising of exceptions is im plicit. T his arrangem ent

has four advantages:

• R e q u ir e m e n ts c a n b e m o re a b s t r a c t . Because the evaluation tim e of m ost requirem ents

is fixed by the run-tim e system , the user cannot infuse them w ith checks th a t are any more

tem porally dependent than preconditions and postconditions. T his m akesjequ irem ents more

ab strac t and easier to reuse.

• R e p e t i t io u s c h e c k in g is e l im in a te d . The responsibility for evaluation and signalling is

unam biguously defined. Having specified the requirem ents once, the user can be sure they

are evaluated, and signalled if necessary, a t all relevant tim es. There is no possibility of

om itted or redundan t evaluation.

• E x c e p t io n s a r e im m e d ia te . Asynchronous signal delivery allows g reater im m ediacy and

eases a m erger of software and hardware exception handling mechanisms. O pera ting system

and hardw are failure (memory managem ent problems, division by zero, message passing

to void objects, etc.) can be considered violations of im plicit assertions expressed by the

underlying run-tim e system (i.e. the requirem ents of prim itive m ethods), ra th e r th an the

user. I t is easy and desirable to manage both w ith the sam e asynchronous exception handling

mechanism.

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 135

• N o exp licit raising. Exception handling is more disciplined because a rb itra ry exceptions

cannot be raised w ithout the violation of an accom panying requirem ent, as they can in other

languages (see Section 2.3.6). More im portantly, the s tric t m apping betw een failure and

exception nam e is enforced and users cannot inadvertently underm ine it w ith explicit r a ise

statem ents.

The order of requirem ent evaluation, following a message send from an object a to an object b

is:

• active EPSs of a, to ensure the send is behaviourally appropriate;

• active EPSs of b, to ensure the receipt and subsequent lookups are appropriate;

• the dom ains of b, to ensure the object is valid before execution starts;

• the active EPSs of 6, to ensure a m ethod execution is appropriate;

• the preconditions of the selected m ethod, to ensure it is applicable;

• the active EPSs of b and any in-line assertions w ithin the executing m ethod , to ensure

execution progress is as expected;

• the postconditions of the m ethod, to ensure execution success;

• the active EPSs of 6, to ensure the term ination was appropriate; and finally

• the dom ains of b, to ensure th a t the m ethod left the ob ject as a valid instance.

T he w ealth of checks ensures th a t any error is detected im m ediately and thus handled prom ptly.

C learly however, an efficient EPS im plem entation will be required to avoid a crippling overhead.

T he com m it sem antics of binding used in Solve (see Section 5.3.3) mean th a t before a m ethod

term inates, bindings exist to bo th the old version of the object (before m ethod execution) and the

new version. This facilitates and reduces the overhead of querying and com paring of ‘before’ and

‘a fte r’ s ta te s in postcondition requirem ents, as covered in Section 5.4.2.

5.4.4 Linkage

Linkage is, mostly, achieved statically in Solve. Each class defines a Linkm ap which m aps signal

specifications onto the names of the handlers (i.e. the shadow m ethods, see Section 5.4.5) which

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 136

respond to them . Only one m apping per class is defined, and each com ponent m aplet can bind a

signal (as specified by nam e, requirem ent type, host m ethod and class) to one handler (as specified

by nam e). The signal specification can be partia l, allowing a flexible n : l m apping of signals to

handlers. T his facilitates handler reuse and reduces the need for the catchall (or default handler)

of o ther languages. Consequently, all signals in Solve are explicitly bound to handlers.

Using an explicit linkm ap aids the d istinct separation between m ethods and handlers and

enables the compiler to check th a t all possible server propagated signals are handled by com paring

the range of exceptions declared in the server’s signature against the dom ain of the clien t’s linkm ap.

T he linkm ap also enhances readability by textually localizing a detailed account of how an object

handles detected problems.

A lthough each class defines only one linkm ap, the association of each m apping is effectively at

m ethod granularity because each m aplet may specify the m ethod generating the signal. Thus, if

an integer is sent two divide messages during the course of a m ethod, bo th of which can fail w ith a

divideByZero signal, the linkm ap cannot distinguish between the two and m aps bo th onto the same

handler. T his may seem restrictive, bu t it enforces an orthogonal and cohesive exception policy

and prevents an accum ulation of special cases which can over-complicate code. T he restriction is

partia lly m itigated by the fact th a t most m ethods (should) have simple goals th a t can be achieved

in up to a page of sta tem ents (thus reducing the likelihood of m ultiple usage of the sam e m ethod)

and th a t, where tru ly necessary, in-line assertions can be used to deal w ith special cases.

W ith in a linkm ap, the order of the mappings is im portan t, the first m apping th a t the exception

signal conforms to determ ines the handler th a t is used. Usually, specific cases go first and more

general ones (w ith more partially specified signals) follow. T he m apping is a (com piler checked)

to ta l surjection. The user m ust explicitly handle all possible exceptions though th e linkm ap, even

if they are local or require propagation only.

5.4.5 Handling

How handlers are represented in Solve is a critical design decision because of its w idespread ram ­

ifications on the rest of the language. Are handlers a series of com m ands to the Solve binder

and dispatcher to achieve the d a ta and control flow needed to effect recovery or te rm ination , or

are they conventional m ethods? The former is a low-level approach, easy to abuse, potentially

difficult to learn, difficult to share with inheritance and a new concept to the Solve language. As

m ethods however, handlers cannot m anipulate control flow in the m anner which is often required

for exception handling and they have unwanted functionality: they can be executed on dem and

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 137

by message passing. Solve uses shadow m ethods, a compromise which combines the best features

of m ethods and d ispatcher/b inder command sequences, w ithout adding any fundam entally new,

general purpose concepts to the base language.

All exceptions are handled in Solve by the synchronous execution of shadow m ethods. These

are local m ethods4 which may alter control flow in ways forbidden to conventional m ethods through

the use o f dispatcher prim itives. These prim itives allow users to d irect messages to th e m ethod

d ispatcher of th e object, which can radically alter the control flow of m ethod execution. T hey may

also be used to acquire inform ation from the dispatcher which is not available w ithin the context of

the erroneous object, for example the failed exception nam e, type and source. Each shadow m ethod

is defined like any conventional m ethod and follows all of the language rules thereof (e.g. they may

be inherited), except th a t it is: labeled as a shadow (to improve readability); has no signallers;

and can only be executed by a instance of a type in response to a signal. No instance may use

e ither its own shadow m ethods, or those of others, by conventional message passing. These design

decisions reduce the im pact of handlers on Solve’s design (by m aking them m ethods), enables full

separation of conventional m ethods and handlers and retains the m odularity and reusability of the

la tte r.

Like conventional m ethods, all shadow m ethods have full access to the s ta te of the host object.

They also have access to the local s ta te o f the m ethod and any argum ents thereof (if the violated

requirem ent was m ethod bound). Shadow m ethods usually consist o f a set of Solve operations

designed to ‘clean u p ’ the s ta te of the object and a dispatcher prim itive to select the control flow

m odel (see below) to be used thereafter. In accordance w ith the m ethod sim plicity rule defined

in Section 5.3.3, handlers should have only one goal and they should be tex tually sm all. Any

exceptions th a t occur during the execution of these operations constitu tes a double fault, which

is always handled by im m ediate term ination (see below). Similarly, any misuse of dispatcher

prim itives causes a double fault.

Solve su p p o rts a range of seven handling control flow models, (the first) five of which are based

on the Yemini and Berry model [YB85]. Each is invoked as a control d ispatcher prim itive w ith

one or m ore argum ents. All control dispatcher prim itives have an optional argum ent, level, which

defines to w hat ex ten t the user is notified of the exception and if it is recorded. T he models are

defined below.

• T e r m in a te . Execution of the failed m ethod is abandoned. T he error is reported by whatever

m eans are possible and then the process th a t caused it and all of its paren ts are term inated .

4 T h e lo c a l m eth o d s o f an object are on ly available from other m eth od s o f th e sam e o b je c t, th ey can n o t b e
ex tern a lly invoked an d are n ot advertised in th e signature.

E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 138

T he handler using th is technique has an obligation to ensure th a t te rm ination is as graceful as

possible, typically though the performance of acts like closing any open files and relinquishing

any allocated resources. True term ination is not very satisfactory under norm al conditions

because it denies the clients of a failing object the chance of recovery or even ‘clean u p ’. I t

is included as a pragm atic concession, a model to be used in extremis when any continued

execution could be dangerous (e.g. in panic situations like memory failure). A significant

problem here is propagating the term ination order though the process hierarchy—especially is

d istribu ted system s. Often the process genealogy of a system is subject to a lteration w ithout

w arning, when, for example, a parent process completes before its children. Consequently

each process should m aintain a ‘forwarding address’, to which it forwards term ination orders,

which is updated as its genealogy alters.

• E x i t . Execution of the failed m ethod is abandoned and a result object is su b stitu ted in lieu

of th a t lost. The handler th a t uses this control model m ust ensure th a t it can achieve the

purpose of the failing m ethod. The control prim itive has one argum ent, an ob ject which is

of the same type as, or a subtype of, the failed m ethod’s result. T his object is su b stitu ted

as the result of the failed message send and is subjected to th a t m eth o d ’s postconditions.

V iolation of these conditions causes a double fault.

• R e s u m e . Execution of the m ethod is continued after the point of failure. T he handler m ust

ensure th a t the source of the requirem ent violation is removed before such resum ption is

a ttem p ted . Once handler execution is complete, the requirem ent which failed is re-evaluated

and if it is still violated a double fault occurs. Because of this re-evaluation, th is model

cannot be used to circum navigate signallers in Solve, unlike some o ther system s (see Lack o f

D iscipline in Section 2.3.9).

• R e t r y . Execution of the entire m ethod is abandoned and the same m ethod is called again.

T he handler using this technique m ust deduce why the m ethod failed and a lter conditions to

ensure th a t a retry will be successful. Solve has a dispatcher prim itive for determ ining how

m any retries have been attem pted . Upper bounds on th is re try count and its grow th ra te

ensure th a t recursive exception-retry loops are avoided; such errors are converted to double

faults.

• D e le g a te . Execution of the entire m ethod is abandoned. An alternative m ethod (the selector

of which is an argum ent of this prim itive) is scheduled. T his prim itive offers d irect su p p o rt for

algorithm ic redundancy. It is incum bent on the handler to ensure the delegate can succeed.

To be successful, the delegate m ust meet its own requirem ents and the postconditions of the

failed m ethod.

E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 139

• P r o p a g a te . Execution of the entire m ethod is abandoned and a signal is p ropagated to

the client. If the failing object has no client, propagation acts like term ination . If the

original failure was local, the type of the new signal is th a t of the violated requirem ent,

otherwise the signal is of the type in-line assertion (to reflect the im plicit in-line assertion

of all m ethods th a t their servers m eet their requirem ents). I t is im p o rtan t th a t a signal

p ropagated from a server failure (as opposed to a local failure) should have its nam e changed,

the new nam e is supplied as an argum ent to the propagate prim itive. P ropagating signals

w ithout nam e change (blind propagation) is likely to violate encapsulation (objects may

become dependent on the labels originating from the im plem entations of o thers), bu t its

prevention can not be enforced because it is useful to propagate generic hardw are faults (e.g.

‘d isk-fau lt’) w ithout change. One solution is to om it exception names, bu t th is severely limits

the flexibility of the exception m echanism and its self docum enting power. A lternatively,

one could om it propagation, or lim it it to one invocation level, bu t th is is very restrictive

(lim iting the power of recovery) and compromises orthogonality. Instead, we ensure th a t all

signal propagation is explicit and, where possible, th a t they are re-propagated under a new

nam e b e tte r reflecting the failure at the level of abstraction of the propagating object (see

Figure 5.5). T h is explicit propagation preserves encapsulation, b u t can be overridden in the

case of generic hardw are exceptions by re-propagation under the same nam e. N aturally, a

perverse user can easily fool this mechanism. T he new nam es may help self docum entation

and certainly do not curtail the flexibility of the system as the o ther possibilities do. Explicit

propagation m eans th a t any new exceptions th a t are introduced m ight require extensive class

editing— but this is an advantage [Goo75], as it ensures th a t the user cannot do such a th ing

lightly w ithout considering intervening objects. The program m ing environm ent perform s

the task of decorating the object signatures with all the signal declarations needed. T he

only disadvantage is th a t objects high in the com positional hierarchy may be decorated w ith

hundreds of exceptions— this can be avoided by using linkm aps to merge exceptions.

• D e b u g . T he erran t m ethod is suspended. Its process is a ttached to a freshly spawned

debugging process. The handler has no obligations when using th is prim itive. However,

such a handling technique is only acceptable during developm ent (as a m eans of gathering

inform ation on bugs) and a more responsible model should be su b stitu ted before the software

concerned is released. The run-tim e context yielded by th e debugger depends on the type of

the violated requirem ent, these are:

- F o r P re c o n d i t io n s : client of failed message ju s t after abo rted m essage send;

— F o r P o s tc o n d it io n s : server th a t failed, a t very end of execution, before re tu rn to the

client;

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 140

exception: emptyList
List

exception: emptyStack
Stack

message: rmHea<

exception: foundEnd
Parser

message: pop

user
message: reduce

Figure 5.5: Explicit Propagation Showing the Changing A bstraction of Exception Names

— F o r In - l in e A sse r tio n s : server th a t failed, ju s t after evaluation of the failed assertion;

— F o r D o m a in s : as precondition or postcondition; and

— F o r E P S s : the context issuing the unexpected event.

T h is flexibility and range of control flow models has two poten tia l prices: p rogram discipline

and orthogonality. P rogram discipline can be compromised if control flow m odels are used to

circum navigate the exception handling mechanism by resum ing execution w ithou t reporting or

reacting to the anomaly. T his is avoided to some ex ten t in Solve by the forced re-evaluation of

requirem ents after resum ption and the high level of abstraction of the user’s influence on con­

tro l flow. Some system s offer greater flexibility th an Solve, by allowing the user to define their

own control flow models (see Section 2.3.1, particularly[Don90, DPW 91]) using the host language

ra th e r th an high level prim itives. Typically, such system s allow to ta l user control a t th e level of

stack unwinding and do not force requirem ent re-evaluation—potentially leading to flexible b u t

unreadable program s w ith anarchic control flow. O ur compromise here is to offer m any models,

bu t not the facility to design one’s own.

T he orthogonality of our mechanism is compromised because all of the m odels cannot be used

w ith all of the signal types and the semantics of a model may vary w ith signal type (see Table 5.1

for exam ples). Clearly, behavioural flaws such as those indicated by a v iolated event p a tte rn

specification cannot successfully be handled by the exit or resum e models because they do not

cancel the occurrence of the offending event. Table 5.1 depicts this and o ther special cases.

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 141

M odel Precondition Postcondition Domain In-Line Assertion EPS
Terminate / / J l / •S i

Exit / / / / — 2

Resume / / / / -----3

Retry A A A A -----5

Delegate / / / / -----5

Propagate J D / D / D J D " S D

Debug / / / / /

K E Y :
A tick (/) denotes that the model can be used with the requirement type, a dash (—) otherwise.

• 1. The exact semantics of the termination model for parallel object oriented systems will differ if the
violated requirement type is instance rather than method bound. If a method fails only the thread
which entered the failing method is terminated. However, if an instance bound requirement fails, an
object’s integrity is impeached and all threads within an object must be terminated.

• 2. Clearly, to enable recovery from such an exit, all active event parsers would need to be flushed
of the events back to and including the execution of the aborted method. If a process hierarchy
log is maintained this is feasible, but potentially time consuming and necessitating the locking of
the parser’s event streams to facilitate alteration. Recovery from an error indicated by an EPS is
difficult because the precise cause cannot be communicated, many EPSs have multiple failure modes
and to expect a single handler to cope with all of them is dangerous. In summary, the failure of an
EPS usually indicates such a sever problem that recovery of any sort is ill advised.

• 3. Resumption of a behaviourally anomalous method is potentially dangerous for the reasons given
for exit above.

• 4 . The number and frequency of retries is recorded as a means of preventing recursion. A dispatcher
primitive is available to yield the number of retry attempts made of the currently failing method.

• 5. Clearly, for a local exception, retrying a method that failed due to a behavioural violation will
result in the same violation, since the same method is being executed. As 4, no handler can obtain
sufficient information to ‘repair’ the failed EPS.

• D . This is the user’s default behaviour.

Table 5.1: Inter-usage of Signaller Type and C ontrol Model

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 142

Because bo th linkm aps and shadow m ethods axe subject to inheritance, users m ay benefit from

the enhanced rigour of exception handling in their own types w ithout having to fully im plem ent

it them selves. The default handler (th a t belonging to the type Object a t the roo t o f Solve’s type

hierarchy) handles all exceptions (its linkmap is to ta l) by term ination .

5.4.6 Param eterization

T he perceived need for param eterized exceptions has had a fundam ental effect on m any exception

handling system s and m ost of them provide the facility (see Section 2.3.5). I t is used in two ways:

as a m eans of conveying certain aspects of the failed object s ta te to the handling closure, so th a t

a handling policy may be altered by, and alter, it; and as a technique for generalizing a family of

sim ilar handlers into one. In Solve, param eterization is less useful for a num ber ofTeasons: because

all shadow m ethod handlers are associated with the failed object, they already have access to its

s ta te and via the dispatcher object the handler can determ ine the exception type, nam e, m ethod,

location and the num ber of recovery tries made; and access to further elem ents o f rem ote s ta te

is denied to enhance the independence of the handlers on the rem ote objects. P aram eterization

can be used w ith propagation to violate encapsulation by transferring a fragm ent of ob ject s ta te

outside its enclosing scope— a highly undesirable property.

Solve does no t support the concept of param eterized generic handler, chiefly because we con­

sider it to be counter-productive. It may reduce the num ber of handlers, b u t it increases the

com plexity of each one (violating the handler simplicity rule) and supports the generation of ‘all-

case’ handlers which are prone to error. We feel this policy, in enhancing handler sim plicity, more

th an com pensates for any loss of flexibility it m ight cause.

5.5 Syntax

In th is section, we consider the exception handling syntax of the Solve language w ith reference to

the issues covered above.

Solve retains the same type definition constructs as th a t of the original language. T h is s tru c tu re

is designed to enforce the separation of type specification from details of its im plem entation . Also,

it is used to express which m ethods the instance’s clients have access to and which are ‘p riva te’

(local). Because the issues of specification and client visibility are orthogonal, th e addition of

in-source behavioural specification to Solve is not as straightforw ard as it o therw ise m ight be. The

behavioural sem antics of a type can not always be expressed solely in term s of operations to which

clients have access and yet, in Solve, they m ust be to avoid violating signature encapsulation.

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 143

5.5.1 Signature Signal Definitions and Declarations

All Solve types declare a signature which specifies the operations its clients m ay request o f it and

its instances and w hat type argum ents such operations expect and yield. T his idea is extended

in Solve to include a declaration of the name and the type of all exceptions which it m ay prop­

agate to clients— its exported signals. This allows the compiler to check the consistency of all

handlers m apped to non-local signals. In cases where requirem ents have no dependence on the

im plem entation of a type, these declarations may also constitu te definitions.

Syntactically, all m ethod bound signals with im plem entation details are merely declared thus5:

< M e th o d D e c l a r a t i o n
[

generates in-line assertion <l\lame>
]

M ethod bound signal declarations are attached to m ethod declarations. In cases where these

signals are of type precondition or postcondition (and therefore have no im plem entation dependence)

the entire signaller definition is included in the declaration. These anno tations inform all clients

th a t the m ethod with which it is associated has the po ten tia l to generate the nam ed signal. The

syntax is:

< M e th o d D ec la ra t ion >
[
generates

{ s i g n a l < M e th o d B o u n d S t a t e R eq u ir em en t T y p e> < N a m e >
‘ [* <Solve Expression> *] * } i + ^

]

In a postcondition s ta te requirem ent, the priming m echanism is used to determ ine how a certain

facet of s ta te changed during the execution of a m ethod. For exam ple, a postcondition requirem ent

to ensure th a t the associated m ethod increases the value of the instance variable height, m ight be

expressed as the Solve expression:

(self<— heightO) <— le(self’<— height())

Here s e l f ’ refers to the host object after execution. N aturally, prim ing has no significance in

precondition requirem ents.

All exported signals which are not m ethod bound are declared after the TypeOperations section

of the signature. For domain signals, which may only be declared, the syn tax is:

5 N ote: the ou ter square brackets here d enote that the construct is op tion al. Square brackets th a t ap p ear as
sym bols o f the syn tax are quoted , viz: *

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 144

[DomainSection
{ signal < N am e> }o+]

Event p a tte rn specifications express the ‘tem poral pro tocol’ of a type; its behavioural specifi­

cation. T his protocol is defined as a list of event p a tte rn specifications, each of which encapsulates

a ‘legal’ p a tte rn of behaviour for instances of th a t type. T he full syn tax of EPSs is described in

C hap ter 4, and the subset of this syntax used in Solve is depicted below:

[TemporalProtocolSection
{ <N am e>

s a t i s f i e s < R e lev an t T race>
i n w h i c h <Spec if ica t ion>
[iff < C o n s t ra in t>]

}°+
]

5.5.2 Im plem entation Signals

W ithin its im plem entation, each Solve type defines the internal representation of its instances and

all th e operations perm itted on th a t sta te . T he set of defined m ethods is a superse t of those declared

in the signature, the ex tra m ethods are ‘local’ in th a t they are only available to o ther m ethods

of the host type. In addition, it is incum bent on the ty p e’s im plem entation to define its dom ain

signallers, in-line assertion signallers, linkmap and shadow m ethods. T he s ta te requirem ents are

im plem ented as Solve expressions of type Boolean. Each type of s ta te requirem ent will differ by

v irtue of the differences in scope visible from the various signallers (see Section 5.4.3).

