330 research outputs found

    Morphing of Triangular Meshes in Shape Space

    Get PDF
    We present a novel approach to morph between two isometric poses of the same non-rigid object given as triangular meshes. We model the morphs as linear interpolations in a suitable shape space S\mathcal{S}. For triangulated 3D polygons, we prove that interpolating linearly in this shape space corresponds to the most isometric morph in R3\mathbb{R}^3. We then extend this shape space to arbitrary triangulations in 3D using a heuristic approach and show the practical use of the approach using experiments. Furthermore, we discuss a modified shape space that is useful for isometric skeleton morphing. All of the newly presented approaches solve the morphing problem without the need to solve a minimization problem.Comment: Improved experimental result

    Surface parameterization over regular domains

    Get PDF
    Surface parameterization has been widely studied and it has been playing a critical role in many geometric processing tasks in graphics, computer-aided design, visualization, vision, physical simulation and etc. Regular domains, such as polycubes, are favored due to their structural regularity and geometric simplicity. This thesis focuses on studying the surface parameterization over regular domains, i.e. polycubes, and develops effective computation algorithms. Firstly, the motivation for surface parameterization and polycube mapping is introduced. Secondly, we briefly review existing surface parameterization techniques, especially for extensively studied parameterization algorithms for topological disk surfaces and parameterizations over regular domains for closed surfaces. Then we propose a polycube parameterization algorithm for closed surfaces with general topology. We develop an efficient optimization framework to minimize the angle and area distortion of the mapping. Its applications on surface meshing, inter-shape morphing and volumetric polycube mapping are also discussed

    Analysis of Farthest Point Sampling for Approximating Geodesics in a Graph

    Get PDF
    A standard way to approximate the distance between any two vertices pp and qq on a mesh is to compute, in the associated graph, a shortest path from pp to qq that goes through one of kk sources, which are well-chosen vertices. Precomputing the distance between each of the kk sources to all vertices of the graph yields an efficient computation of approximate distances between any two vertices. One standard method for choosing kk sources, which has been used extensively and successfully for isometry-invariant surface processing, is the so-called Farthest Point Sampling (FPS), which starts with a random vertex as the first source, and iteratively selects the farthest vertex from the already selected sources. In this paper, we analyze the stretch factor FFPS\mathcal{F}_{FPS} of approximate geodesics computed using FPS, which is the maximum, over all pairs of distinct vertices, of their approximated distance over their geodesic distance in the graph. We show that FFPS\mathcal{F}_{FPS} can be bounded in terms of the minimal value F∗\mathcal{F}^* of the stretch factor obtained using an optimal placement of kk sources as FFPS≤2re2F∗+2re2+8re+1\mathcal{F}_{FPS}\leq 2 r_e^2 \mathcal{F}^*+ 2 r_e^2 + 8 r_e + 1, where rer_e is the ratio of the lengths of the longest and the shortest edges of the graph. This provides some evidence explaining why farthest point sampling has been used successfully for isometry-invariant shape processing. Furthermore, we show that it is NP-complete to find kk sources that minimize the stretch factor.Comment: 13 pages, 4 figure

    Smooth 2D Coordinate Systems on Discrete Surfaces

    Get PDF
    International audienceWe introduce a new method to compute conformal param- eterizations using a recent definition of discrete conformity, and estab- lish a discrete version of the Riemann mapping theorem. Our algorithm can parameterize triangular, quadrangular and digital meshes. It can be adapted to preserve metric properties. To demonstrate the efficiency of our method, many examples are shown in the experiment section

    A Survey of Developable Surfaces: From Shape Modeling to Manufacturing

    Full text link
    Developable surfaces are commonly observed in various applications such as architecture, product design, manufacturing, and mechanical materials, as well as in the development of tangible interaction and deformable robots, with the characteristics of easy-to-product, low-cost, transport-friendly, and deformable. Transforming shapes into developable surfaces is a complex and comprehensive task, which forms a variety of methods of segmentation, unfolding, and manufacturing for shapes with different geometry and topology, resulting in the complexity of developable surfaces. In this paper, we reviewed relevant methods and techniques for the study of developable surfaces, characterize them with our proposed pipeline, and categorize them based on digital modeling, physical modeling, interaction, and application. Through the analysis to the relevant literature, we also discussed some of the research challenges and future research opportunities.Comment: 20 pages, 24 figures, Author submitted manuscrip

    different numerical approaches for the analysis of a single screw expander

    Get PDF
    Abstract Positive displacement machines (e.g. scroll, twin screw, reciprocating, etc.) are proven to be suitable as expanders for organic Rankine cycle (ORC) applications, especially in the medium to low power range. However, in order to increase their performance, detailed simulation models are required to optimize the design and reduce the internal losses. In recent years, computational fluid dynamics (CFD) has been applied for the design and analysis of positive displacement machines (both compressors and expanders) with numerous challenges due to the dynamics of the expansion (or compression) process and deforming working chambers. The majority of the studies reported in literature focused on scroll, twin screw and reciprocating machines. Furthermore, the limitation of such methodologies to be applied directly to complex multi-rotor machines has been highlighted in literature. In this paper, a single screw expander (SSE) is used as benchmark to evaluate the applicability of different grid generation methodologies (dynamic remeshing and Chimera strategy overlapping grid), in terms of computational resources required, accuracy of the results and limitations. Although, the low-order models have been applied to single screw machines, there is still a lack of CFD analyses due to the particular complexity of the machine geometry and of its working principle. The calculations have been performed with air to reduce the complexity of the problem. to the main results are two folds: (i) the assessment of a numerical strategy with respect to the most critical parameters of a dynamic mesh-based simulation and (ii) the comparison of the pressure field and internal flow features obtained by using different numerical approaches
    • …
    corecore