In-Line A ssertion (ILAs) signallers are expressed in-situ as p a rt of the m ethod code. T his is

the only available technique of facilitating assertions on the increm ental progress o f a m ethod.

T he boolean expression forming the requirem ent has the broadest scope of visibility o f any s ta te

requirem ent, able to see all local m ethod variables in addition to the host’s instance variables. ILAs

are expressed as e n su re sta tem ents embedded in m ethods. M ethods have the am ended syntax:

<Solve M e th o d H eader>

{ <Solve S t a t e m e n t > I
E n s u r e <ILA S t a t e R e q u i r e m e n t
} 0+

T he domainsection of a Solve im plem entation is used to express the s ta te invariants o f a type.

The section is the last item of the im plem entation in which it appears, m aking review o f th is m ost

critical set of s ta te requirem ents easier. T he syntax of this section is:

5: E x c e p t i o n H a n d l i n g i n P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 145

[DomainSection
{ < N a m e > ‘ [’ < ln v a r ian t S t a t e R e q u i r e m e n t }o+

]

5.5.3 Linksection

Linkm aps are expressed in the linkseciion of Solve im plem entations. T h is is placed betw een the

definition of the type m ethods and those of the shadow m ethods. T he linksection is a list of

h a n d le s clauses, each of which maps a list of signals on to the shadow th a t is designed to react to

them . Any signal which can occur and which does not appear in this m ap causes a com pilation

error. T he syntax of the section is:

[LinkSection
{ handles < S ig n a lS p e c > { , < S ign a lS pec> }o + with < H a n d le r N a m e > }o+

]

T he order of the handles clauses is significant. The handler scheduled in response to a signal

is th a t denoted by the first h a n d le s clause w ith a signal specification (SignalSpec) to w hich th a t

signal conforms. Signal specifications may be partial and have the syntax:

<Signal T y p e > : :< S ig n a l N am e> [C <T ype N a m e > : : < M e th o d N a m e > [d u r i n g < M e t h o d N a m e >]]

T he optional ‘(O’ clause represents the origin of non-local signals, if it is om itted only local (non

propagated) signals will m atch the specification. The optional ‘d u r in g ’ clause is used to specify

which m ethod is executing when a propagated signal occurs, it has no m eaning for local signals.

T he w ildcard character ‘* ’ may replace any of the qualifiers above yielding a p a rtia l specification.

5.5.4 H andlersection

T he syn tax of the handlersection, being similar syntactically to the instancesection in which types

define their m ethods, needs little explanation. It is situa ted between the linksection and the

dom ainsection of a Solve type im plem entation. It consists of a list o f local shadow m ethods,

syntactically d istinct from conventional m ethods due only to the presence o f dispatcher prim itives

(see below).

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 146

5.5.5 D ispatcher Prim itives

T raditional Solve defines the message director super to enable dynam ic channeling of messages to

the supertype of the host object. In our proposed version we introduce the director dispatcher to

allow messages to be sent to the run-tim e m ethod dispatcher to alter its behaviour. T he set of

messages understood by the dispatcher are known collectively as the d ispatcher prim itives. An

invocation of such a prim itive has the syntax:

s e l f <— dispatcher~<Primitive Name>

Each prim itive is designed to alter the flow of control, once the handling shadow m ethod has

recovered an object or prepared it for graceful failure. Their full sem antics are liste5~in Section 5.4.5.

5.5.6 Exam ple

As an exam ple of this syntax, a commented Solve type can be found in A ppendix C.

5.6 L im itations

Despite the streng ths of the behavioural exception handling m echanism described here, there are

still m inor weaknesses in the design which have yet to be resolved. For exam ple, th e s ta te require­

m ents of EPSs, dom ains, preconditions and postconditions, which may use message passing, should

invoke only accessor or creator m ethods. If they contain transformer m ethods, the sem antics of

the assertion in which they are involved will be greatly com plicated by side-effects. T his could be

prevented if transform er m ethods were identified by the language, then the use of such m ethods in

s ta te expressions could be banned. This is not done in Solve, although some dialects o f C + + have

such an anno tation . T he overt identification of transform ing and non-transform ing m ethods could

also be used to enhance readability and determ ine which m ethods are applicable to designated

constant instances. T he problem is, who identifies transform er m ethods? If it is incum bent on

the user to do so she may make mistakes. However, autom atic classification may not be possible

due to the problem s of m aintaining the dependency graph needed to identify transform ers, cycles

in th a t graph and missing im plem entations (types w ithout im plem entations are legal in Solve,

provided th a t execution is not a ttem pted). A nother solution is to checkpoint the ob jec t before

a s ta te requirem ent is evaluated, and always roll back. This prevents any side effects b u t has a

considerably high overhead.

5: E x c e p t i o n H a n d l i n g in P a r a l l e l O b j e c t O r i e n t e d L a n g u a g e s 1 47

As discussed in Section 5.4.4, the linkmap only allows m appings to be defined w ith m ethod

granularity. T he syn tax does not allow the user to associate a signal-handier m apping w ith a

particu la r s ta tem en t in a m ethod. T his lim its the power of association provided by the m echanism,

bu t ensures consistent use of handlers w ithin a m ethod. Short of providing line num ber references,

association cannot be m ade more specific while lexical separation is enforced.

To some extent, Solve’s separation of the Signature and Im plem entation construct serves two

purposes—it is sem antically overloaded. The separation of external functionality from internal

functionality has been inexorably bound to the separation between abstraction and im plem entation.

T his is correct in th a t all external services should be advertised in the signature and aspects of

the im plem entation should be private, bu t the behavioural specification of a type should reference

the local m ethods. T he dual role of this separation has some advantages, b u t it does prevent local

m ethods from having any form of exceptions associated w ith them , lim iting the scope of usefulness

of exception handlers.

O ne could argue th a t the goals of readability are compromised by the m athem atical n a tu re of

EPSs. Few formally derived tem poral algebras are easy to use or read. O ther representations of

EPSs (e.g. graphical or analogical) may alleviate this.

C urrently, there are few ways for EPS to com m unicate the precise reason for their failures to

their handler. This unfortunate lim itation has two possible solutions. One could ex tend the host

language to include built in support for events, traces, etc and allow handlers to query parsers

directly; or, more pragm atically lim it one’s use of EPSs to m onom odal exam ples— those th a t can

fail for only one reason.

C hapter 6

Im p lem en tin g A n E P S -B a sed
E x cep tio n H andling M ech an ism
for Solve

6.1 Introduction

T he feasibility of EPS can only be ascertained by form ulating and coding an im plem entation. In

th is section we consider the salient im plem entation issues of Solve’s EPS-based exception handling

m echanism . T he bulk of Solve’s im plem entation, including the exception handling m echanism

discussed in C hap ter 5, is not exhaustively explained here. T his is because it does no t constitu te

original research m aterial by the author and because such details are m ore fully referenced elsewhere

[RSHW W 8 8 , RW W 8 8 a, RW W 8 8 b]. Instead, we focus on the in teresting problem s encountered

during im plem entation of those com ponents of Solve for which we are responsible, defining only

those p a rts of the Solve im plem entation th a t are required to facilita te understand ing of these

problem s.

Im plem entation efforts were driven by three criteria: efficiency, to perm it EPS to be used

w ithout curtailing the usefulness of the system; flexibility, to enhance the ease of fu rther change

and improvem ent; and congruency, to minimize the im pact on the underlying Solve im plem entation

and to in troduce as few new ‘special cases’ as possible.

T he exception handling system introduces four broad capabilities to the Solve language which

can be considered and im plem ented separately. These four steps are also those required to ‘p o r t’

EPSs to another language. These are: the extension of the language definition while re ta in ­

ing backward com patibility and compilability; instrum entation— autom atically forming an event

148

6: Im p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 149

User Interface
Solve Code

YACC based parser

Local Symbol
Table

Parse
Tree

Execute, renerate
Global Symbol

Table
contains: list o f monitors,
messages, variables, etc

Interpreter
Environment

Target
Table

Object Code

Figure 6.1: T he Solve Compiler

stream representing the behaviour of the Solve system ; E PS proving—establishing which specifica­

tions are violated; and exception handling—supporting the defined control and d a ta flow models

(see Section 3.3) in a parallel environm ent. EPS proving concerns issues perta in ing to event stream

filtration , p a tte rn m atching and constrain t proving. Below, we consider each of these points in

tu rn , exam ining the m ajor problems of each and (where appropria te) the solutions, before con­

sidering the s ta tu s and lim itations of the im plem entation as a whole. T his is prefixed by a brief

overview of the underlying Solve im plem entation to provide the reader w ith sufficient context.

6.2 T he Standard Solve Compiler

T he Solve com piler/in terpreter, as shown in Figure 6.1, is an environm ent for creating and m a­

nipulating Solve parse trees. C urrently it is im plem ented in C + + . Parse trees are acyclic nets,

created by a YACC parser from Solve source code, each node of which is an ob ject. Over 27 node

types exist, representing bo th Solve language constructs and more ab strac t concepts. M ost nodes

are non-term inal and have o ther nodes as subcom ponents; the node hierarchy of an exam ple type

is shown in Figure 6.2. Later, we show how this struc tu re alters as a result of our additions to the

compiler. Notice th a t a ty p e ’s instance variables (represented as VariableNodes) include its m eth­

ods, which are variables th a t represent executable closures. A t th e leaves of the node hierarchy are

6: I m p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 150

Signature Dec INode ImplementationNode

Instance
Messages

Type
Messages

Type
Variables

Type
Tree

Type
Tree

SuperType
Tree

MessagjDedNode

Message
Signature lode

Node!

Expression Expression Expression

Figure 6.2: Node S tructure of Solve Type

the self contained term inal nodes, e.g. these representing fundam ental operations {Prim itiveN ode)

and values {LiteralN ode).

Node types form an inheritance hierarchy (see Figure 6.3). Some nodes in th is hierarchy repre­

sent ab strac t constructs like sequences of executable instructions (ExpSequenceNode), collections

of nodes {N odeArray), the root node {MainNode) or type im plem entations {Im plem entationN ode,

refer to Section 5.3). O ther nodes represent concrete language struc tu res like assignm ent (As-

signm entNode), message invocations {MessageNode) and lexical closures {BlockNode). L ater, we

outline the new nodes necessitated by our language additions.

All nodes inherit their basic behaviour from the type ExpressionNode. T his behaviour consists

of a standard protocol of five methods:

1 . id c h e c k causes a node to generate a local symbol table and check the use of its identifiers

against this table;

2 . ty p e c h e c k causes a node to type check the language stru c tu re it represents and u p d ate the

local symbol table w ith type inform ation, the type of the expression represented by th e node

is also stored;

3 . g e n e r a te causes a node to write a code tem plate for the s tru c tu re it presents, m ake appro­

priate substitu tions for the target platform and dum p the resulting code to a file;

4. e x e c u te causes a node to in terpret itself and upda te the s ta te of the Solve v irtua l machine

(its in terpreter) accordingly; and

6: I m p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 151

ExpressionNode

Node Array TypeNode

TypedExpressionNode

CaseNode ExpSequenceNode

ImplemeDUtionNode

RetumNode MonitorNode

BreakNode ImplMonitorNode

ForLoopNodeContNode

SkipNode LoopNode

MessageNode

TargetNode

VariableNode

Figure 6.3: Parse Tree Node Type Hierarchy

5. p r in t causes a node to produce an indented tex tual representation of itself to facilita te code

browsing.

On receipt of any of these messages, non-term inal nodes are obliged, a t the very least, to propagate

them to their subnodes. Consequently, to produce a com plete tex tu a l represen tation of a program ,

it is only necessary to send a print message to the parse tree roo t node. T he message sequence

idcheck, typecheck and generate, when sent to the root node, effects a full com pilation (including

code generation) of the parse tree.

As an exam ple of this propagation, consider a three line Solve program like th a t of F igure 6.4.

W hen parsed this forms a node graph resembling the solid features of Figure 6.5, for b rev ity we

have om itted all of the details concerning the Assignm entNode and the second M essageNode.

One can see the effects of interpreting this tree by conducting an in-order traversal of th e grey

arrows of Figure 6.5. Initially the root node, a M ainNode called mainnode, is sen t th e message

execute (see arrow 1 of Figure 6.5). This precipitates a chain of inter-node message sending. The

M ainNode propagates this message (2) to its main constituent, the ExpSequenceNode m aintree ,

which in tu rn (3) forwards it to the NodeArray exps— representing the array of expressions in

the program . The NodeArray propagates the message to each of its children in turn , the first

6: Im p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 152

Program Simple
Screen <— Clear();
let i <Integer> := 0;
Screen <— PrintNl(i)

End

Figure 6.4: Solve Exam ple Program

String

] | execute

L
I mainnode I —^
-------- 1 2 V

ExpSequenExpSequenceNode

main tree

Bool< Node.

bracketed

String
Assij ltNode

director

String

lookupselector

TyjSedExpresstonNode S_Object BlockNode
mnodereceiver mtreerec

yields yields

Ex]

body

Figure 6.5: Node In terpretation of P rogram “Simple”

of which is the MessageNode exps[0] (4) which represents the expression ‘S c re e n <— C le a r O ’.

The MessageNode first evaluates the receiver of the message (by sending it an execute message, 5)

yielding a Solve in terpreter object (S-O bject1) rec. It then retrieves the definition of th e selected

m ethod from the receiver (6), yielding a VariableNode mtree (recall th a t all Solve m ethods are

represented by VariableNodes). Finally, it ex tracts the executable inform ation from th is node

(as a BlockNode) and executes it (7, 8). The BlockNode propagates the execution message to

its com ponent ExpSequenceNode body (9), which further propagates it in a m anner analogous to

stage 2. T he stages of in terpreta tion 2-9 represent a m ethod invocation cycle in Solve and such

cycles continue recursively until term inal nodes are encountered. L ater, we show how th is cycle is

altered to achieve effective event instrum entation .

1 Instances o f the C + + class S-Object represent all so lve o b jects in the interpreter.

6: I m p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 153

Solve Type

ImplementatioiiNode

UnkNode N

S ignatureDeclNode

Signal Tnttanrr
Declarations Messages

NodeArray MessageDbclNode

SignalNode

ignals I-

NodeArray

AsserltonNode

Bound
Requirements

taoce
NodeArray I fond Ur Node [Variables

i I Handlers I |

S ig n lp e c ‘------------ 1 V^ UCN
Signal
Specification Node^ray

AssertionNode

Method
Bound
Requirements

Figure 6 .6 : New Node S tructure of Solve T ype •-

6.3 Language

6.3.1 Syntax

T he im plem entation of Solve’s modified syntax (see Section 5.5) was achieved entirely by am end­

m ent of the LEX and YACC gram m ars which produce front end parsers for the parse tree m a­

nipu lator. Changes were entirely additive in th a t the new parsers can still parse trad itio n a l Solve

code. We a ttem p ted to add as few new lexical concepts as possible, in tegrating m any of the new

keywords and constructs into existing YACC classes.

6.3.2 Exception Signaller Deploym ent and D etection

Parse trees produced by the new compiler represent types using the additional s tru c tu re depicted

in Figure 6 .6 . T he new nodes names are set in italics in this figure and have a hierarchy as

defined in Figure 6.7. SignalDeclNodes represent exportable signals declared in a ty p e ’s signature.

Those th a t are direct components of SignatureDeclNode represent type bound signals and the

o thers are m ethod bound. Each is responsible for ensuring th a t it represents signals of the correct

type (in response to a typecheck message) and (in response to an idcheck m essage) th a t no nam e

clashes exist before a SignalRecord, representing the signaller, is added to the global sym bol table

GlobalTable. SignalNodes w ithin the SignatureDeclNode may represent signal declarations (i.e. in­

line assertions) or full signaller definitions (i.e. preconditions, which use A ssertionN odes to represent

Solve expressions, or EPSs represented by E P S Nodes).

6: Im p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 15 4

ExpressionNode

TypedExpressionNode

SignalNode

BlockNode

PrimitiveNode

DPrimNode

Figure 6.7: New Parse Tree Node Type Hierarchy

A ssertionN odes belonging to Im plem entationNodes represent type bound requirem ents (i.e.

D om ains). A t compile tim e, AssertionNodes ensure th a t the type of requirem ent they represent is

com patible with the node to which they belong. Furtherm ore, they ensure their consistency w ith

the declared exported signals of the signature (in the SignalDeclNodes).

T hose A ssertionNodes representing in-line assertions are contained w ithin the executable se­

quence N odeA rray and are executed, like other Solve expression nodes, a t stage 3 of the m ethod

invocation cycle (see Figure 6.5). Preconditions are checked before stage 2, postconditions on a

successful re tu rn from stage 2 and dom ains on both these occasions, th is is achieved by in stru ­

m enting the Solve binder. Domain evaluation is allowed full access to th e environm ent2 of the

m ethod , whereas the o ther m ethod bound requirem ents are not. Postconditions are checked a t a

tim e before the m ethod has com m itted, consequently bindings exist in the solve v irtua l machine

to the host object s ta te bo th prior and subsequent to m ethod execution. T his enables the eval­

uation environm ent to be m anipulated to support the prim ing m echanism w ithin postcondition

requirem ents.

A ssertionN odes are BlockNode variants th a t m ust produce a boolean result. I t is undesirable

for evaluation of these assertions to change the s ta te of the host object in any way, otherw ise

the evaluation itself could be rendered meaningless (see Section 5.6). Ideally, evaluation of the

condition should not be capable of introducing side-effects on the s ta te of the host object, bu t this

restric tion is not easy to enforce. Four techniques were examined:

• C h e c k p o in tin g . Snapshot the s ta te of the host prior to evaluation and restore s ta te after­

wards;

2 E nvironm ents (or activation con tex ts) are C + + ob jects , o f the class E n v , w hich m ap nam es to o b je cts .

6: I m p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 155

• P r e v e n t in g a s s ig n m e n t. Prevent any form of assignm ent w ithin the condition block;

• ‘S a fe ’ m e th o d s . Allow AssertionNodes to use only m ethods guaranteed not to a lter the

s ta te of any object; and

• P r e v e n t c o m m it. Prevent the condition block from com m itting.

C heckpointing is prohibitively expensive and partially redundant due to the com m it sem antics

of Solve. Preventing assignm ent, while efficient, is overly restrictive; although, it is worthwhile

to generate a compiler warning if a direct assignment is m ade to a m ethod argum ent in an as­

sertion. T he m ost com plete solution is th a t of ‘safe’ m ethods (see Section 5.6). By allowing the

compiler to distinguish between accessor (safe) m ethods and others— either by user denotation,

or au tom atically by scanning the dependency net for Assignm entNodes or Prim itiveN odes known

to a lter s ta te— we introduce a language concept th a t has m any uses beyond assertion checking.

For exam ple, safe m ethods could be used as the basis for enforcing constant ob ject instances and

they encourage user discipline in separating the accessor and transform er com ponents of object

protocols. Safe m ethods are not new, the C + + language, has ‘const’ m ethods which have similar

sem antics. However, the im plem entation of such an intrusive concept would have serious ram ifica­

tions on m ost aspects of Solve’s original design and im plem entation which are outside of the scope

of th is research. For exam ple, it restricts the granularity of increm ental com pilation by increasing

in ter-m ethod dependencies.

P reventing com m it is th e least intrusive and m ost effective of the solutions, especially as Solve

forces users to re ta in a ‘functional’ approach to the design of transform er m ethods (i.e. have such

m ethods re tu rn a new object ra ther than modify the receiver). However, it can not prevent side

effects to objects like screen or disc which lack a functional interface. Nor is it able to prevent

assignm ent to m ethod argum ents, although the la tte r can be rendered harm less using argum ent

copy sem antics. We use a com bination of this m ethod and compiler w arning on assignm ent (see

above).

6.3.3 Linkage

In the in terp re ter, once an exception is detected, a message (representing a signal) is sent to the

failing S-O bject. This object consults the LinkNode belonging to its type object. LinkNodes rep­

resent the LinkSection of a type, they consist of a set o f m appings of (partia l) signal specifications

(represented by SignalSpecNodes) to handlers (represented by H andler Nodes). Individual Signal-

SpecNodes are able to com pare an incoming signal and accept or reject it. W hen sent a signal, the

6: Im p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 156

LinkNode re tu rns the HandlerNode associated w ith the first SignalSpecNode to accept th is signal.

T he S-O bject then schedules th is HandlerNode for execution, as if it were synchronously called

from the erroneous context. T he environm ent passed to the handler is th a t seen by the m ethod

and the dispatcher retains inform ation about the exception which is available (only to the handler

concerned) th rough dispatcher prim itives (see C hapter 5). This eases the task of resum ing norm al

execution should the handler fulfill its task.

At compile tim e, each SignalSpecNode establishes the existence of its defining signal name,

type , host m ethod, object and designated shadow m ethod. Furtherm ore, each LinkNode ensures

th a t all non-local signals th a t are exported by servers of the type are covered by a t least one

SignalSpecNode. T his degree of sta tic analysis is dem anding and tim e consuming, especially if

dynam ic binding is used in program s (in such cases the type of an instance may be unknow n until

run tim e, necessitating an exhaustive compile tim e search for possible handlers), b u t it helps to

prevent unclaim ed signals a t run time.

6.3.4 Exception Handling

H andlerN odes are VariableNode variants with executable closures represented by ShadowBlockN-

odes instead of the conventional BlockNodes. ShadowBlockNodes allow b o th Prim itiveN odes and

D Prim Nodes to feature in their representation, whereas BlockNodes allow only the form er. This

affords HandlerNodes a superset of the behaviour of VariableNode m ethods, each D Prim N ode rep­

resenting a d ispatcher prim itive. T he selector lookup algorithm used by the Solve binder ignores all

H andlerN odes, thus preventing their invocation or am endm ent by either ex ternal or local agents.

D epending on the D Prim N odes used by a particu lar handler, H andlerNodes are labeled as to which

signal types they are fit to handle. For example, handlers containing the dispatcher'resuineO
prim itive are not com patible with non-resum able EPS signals. A com pilation error will result if

an Im plem entationN ode discovers during typechecking th a t the type LinkNode shows a m apping

between a signal and an incom patible HandlerNode.

Should a handler have the opportun ity to and succeed in saving an erroneous context, as we

have seen above, continued execution is straightforw ardly achieved by allowing the shadow m ethod

to re tu rn normally. Term ination is also easy to im plem ent, although in a parallel environm ent the

tim ely com m unication of a process’s demise m ight pose problems. However, th e control flow of

delegation, exit, exception propagation and retry models all require some form of invocation stack

m anipulation w ithin the Solve in terpreter. This is chiefly because the in terp re ter is im plem ented

in C + + and not in Solve itself. S tack m anipulation can be im plem ented using d is tribu ted unions

6: I m p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 157

or non-local goto. In the former, HandlerNodes and all o ther Nodes involved in m ethod execution

always finish execution norm ally and return a s ta tu s object which the ir client uses to determ ine

how execution should proceed. If each stage of m ethod invocation honours th is protocol, it is

simple enough for a handler object to (in the propagation exam ple) d ictate th a t execution is to

roll back to the context invoking this one and then th a t an exception is to be delivered. Non local

goto perform s this stack m anipulation directly, w ithout any re turn . Consequently, the la tte r is

less intrusive, faster, bu t lacks portability, is undisciplined and unreadable. We have adop ted the

la tte r technique, discounting the last two disadvantages on the grounds th a t Solve users will never

directly perceive the control flow used by the in terpreter.

The current im plem entation of Solve uses the C + + functions setbu ff) and jm pbu f() to achieve

non-local goto. Figure 6 .8 illustrates how each of the control flow models use non-local goto to

achieve the context switch after exception handling. Note th a t if an exception is signalled during

exception handling a double fault occurs. At th is point a handler built-in to the in terp re ter is

scheduled to handle the error. This handler is not user-defined, as it is in some system s, because

its execution is likely to have resulted from hum an error— to risk further hum an error by using

another user-defined handler is unwise. T he double fault handler n otify() makes a tex tua l report

of the exception and gracefully term inates the host process and all dependents.

6.4 Im plem enting EPS

Providing an efficient and full im plem entation of Event P a tte rn Specification is the m ost dem and­

ing aspect of the Solve exception handling system im plem entation. T he task has two principal

com ponents which are discussed here: instrum entation , th a t of producing an event s tream and

parsing, th a t o f insuring it is as expected.

6.4.1 Instrum entation

T he m ethod invocation cycle of Solve is instrum ented in ten places to report eight classes of

behaviour corresponding to the event alphabet derived in C hap ter 3. T his instrum enta tion is

diagram m atically represented in Figure 6.9, in which the instrum entation for send, lookup, error,

execute and term inate are represented by the encircled letters S, L, E , X and T respectively.

In addition to reporting the occurrence of particular events, instrum enta tion provides the event

param eters. Common param eters like process identifiers (pids) and tim e are directly supported

by the provision of a logical clock and pid counter3 . M ost o ther param eters are easily available or

3 In a d istributed system the p id w ill incorporate the n od e nam e.

Im p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e

before: {
setbuf(S‘) 1 | exec
checkpointfenv')»

BlockNode

j mnodc j

<3ExpSequfcniExpSequfcnceNode

. . . .

Vxrexps execute

| cxps |

TypedExpressionNode

f execute k

\ Message before: setbuf(S)
cbeckpointfenv)
check domains
check preconditions

exps[0]
5 execute

after.
check postconditions

check domains

gel exp

bfeNodeS_Object

^ v io la t io n

NodeArray

do nothing if noexecute
flag act

execute

ExpSequenceNode

CONTROL FLOW MODELS

after performing handler action:

terminate - atop execution
reaume - recheck postconditions & domains,

continue execution
exit - restore env, act result, set noexecute flag,
jmpbuflS)
delegate - restore env, execute delegate,
act noexccute
flag, jmpbuflS)
propagate - register new exception, jmpbuflS')
retry - increment retry counter, restore env, jmpbuflS)

\ d e b u g - spawn and attach debugger process ^

' * — ..ch eck an y
in-line assertions

Figure 6 .8 : Control Flow Model Im plem entation

6: Im p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 159

calculable a t the point of instrum entation . For exam ple, execute and term inate events are reported

as stage 8 of the m ethod cycle s ta rts (see Figure 6.9) and re tu rns respectively4, all the required

param eters are readily available. To capture o ther event param eters requires cooperation from

other Solve subsystem s. Consider, for example, the send event which requires instrum enta tion in

two places: one (just before stage 5) for incoming messages and another (w ithin MessageNode) for

outgoing messages. In bo th cases, the m ethod argum ents need to be prem aturely evaluated (using

execute) so th a t the event report can include their values.

To report lookup and error events requires instrum entation of the selector lookup and binding

algorithm (a m ethod of the C + + S_Object class) w ith am endm ents to ensure th a t b o th class

param eters are available. T he constructor and destructor of S_Object are also modified to report

create and destroy events. The required modification is extensive in the la tte r -ease due to two

m ain problems: S-O bjects are nameless entities (their paren t environm ent determ ines the ir nam e),

which makes it difficult for either event to report w hat object is being affected; and each S .O bject

may appear in m any environm ents, so one cannot always infer from the execution of the S-O bject

destructo r th a t an object has been destroyed. To resolve the first issue, S_Objects were modified

to re ta in the first nam e m apped on to them in an environm ent. T his is frequently, bu t not

always, the m ost significant. The second issue is corrected by using a reference counting algorithm

w ithin the constructor and destructor, enabling S_Objects to discern genuine ob ject destructions.

O bject references (type 0 , see Section 4.4.3), the m ost common type of EPS event param eter,

were represented in the Solve version of EPS as S_Object names. T his feature represents th e only

im plem entation specific feature of E P S ’s design.

Access events require two instrum entations. Both involve m odifications to the C + + class Env,

instances of which represent environm ents or activation records. Read accesses are reported by

m odifying the mechanisms for retrieving (non-m ethod) environm ent bindings and w rite accesses

by sim ilar am endm ents to those th a t create new bindings. Again, p rem ature evaluation is required

to enable the event report to include the required param eters.

To where should an event stream , generated by instrum entation , be sent? O ne approach

is to centralize event collection a t one special object. This overseer can then d irect debugging

and specification based checks, in terrup t erroneous objects and forward event stream s to other

processor nodes for d istribu ted debugging. However th is technique has several disadvantages: it

necessitates a ‘special case’ send message prim itive to avoid send event recursion; it requires th a t

objects violate encapsulation by revealing their behaviour in in tim ate detail to others; and it entails

4T hus instrum ented , execute events are reported after the m eth od execu tion environm ent is created an d term ina te
events reported before the environm ent is destroyed, facilita ting handler access to it.

6: Im p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 160

MainNode

String

I mainnode I _
 l T \ a

ExpSequenoeNode

j name ~*j j maintnx j

Hean Node)

Vxrexps execute

TypedExpressionNode

I bracketed I exps I

onNode >. MessageNode AssignthentNode

expsJO]
receiver l°ow

5 execute

getexp
VariableNode

- execute
BlockNode

]©
S_Object

©CrZl
ExpSetpienoeNode

[body |

Figure 6.9: Instrum entation of the Solve Parse Tree Nodes

vastly increased com m unications overhead. A superior approach is to d irect all event stream s to

E PS parsers w ithin the originating object. This approach overcomes all of the previous problems,

balances th e overhead of EPS very evenly (especially in a system where different objects m ay reside

on different processors) and improves the accuracy of the relative tim estam ps on the events (which

m ight otherwise suffer from latency).

Once an event is received, all active EPS parsers which have the event in their relevant trace

parse it (a process described in Section 6.4.2 below). Any violation causes th e parser to execute a

handler (which m ust eventually term inate the thread concerned). Any o ther active th reads w ithin

the ob ject a t th is tim e are term inated w ith a generic exception. N aturally, the execution of any

handler disables further instrum entation for the th read concerned.

6.4.2 Parsing the Event Stream

T he parsing of concurrent event stream s involves complexities outside of the realm of trad itional

parsing techniques. T raditional finite s ta te machines (FSM s) are inadequate for the task because,

in order to make a transition , a FSM uses the availability of individual sym bols from the alphabet

of the m achine. Because we are m onitoring system s w ith concurrent event generators, we need a

FSM th a t makes such transitions based on the concurrent availability of sets of inpu t symbols. Such

a family of au to m ata has been proposed and used successfully by B ates [Bat87b, Bat89, Bat87a].

6: Im p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 161

In addition, B ates’ au to m ata have many other properties desirable in this application . His Basic

Shuffle S ystem (BSS) is capable of delegating the recognition of sub-specifications to subord inate

au to m ata by considering them as further symbols in the a lphabet of the ‘ro o t’ m achine— thus

enabling symbolic delegation and the hierarchical definition and recognition of event-based be­

haviour. B a tes’ Constrained Shuffle System (CSS) goes further, allowing each transition to be

guarded by a set of constraints binding the event param eters, facilitating event filtering, clustering

and constraining.

An early version of an EPS parser was partially im plem ented using a C onstrained Shuffle

A utom aton. Despite offering much of the required functionality, several undesirable properties

were discovered:

• CSAs are unable to express constraints on EPS operators or trace variables, only event

param eter constrain ts are available;

• CSAs are ideal for all or nothing specifications, bu t because constrain ts guide every transition

they are poor a t behavioural fuzzy matching;

• The all or nothing nature of CSAs also impairs their ability to convey how the unspecified

portions of a specification were satisfied if a constrain t fails;

• The effective efficiency of CSAs is som ewhat im paired by the fact th a t constrain ts are checked

a t every transition ; and

• CSAs don’t reject unexpected events a t the first opportun ity bu t re ta in th e m in th e ir input

register. Therefore, CSAs do not fa il in response to bad behaviour, ra th er they ju s t don’t

succeed.

It is clear th a t CSAs already offer much of the desired functionality. A m odification is required

which enables unification between all the variables of a p artia l specification (bo th event and opera­

to r param eters) and an instance of the specified behaviour. We require a CSA th a t is no t forced to

dismiss a partia l recognition purely because of a constrain t, b u t th a t fails im m ediately if an unex­

pected event is witnessed. An au tom aton which is not transition guided by constrain ts, b u t which

checks a series o f constrain ts subsequent to p a tte rn m atching and single-pass unification— allowing

more flexible m atching and perm itting the deferment of com putationally expensive checking un­

til after recognition has been achieved. These goals are achieved by using U nifying C onstrained

Shuffle A u to m a ta (UCSA), a unification driven variant of B ates’ BSS.

6: I m p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 162

6.4.3 U nifying Constrained Shuffle A utom ata

UCSAs are a m odification of Basic Shuffle A utom ata th a t perform sim ple, single-pass symbol

unification. Each transition of the autom aton, or subordinate au tom aton , is accom panied by

a unification vector (of functional sections) which dictates how the sym bols, to be defined by

recognition, change as a result of th a t transition. W hen a UCSA reaches its final transition the

results o f the applications of these vectors is tested against a series of constrain ts and if they

succeed, the behaviour is said to have been recognized. The au tom aton is defined:

UCSA = E , S , T , A , Z , U , C , F c , W

W here:

E input event alphabet for the UCSA, { s i,S 2 , . . . , s n }

S set of Shuffle A utom ata, {5i | Si is a Shuffle A utom aton}

T transition sets, {f:- | C E U 5 } , Vi , j ti ^ tj

A all active au tom ata , A C S *
/ *i

Z vector of unifiable symbols, Z =

\
U a lphabet of unifying sections, { /, fix, = x , + £ , —x, / x , * x , concat x , . . . }

C a lphabet of constraining sections, { I , < x , < x , > x, > x, = x, C x , . . . }

F c the final constraint, Fc-v$* ^ {T rue , False}

W the set of m -ary transition vectors, € T . W{ G W } , Wi = v e c to r o f U

N aturally E is restricted by the relevant trace of the EPS im plem ented by th e UCSA. Here, U

is the alphabet of all sections applicable to value variables (see Section 4.4.8) and trace variables

(see [Hoa85]), including I the identity section, and fix the section th a t makes a sym bol’s value

perm anent. Similarly, C is the alphabet of sections applicable to constraints. T he constrain t I

is always satisfied for it indicates no constraint. The vector Z represents th e nam es of the traces

and value wildcards instan tia ted by the defining EPS. Each elem ent of Z has an associated type

zt (either trace, numerical or value) and an initial value zs , typically < > for traces, 0 for numerics

and ° for strings. The set of transition vectors W describes how the sym bol vector (see below)

alters for each transition in T .

Each subord inate shuffle autom aton has in addition to the above:

6: Im p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 163

Qsi - set of sta tes for the autom aton Si

ms; transition function, Q s { x T - t x W)

q0Si s ta r t s ta te for Si, g0Si € Q s {

F s set of finishing sta tes for Si, Fs< C Q s {

f’mapSi input register m apping function for Si, (E U S)* —► (E U S)

vsi symbol sta te vector, after n transitions v =

z s\ .u \ o « 2 °

, .uV o uy, o • • • o u.

Here, the symbol s ta te vector v s { has an element for each nam e in the unifiable sym bol vector,

Z . Each of these elem ents is initialized to the value of the parent au to m ato n ’s vector (or to its s ta r t

value zsx if it belongs to the ‘ro o t’ autom aton) and is then changed by the successive application

of transition vectors («;,) associated with every s ta te change (<,).

Like Bates, we decorate each autom aton w ith a unique identifier, i. New identifiers for sub­

au to m ata spawned from i are given a new identifier derived on the parent (i) and the s ta te of

parent at the tim e of spawning (g) using the function new (i,q) . T he paren t of an au tom aton , i, is

denoted parent(i) . Unlike B ates’ CSA, the transition function m yields a cartesian product of the

next s ta te and the next applicable transition vector to express the sym bol changes resulting from

the s ta te change. T he functions Q and W are used to respectively isolate these two com ponents.

T he algorithm for parsing is as follows.

1. T he ‘ro o t’ machine is preset and the symbol s ta te vector is initialized. Any subord inate

au to m ata needed to leave the initial s ta te are s ta rted . Note th a t R s i is the inpu t register of

au tom aton i of type k.

qs o <— g0

& oo T {}
A - {S§}

(Zal)
vs o <-

 ̂ Zsm j
fo ra l l j , I : m (g0 , t j) ^-L a n d Si G tj

A *— A U {5 /neu,(0,*°)}

Im p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 164

2. As the symbol generators produce symbols { s i , s? , . . . , s„} use a sym bol d istribu tion function

to determ ine which symbols to add to their input registers and which to reject.

input {si,«2, . . - ,Sn}
forsom e i , j : 5* G A, sj G {si, s2> • • •»«n)

if 3i sj G ti and m{qs ,^,tj) ^_L

then <— # 5, U {sy}

e lse reject

3. W hen the input register of a shuffle autom aton in the active set contains one of th e outgoing

transition sets for the current s ta te of the autom aton, finite s ta te control for the au tom aton

makes the transition , altering the input register and symbol vector accordingly. Any new

au to m ata th a t are required are sta rted up.

i f 3i , j : m(qs .k, t j) and tj C

th en

qS'k «- Q(™(<is'k .*j))

RSI * rmap(R'Sic)

«5‘ «“
forall j , / : m(qSi , tj) ^_L and Si G tj

new(i,q~i)
A «- A U {5, fc }

q ncvi(i,q i) < ÔSj
St

R {}

V n e w (i , q i) < V S i

S,
e lse goto step 2

4. W hen a shuffle au tom aton S \ in the active s ta te reaches one of its final s ta tes it re tu rns to

its calling au tom aton , is removed from the active set and updates its p a ren t’s s ta te vector

i f 3z’ : SI G A and <75; G F

th en

if k= 0

th en

if Fc-Vso then accept else reject

6: Im p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 165

fb

Figure 6.10: A utom ata generated for EPS ‘E xam ple’ -•

R <;p a r e n t (i) * R e p a r e n i (i) U S I f
‘-’ k 15 k

fo ra ll i : 1 . . . m i f n o t f ix e d ucP«ren<(o[i] th e n v „ p * r * n t (i) [il = v S i [il
* k *

5. goto step 3.

T his algorithm offers a compromise between behavioural immediacy (UCSAs fail im m ediately if

an unw anted event occurs) and investigational specification (if a constrain t fails, parsing continues

to com plete unification).

Consider, as an exam ple the stylized EPS:

EPS: Example
‘‘Example specification to show how UCSAs parse events.’’

satisfies tr
inwhich b|c,(a*n||b*m,c,b)\/d
iff n>4

T he eight event a lphabet and event param eters have been om itted for brevity. T his specification

generates a ‘ro o t’ machine w ith three subordinates as depicted in Figure 6.10

T he au to m ata values are, for the ‘ro o t’ machine:

E = {a, b, c, d }

S = { S o , S 2, S 4, S e}

T = { t i = {52},*2 = {54,%}, (3 = {i,c},<4 = {a} , (5 = {e},

6: Im p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 166

<6 = {b},t7 = {c},<8 = {b},tg = {d}}

A = {S0}

z=(:
U = { I , fix, = x, + £ , —x, / x , *x , co n ca tx ,. . .}

C = {< x, < x, > x, > x, = z, C x , . . .}

and for the subordinates:

Q s0 = {S, 1, F } , 9os0 — FSo = {F},

M s 0 = {m (S,< i) = (l , t«i) , m (l , t 9) = (F , w 9), m (l , t 2) = (F ,io 2)}

Q 5 2 = {2,3}, q0s 3 = 2, F s 2 = {3}, M s 2 = {m(2,<3) = (3,tu3)}

Q s a = {4,5}, q0s 4 = 4, Fs 4 = {5}, M Sa = {m(4,<4) = (4 ,w 4), m (4,<5) = (5 ,t^s)}

Q s6 = {6 ,7 ,8 } , go56 = 6 , FSe = {8},

AfSe = { m(6,<6) = (6,^6), m (6 ,t7) = (7,tx;7), m(7,<8) = (8, tug)}

6.4.4 Im plem enting UCSAs

UCSAs are readily im plem ented as C + + classes with the appropriate registers, m apping functions,

sets and progression algorithm . Such parsers are slow to build from tex tual descriptions of EPSs,

bu t they are highly m anipulable. An alternative UCSA im plem entation technique involves creating

a new parse tree node for each EPS operator and building an EPS parse tree a t compile tim e. We

have adopted the la tte r approach. A lthough it entails a higher com m unications bandw id th , it is

easier to d istribu te subnodes, more com patible with existing Solve arch itecture and each node is

sim pler. Also, in using this approach, we improve the ease with which the EPS prover can delegate

constrain t evaluation to existing Solve parse tree nodes.

6.5 Im plem entation Status

C ircum stances have precluded a full im plem entation of a parallel, object-oriented exception han­

dling m echanism based on EPS. The lack of a parallel Solve system has m eant th a t some p a rts of

6: Im p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 1 67

the system have necessarily been im plem ented in early sequential prototypes of Solve, while others

have been built in isolation to dem onstrate their feasibility.

T he syntactic changes outlined in C hapter 5 have been fully im plem ented and te sted on a

sequential proto type of the Solve system . In addition, all new parse tree nodes (except EPSN ode)

have been im plem ented and tested as far as the (som ewhat im perfect) pro to type allows. B oth

resume and termination models have been im plemented in situ, while the others have only been

tested using a m ethod invocation cycle sim ulator. The in terp reter of th is sequential pro to type

has been fully instrum ented. T his instrum entation is currently im plem ented as C + + ‘in-line’

m em ber functions, invocations of which are substitu ted , a t compile tim e, for the defining code

by the C + + compiler. This elim inates the overhead of function call and affords a high degree of

efficiency. Currently, instrum entation exacts a 12% perform ance penalty on in terp re ta tion . Its

cost on generated code is yet to be established.

Simple au to m ata (both CSAs and UCSAs) have been im plem ented in ML and, of late, some

have been transla ted to C + + . The la tte r process involves the considerable overhead of supplying,

in C + + , types native to ML, while affording the benefits of b e tte r perform ance and in tegration

prospects. We have found th a t the improved performance of ‘d irec t’ UCSA im plem entations over

parse tree structu res (see above) w arrants the ex tra compile-time complexity, lending on average a

120% perform ance benefit. G enerally the perform ance of UCSAs (as im plem ented) is acceptable,

b u t not above the need for optim ization.

6.6 L im itations

Despite their enhanced applicability to th is application, UCSAs exhibit m any of the weaknesses of

CSAs. For example, no recovery from EPS failures is possible because of th e difficulty of interfacing

any UCSA m anipulation (th a t m ight be necessary to re tu rn the parser to a s ta te from which an

‘accep t’ is possible) with Solve handlers. This reflects our reluctance to over-burden any host

language w ith EPS concepts and our belief th a t violation of the tem poral protocols em bodied by

EPSs indicates a very serious problem from which recovery is undesirable.

Clearly EPSs are not suitable for real tim e systems. F irstly because of the difficulty, even w ith

a L am port clock, of obtaining a globally consistent and accurate view of ‘real-tim e’ and secondly,

because of the overhead of instrum entation and UCSA parsing.

Finally, UCSAs are unable to share events (see [Bat89]) because no m ethod of determ ining

when such sharing is desirable exists. W ithout sharing, one encounters the assignment problem. If

6: Im p l e m e n t i n g A n E P S - B a s e d E x c e p t i o n H a n d l i n g M e c h a n i s m f o r S o l v e 168

two sub -au tom ata of a parallel autom aton both have event x in their alphabets and event x occurs,

which au to m ata should have x ? One m ust consider th a t this event m ight be of the sam e event

stream as one of the au tom ata , of a different one, or p a rt of irrelevant event noise th a t has passed

through the relevant trace filter. The solution to the la tte r dilem m a is to s treng then the filter,

EPS is b e tte r in th is regard than B ates’ EDL (see Section 7.2.2). T he former can be addressed by

using a m etric of event su itability for each sub-au tom ata—we do no t address this issue. Problem s

abound however, even if such a m etric can be defined: w hat happens if the su itab ility metrics

for two com peting au to m ata are identical? Can suitability be determ ined for each event w ithout

crippling perform ance?

C hapter 7

R ela ted W ork

7.1 O bject Oriented M odels

We are no t alone in our efforts to form ulate a model which describes ob ject oriented system s

behaviourally, b u t as far as we are aware, little work pertain ing to the form alization of th e opera­

tional sem antics of a parallel object oriented system has been undertaken. Many new m odels have

appeared during the course of this research, m any too late to have an influence on it. Here we

com pare some of these to our own work.

7.1.1 Operational M odels

N ierstratz and Papathom as [NP90] have established a framework for transla ting object oriented

syntactic constructs into patte rn s of com m unicating agents in CCS and CSP, allowing en tire con­

curren t, object languages to be behaviourally prototyped. This fram ework is used to te s t the

interference th a t occurs between the language concurrency model and inheritance. T he au thors

conclude th a t insufficient inform ation appears in type signatures to avoid violation o f encapsu­

la tion in concurrent languages—signatures should contain some indication of when services are

available, how they may be interleaved, the m utability o f a type and how instances m ay change

roles1. A lthough the au thors provide a full framework and an incom plete behavioural subtyping

relationship to use w ith th is framework, they do not provide a m odel per se and their goals (for­

malizing language design and m odeling constructs) are quite different from ours (operationally

specifying behaviour). T his lim its the grounds of comparison between the two works. W ith in the

last few m onths, Papathom as has extended this framework and produced a full CCS based model

1 T hrough a very different rationale, Solve already supports the former two.

169

7: R e l a t e d W o r k 170

of a concurrent, object oriented system [Pap91] in a bid to analyze feature interference. I t shares

m any features of our model, bu t is more abstrac t (the synchronization constrain ts if its scheduler

m ay be altered), has improved inheritance modeling and supports hybrid and pure ob jec t oriented

languages. Unlike our model however, it does not have dynam ic channel allocation, consequently

ob jects have to be m axim ally interconnected (ruling out easy sim ulation). Also the m odel does

no t yield any event a lphabet. Alas, as with o ther works m entioned here, this work has appeared

ra th e r too la te to have any effect on our own.

In [NH8 6], Nguyen and Hailpern propose a typeless object oriented m odel th a t supp o rts m ulti­

dim ensional inheritance, causing m ethod lookup to be influenced by receiver, selector, argum ents

and sender— a m ore flexible approach than our model which uses only the first two. Like our model,

objects are defined w ith com m unicating sequential processes, bu t they support only synchronous

message passing. T he model supports parallelism to the object level of granularity and notes

several weaknesses in its own object encapsulation and invocation schemes, in contrast our model

uses C S P ’s own encapsulation mechanisms which appear to be stronger. Nguyen and H ailpern’s

system supports m any features which are very uncommon in object oriented languages, for exam ple

the inheritance of individual m ethods, which tends to fragm ent objects som ew hat. T h e authors

approach is very abstrac t, they provide few details concerning the m odel’s algebra and refrain from

giving any inform ation from which an event alphabet m ight be ex tracted .

7.1.2 N on-O perational M odels

Significant success has been achieved in the form alization of program specification and denotational

sem antics. By criticizing the earlier a ttem p t of Reddy [Red8 8] and Wolczko [W0 I8 8], and presenting

his own ab strac t sem antics for object oriented languages, Yelland [Yel89] provides a fram ew ork in

which observationally identical system s always have equal denotations. Cusack [Cus89] describes a

set-theoretic m odel of inheritance which enables it to be grafted onto CSP using change o f sym bol

and conformance operators, although the underlying m otive is to provide object oriented exten­

sions to existing specification tools ra ther than to behaviourally m odel object oriented system s.

T he grounds for com parison between these works and our own is lim ited. T hey concentrate on

the s tru c tu re and sem antics of sequential object oriented languages (although A m erica considers

parallel languages in [ADKR8 6 , Ame89b]); our a tten tion is focused on the operational behaviour

of a parallel object oriented system . A lthough dependent on the com putational m odel o f a system ,

th is is largely independent of language. De Boer e t al. [dB90] have created a high level m odel for

the behaviour o f evolving pointer s tructures th a t comprise the run-tim e s ta te o f parallel, object

oriented program s. This is p a rt of a broader a ttem p t to use Hoare-style proof techniques to es­

7: R e l a t e d W o r k 171

tablish p artia l correctness of PO O L programs. The goals of th is model are very different to those

of our own; it focuses on the language semantics and is PO O L specific, whereas our own work is

centered on the behaviour of systems.

7.2 Behavioural Specification and R ecognition

7.2.1 Pathrules

T here have been several a ttem p ts to specify, describe and recognize event-based behaviours in se­

quential and parallel system s. The Pathrules language was adap ted from A nder’s p a th expressions

form alism [And79], by Bruegge [Bru85, BH83], as a tool for the expression ancL-testing of high-

level bug hypotheses and the definition of required debugger functionality. Originally designed

for specifying the synchronization points of concurrent processes, P athru les is a powerful way of

defining the behaviour desired of a parallel procedural system in term s of procedure invocations

and the occurrence of certain sta tes. Like EPS, Pathrules triggers certain behaviours if they are

satisfied, for exam ple suspending execution of the target process or enabling triggering of another,

previously dorm ant, pathru le . As a result of this flexibility they can establish debugging contexts

which would be v irtually impossible w ith conventional lexical breakpoints.

Unlike EPS, P ath ru les is a complex production system language which m ight itse lf m erit a

debugger. For instead of providing a flexible tool to be used w ith o ther debugger com m ands, as

EPS does, P ath ru les is used to ‘build’ debugger commands and the appara tus needed to support

th is can discourage casual usage. To define new debugger com m ands one m ust make increm ental

changes to the debugger’s inpu t parser, a clumsy, low-level and error-prone task , the cognitive load

of which harassed program m ers debugging their code are unlikely to relish [M W PC83]. In user trials

of Bruegge’s P & A debugger, the first to use Pathrules, less th an 5% of users a ltered the debuggers

functionality and the m ajority confined themselves to usage of facilities available in conventional

debuggers. Unlike EPS, the Pathru les specification form alism does no t offer su p p o rt for hierarchical

definition of higher order events (see Section 4.4.8), consequently specifications m ust always be

in term s of prim itive events or those m anually instrum ented. Furtherm ore, no form al support

for P a th ru les’ event a lphabet is offered. Com pared to EPS, P ath ru les’ power of specification is

lim ited because it does no t offer any direct support for fuzzy m atching or unification. Unlike EPS,

P ath ru les is based on finite s ta te au tom ata theory and is thus subject to the weaknesses covered

in C hap ter 6 and [Bat87b] w ith regard to recognizing parallel behaviours. M ost unfortunately , the

Path ru les system has two d istinct goals: specification of behaviour and adding functionality to a

debugger; much of the design of this system dem onstrates the crosstalk between these goals. In

7: R e l a t e d W o r k 172

con trast, EPS has only one goal set which satisfy two d istinct problems. Finally, EPS is designed

specifically for the description of object oriented system s—whereas P a th ru les’ ta rgets are inherently

procedural (see Section 7.3).

7.2.2 E B B A

Like EPS, B ates’ EBBA system [Bat87b, Bat89, Bat87a] is specifically designed to com pare event-

based user specifications w ith actual program behaviour and act on the differences. I t is designed

to ease debugging in loosely-coupled, d istribu ted environm ents. EBBA uses a constrain t shuffle

au tom aton (CSA, see C hapter 6) to compare stream s of events representing program behaviour

w ith user tem plates derived using an event definition language EDL. In a sim ilar m anner to EPS,

EDL is able to define higher order events, b u t is incapable of analyzing or m atching behaviour

using the internal s ta te of a thread as EPS is, i.e. it lacks d a ta events. The prim itive events w ith

which EDL builds higher order events m ust be produced by the m anual instrum enta tion of user

p rogram s—no default event a lphabet is supplied. In designing EPS we have deliberately avoided

th is approach for the reasons outlined in Section 2.4.11. W hile it prom otes some flexibility in

th a t th e user can choose her own event alphabet (and greater efficiency since events th a t m ight

o therw ise be higher order can be instrum ented directly), it does m ean th a t code am endm ent m ust

occur before debugging can commence and there is no guarantee th a t the event a lp h ab e t will be

w hat the user intended, or necessary and sufficient to report all behaviour.

Unlike EPS, the policy of EBBA is to watch and report program activ ity w ithout intervention.

Despite the difficulties of d istributed debugging th a t gave rise to this view, we feel th a t such a policy

is lim iting: during debugging one often needs to intervene during program execution to gather d a ta

abou t a hypothesis (see Section 2.4). EBBA ’s CSA based, behavioural recognition cycle ‘coarse-

filters’ the event stream before allowing each event therein, which satisfies th e constrain ts, to alter

the s ta te of a non-determ inistic au tom aton tow ards a failure or a m atch. EDL has no facility to

finely filter events as EPS has. Furtherm ore, th is approach inherently prevents fuzzy m atching

and unification, because a constraint failure causes behavioural m atching to fail im m ediately,

lim iting the power of specification. This lim itation is built into CSAs because th e transitions are

constra in t driven, our alternative (UCSAs, see C hapter 6) overcomes th is by m aking unification

driven transitions and checking constrain ts after such unification. Like Pathru les, EDL offers no

su p p o rt for the behavioural idiosyncrasies of object oriented system s.

7: R e l a t e d W o r k 173

7.2.3 M uTEA M

T he M uTEA M [BFM + 83] debugger is an event based system for a concurrent language based on

CSP. Like E PS, M uTEAM allows program behaviour to be com pared to operational specifications

which them selves are designed around a formal CSP model. M uTEA M ’s m odel has b o th denota-

tional and axiom atic com ponents, whereas E P S ’s is operational. In contrast to EPS, M uTEA M

specifications have an alphabet lim ited to inter-process com m unication events (equivalent to the

EPS event classes send , terminate and process oriented versions of alter and create), severely lim­

iting its ability to debug intra-process s ta te changes. This is a deliberate decision by the authors,

they feel th a t trad itional debuggers can cover this functionality— we do not concur. M uTEA M

fosters no perm anent association between specifications and program s as EPS does. Like EPS, the

M uTEA M specification system can specify partia l ordering of events and event partia lity (using the

A N Y w ildcard which is much like E P S ’s ‘? ’). However its unification m echanisms are weaker th an

those of EPS: it allows only single event unification (with a som ew hat clumsy syn tax). A novel

feature of the M uTEA M specification language is its ability to offset the probe effect introduced

by behavioural checking, by delaying processes given an unfair advantage by the system . However,

the m anual na tu re of th is D E L A Y construct can introduce insidious errors in to program s if no t used

carefully. T he constrain ts offered by M uTEAM specifications are also weaker th an E PS in th a t

they m ay only express conditions in term s of the process s ta te and event counters. Furtherm ore,

M uTEA M has no action clauses— any specification violations cause a program to h a lt and user

in tervention is required.

7.2.4 D EBL

DEBL [CW89] is a specification medium, based on tem poral event logic (T E L), for the debugging

o f parallel program s. Indeed, DEBL is merely a front end, all DEBL specifications are converted

in to T E L . Consequently, DEBL is able to directly express tem poral relationships betw een events

th a t EPS is not, for exam ple the relation eventually. However, this enhanced power of specification

is achieved a t a cost: DEBL is a retrospective technique, specifications can only be checked on

traces of executions th a t have finished. This restriction makes DEBL less useful in live debugging2

and to ta lly inappropria te for exception handling. Unlike EPS, D EBL’s a lphabet consists purely

of inter-process com m unication events (equivalent to E P S ’s send event class) and consequently it

is unable to specify behaviour w ithin processes. DEBL supports some degree of p artia lity w ith its

w ildcard A N Y which perform s a sim ilar role to the EPS ‘? ’ construct (see Section 4.4.3), b u t unlike

2 In live d eb u gging , as op p osed to replay (see Section 2 .4 .13), users in teract w ith and m anip u late th e s ta te o f
active processes.

i
j

i

7: R e l a t e d W o r k 174

EPS it offers no unification facility and its specification constrain ts can be expressed in term s of

event param eters only. In EPS the tem poral applicability of specifications can be restric ted by

m aking them strict (see Section 4.4.6) or by disabling them ; DEBL specifications m ust apply to the

entire life o f a process— limiting their flexibility. A lthough DEBL specifications are no t associated

w ith program s as E PSs are, their c lu e field formally associates each one w ith a knowledge base—

prom oting reuse.

7.2.5 Executable System Specification for JSD

T he Life-Script facility of Kozaczynski’s Executable System Specification for JS D [K J8 8] bears

some resem blance to EPS. A lthough not targeted a t object oriented system s as EPSs are (indeed

JSD is a very poor technique for object oriented design [Som89, Pun90]) and lacking any support

for p artia l specification, ESSJSD does support tem poral specifications of the protocols in which

program objects may indulge. However, unlike EPS it is a design aid— its specifications do not pass

in to the im plem entation and are not subject to run-tim e checking. ESSJSD ’s specifications are,

by the a u th o r’s adm ission ra ther verbose and not separated from the m ain body of specification,

thus losing the benefits of m odularity and reusability th a t EPSs have. They are tran sla ted from

Prolog, im plying some dependence on the logic paradigm and are highly JSD specific. We have

endeavoured to keep EPS specific to the host paradigm only.

7.3 O bject Oriented Behavioural Specification

All of the specification system s m entioned thus far fail to address the additional behavioural

com plexities unique to the object oriented paradigm . T his is a consequence o f their historical

background or am bit, ra th er than a failure per se. The event a lphabets (where given) of procedu­

ral specification system s are inadequate for object oriented system s because they fail to describe

behaviour com pletely and unambiguously. Completeness is compromised by an incom plete alpha­

b e t, missing events like create and lookup w ithout which a com plete understand ing of behaviour is

im possible and clarity by missing event param eters (e.g. the host class in the execute event) which

render existing event classes vague or meaningless. T he additional events and event param eters

are needed to describe the new behavioural features of object oriented environm ents and those fea­

tures em bellished from earlier procedural systems. For exam ple, the new effects o f polym orphism ,

inheritance and instan tia tion and the am ended variable scope, variable lifetime and binding rules.

7: R e l a t e d W o r k 175

7.3.1 PROCOL

Van den Bos’ C based, ob ject based language PRO CO L [vdBL89] offers a ‘p ro tocol’ facility th a t,

like the EPS exception handling system , may be used to order and constrain in ter-ob ject com­

m unications and to control object access. Protocols are access control guards which define the

conditions under which an incoming message will result in the execution of a m ethod , in an ex­

ception handling context EPS has a similar ability. Like EPS, each object class defines m any

protocols. T hey can be used to specify iterations, selections and sequences of m ethod executions

and s ta te expressions (guards) which m ust occur before a certain m ethod is eligible for execution.

PR O C O L uses nondeterm inistic finite s ta te au tom ata (NFA) to represent protocols, unlike the

UCSAs used by EPS, these are subject to the lim itations listed in Section 6.4.2. Each successful

m ethod execution advances the NFA parsers of all the protocols defined on the host ob ject.

T he PR O C O L system has a num ber of im portan t lim itations th a t are not shared by the EPS

exception handling mechanism . Firstly, protocols are only capable of specifying the preconditions

of a m ethod execution, i.e. of guarding it, no postcondition facility is available. Furtherm ore,

the alphabet of the protocols includes only one event, m ethod execution, lim iting the detail of

specifications. T he m odel (and substra te language) fails to incorporate inheritance or delegation

(a crucial facet of all object-oriented languages [BGM89, Weg90, LMT89]). T he PR O C O L model

also om its assignm ent (access) events (the value of which was established by [Bru85]). T he only

pa rtia lity p erm itted in PRO CO L specifications is the inequalities o f s ta te conditions—specifications

are no t sub jec t to unification, severely restricting their power. In addition, each protocol guards

only one m ethod , whereas EPSs specify a tem poral relationship between all events m entioned

in th e specification. PRO CO L is not capable of specifying parallel event interleavings, as EPS

can. A lthough th is is unnecessary because the host language only supports parallelism to object

granularity , the lim itation is so engrained in the design and im plem entation of protocols th a t it

would be difficult to overcome if the language were ever enhanced to support m ethod parallelism .

Unlike EPS, once an error is detected by a PROCOL specification, no d irect action can be taken

by the receiver o ther than blocking until the error is resolved. This, coupled w ith the provision of

ob ject parallelism , means th a t m utually recursive m ethods can easily deadlock the system .

7.3.2 Specification for Subtyping

Am erica [Ame89a] has developed an operational specification form alism for sequential ob jec t ori­

en ted system s based on preconditions, postconditions and a d a ta typing language. W ith it, he

establishes the basis of a mechanism to support behavioural subtyping, as d istinct from inheri­

tance, free from the im plem entation of objects. Unlike EPS, A m erica’s form alism does not reason

7: R e l a t e d W o r k 17 6

abou t sequences of events, bu t uses an approach based on m athem atical dom ains which dilutes

the operational flavour of the medium. Am erica claims th a t the former approach is no t sufficiently

ab strac t, while th is is possibly true for subtyping, the hierarchical definition of events facilita ted by

EPS overcomes th is w ith respect to our goals (see Section 3.5). A m erica’s scheme is no t trac tab le

to run-tim e checking and requires a theorem prover to be fully viable. Also, it does no t seem to be

very useful in a debugging context. However, these criticisms do not d e trac t from the usefulness of

the form alism in subtyping and a strong case is made th a t dom ain based specifications are more

‘n a tu ra l’ and rigourous th an purely operational ones.

7.3.3 D ata Path D ebugging

D ata P a th Debugging (D PD) [HK89] is a system which, like EPS, is im plem ented to su p p o rt a

problem -directed approach to debugging of object oriented, concurrent applications. I t is derived

from the pathru les system (see Section 7.2.1) and extended to support standardized data events

(assignm ent and s ta te change conditions), message events and validation of sequential and con­

current paths. Indeed, D PD stresses the im portance of d a ta events to the v irtual exclusion of

control events which we feel is overly restrictive. D PD is also able to track d a ta dependencies

between threads for those language environm ents th a t explicitly use dependencies, and in troduces

new opera to rs to distinguish between the new types of concurrency th is entails.

T he D a ta P a th Debugging system shares with EPS the ability to m onitor concurrent ob jec t

behaviours as a stream of events and to report deviations of actual traces from those specified.

Unlike EPS, D PD is solely a debugging tool for locating errors once their "presence has been

established by testing , D PD specifications are ephem eral and are no t associated w ith types as

EPSs are. T he event a lphabet of D PD differs from th a t of EPS in th a t it is inform ally derived

and pu ts great em phasis on s ta te change events, a ttem pting to m ap all aspects of behaviour on

to changes of s ta te— an approach which is rarely feasible [LL89]. W hile it is tru e th a t m any bugs

are incarnated in inappropriate d a ta values as the authors claim, the root cause is often a flawed

flow of control— we consider th a t both aspects of the dichotomy m ust be addressed. Unlike EPS,

some of D P D ’s functionality supports the behavioural patching of software, we feel th is dangerous

practice should no t be encouraged and is, in any event, frequently obviated by the advent o f m odern

increm ental compilers (see Section 2.4.10). D PD ’s specification m edium does no t offer unification,

as EPSs do, and its support for partia l specifications is lim ited. However the form er lim ita tion can

be partia lly overcome, a t the price of increased verbosity, by the use of action clauses w ith side

effects. A unique feature of D PD is its use of standardized m ultiple history graphs to check the

7: R e l a t e d W o r k 1 77

accuracy of behaviour—allowing behaviour to be analyzed bo th im m ediately and off-line and for

determ inism to be enforced by replaying histories.

7.3.4 Specifying O bject Interactions

Several formalisms have recently emerged for the in-source specification of ob ject behaviour in

term s of interactions. Helm et a l’s ‘C ontrac ts’ [HHG90] enable users to: specify ob jec t com­

positions; denote their type and causal obligations; and capture the p a tte rn s of behaviour and

behavioural dependencies of object frameworks. This abstraction supports ‘in teraction oriented

design’ and allows framework invariants and instan tia tion preconditions to be specified in a semi-

form al way (sim ilar to Solve’s dom ains and the first event o f an E PS). Like EPS, it improves

program and framework understanding by m aking concrete behavioural dependencies which would

otherw ise have to be inferred from the source code. Like EPSs, C ontracts can be built from

each o ther using refinement and inclusion. However, above all, C ontracts constitu te a fram ework

com position m echanism , a m ethod of factoring out the complexity of fram eworks, ra th e r th an a

specification m edium and th is distinguishes them from EPSs. A lthough the specification language

does sup p o rt a subset of EPS functionality (with the equivalent of send and access event classes

and the sequence, s ta te check and interleaving operators), none of the specifications are checked

a t compile tim e, nor are the C ontract invariants m onitored a t run-tim e. T he conform ance dec­

larations produced from contracts are semi-formal and, as the au thor adm its, cannot always be

verified. Also, unlike EPSs, C on trac ts can violate the encapsulation of co-participants w ith in an

in stan tia ted framework. ^

In [Ara91], A rapis presents a m ethod of specifying the tem poral properties of an application

using first order tem poral logic (FT L). Arapis asserts, as we have, the im portance o f tem poral

properties and the need to reason about execution sequences. T he event a lphabet used by his

system is equivalent to the EPS event classes send, execute, terminate and unparam etrized versions

of create and destroy. Oddly, events are not param eterized by class or type as they are in EPS,

resulting in a unique predicate for create as it applies to each class. T h is makes the predicate

a lphabe t vast. Furtherm ore, it is supplem ented with a rich set of d a ta predicates which are defined

tem porally— m aking some of them very verbose. For example, consider the class(a) p redicate,

which is tru e if there exists an instance of class class called a. I t is defined as th e past creation of

a of class class, w ithout subsequent destruction of a. Arapis m odel is based around th ree entities:

objects, activities and environm ents— all are highly analogous to each o ther and it is unclear

why they are no t unified in to one com positionally recursive s tructu re . A lthough all th e exam ples

shown in the paper could be specified using EPS, FTL undoubtedly constitu tes a m ore ab strac t

7: R e l a t e d W o r k 178

and powerful specification m edium — albeit less readable and easy to use. FT L specifications can

be checked for m utual consistency (a very CPU intensive activ ity), b u t A rapis presents no m eans of

checking specifications a t run-tim e. Indeed this may be impossible as tem poral logic specifications

need to be checked against complete execution traces [CW89, GKY89], suggesting th a t FT L is

useful as a post-m ortem technique bu t quite unsuitable for exception handling or im prom ptu

debugging (much like DEBL, see Section 7.2.4).

7.3.5 Behavioural Inheritance

Reghizzi et al. [RdPG91] propose the use of behavioural inheritance (b-inheritance) to avoid object

inconsistency and to ensure high performance a t run-tim e. Using m ultiple inheritance, an un­

constrained (free) concrete class is combined with a generic b-class which constrains its behaviour

th rough the use of Deontic logic (w ith a sem antics and syntax based on pathrules, see Section 7.2.1

above). T his prom otes a more flexible, if less direct, association between specifications and class

definitions th an EPS. The rigour of deontic specification is improved by basing it on extended

P e tri nets, ju s t as th a t of EPS is enhanced by basing it on CSP. Like EPSs, B-classes constrain

the concurrency paths available to an object and its resource usage characteristics, typically en­

suring m utual exclusion, a lternation or lim ited parallel invocations of m ethods. T hey may be

param eterized, enhancing the genericity of the specification m edium . Deontic logic is only able to

constrain behaviour and uses an event alphabet equivalent to the EPS event classes send, execute

and terminate. S ta te checks may be performed, w ithout violating encapsulation, by guards which

are designed to use only the exported m ethods of each class. T he EPS s ta te condition offers a

sim ilar functionality, although b-inheritance guards are som ew hat more lim ited as they m ay only

be checked a t the term ination of a m ethod.

T he usefulness of b-inheritance is compromised by a num ber of serious lim itations. Firstly,

b-classes may only be combined w ith concrete classes, they may no t constrain ab s trac t classes or

be com posed w ith each other to strengthen a specification as EPSs can (in each DAG p a th of an

inheritance hierarchy, only one b-class may appear). T his restriction on the use of b-classes will

underm ine the orthogonality of any language into which they are introduced. T he au tho rs s ta te

th a t by separating specifications from the class they constrain, class proliferation is avoided as

m ultiple versions of the sam e class with different constraints can be easily accom m odated. Since

the com position of a free class w ith a b-class produces another class th is argum ent is clearly

invalid, although a num ber of other advantages of the approach rem ain— particu larly specification

reuse, abstraction and separation. As Deontic logic is based on pathru les it is sub jec t to m any

of the lim itations noted above in Section 7.2.1. In the proposed im plem entation, b-classes are

7: R e l a t e d W o r k 179

preprocessed into Ada, it is unclear how this effects debugging of specifications or th e ease of

changing them . T he au thors do not explain w hat happens if a specification is violated, b u t the

specification m edium has no equivalent to handlers or action clauses.

7.4 E xception H andling System s

A w ealth of object oriented languages and system s have included (or are including) exception

handling m echanism s w ithin their design [DPW91]. A sm all subset of these is addressing the

additional problem s of supporting exception handling in a parallel environm ent. None of these

system s allow the definition of exceptions as behavioural violations as Solve does, b u t all offer

some unique feature th a t is related to, has influenced, or would have influenced the design o f Solve

(had they been released earlier).

M any of the languages covered here represent signals, exceptions or bo th as ob jects. The

advantages and disadvantages of this approach are addressed in Section 5.4.1. P redom inantly , they

include provision of a encapsulated m edium to transfer exception inform ation from the signaller to

the handler context and a m eans of establishing default handling behaviour for certain exceptions.

I t is in teresting th a t in a t least one parallel language, Guide , such a representation is considered

inappropriate .

7.4.1 ObjectW orks Smalltalk

T he exception handling system of ParcP lace’s O bjectW orks Sm alltalk [DPW 91, SM 8 8], is the first

associated w ith Sm alltalk to have a trad itional stack oriented handler search discipline [Goo75].

Like Solve, handlers are m ethods, b u t they may be associated w ith any closure. Class based associ­

ation of handlers is no t supported . Handlers support the propagation, term ination and resum ption

control flow models. Unlike Solve, it is possible to stipu la te , when an exception is signalled, th a t

resum ption is unacceptable. T he exception handling system is not composed from language prim i­

tives as Solve’s is, bu t designed around two classes: Signal, instances of which represent anom alous

conditions; and Exception, instances of which represent a particu lar exception. E xcep tion /hand ler

associations are m ade and exceptions signaled by sending messages to an instance of Signal, this

offers more flexibility th an the Solve linkmap (see Section 5.4.4)— albeit less disciplined. As in

Solve, even hardw are errors are m apped onto signals to enhance congruency. Each Signal may

have a paren t and the exception hierarchy thus formed can be used to associate a handler to more

th an one exception. Each signal contains a set of default handlers, including those to execute

7: R e l a t e d W o r k 180

if exception handling itself fails. In contrast to Solve, all handlers have a single argum ent: an

instance of Exception encapsulating inform ation about the context of the exception. T h is instance

holds all the inform ation pertinen t to the cause and environm ent of the exception.

D espite considerable flexibility, this scheme has a num ber of deficiencies which have come to

light after some experience of its use [DPW91]. Divorcing the inheritance hierarchy from the

exception hierarchy causes considerable loss of expressive power— although it does prevent class

proliferation th a t m ight otherwise result. We feel th a t linkm aps provide a m ore elegant solution

to the problem of n:l s ignal/handler m appings. Deutsch [DPW91] concludes th a t the resum ption

control flow m odel is unsound, chiefly on the grounds of its inefficiency and lack of safety. He

prefers instead to prom ote the retry model. We concur w ith this view, bu t resum ption is useful

in some circum stances (i.e. w ithin an assertion based system such as EPS, w hen-the handler can

be sure of providing a result which satisfies all the originally violated assertions). In Sm alltalk,

because a handler is unaware w hether the failed m ethod will be restarted or no t, one m ust use a

separa te m echanism to perform cleanup. This mechanism, called ‘unwind p ro tec tion’, triggers a

cleanup m ethod (chiefly to deallocate resources claimed by the m ethod) if it detects th e winding

back of the invocation stack of the failed m ethod. In parallel environm ents this approach is lim ited

by the requirem ent for atom icity between claiming of resources and ensuring their deallocation in

the cleanup m ethod. Solve overcomes this problem by allowing handlers to establish the control

flow policy.

7.4.2 Eiffel

T he Eiffel exception handling system [Mey8 8 , Mey89, Ner91, DPW91] has m any novel features

which have inspired later system s, including our own. It is the first system (and indeed, to our

knowledge, the only system apart from Solve) to integrate exceptions and assertions w ithin a

rigourous contract metaphor and to allow im phcit signalling. T he m ain appeal o f Eiffel’s approach

is its adherence to a few simple rules. Exceptions are abnorm al run-tim e events: th e violation o f an

assertion, a ttem p ted access to a void reference3, m ethod invocation failure (a violation of contract

betw een client and server) or a hardw are error. Unlike Solve, Eiffel exceptions are anonym ous. In

response to an exception an Eiffel m ethod, after modifying the host object s ta te as d ic ta ted by

a m e th o d ’s r e s c u e clause (an optional construct serving as a dedicated handler for the m ethod),

te rm inates (raising an exception within its client) or a ttem pts to re try execution. Such a disciplined

schem e ensures th a t software performs its task correctly, according to its contract, or no t a t all.

3 A co n d ition in w hich a variable references noth ing, such th a t referring to it is lega l, b ut de-referencing it is n ot.
Solve variables can n ot en ter th is cond ition .

7: R e l a t e d W o r k 181

As w ith Solve, the in tegration of software exceptions, operating system failures and hardw are

m alfunctions greatly enhances the elegance of the Eiffel language.

T he sim plicity of the Eiffel m echanism has several drawbacks. Because exceptions are anony­

m ous, one rescue clause in each m ethod m ust handle all possible failures of th a t m ethod . This

ham pers readability and restricts the ability of handlers to provide context sensitive solutions.

Unlike Solve, such handlers may only adopt a propagate or re try control model and in the event of

the la tte r, any alternative stra tegy for satisfying the contract m ust be co-located w ith the m ethod

body giving poor separation. W ithin a handler, control flow policy is fixed a t compile tim e—one

may no t use conditions, expressed in the host language, to determ ine the best control flow model

to adop t (as one can in Solve)—this is a severe lim itation. Furtherm ore, there is no m echanism to

p ropagate any inform ation about exceptions, consequently the rescue clauses of classes high in the

com positional hierarchy m ust address so many possible exceptions th a t they are restric ted to the

m ost general of responses.

In an a ttem p t, to circum navigate these failings, Eiffel has the class Exception which may be used

to refine rescue clauses. T his facilitates a catch /th row exception m echanism [Goo75]. Exception

type, nam e, originating class, originating m ethod and cause are m ade available th rough instances

o f the Exception class and specific exceptions can be ignored, caught, raised and handled through

the m echanism which provides some of the flexibility of Solve’s linkm ap construct. However, the

facility requires (counterintuitively) th a t the target class inherit from class Exception to reap these

benefits. Furtherm ore, unlike Solve, the availability of exception related inform ation is unrestric ted ,

constitu ting a grave violation of encapsulation th a t underm ines Eiffel’s inherent discipline. Finally,

the availability o f a ‘tw o-tier’ exception handling service does dim inish the orthogonality of Eiffel.

7.4.3 BETA

T he flexible and highly original exception handling system of the Mj0 lner BETA system [KMMPN87,

M M P89a, M M P89b, KM91] m arks a significant departure from the classical approach proposed

by G oodenough (see Section 2.3.1). We share w ith the au thors the desire for a more rigourous

exception handling system , bu t we feel th a t the price they have paid for th is rigour is too high.

However, the system comprises many good ideas, some of which have been adopted by our system .

BETA exception handling is unusual in th a t the ex ten t o f exceptions are defined by sta tic

s tru c tu re of the code, there is no search for a handler a t run tim e— all handler invocation is bound

a t compile tim e. T his can not be fully done in Solve because of the possibility of dynam ic binding.

T h is renders BETA program s more tractab le to formal verification. Handlers may be associated

7: R e l a t e d W o r k 182

w ith classes, program s, specific instances and m ethod invocations (the la tte r is achieved by passing

the handler as an argum ent when the m ethod is invoked). Solve disallows all b u t the first o f these

to prom ote readability, consistency and discipline—bu t the flexibility of B ETA ’s approach is an

advantage. H andlers are nam ed, executable objects which, unlike those of Solve, are signalled by

explicit invocation. T hrough the use of sequels, handlers on the invocation stack are traversed

from the bo tto m to the top (w ithout altering the stack) and then again from the top down (while

discarding the contexts therein), enabling the handlers in the hierarchy to in te rac t and refine

each o ther in ways impossible in more conventional system s. Resume, retry, spaw n debugger and

term ination control models are supported , as is ‘non-local go to’ to a specified label. Unlike Solve,

term ination is the default case. In contrast to Solve, no special m echanisms or syntax are provided

for exception handling, one uses BETA conventions directly to deal w ith run-tim e anom alies.

Consequently, program s th a t do not handle exceptions experience no overhead. S eparation of

conventional and error handling code is very well supported and all handling policies are instigated

by sending messages to instances of the class Exception.

T he syntax of BETA is extrem ely idiosyncratic, using term s like ‘p a tte rn ’ in place of ‘class’ and

replacing much of the existing terminology accepted by the bulk of ob ject oriented program m ing

(O O P) researchers (i.e. those coined by [Gol83, Ren82, LSAS77, C 0 0 8 6 , Cox86], established by a

succession of O O PSLA and EC O O P conferences and consolidated in [Weg90, BGM 89]), w ithout

any apparen t reason. This, allied w ith the lack of keywords used to su pport exception handling, the

proliferation of symbols as reserved words, the use of non-local goto to support propagation , the two

way flow of control imposed by sequels and the fact th a t individual instances of an ob ject can have

the ir own handlers, makes BETA source very difficult to read and understand for the un in itia ted—

even if they are fam iliar w ith the concepts of object oriented program m ing. Solve a tte m p ts to

avoid th is by adherence to trad itional O O P terminology and copious use of ex tra keywords to

aid readability. In BETA, the run-tim e search for handlers (in response to an exception) used by

trad itio n a l system s, including Solve, is obviated a t the cost, in certain circum stances, o f placing

checks for the handler bindings of superclasses w ithin the source code itself (using the ## no ta tion).

T h is is a messy and potentially dangerous technique. The sta tic binding of handlers in BETA also

causes some counterintuitive behaviour. For example, cases in which a m ethod invocation w ithout

a handler argum ent results in exception are not referred to the caller, instead the server class’s

handlers are used.

7: R e l a t e d W o r k 183

7.4.4 Guide

In [Lac91], Lacourte describes the synthesis o f a statically typed, persistent, concurrent, object

oriented language for a d istribu ted system , Guide, w ith a classical (Goodenough-esque[Goo75])

exception handling mechanism. Like Solve, the mechanism to tally unifies hardw are and software

exceptions. T his is achieved in G uide’s case by forcing program s to interface w ith th e operating

system through the v irtual object S Y S T E M . Guide actively supports separation of conventional

and error handling source code (as Solve does) and employs a sub-m echanism to ensure object

consistency under abnorm al conditions. As in Solve, exceptions are symbols, not objects, in Guide

and the au thor asserts th a t this vastly simplifies program control flow. H andlers may support the

term ination , propagation, retry and exit models. Unlike Solve, Guide handlers do no t support

resum ption. T he au tho r asserts th a t such a facility requires closures to avoid violating encap­

su lation (using more than exported interface of object) and Guide does not have th is construct.

E xcep tion /hand ler m appings may be associated with a m ethod, a class, individual instructions or

a block thereof, Solve does not support the la tte r two cases as we consider th a t they compromise

the ob ject oriented model. Like Solve, Guide defines these m appings in g reat detail, considering

the type, nam e, host m ethod and class of a signal. Lacourte distinguishes betw een th e am bit

of a m apping (as signified by the block delim iters) and the re tu rn point for a non-term inating

handler. The re tu rn point is always ju s t after the erran t m ethod invocation, independently of the

deploym ent of delim iters. Solve also makes this, otherwise unique, distinction. Unlike Solve, Guide

provides a series o f default handlers for a range of situations (including the receipt of an exception

while handling another), m ost of which cause m ethod term ination or p ropagation o f a generic

exception (to avoid blind propagation see Section 4). In addition, G uide provides a unique m echa­

nism to determ ine the success of parallel compositions (using its co_begin and co_end operators).

Each th read is assigned a boolean label which re turns true only if it term inates successfully. Each

parallel com position is accompanied by a boolean expression in term s of these labels, expressing

the success criteria of the entire com position—failure causes the signalling of a special exception.

M uch the same effect can be achieved using hierarchically defined E PSs in Solve.

Like Solve, G uide does not use objects to represent signals or exceptions and consequently some

o ther abstraction is required to convey the context o f the former to the handler. G uide uses ‘o u t’

variables to do th is and because access to these (unlike Solve’s dispatcher primitives) is unrestric ted ,

they can violate encapsulation. Furtherm ore, G uide’s processing of hardw are exceptions is crippled

by the synchronous na tu re of its signalling mechanisms. Indeed, hardw are exceptions m ust be

converted into synchronous signals, severely lim iting the imm ediacy of the handler. Unlike Solve,

G uide offers no su pport for the debug, delegate or resum ption handling models and its re try handler

7: R e l a t e d W o r k 184

m ay not be iteratively invoked—a lim itation considering th a t the re try m odel is frequently used in

situations where a bounded series of repeated a ttem p ts is the best recovery stra teg y (e.g. network

com m unications failure, disk errors and user interaction).

7.5 Sum m ary

Form al models of object oriented system s show wide variation according to the ir purpose. The

au th o r knows of no general purpose one. Many of these models are language oriented, being either

denotational or operational perspectives of language construct sem antics. O nly recently has an

operational m odel o f a general language emerged, other than our own.

T here have been several a ttem pts to specify, describe and recognize event-based behaviours in

parallel system s, b u t only com paratively recently have these been used, as we have used them ,

as p a rt of in-language specification constructs. None have been applied to b o th debugging and

in-source exception handling, and many (particularly those based on tem poral logics) are inap­

propria te for these tasks. Early, procedural formalisms typically dem onstrate lack o f com plete

or rigourously defined alphabets, lack of selectivity in the applicability of specifications (filtering)

and weak, non-unifying constraints. Specification media for object oriented system s have inherited

these faults and are either incapable of doing anything if violations are detected , or unable to

de tec t them a t all. An increasing num ber of researchers are realizing the benefits o f being able to

reason abou t the operational behaviour of objects in their signatures.

T here is much variation between exception handling mechanisms, bu t none yet use behavioural

specifications to detect exceptions. O f late, some a ttem p ts have been m ade to formalize exception

handling to cope w ith the rigours of parallel program m ing. We hope to have con tribu ted som ething

tow ard th is end.

C hapter 8

C on clu sions

8.1 Sum m ary

We have established the feasibility of using operational specifications to detect and locate bugs

in parallel, object oriented systems. T his has been achieved by: extensive survey, to reveal how

specification is already used in the detection and correction of program bugs and in w hat ways

these techniques are deficient; modeling the behaviour of a parallel, ob ject oriented system through

the use of a process calculus; using this model to devise a form alism to operationally specify the

behaviour of such a system ; and successfully designing and im plem enting an exception handling

system based on th is formalism.

Having described three common ways of reducing the presence of bugs in com puter program s

and conducted an extensive survey on the types of mechanisms used to su p p o rt two of these

m ethods, exception handling and debugging, we indicated several serious weaknesses w ith these

m echanism s. F irstly and m ost significantly, we found th a t techniques com m only used to support

exception handling lacked the power of specification required for detecting errors particu la r to ob­

jec t oriented or concurrent system s. Secondly, m any debugging tools for ob ject oriented system s

failed to fully support the abstractions of th a t paradigm . Thirdly, the few debugging tools su p p o rt­

ing specification facilitated only the m ost ephem eral o f associations between these specifications

and the ir ta rgets, giving users little incentive to use the technique to its best advantage. M ost of

the tools and m echanism s surveyed lacked formal rigour. We sought to overcome these problem s

by devising a form alism to describe the behaviour of parallel, ob ject oriented system s and using it

in an environm ent which facilitates perm anent association of specification and source code.

We estabfished a CSP based model of a general purpose, object oriented system w ith inheritance

and asynchronous com m unication. We then determ ined, using th is model, th a t the behaviour of

185

8: C o n c l u s i o n s 186

such a system can be com pletely expressed using an alphabet of eight events. T h is a lphabet, while

constitu ting th e events one m ight have expected from informal analysis, could be used w ith confi­

dence for form al behavioural analysis, w ithout fear of loss of coverage, am biguity or redundancy.

A form alism , called EPS, was derived from this model, for the hierarchical description of in tra ­

ob ject and in ter-object behaviour in parallel, object oriented system s. T his com prehensive, oper­

a tional specification language supports partia l specification, specialization, readability , reuse and

action clauses th a t may be triggered depending on the fulfillment of these specifications. T he for­

m alism is language independent and supports exploratory specification by deferring the evaluation

of constra in ts until p a tte rn m atching has term inated , so th a t the results o f the la tte r and reasons

for any m ism atch can be ascertained. Details of how this formalism m ight be used as the basis of

a debugging tool, and in more detail, how it m ight facilitate behavioural exception handling were

discussed.

We have designed and im plem ented a disciplined exception handling system for a parallel object

oriented language. T he mechanism, which uses the EPS formalism, has a significantly g rea ter power

of expression and rigour th an conventional counterparts w ithout sacrificing readability . Indeed,

by anno ta tin g source code with behavioural specifications, readability and ease of understanding

are b o th enhanced (as explained in [Gol87, SBK81]). The m echanism em phasizes ob ject oriented

abstractions and perm its a more holistic, inter-object specification— not possible w ith s ta te based

assertions. I t does not impose a fixed exception handling policy; instead users may select one

of six disciplined policies depending on the conditions prevalent a t handling tim e. I t in tegrates

hardw are and software exceptions and supports im plicit, asynchronous exceptions which enhance

the im m ediacy of handlers.

We dem onstrated the feasibility of the exception handling system and thus of E PS , by im­

plem enting it a top the Solve program m ing language. The event parsers were constructed from

a new type of constrained shuffle autom aton— the UCSA—th a t enables sets of events from con­

curren t event sources to govern s ta te changes and which defers constrain t checking un til after a

behavioural m atch to facilitate unification and explorative specification. Unlike finite s ta te m a­

chine based parsers, our im plem entation can accept symbol sets to control s ta te s changes and may

be used to specify any concurrent behaviour.

8.2 Contributions

We have shown th a t operational specification is a feasible technique for the expression of be­

havioural assertions in parallel, object oriented system s—th a t is the m ain con tribu tion of this

8: C o n c l u s i o n s 187

work. It may be used in a debugging context to make behavioural hypotheses or ob ta in be­

havioural inform ation and, perhaps more im portantly, it is a viable m eans of m aking behavioural

assertions as p a rt of an exception handling mechanism, th a t may be checked during execution.

I t offers a m ore rigourous and flexible means of specification th an any o ther debugging tool or

exception handling m echanism known to the author; thus providing a more im m ediate and direct

m eans of detecting behavioural deviations.

T h is work makes four o ther contributions to the field of ob ject oriented program m ing and

language design. It describes, through a survey, the principle weaknesses of cu rren t debugging

tools and exception handling mechanisms; it provides a form al model for the analysis of parallel

ob ject oriented system s; it presents a formalism for describing the behaviour of such system s; and

details the design and im plem entation of a behavioural exception handling m echanism , including

a new type of au tom aton .

8.2.1 Problem s R evealed by the Survey

We have, during our survey of such system s, uncovered several problem s and deficiencies prevalent

in debugging tools and exception handling mechanisms. Some of these problem s are rendered

rem arkably obvious when a model of a general purpose debugger (or exception handling m echanism)

is used to stru c tu re com parison. Aside from the problems addressed directly by th is thesis (see

Section 8.1), debugging tools were found to: offer poor source visualization, provide inadequate

su p p o rt for im prom ptu debugging, have lim ited techniques for associating run-tim e behaviour w ith

source tex t and show excessive dependence on the host architecture. Exception handling techniques

were found to be: ill disciplined, poorly integrated w ith analogous schemes for hardw are exceptions

and inadequate a t separating main and handler source code. These are all issues which need to be

addressed by language and tool designers.

8.2.2 Formal M odel

We have dem onstrated how to model an object network in CSP w ithou t using m axim al inter­

connection: by facilitating dynam ic channel allocation. This, in theory, enables our m odel to be

tested on the various CSP sim ulators th a t exist (e.g. [DS86]), although we have not done so. Fur­

therm ore, we have dem onstrated how one can model asynchronous com m unications, w ith in CSP

(which is inherently synchronous), through use of a message bus and object m ailboxes. T he model

has dem onstra ted the need for m ethod typing (particularly for the message type error) in system s

not supporting R PC .

8: C o n c l u s i o n s 188

A lthough th is model has some lim itations (see Section 8.3), it serves as an exam ple of the way

in which ob ject oriented system s can be operationally modeled and illustrates the advantages of

such a process. I t also dem onstrates how two formalisms like CSP and Z may be used in unison

to satisfy bo th th e process based and d a ta based requirem ents of system s modeling.

We have shown th a t the operational behaviour of a parallel, ob ject oriented system , isomorphic

to the m odel presented in C hapter 3, can be completely represented as a partia lly ordered sequence

of eight param eterized event types. This alphabet is essential to the com pleteness of behavioural

descriptions and specifications of object oriented systems. Furtherm ore, it may be used as the basis

o f instrum enta tion design to m onitor behaviour, as the core of a program visualization facility, as

the beginnings of a form alism to specify required behaviour (as it was in this case), or in th e design

of any m edium associated w ith the behaviour of an object oriented system . ^

8.2.3 Behavioural Specification

We have designed a formalism called EPS, which is based on CSP, for the hierarchical description of

behaviour in parallel, object oriented languages. T his language is unique in th a t it may describe any

behaviour of which a parallel, object oriented system (as defined above) is capable. Furtherm ore,

it can describe it a t various levels of abstraction and partiality. T his is achieved by combining

unifying, hierarchical p a tte rn m atching (which uses the event a lphabet and C SP operato rs) w ith

boolean constrain ts. This formalism is independent of the host language and requires only th a t

it adhere to the model described above. W ith this language it is possible to achieve debugging

contexts which cannot be achieved using trad itional techniques, such as breakpoints. Moreover, it

may be used to detect exceptions th a t s ta te based assertions would miss or detect too la te . The

applicability of a single language in bo th of these areas is, as far as we know, unique to EPS.

We have established the benefits of separating the p a tte rn m atching elem ents of behavioural

checking from the d a ta constraints, to allow explorative specification—so called ‘fuzzy’ m atching.

T his allows EPS to be used as a selective inform ation gathering tool, in addition to its o ther uses.

O ne of the main goals of EPS—ease of use— has been supported by avoiding trad itio n a l formal

m ethods. An exam ple of visual specifications is given to illustrate how such a form alism m ay be

m ade easier to use by program m ers who lack the knowledge or inclination to use form al specification

techniques. We believe th a t the unique qualities of graphical m edia (as discussed in Section 2.4.12)

make an ideal specification medium.

8: C o n c l u s i o n s 189

8.2.4 Exception Handling M echanism

We have dem onstrated th a t it is feasible to build an exception handling facility based on behavioural

specification. Furtherm ore, it is possible to graft this feature on to an existing parallel object

oriented language w ithout am endm ent of the existing features of th a t language.

T his design dem onstrates the benefits of asynchronous exception detection, i.e. unifying soft­

ware and hardw are exceptions and increasing the immediacy of handler response. T he m echanism

offers a set of seven disciplined handling strategies, ensures th a t all exceptions are handled in a

disciplined m anner and th a t any a ttem p ted recovery is complete w ith respect to the original rem it

of the erran t object.

As p a rt of the im plem entation, we have developed a Unifying C onstrained Shuffle A utom aton

(UCSA) to facilitate the run-tim e parsing of collected events. These events are gathered by in­

strum en ta tion of the in terpreter to generate events w ithin the formally derived a lphabet. T his is

guaranteed to provide a complete view of system behaviour, including control and d a ta events,

w ithout need to m anually instrum ent code. UCSAs facilitate the gathering of events from concur­

ren t sources, b u t do not prem aturely reject p a tte rn m atching due to the failure of a local constrain t

(as C onstrained Shuffle A utom ata do), continuing instead to collect more inform ation abou t the

details o f the deviation. They offer greater efficiency than CSAs and b e tte r su p p o rt for ‘fuzzy’

p a tte rn m atching. During tests of our im plem entation on the Solve in terpreter, we have found the

overhead of instrum enta tion and parsing to be significant, b u t no t unacceptable. However, this

overhead would preclude the use of EPS in real-tim e systems.

8.3 Lim itations

8.3.1 The O bject M odel

O ur C SP model has some deficiencies which limit its efficacy under some conditions. I t was designed

to m odel pure ob ject oriented system s (like Sm alltalk or Solve) in which all program en tities are

objects. However, many object oriented languages are hybrid (e.g. C + + , O bjective-C) and use

builtin types (typically integers, booleans, re a ls .. .) to optim ize perform ance. These types are not

m anipulated like objects and this lack of orthogonality, overlooked by our m odel, m ay effect the

event a lphabet and behaviour of such systems. Further, our m odel does no t consider th e effects

of au tom atic garbage collection, m etaclasses, s ta te access serialization (e.g. m onitors), classes as

objects or exception handling. These and other lim itations are discussed in Section 3.6.

8: C o n c l u s i o n s 190

8.3.2 The EPS Formalism

We have not established th a t EPSs can be tested for internal integrity, consistency and m eaning­

fulness, beyond ensuring th a t valid UCSAs can be constructed from them . Furtherm ore, there

is no proof th a t EPSs can be checked for conformance against a stronger specification, as m ight

be required in a object oriented language when an inherited specification is overridden. B oth are

beyond the rem it of this work. As the formalism is based on C SP these properties could, in all

likelihood, be inherited from the calculus— but we can not assert th is w ithout fu rther work.

Some specifications can have several representations in the EPS formalism. In general, it is not

possible to test for equivalence—a severe lim itation if analogous objects are being behaviourally

com pared. Equivalent specifications frequently have different characteristics (see Section 4.4.7),

they m ay have different immediacies and instan tia te different num bers of variables. In the former

case, if th e user chooses the wrong representation and the specification triggers an action clause, it

may execute too late to have any useful effect. There is no way, to our knowledge, of autom atically

rew riting specifications to ensure some property, or of warning users th a t a specification has low

immediacy.

EPSs m ay only append events to the event queues of o ther E PSs—the queues cannot be edited

or partially deleted. Such a feature would enhance the flexibility of the system , perhaps a t the cost

of additional complexity. A queue m anipulation facility would also allow recovery from behavioural

exceptions. Currently, one cannot resume, retry or locally exit execution in response to a failed

EPS . T his constitu tes a lack of orthogonality (since one can w ith all o ther exception types) and

flexibility.

To ensure th a t the specification m edium is language independent, EPSs have no knowledge of

the sem antics of s ta te assertions, as if defers evaluations of these assertions to the host. Conse­

quently, they are unable to check th a t these sta tem ents do not have side effects on the host system .

If the la tte r has ‘pseudo functional sem antics’ (th a t is all message sending has no side effects), as

Solve has, the problem can be reduced to one of ensuring the user does no t a lte r any bindings

inside such sta tem ents.

8.3.3 Exception H andling in Solve

T he flexibility of type definition in Solve could be greatly enhanced if a class’s behavioural com m it­

m ents were separated from the protocol and type checking inform ation contained in the signature.

T h is would facilitate the factoring of behavioural inform ation from the interface of a class, enabling

8: C o n c l u s i o n s 191

greater genericity and overcoming the overloading of the Solve class signature construct discussed

in Section 5.6. Ideally, behavioural (type) inform ation and signature (class) inform ation should

have separa te inheritance hierarchies to reflect the different ways in which they are specialized.

As they are currently im plem ented, EPSs have a significant overhead. T his is acceptable in

a debugging tool, where such overhead is the tem porary price of the enhanced inform ational and

m anipulatory control rendered by the debugging agent, b u t exception handling is a perm anent

feature. Consequently, some means of lim iting th is overhead m ust be found if they are to achieve

w ide-spread usage.

Event p a tte rn specification is not suitable for use in real-tim e system s. D espite the availability

of logical clocks [Lam78], the run-tim e overhead of UCSAs is such th a t it is no t feasible to use

them in such system s. Indeed, the overhead of instrum entation alone precludes their use due to

the probe effect.

T he Solve exception handling system cannot propagate a signal if an asynchronous m ethod

invocation encounters an exception after its parent dies. In short, there is no m eans of knowing to

whom to send it. T his is the orphaned signal problem [TL91, DPW 91]. Several solutions exist, and

inevitably, these raise further problems. One solution is for each th read to carry its own genealogy,

allowing an exception delivery agent to try several generations of parents. However, to do this

one m ust know if propagation is legal to these early generations. A nother technique is to set up a

central object th a t m aintains a list of ‘forwarding addresses’ for parents of asynchronous children

to leave notifying th read ids in when they die. However, this is tim e consum ing to adm inister in a

highly d istribu ted system and relies on continued integrity of the central o b je c tltse lf—w hat would

happen if th is ob ject received a signal!

8.4 Future Work

It is the a u th o r’s fervent hope th a t this work has presented m any possible pa th s of fu tu re research

and experim entation. We have established the feasibility of this technique, b u t it has yet to be

proven useful or im plem ented to its full potential. Much rem ains to be done.

F irstly, an im plem entation of these ideas on a fully parallel (and possibly d istribu ted) su bstra te

is required, preferably w ith dedicated hardw are for EPS parsing. T his will require careful a tten ­

tion to the orphaned signal problem (defined in Section 8.3.3) and o thers described above. Once

achieved, the usefulness of the EPS formalism within an exception handling contex t could be de­

term ined by experim ent and ‘field tra ils’. Furtherm ore, the developm ent of a debugger supporting

8: C o n c l u s i o n s 192

E PS (by combining UCSA’s w ith a subsystem such as EBBA [Bat89]) would facilitate experim ents

to evaluate how the dual role of EPS m utually reinforce each other.

C urrently , EPS constraints can only be expressed in term s of the behavioural or s ta te based

aspects of a program . By enhancing the domain of constraints to include s ta tic relations such as

in stan tia tion , inheritance and subtyping, considerable flexibility and power of specification could

be achieved. Typically such predicates m ight check the genealogy of a class (i.e. issub iype($x ,$y))

or re tu rn the class nam e of an instance (i.e. has.class($x)). Such a concept would have to be

im plem ented carefully to avoid introducing dependencies on the host language.

T he user interface of EPS could be greatly improved by bringing some expertise in the psy­

chology of program m ing and hum an-com puter interaction to bear on th e som ew hat rud im entary

visualizations presented in Section 4.5. By allowing b o th anim ated, event based displays of be­

haviour (for exam ple, [BH90b, K G 8 8]) and the form ulation of specifications by constrained direct

m anipulation (of analogous visual representations of events), one m ight improve the ease of use

o f EPS (by circum navigating the dull, error prone textual m edium) and prevent the creation of

internally inconsistent specifications. In previous software anim ation system s the event a lphabet

has no t been considered formally, with EPS the completeness of the alphabet ensures the continued

consistency between system sta te and a full graphical representation. It is tem pting to hypothesize

th a t graphical representations of specifications m ight enhance their abstractness.

One prom ising application of EPS is as a guide for sem antic browsing algorithm s. To prom ote

reuse, one requires the com positional tools provided by object oriented program m ing environm ents

like CoSID E [Rob90], bu t one m ust also be able to locate reuse candidates in an ob ject repository

or library. By providing a browser th a t can conduct a search based on a behavioural tem pla te of

w hat is required (tex tual or pictorial), as opposed to a class nam e or signature fragm ent, one is

rem oving the cu rren t syntactic lim itation on reuse and instead basing candidacy on behavioural

conform ance.

Event based behavioural definitions can be used to circum navigate protocol incom patibilities

betw een objects, facilitating reuse where otherwise it would have been im possible [V JN + 90]. Event

sequences of client objects might be m apped onto those of a server using the EPS form alism , and

vice versa— thus overcoming protocol m ism atches w ithout altering th e ob jects them selves. Here

behavioural descriptions are used as the tem poral ‘glue’ between the objects. T he com pleteness of

the event a lphabet is essential to the power of this glue.

O bject oriented program m ing obtains much of its power through abstrac tion , by raising the

level o f m odularity of program sub-com ponents. An obvious progression, for which there is some

8: C o n c l u s i o n s 193

evidence as noted above (see C hapter 7), is direct language su pport for the m etaob ject or fram e­

work. EPS already partially supports frameworks through the send event which m ay be used

to relate or m utually constrain two objects in a framework. Clearly, as new languages support

m ore advanced framework com position constructs, corresponding advances will be required of the

accom panying specification medium. New constructs are required to specify how fram eworks are

in stan tia ted , w hat degree of concurrency they support and the ir resource allocation behaviour.

A ppendix A

G lossary

A n o m a ly . An unexpected error due to unforeseen behaviour of an agent beyond the control of

the program , on which the program relies—for example hardw are, or the user.

A c c e s so r M e th o d s . M ethods defined on an object th a t, when executed, yield some aspect of

th a t o b jec t’s s ta te without changing it [Mey8 8].

A s s e r t io n . A rule or tru th equation which expresses an expected fact, the contradiction of which

denotes an exceptional circum stance.

B u g . A defect in a p rogram ’s specification, design or im plem entation th a t causes the la tte r to

deviate from the expected or desired behaviour when executed.

C r e a to r M e th o d s . M ethods defined on a type object th a t, when executed, produce new instances

o f th a t type [Mey8 8].

C h u n k in g . Chunking is the cognitive process of associating a series of objects in to one object, a t

a higher level of abstraction , to save short term mem ory [Mod79]. For exam ple, one m ight

ab s trac t the concurrent letters ‘c ’, ‘a ’ and ‘t ’ into th e single word ‘c a t’.

E x c e p t io n . A class of sta tes requiring extraordinary com putation.

H a n d le r . A code segm ent designed to gracefully term inate program execution or to m itigate the

consequences of the bug or anom aly which triggered its execution.

Ic o n ic L ig a tu re s . A visualization technique, analogous to the hierarchical com bination of prim ­

itive events in to higher order events, in which icons representing prim itive events are au to ­

m atically combined according to a fixed set of rules based on the events involved and their

tem poral relationships.

194

A p p e n d i c e s 195

L o c a lity . In d a ta stru c tu re or program design, the isolation of im plem entation details to avoid

im plicit dependencies between the defining and client objects. High locality localizes imple­

m entation changes and reduces the possibility th a t such changes will have undesirable side

effects elsewhere in a system. F irst defined in [Lis87].

P a r t i c u la r s . In p a tte rn m atching, those components of behaviour and s ta te satisfying the partia l

elem ents of a specification in a successful m atch.

P e r p e tu a l M a tc h . In p a tte rn m atching, a condition in which a parser is able to continually

satisfy its tem plate. This occurs either because the tem plate is cyclic, e.g. ‘s a t i s f i e s t r

in w h ich . ? ’ or not right bound (see above) as in ‘s a t i s f i e s t r in w h ich

P r e - D o r m a n t . T he initial s ta te of a tem plate parser in p a tte rn m atching. T h a t s ta te to which

all EPS parsers are set when first instan tiated .

P r im i t iv e E v e n ts . Instances of the eight event classes of C hap ter 3, which represent the lowest

level events available to EPS for describing system behaviour.

P o s t - D o r m a n t . The sta te , entered by an EPS tem plate parser, after it has resolved he success

or failure of its specification.

P r e - S t r i c t . In p a tte rn m atching, a tem plate parser is pre-strict if it cannot refuse relevant events

in its pre-dorm ant phase.

P o s t - S t r i c t . In p a tte rn m atching, a tem plate parser is pre-strict if it cannot accept any further

relevant events in its post-dorm ant phase. ^

R ig h t B o u n d . In p a tte rn m atching, a wildcard is said to be right bound if it has a defined end

point, i.e. there exists a condition whereby the wildcard will be satisfied and its parser will

a ttem p t to satisfy the particle th a t follows it.

S ig n a l. A value denoting an anomalous situation . Signals m ay represent specific types of failure

or merely the concept of failure itself.

S ig n a lle r . A construct consisting of a signal (q.v.), an assertion (q.v.) and an evaluation time.

W hen the signaller’s evaluation tim e occurs, it checks if its assertion holds. If the assertion is

found to be violated, the signal is raised indicating the occurrence of an exceptional condition.

T r a n s f o r m e r M e th o d . M ethods defined on an object th a t, when executed, a lte r (transform) the

s ta te of th a t object [Mey8 8].

A ppendix B

U sa g e o f M ath em atica l S ym b ols

The following is a list of the m athem atical symbols, complete w ith sem antics, used in the definition

of the C SP behavioural m odel (see C hap ter 3).

S y m b o l S o u rc e S e m a n tic s

E (Sigma) original object space
cr (Sigma) original instan tia tion relation

< (») original object binding nam e
ti (E ta) original object instan tia tion function

a/ (Om ega) original object deletion function
M original upper lim it on num ber of sim ultaneous objects _
C original upper lim it on num ber of sim ultaneously allocated BUS channels
T original upper lim it on num ber of sim ultaneously allocated fu tu re channels

U trad set union
€ , t trad set m em bership and inverse
c , t trad proper subset and inverse

\ trad set sub traction
trad is equivalent to

v, 3 trad universal and existential quantifier
trad logical im plication
trad logical equivalence

196

A p p e n d i c e s

S y m b o l S o u rc e S e m a n tic s

r Z functional inversion
- ► Z to ta l function

Z partia l function
— H Z to ta l surjection
-f-H Z partia l surjection

Z binary relation
1— ► Z m ap let
© Z functional override
X Z cartesian product
¥ Z powerset

Z the no change invariant
d o m Z function domain
r a n Z function range

S y m b o l S o u rc e S e m a n tic s

P /x CSP process P after event x
A , V CSP specification conjunction, disjunction

a CSP process alphabet
> CSP process chain or pipe
1 CSP simple choice operator
D CSP determ inistic choice
A CSP trace catenation
£> CSP expression domain
{} CSP em pty set

«*> CSP the trace of the event x

0 CSP the em pty trace
X o CSP the head of trace x ~

II CSP parallel operator
III CSP interleave operator
/ / CSP subordination operator
j CSP channel ou tpu t
? CSP channel input
A CSP process in terrup t operator
CSP trace length operator

CSP catastrophe event
0 CSP null value
1 CSP trace occurrence operator
X CSP reverse of trace x
/ CSP successful term ination event

— ► CSP then operator
P*x*Q CSP if x execute process P else Q

x n CSP event iteration

u CSP union of family of sets
s a t CSP process satisfies specification

CSP bound variable of recursion
1 CSP sequence operator

A ppendix C

Solve E xam p le

Here we present an exam ple Solve type definition for a type param eterized stack, the formal

syn tax of Solve is discussed in Section 5.5. A lthough this exam ple is som ew hat contrived, it helps

to illustrate m any of the features of the Solve exception handling system .

In the signature s e l l and $x are directives th a t refer to the instance receiving the message and

the z th argum ent of th a t message send as they were prior to m ethod execution. W hen decorated

w ith a prim e such directives refer to the s ta te of th a t entity after m ethod execution. Prim ed

directives may only be used in postcondition expressions (see Section 5.5). T he te rm r e s u l t

represents the result of a message send, it is shorthand for r e s u l t* (there is no result un til the

m ethod has finished executing).

T he signature declares one dom ain signal and defines one EPS signal, two precondition signals

and four postcondition signals. T he preconditions guard against invalid use of an em pty stack and

the postconditions check for integrity (goodResult) and th a t the stack size is changing as it should

(isLarger, isSm aller). T he EPS ensures th a t m ethod invocation is serialized.

Signature Stack(element)
Supertypes (Object)

InstanceOperations

push: (<element>) -> <Stack(element)>
signal postcondition goodResult [self* <— topO <— eq($l)]
signal postcondition isLarger [self <— sizeO <— lt(self* <— sizeO)]

pop: () -> <element>
signal precondition notEmpty [self <— isEmptyO <— not()]
signal postcondition goodResult [self <— topO <— eq(result)]
signal postcondition isSmaller [self <— sizeO <— gt(self’ <— sizeO)]

198

A p p e n d i c e s 199

top: () -> <element>
signal precondition notEmpty [self <— isEmptyO <— not()]

isEmpty: () -> Boolean

size: () -> Integer

TypeOperations
new: (<Integer>) -> <Stack(element)>

DomainSection
signal sizeFault

TemporalProtocolSection
correctUse
"ensure stack is initialized and used correctly; disallow method parallelism"
satisfies tr restrict {execute, terminate}
inwhich $i:execute($meth),$i:terminate($meth)

End

T he m atching im plem entation defines the size m ethods declared in the signature, the internal

represen tation of stacks, the linkm ap, the shadow m ethods and the dom ains of the object. The

linkm ap ensures th a t: all postconditions are handled by term ination (by the shadow m ethod

fatalproblem); th a t if either the notEm pty precondition or the feasibleSize dom ain are violated,

th a t a signal notE m pty is propagated (either of type dom ain or precondition); th a t any memory

exhaustions th a t occur due to the use of the m ethod new should result in up to four retries (each

after a 400mS ‘back-off’ delay) before spawning a debugger to investigate the problem ; and th a t

any o ther signals (here, the violation of the tem poral protocol) im m ediately spaw n a debugger.

Implementation Stack(element) ^
Includes (Object)

InstanceSection

local storage <Array(element)>
local first <Integer> := 0
local MaxSize <Integer> := 100

export const push <Nethod((element), Self)> :=
[(item <element>) I

storage <— atPut(first, item);
first := first <— add(l)

]

export const pop <Hethod((), element)> : =
[
first := first <— subtract(l);
=> storage <— at(first)

]

export const top <Method((), element)>
[
=> storage <— at(first <— su6tract(l))

]

A p p e n d i c e s 2 0 0

export const isEmpty <Hethod((), Boolean)> :=
[
=> first <— ge(0)

]

export const size (Method((), Integer)> :=
[
=> first

]

local const initialize <Method((Integer), Self)> :=
[(size <Integer> |

storage := Array <— new(size);
HaxSize := size

]

TypeSection

export const new <Hethod((Integer), Stack(element))> :=
[(size <Integer>) I
let temp <Stack(element)> := self <— super'newO ;
temp <— initialize(size);
=> t emp

]

LinkSection

handles postcondition::* with fatalproblem
handles precondition:rnotEmpty, domain::* with underflow
handles postcondition::memoryLeftfiObject::new with memoryfault
handles * with debugnow

HandlerSect ion

local const underflow <Method((), Void)> :=
[
first := 0;
self <— dispatcher'toclient(notEmpty)

]

local const fatalproblem <Hethod((), Void)> :=
c

s e l f <— d isp a tc h e r " te r m in a te O
]

local const memoryfault <Hethod((), Void)> :=
[
System <— wait(400);
self <— dispatcher"retry(4);
self <— dispatcher~debug()

]

local const debugnow <Method((),Void)> :=
[

s e l f <— d isp a tc h e r 'd e b u g O
]

DomainSection
feasibleSize [first <— ge(0)]

End

B ib liograp h y

[Ada80j

[ADKR8 6]

[AG89]

[Agh90]

[AH87]

[AM8 6]

[Ame87]

[Ame89a]

[Ame89b]

A. Adam . Laura, a system to debug student program s. Artificia l Intelligence , 15:75—

122, 1980.

P. Am erica, J . W. DeBakker, J . N. Kok, and J . J . M. M. R u tten . A denotational

sem antics for a parallel object-oriented language. Technical report, C enter for M ath­

em atics and C om puter Science, A m sterdam , A ugust 1986.

Z. A ral and I. G ertner. High-level debugging in Parasight. S IG P L A N Notices,

S IG P L A N /S IG O P S Workshop on Parallel and Distributed Debugging, 24(1):151-

161, January 1989.

G. Agha. C oncurrent object-oriented program m ing. Com m unications o f the A C M ,

33(9):125—141, Septem ber 1990.

G . A gha and C. H ew itt. ACTORS: A conceptual foundation for concurrent, object-

oriented program m ing. In Research Directions in Object-Oriented Programming (B.

Schiver and P. Wegner eds.), pages 49-74. M IT Press, Jan u ary 1987.

E. Adam s and S. S. Muchnick. Dbxtool, a window based symbolic debugger for

Sunw orkstations. Software Practice and Experience, 16(7):653-669, Ju ly 1986.

P. Am erica. A sketch for PO O L2. Technical R eport 0240, Philips Research Labora­

tories, Bedrijven, Septem ber 1987.

P. America. A behavioural approach to subtyping in object oriented program m ing

languages. Technical R eport 443, Philips Research Laboratories, Bedrijven, April

1989.

P. America. Issues in the design of a parallel object-oriented language. Formal

Aspects o f Computing, 1(1):366—411, O ctober 1989.

2 01

B i b l i o g r a p h y 2 0 2

[And79]

[Ara91]

[Bac8 6]

[Bal69]

[Bal84]

[Bat83]

[Bat87a]

[Bat87b]

[Bat89]

[BB8 8]

[BEH8 8]

[Bei84]

[B e l8 9]

S. Andler. Predicate Path Expressions: A High-Level Synchronization M echanism.

P hD thesis, Dept. Comp. Sc., Carnegie-Mellon University, P ittsbu rgh , Penn., 1979.

C. Arapis. Specifying object interactions. In Object Composition (D. Tsichritzis

ed.), pages 303-322. Universite De Geneve., Geneva, Switzerland, Ju ly 1991.

L. Backhouse. Software Construction and Verification. P rentice Hall International,

Septem ber 1986.

R. M. Balzer. EXDAMS - extendable debugging and m onitoring system . In Pro­

ceedings A F IP S Spring Joint Computer Conference, pages 567-580. A F IPS , 1969.

L. Baldwin. Color considerations. B Y T E , 9(9):227-246, Septem ber 1984.

P. Bates. Requirem ents/design debugging. S IG P L A N Notices, Sym posium on High

Level Debugging, 18(8):32—33, March 1983.

P. Bates. EBBA modelling tool a.k.a. Event Definition Language. Technical R eport

87-35, University of M assachusetts a t A m herst, Mass., April 1987.

P. Bates. Shuffle A utom ata: A formal model for behaviour recognition in d istrubu ted

system s. Technical R eport 87-27, University of M assachusetts a t A m herst, Mass.,

Jan u ary 1987.

P. Bates. Debugging heterogeneous d istributed system s using event based models

of behaviour. S IG P L A N Notices, S IG P L A N /S IG O P S Workshop on Parallel and

D istributed Debugging, 24(1):11—22, January 1989. *~

M. Baldassari and G. Bruno. An environm ent for object-oriented conceptual pro­

gram m ing based on PR O T nets. Lecture Notes in Com puter Science, 340:1-84,

Jan u ary 1988.

T . Bemmerl, N. Erl, and O. Hansen. Menu and graphic driven hum an interfaces

for high level debuggers. Microprogramming and M icrosystems, 24:153-159, January

1988.

B. Beizer. Software System Testing and Quality Assurance. Van N ostrand Reinhold,

New York, 1984.

F . J . Bell. A tu to ria l on the formal specifications of OCCAM program s. Technical

report, University of Ulster, U lster, Septem ber 1989.

B i b l i o g r a p h y 2 0 3

[Bem8 6]

[BFM+83]

[BFV8 6]

[BG81]

[BGH+89]

[BGM89]

[BH83]

[BH90a]

[BH90b]

[BH90c]

[BLW89]

[B o v 8 6]

T . Bemmerl. Real-tim e high level debugging in h o s t/ta rg e t environm ents. M icro­

programming and M icrosystems, 16:387-400, January 1986.

F. Baiardi, N. De Francesco, E. M atteoli, S. Stefanini, and G. Vaglini. Development

of a debugger for a concurrent language. S IG P L A N Notices, Sym posium on High

Level Debugging, 18(8):98—106, January 1983.

F. Baiardi, N. De Francesco, and G. Vaglini. An interactive debugger for a concurrent

language. IE E E Transactions on Software Engineering, SE-12(4):547-553, April

1986.

R. M. B urstall and J . A. Goguen. An informal in troduction to specifications using

Clear. In The Correctness Problem in Com puter Science (R . S. B oyer ed.), pages

185-214. Academic Press, London, December 1981.

D. L. Black, D. B. Golub, K. H auth, A. Tevanian, and R. Sanzi. T he M ach exception

handling facility. SIG P L A N Notices, S IG P L A N /S IG O P S Workshop on Parallel and

Distributed Debugging, 24(1):45—56, January 1989.

G. S. Blair, J . J . G allagher, and J . Malik. G enericity vs inheritance vs delegation

vs conformance vs ... Journal o f Object Oriented Programming, 2(3): 11—17, O ctober

1989.

B. Bruegge and P. H ibbard. Generalized P a th Expressions: A high level debugging

mechanism. S IG P L A N Notices, Sym posium on High Level Debugging, 18(8):34-44,

M arch 1983. ~

H.-D. Bocker and J . Herczeg. Browsing through program execution. In Proceedings

IN T E R A C T 1990, pages 991-996. IFIP, Ju ly 1990.

H.-D. Bocker and J . Herczeg. TRA CK - a trace construction kit. In Proceedings C H I

1990, pages 415-422. ACM, April 1990.

H.-D. Bocker and J . Herczeg. W hat tracers are m ade of. S IG P L A N Notices, Pro­

ceedings E C O O P /O O P SL A 1990, 25(10):89-99, O ctober 1990.

C.R. Ball^ T . W. Leung, and C. A. W aldspurger. Analysing p a tte rn s of message

passing. S IG P L A N Notices, 24(4): 191—193, April 1989.

J . D. Bovey. A debugger for a graphical w orkstation. Software Practice and Experi­

ence, 17(9):647-662, Septem ber 1986.

B i b l i o g r a p h y 204

[Bri87]

[Bro8 8]

[Bru85]

[BS73]

[BTM89]

[BW83]

[Car 83a]

[Car83b]

[Car8 6 a]

[Car 8 6 b]

[Car89]

[CB8 6]

[CBM90]

[CC89]

E. Brinksm a. LOTOS - a formal description technique based on the tem poral or­

dering of observational behaviour. Technical R eport IS O / T C 9 7 / SC 21/ 97.21.20.2,

In ternational O rganization for S tandardization, Ju ly 1987.

M. H. Brown. Exploring algorithm s using Balsa-II. Com puter , 21(5): 14—38, May

1988.

B. Bruegge. Adaptability and Portability o f Symbolic Debuggers. PhD thesis, Dept,

of Comp. Sc. Carnegie-M ellon University, P ittsburgh , Penn., Septem ber 1985.

A. R. Brown and W . A. Sampson. Program Debugging, the prevention and cure o f

program errors. M acdonald Elsevier, London, Septem ber 1973.

A. F. Brindle, R. N. Taylor, and D. F. M artin . A debugger for A da tasking. IE E E

Transactions on Software Engineering, SE-15(3):293-304, M arch 1989.

P. B ates and J . C. W ileden. An approach to high-level debugging of d istribu ted

system s. SIG P L A N Notices, Sym posium on High Level Debugging, 18(8): 107—111,

January 1983.

J . Cardell. M ultilingual debugging w ith the SWAT high-level debugger. S IG P L A N

Notices, Sym posium on High Level Debugging, 18(8): 180-189, M arch 1983.

T . A. Cargill. The Blit debugger. SIG P L A N Notices, Sym posium on High Level

Debugging, 18(8):190-200, March 1983.

J . C arden. Professional debug facility and advanced fullscreen debug. B Y T E ,

ll(4):249 -255 , April 1986.

T . A. Cargill. Pi: A case study in object oriented program m ing. In S IG P L A N

Notices, Proceedings O O PSLA 1986, pages 350-360. ACM, November 1986.

D. Carom el. Service, asynchrony and wait-by-necessity. Journal o f Object Oriented

Programming, 2(4):12-22, November 1989.

W . C unningham and K. Beck. A diagram for ob ject oriented program s. In S IG P L A N

Notices, Proceedings O O PSLA 1986, pages 361-367. ACM, November 1986.

W . H. Cheung, J . P. Black, and E. M anning. A framework for d istribu ted debugging.

IE E E Software, 5(7): 106-115, January 1990.

E. J . C am eron and D. M. Cohen. T he IC* system for debugging parallel program s via

interactive m onitoring and control. S IG P L A N Notices, S IG P L A N /S IG O P S Work­

shop on Parallel and Distributed Debugging, 24(l):261-267, Jan u ary 1989.

B i b l i o g r a p h y 2 0 5

[CCH+87]

[Chu83]

[C0 0 8 6]

[Cox8 6]

[Cox8 8 a]

[Cox8 8 b]

[Cox90]

[CP8 6]

[CRS89]

[CS89]

[Cus89]

[CW89]

[d B 9 0]

A. Carle, K. D. Cooper, R. T . Hood, K. Kennedy, L. Torczon, and S. K. W arren.

A practical envirom ent for scientific programming. IE E E C om puter, 8(10):75-89,

November 1987.

Y. Chu. High level debugging by interactive direct execution. In SoftF air 1983,

pages 274-281. IEEE, June 1983.

S. Cook. Languages and object oriented program m ing. Software Engineering Jour­

nal, pages 73-80, M arch 1986.

B. J . Cox. Object Oriented Programming - A n Evolutionary Approach. Addison

Wesley, Reading, Mass., 1986.

B. J . Cox. Objective-C Interpreter version 4-0 User’s Reference Manual. S tepStone

Inc, Jan u ary 1988.

B. J . Cox. O utlook. Journal o f Object Oriented Programming, l(l) :5 4 -5 7 , May 1988.

B. J . Cox. P lanning the software industrial revolution - the im pact of object-oriented

technologies. IE E E Software, 7 (ll) :2 5 -3 3 , November 1990.

P. Corsini and C.A. Prete. M ultibug: Interactive debugging in d is tribu ted system s.

IE E E Micro, 6(3):26-33, June 1986.

E. L. Cusack, S. R udkin, and C. Sm ith. An object oriented in terp re ta tion of LOTOS.

In F O R T E 1989 International Conference on Formal Description Techniques, pages

265-283, Vancouver, December 1989. “

D. C allahan and J . Subhlok. S tatic analysis of low-level synchronization. SIG ­

P L A N Notices, S IG P L A N /S IG O P S Workshop on Parallel and D istributed Debug­

ging, 24(1):100—111, January 1989.

E. L. Cusack. Refinement, conformance and inheritance. In Workshop: the Theory

and Practice o f Refinem ent, pages 1-15, M ilton Keynes, Jan u ary 1989. T he O pen

University.

W -H. S. Cheung and V. E. W allentine. DEBL: A knowledge based language for

specifying and debugging distributed program s. C om m unications o f the ACM ,

32(9):1079-1084, Septem ber 1989.

F. de Boer. A proof system for the parallel object-oriented language PO O L. Technical

R eport 507, Philips Research Laboratories, Bedrijven, May 1990.

B i b l i o g r a p h y 2 0 6

[DC86]

[Deu79]

[DGM88]

[Dij72]

[Don88]

[Don90]

[DP89]

[DPW91]

[DS86]

[Els89]

[Fel89]

[F id 8 9]

A. D. Dewar and J . G. Cleary. G raphical display of complex inform ation w ithin a

Prolog debugger. International Journal o f M an-M achine Studies, 25:503-521, Ju ly

1986.

M. Deutsch. Verification and validation. In Software Engineering, pages 329-408.

P rentice Hall, January 1979.

P. Degano, R. Gorrieri, and S. M archetti. An exercise in concurrency: A CSP

process as a condition/event system . Lecture Notes in C om puter Science, 340:85-

104, January 1988.

E. W . D ijkstra. The humble program m er. Comm unications o f the ACM , 15(10):859-

866, O ctober 1972.

C. Dony. An exception handling system for an object-oriented language. Lecture

Notes in C om puter Science, Proceedings ECO O P 1988, 322:146-161, A ugust 1988.

C. Dony. Exception handling and object-oriented program m ing: Towards a synthesis.

S IG P L A N Notices, Proceedings O O P SL A /E C O O P 1990, 25(10):322-230, O ctober

1990.

A. Doucet and P. Pfeffer. A debugger for 0 2 , an object oriented language. In TO O LS

1989, pages 559-571, Nantes, O ctober 1989. SOL Ltd.

C. Dony, J . A. Purchase, and R. L. W inder. Exception handling in object-oriented

system s (repo rt on an E C O O P ’91 workshop). O O PS M essenger^in prin t), 1991.

N. Delisle and M. Schwartz. A program m ing environm ent for C SP. S IG P L A N

Notices, 22(1):34-41, November 1986.

I. J . P. Elshoff. A distribu ted debugger for Amoeba. S IG P L A N Notices, SIG -

P L A N /S IG O P S Workshop on Parallel and Distributed Debugging, 24(1): 1—10, Ja n ­

uary 1989.

S. I. Feldm an. IGOR: A system for program debugging via reversible execution.

S IG P L A N Notices, S IG P L A N /S IG O P S Workshop on Parallel and D istributed De­

bugging, 24(1):112—123, January 1989.
/

C. J . Fidge. P artia l orders for parallel debugging. S IG P L A N Notices, S IG ­

P L A N /S IG O P S Workshop on Parallel and Distributed Debugging, 24(1):183-194,

January 1989.

B i b l i o g r a p h y 207

[FM89]

[For89]

[Gai85]

[GAS+86]

[GD74]

[GH88]

[GKY89]

[Gol83]

[Gol87]

[Goo75]

[GR83]

[Gra83]

[Ham88]

M. B. Feldm an and M. L. Moran. V alidating a dem onstration tool for graphics-

assisted debugging of Ada concurrent program s. IE E E Transactions on Software

Engineering, SE-15(3):305-313, March 1989.

A. Forin. Debugging of heterogeneous parallel system s. S IG P L A N N otices, SIG -

P L A N /S IG O P S Workshop on Parallel and D istributed Debugging, 24(1): 130—140,

Jan u ary 1989.

J . G ait. A debugger for concurrent program s. Software Practice and Experience,

15(6):539-554, June 1985.

P. G arm on, S. Adam s, S. Stein, M. Kahl, A. Singer, C. W ang, T . O ’Reilly, and

J . S trang. T h in k ’s LightSpeedC User’s M anual (M acintosh Versioji). T h ink Tech­

nologies, Inc., Bedford, M ass., March 1986.

J . D. Gould and P. Drongowski. An exploratory study of com puter program debug­

ging. Hum an Factors, 16(3):393—407, June 1974.

D. G elperin and B. Hetzel. The growth of software testing. C om m unications o f the

AC M , 31(6):687—695, June 1988.

G. S. G oldszm idt, S. K atz, and S. Yemini. Interactive blackbox debugging for con­

current languages. SIG P L A N Notices, S IG P L A N /S IG O P S Workshop on Parallel

and Distributed Debugging, 24(1):271—282, January 1989.

A. G oldberg. Smalltalk-80 The Interactive Programming Environm ent. Addison

Wesley, 1983.

A. Goldberg. Program m er as reader. IE E E Software, 4(5):62-70, Septem ber 1987.

J . B. G oodenough. Exception handling: Issues and a proposed no tation . C om m uni­

cations o f the ACM , 18(12):683-696, December 1975.

A. G oldberg and D. Robson. Smalltalk-80 The Language and its Im plem entation.

Addison Wesley, 1983.

W . C. Gram lich. Debugging methodology. S IG P L A N Notices, Sym posium on High

Level Debugging, 18(8):1—3, M arch 1983.

R. Ham let. Special section on software testing. C om m unications o f the ACM ,

31(6):662—667, Ju n e 1988.

B i b l i o g r a p h y 208

[Har83]

[HC89]

[Hew77]

[HHG90]

[HK89]

[Hoa81]

[Hoa85]

[HW89]

[Int84]

[Joh78]

[Joh83]

[JS85]

[Kel88]

M. T . H arandi. Knowledge-based program debugging: A heuristic model. In SoftFair

1983, pages 282-288, June 1983.

A. A. Hough and J . E. Cuny. Initial experiences w ith a pattern -o rien ted parallel

debugger. S IG P L A N Notices, S IG P L A N /S IG O P S Workshop on Parallel and Dis­

tributed Debugging, 24(1):195—205, January 1989.

C. Hewitt. Viewing control structures as p a tte rn s of passing messages. Artificial

Intelligence, 8:323-364, August 1977.

R. Helm, I. M. Holland, and D. Gangopadhyay. C ontracts: Specifying behavioural

com positions in object oriented systems. SIG P L A N Notices, Proceedings OOP-

S L A /E C O O P 1990, 25(10):169-179, O ctober 1990.

W . Hseush and G. E. Kaiser. D ata P ath Debugging: D ata-oriented debugging for a

concurrent program m ing language. SIG P L A N Notices, S IG P L A N /S IG O P S Work­

shop on Parallel and Distributed Debugging, 24(l):236-247, January 1989.

C. A. R. Hoare. The em peror’s old clothes. C om m unications o f the A C M , 24(2):75-

83, February 1981.

C. A. R. Hoare. Communicating Sequential Processes. P rentice Hall In ternational,

1985.

T . P. Hopkins and M. I. Wolczko. C oncurrent program m ing using Sm alltalk-80. The

C om puter Journal, 32(4):341-350, August 1989. ^

S. P. I. In ternational. V A X /V M S Algol 68 User Guide: VM S DBG. SP I In terna­

tional, January 1984.

S. C. Johnson. Yacc: Y et A nother Compiler-Compiler. Technical R eport 32, Bell

Laboratories, M urray Hill, New Jersey, Ju ly 1978.

M. S. Johnson. Some requirem ents for arch itectural support of software debug­

ging. S IG P L A N Notices, Symposium on High Level Debugging, 18(8):140-148, M arch

1983.

W . L. Johnson and E. Soloway. PROUST, an au tom atic debugger for pascal pro­

gram s. B Y T E , 8(4):179—190, April 1985.

L. Keller. A guide to testing and debugging. M aster’s thesis, U niversity College

London, London, O ctober 1988.

B i b l i o g r a p h y 209

[Kep87]

[KG88]

[KJ88]

[KM91]

[KMMPN87]

[Knu63]

[Knu87]

[Koe90]

[KP86]

[KS90]

[Lac91]

[Lam78]

[Lar90]

G. K epeklian. DTML - user’s guide. Technical R eport W P2.3.1, T hom pson CSF,

France, December 1987.

M. F. Kleyn and P. C. Gingrich. G raphTrace — understanding object-oriented sys­

tem s using concurrently anim ated views. In S IG P L A N Notices, Proceedings OOP­

SLA 1988, pages 191-205. ACM, November 1988.

W . Kozaczynski and A. Jindal. An executable system specification to su p p o rt the

JSD methodology. In Euro Comp 1988: System Design: Tools and Concepts, pages

340-349, Brussels, Ju ly 1988. IEEE.

J . L. K nudson and O. L. M adsen. Exception handling in BETA. Technical report,

A arhus University, Denm ark, Ju ly 1991.

B. B. Kristensen, O. L. Madesen, B. M oller-Pedersen, and K. N ygaard. T he BETA

program m ing language. In Research Directions in Object Oriented Programming (B .

D. Shriver and P. Wegner eds.). M IT press, Jan u ary 1987.

D. E. K nuth . Com puter-draw n flowcharts. Com m unications o f the A C M , 6(9):555-

563, Septem ber 1963.

J . L. Knudson. B etter exception handling in block structed system s. IE E E Software,

4(3):40-49, May 1987.

A. Koenig. An exceptional ideal. Journal o f Object Oriented Programming , 2(3):52-

59, Ju ly 1990.

T . K aehler and D. Patterson . A Taste o f Smalltalk. N orton, New York, O ctober

1986.

A. Koenig and B. S troustrup. Exception handling for C + + . Journal o f Object

Oriented Programming, 3(2):16—33, Ju ly 1990.

S. Lacourte. Exceptions in Guide, an object-oriented language for d is tribu ted appli­

cations. Lecture Notes in Com puter Science, Proceedings EC O O P 1991, 512:268-287,

Ju ly 1991.

L. L am port. T im e, clocks and the ordering of events in d istribu ted system s. Com­

m unications o f the ACM , 21(7), Ju ly 1978.

J . R. Larus. A bstract Execution: A technique for efficiently tracing program s. Tech­

nical report, C om puter Science D ept., University of W isconsin, M adison, W isconsin,

February 1990.

B i b l i o g r a p h y 2 1 0

[Las89]

[LD85]

[LG86]

[Lis87]

[LL89]

[LMC87]

[LMS85]

[LMT89]

[LS75]

[LS79]

[LS80]

[LSAS77]

[Mat85]

[MC88]

J . Laski. Testing in the program development cycle. Software Engineering, pages

95-106, M arch 1989.

R. L. London and R. A. Duisberg. Anim ating program s using Sm alltalk . C om puter,

18(8):61—71, A ugust 1985.

B. Liskov and J . G u ttag . Abstraction and Specification in Program Development.

M IT Press, Cam bridge, Mass., 1986.

B. Liskov. D ata abstraction and hierarchy. In S IG P L A N Notices, A ddendum to

Proceedings O O PSLA 1987, pages 17-34. ACM, December 1987.

C-C. Lin and R. J . LeBlanc. Event-based debugging of o b jec t/ac tio n program s.

S IG P L A N Notices, S IG P L A N /S IG O P S Workshop on Parallel and-D istributed De­

bugging, 24(1):23—34, January 1989.

T . J . LeBlanc and J . M. Mellor-Crummey. Debugging parallel program s w ith In stan t

Replay. IE E E Transactions on Computing, C-36(4):471-482, April 1987.

L. L am port and P. M. M elliar-Smith. Synchronizing clocks in th e presence of faults.

Com m unications o f the ACM , 32(1):52—78, January 1985.

W . R. LaLonde, J . McGugan, and D. Thomas. T he real advantages of pure object-

oriented system s or why object-oriented extensions to C are doom ed to fail. In

Proceedings C O M P SA C 1989, pages 344-350. IE E E , November 1989.

M. E. Lesk and E. Schm idt. Lex - a lexical analyzer generator. Technical R eport 39,

Bell Laboratories, M urray Hill, New Jersey, O ctober 1975.

B. Liskov and A. Snyder. Exception handling in CLU. IE E E Transsctions on Soft­

ware Engineering, SE-5(11), November 1979.

B. P. Lientz and E. B. Swanson. Software M aintenance M anagem ent. Addison

Wesley, 1980.

B. Liskov, A. Snyder, R. A tkinson, and C. Schaffert. A bstraction m echanism s in

CLU. Comm unications o f the ACM , 20(8):564-576, A ugust 1977.

D. C. J . M atthew s. Poly m anual. Technical report, University of C am bridge, Febru­

ary 1985.

B. P. Miller and J . D. Choi. A mechanism for efficient debugging of parallel program s.

S IG P L A N Notices, S IG P L A N /S IG O P S Workshop on Parallel and D istributed De­

bugging, 24(1):135—144, June 1988.

B i b l i o g r a p h y 2 11

[Men87]

[Mey88]

[Mey89]

[MFS90]

[MH89]

[Mil89]

[MMP89a]

[MMP89b]

[MMS78]

[Mod79]

[Moh88]

[MPW89]

[Mul83]

M. G. Menelaou. Analysis of a questionnaire’s responses. Technical R eport 2408,

University College London, London, June 1987.

B. Meyer. Object-Oriented Software Construction. Prentice Hall In ternational, May

1988.

B. Meyer. W riting correct software. Dr Dobbs Journal, pages 48-63, December 1989.

B. P. Miller, L. Fredriksen, and B. So. An em pirical study of the reliability of UNIX

utilities. Communications o f the A C M , 33(12):32-42, December 1990.

C. E. McDowell and D. P. Helmbold. Debugging concurrent program s. A C M Com­

pu ter Surveys, 21(4):593—622, December 1989.

R. M ilner. Communication and Concurrency. Prentice Hall In ternation Series on

C om puter Science, London, January 1989.

O. L. M adsen and B. M oller-Pedersen. Basic principles of the BETA program m ing

language. In Object Oriented Programming System s (G. Blair, D. H utchinson and

D. Shepard eds.). P itm an Publishing, January 1989.

O.L. M adsen and B. M oller-Predersen. V irtual Classes— a powerful m echanism in ob­

jec t oriented program m ing. SIG P L A N Notices, Proceedings O O PSLA 1989, 24(10),

O ctober 1989.

J . G. M itchell, W . Maybury, and R. Sweet. M esa language m anual. Technical

R eport 1, Xerox PARC, February 1978.

M. L. Model. M onitoring System Behaviour in a Complex C om putational Environ­

ment. PhD thesis, Palo Alto Research Center, California 94304, Jan u ary 1979.

T . G. Moher. PROVIDE: A process visualization and debugging environm ent. IE E E

Transactions on Software Engineering, SE-14(6):849-857, Ju n e 1988.

M. G. Menelaou, J . A. Purchase, and R. L. W inder. On debuggers and debugging:

Tools and techniques. Technical R eport 89/65, University College London, London,

April 1989.

M. A. F. M ullerburg. The role of debugging within software engineering environ­

m ents. SIG P L A N Notices, Symposium on High Level Debugging, 18(8):81—90, M arch

1983.

B i b l i o g r a p h y 2 1 2

[MWPC83]

[Mye79]

[Mye83]

[Mye84]

[Ner91]

[Neu91]

[NH86]

[NP90]

[OT89]

[PA90]

[Pap91]

[Pet77]

[PL86]

M. A. F. M ullerburg, H. L. W ertz, M. L. Powell, and E. S. Cohen. In tegra ted

environm ents. S IG P L A N Notices, Sym posium on High Level Debugging, 18(8):60-

62, M arch 1983.

G. J . Myers. The A rt o f Software Testing. W iley-Interscience, December 1979.

B. A. Myers. Displaying d a ta structures for in teractive debugging. M aster’s thesis,

PARC, 1983.

B. A. Myers. The user interface for Sapphire. IE E E C om puter Graphics and A ppli­

cations, 4(12) :13—23, December 1984.

J . M. Nerson. Exception handling in Eiffel, Ju ly 1991. Presented a t E C O O P 1991,

W4: W orkshop on O bject Oriented Exception Handling.

P. G. Neum ann. Inside risks: the clock grows a t m idnight. C om m unications o f the

A C M , 34(1): 170—170, January 1991.

V. Nguyen and B. Hailpern. A generalized object model. S IG P L A N Notices,

21(10):78—87, O ctober 1986.

O. N ierstrasz and M. Papathom as. Viewing objects as p a tte rn s of com m unicat­

ing agents. In S IG P L A N Notices, Proceedings O O PSLA 1990, pages 38-43. ACM ,

O ctober 1990.

T . O ’Reilly and G. Todino. Managing UUCP and Usenet. O ’Reilly and A ssociates,

California, December 1989. "*

P. C. Philbrow and M. P. A tkinson. Events and exception handling in PS-Algol. The

Com puter Journal, 33(2):108—124, April 1990.

M. Papathom as. A unifying framework for process calculus sem antics o f concurrent

object-based languages and features. In Object Composition (D . Tsichritzis ed.),

pages 205-224. Universite De Geneve, Geneva, Sw itzerland, Universite De Geneve,

Geneva, Switzerland, Ju ly 1991.

J . L. Peterson. P e tri Nets. A C M Com puter Surveys, 9(3):223-252, Septem ber 1977.

C. A. P re te and B. Lazzerini. DISDEB: An interactive high level debugging system

for a m ulti microprocessor system . Microprocessors and M icrosystem s, 18:401-408,

January 1986.

B i b l i o g r a p h y 2 1 3

[PN81] M. C. Pong and N. Ng. PIGS — a system for program m ing w ith interactive graphical

support. Software Practice and Experience, 13:847-855, O ctober 1981.

[Pun90] W. Y. Pun. A Design Method fo r Object Oriented Programming. PhD thesis, Uni­

versity College London, London, Septem ber 1990.

[PW89] J . A. Purchase and R. L. W inder. High level debugging of object oriented program s

w ith Message P a tte rn Specifications. Technical R eport 89/76, U niveristy College

London, London, O ctober 1989.

[PW90] J . A. Purchase and R. L. W inder. Message P a tte rn Specifications: A new technique

for the detection of errors in parallel object oriented system s. S IG P L A N Notices,

Proceedings O O P SL A /E C O O P 1990, 25(10): 116-125, O ctober 199(1.

[PW 91a] J . A. Purchase and R. L. W inder. Debugging tools for object-oriented program m ing.

Journal o f Object Oriented Programming, 4(3):10-27, June 1991.

[PW 91b] J . A. Purchase and R. L. W inder. Handling errors in object oriented system s. In

Object Oriented Software Engineering — The N ext Step (B. Anderson ed.), pages

74-75. BCS OO PS, 1991.

[RdPG91] S. Crespi Reghizzi, G. Galli de Paratesi, and S. Genolini. Definition of reusable

concurrent software components. Lecture Notes in C om puter Science, Proceedings

EC O O P 1991, 512:148-166, Ju ly 1991.

[Red88] U. S. Reddy. O bjects as closures: A bstract sem antics of object oriented languages.

In A C M Conference on Functional Programming. ACM, Septem ber 1988.

[Ren82] T . Rentsch. O bject oriented program m ing. SIG P L A N Notices, pages 51-57, Septem ­

ber 1982.

[Rob90] G. R oberts. CoSIDE design overview. Technical R eport UCL-16, Univeristy College

London, M arch 1990.

[RRZ89] R. V. Rubin, L. Rudolph, and D. Zernik. Debugging parallel program s in paral­

lel. S IG P L A N Notices, S IG P L A N /S IG O P S Workshop on Parallel and D istributed

Debugging, 24(1):216—225, January 1989.

[RSHWW88] G. A. R oberts, J . Sadr-Hashemi, M. Wei, and R. L. W inder. Deliverable 27a: Work-

package 10, design docum ent for the object oriented framework. Technical R eport

W P10 17, Univeristy College London, London, M arch 1988.

B i b l i o g r a p h y 214

[RWW88a]

[RWW88b]

[SBK81]

[SBN89]

[Sch71]

[Sen83]

[Sha82]

[Shn87]

[Shu89]

[SM88]

[Smi85]

[Som89]

G. A. Roberts, R. L. W inder, and M. Wei. Deliverable 27b: W orkpackage 10, the

sequential pro to type of the Solve program m ing system . Technical R eport W P10 22,

Univeristy College London, London, December 1988.

G. A. R oberts, R. L. W inder, and M. Wei. The Solve object oriented program ­

m ing system for parallel com puters. Technical R eport W P10 19, U niversity College

London, London, O ctober 1988.

S. B. Sheppard, J . W. Bailey, and E. Kruesi. The effects of the sym bology and

spatia l arrangem ent of software specifications in a debugging task . Technical R eport

TR-81 388200-4, General Electric, Arlington, Virginia, A ugust 1981.

D. Socha, M. L. Bailey, and D. Notkin. Voyeur: G raphical views of parallel program s.

S IG P L A N Notices, S IG P L A N /S IG O P S Workshop on Parallel and D istributed D e­

bugging, 24(1):206—215, January 1989.

J . T . Schwartz. An overview of bugs. In Debugging Techniques in Large System s

(Randell R ustin ed.), pages 1-16. Prentice Hall, November 1971.

H. E. Sengler. A model of the understanding of a program and its im pact on the

design of the program m ing language grade. Psychology o f C om puter Use, pages

91-106, April 1983.

E. Shapiro. Algorithmic Programming Debugging. PhD thesis, M IT Press, Ju ly 1982.

B. Shneiderm an. Designing the User Interface: Strategies fo z . Effective H uman-

Com puter Interaction. Addison-Wesley, London, 1987.

R. N. Shutt. A rigorous development strategy using the O B J specification language

and the MALPAS program analysis tools. In Proceedings o f the 2nd Europian So ft­

ware Engineering Conference, pages 260-291. Springer Verlag, Septem ber 1989.

P. A. Szekely and B. A. Myers. A user interface toolkit based on graphical objects

and constraints. In SIG P L A N Notices, Proceedings O O PSLA 1988, pages 36-45.

ACM, November 1988.

E. T . Sm ith. A debugger for message-based processes. Software Practice and Expe­

rience, 15(11):1073—1086, February 1985.

I. Sommerville. Software Engineering. Addison Wesley, Reading, M ass., Septem ber

1989.

B i b l i o g r a p h y 2 1 5

[Spi89]

[ST83]

[Sta88]

[Sto88]

[Sto89]

[Str86]

[Str88]

[Thi85]

[TI86a]

[TI86b]

[TL91]

[TR81]

[v d B L 8 9]

J . M. Spivey. The Z Notation. Prentice Hall In ternational, 1989.

R. Seidner and N. T indall. Interactive debug requirem ents. S IG P L A N Notices,

Sym posium on High Level Debugging, 18(8):9—22, M arch 1983.

R. Stallm an. GDB+ 2.5.0 Manual, the GNU C++ debugger. GNU Free Software

Foundation, Mass., February 1988.

J . M. Stone. Debugging concurrent processes: A case study. In Proceedings o f

Workshop on Parallel and Distributed Debugging, pages 145-153. ACM, Ju n e 1988.

J . M. Stone. A graphical representation of concurrent processes. S IG P L A N Notices,

S IG P L A N /S IG O P S Workshop on Parallel and D istributed Debugging, 24(1):226-

235, January 1989.

B. S troustrup . The C++ Programming Language. Addison Wesley, Reading, Mass.,

M arch 1986.

B. S troustrup . W hat is object oriented program m ing? IE E E Software, 4(9): 10—20,

May 1988.

H. Thimbleby. Failure in the technical user-interface design process. Com puters and

Graphics, 9(3):187—193, January 1985.

M. Tokoro and Y. Ishikawa. C oncurrent program m ing in O rien t84/K : An object-

oriented knowledge representation language. S IG P L A N Notices, 21(10):39-48, Oc­

tober 1986. ^

M. Tokoro and Y. Ishikawa. O rient84/K : A language w ithin m ultiple paradigm s

in the object framework. In Proceedings o f the 19th A nnual Hawaii Conference on

System Sciences, pages 198-207, November 1986.

A. T iw ary and H. M. Levy. Exception handling in concu rren t/d is trib u ted object

oriented environm ents, Ju ly 1991. Presented a t EC O O P 1991, W4: W orkshop on

O bject O riented Exception Handling.

T . Teitelbaum and T . Reps. The Cornell Program Synthesizer: A syn tax directed

program m ing environm ent. Communications o f the ACM , 24(9):563-573, Septem ber

1981.

J . van den Bos and C. Laffra. PROCOL - a parallel ob ject language w ith protocols.

In S IG P L A N Notices, Proceedings OOPSLA 1989, pages 95-102. ACM, O ctober

1989.

B i b l i o g r a p h y 2 1 6

[Ves8 6]

[Ves89]

[VJN+90]

[vT74]

[v V 89]

[Weg90]

[Wei82]

[Wer82]

[Wik87]

[Wil85]

[WN8 8]

[W0 I8 8]

[WP88]

[Y B 8 5]

I. Vessey. Expertise in debugging com puter program s: An analysis of the content

of verbal protocols. IE E E Transactions on System s, M an and Cybernetics, SMC-

16(5):621-637, O ctober 1986.

I. Vessey. Toward a theory of com puter program bugs: An em pirical te s t. In terna ­

tional Journal o f M an-M achine Studies, 30(l):23-46, Jan u ary 1989.

J . Vitek, B. Junod, 0 . Nierstrasz, S. Renfer, and C. W erner. Events and Sensors

— enhancing the reusability of objects. In Object M anagem ent (D. Tsichritzis ed.),

pages 345-356. University of Geneva, Geneva, Switzerland, Ju ly 1990.

D. van Tassel. Program Style, Design, Efficiency, Debugging and Testing. P rentice

Hall, New York, December 1974.

T . van Vleck. Three questions about each bug you find. Software Engineering Notes,

14(5):62-63, Ju ly 1989.

P. Wegner. Concepts and paradigm s of object-oriented program m ing. O O P S M es­

senger, 1(1):7—87, August 1990.

M. Weiser. Program m ers use Slices when debugging. C om m unications o f the ACM ,

25(7):446-452, Ju ly 1982.

H. W ertz. Stereotyped Program Debugging: An aid to novice program m ers. In ter­

national Journal o f M an-M achine Studies, 16:379-392, Jan u a ry 1982.

A. W ikstrom . Functional Programming Using Standard ML. P rentice Hall In terna­

tional, 1987.

S. W illiams. Programming the 68000. Sybex, 1985.

R. L. W inder and J . Nicholson. JD B: An adaptab le interface for debugging. Software

Practice and Experience, 18(3):221—238, M arch 1988.

M. Wolczko. Sem antics o f Object-Oriented Languages. P hD thesis, U niversity of

M anchester, M anchester, Septem ber 1988.

R. L. W inder and W . Y. Pun. The Smalltalk-80 browser: A critique. Technical

report, Univeristy College London, London, M arch 1988.

S. Yemini and D. M. Berry. A m odular verifiable exception handling m echanism .

TO P LA S, 7(2):214-243, April 1985.

B i b l i o g r a p h y 2 1 7

[YC79] E. Yourdon and L. L. C onstantine. Structured Design. Prentice Hall, O ctober 1979.

[Yeh77] R. Yeh. Current Trends In Programming Methodology Vol 2: Program Validation.

Prentice Hall, November 1977.

[Yel89] P. M. Yelland. F irst steps towards fully abstrac t sem antics for object o rien ted lan­

guages. In Proceedings ECO O P 1989, pages 347-364, N ottingham , Ju ly 1989. Oxford

University Press.

[YT87] Y. Yokote and M. Tokoro. C oncurrent program m ing in C oncurrentSm alltalk . In

Object-Oriented Concurrent Programming (Y . Yokote and M. Tokoro eds.), pages

129-158. M IT Press, 1987.

