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chafik.samir@u-clermont1.fr

Abstract. We introduce a new method to compute conformal param-
eterizations using a recent definition of discrete conformity, and estab-
lish a discrete version of the Riemann mapping theorem. Our algorithm
can parameterize triangular, quadrangular and digital meshes. It can be
adapted to preserve metric properties. To demonstrate the efficiency of
our method, many examples are shown in the experiment section.
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Introduction

Knowing a parameterization of a surface is very useful because it allows to work
with functions instead of three dimensional sets. Thus, we can easily apply real
analysis results to surfaces. Moreover, as parameterizations establish a corre-
spondence between a surface and a part of the plane, we can then extend planar
techniques to surfaces. For all these reasons, they are widely used in mesh pro-
cessing: among the many applications, we can cite texture mapping, morphing,
surface fitting, etc.

A parameterization should preserve the geometrical properties of the mesh:
angles (conformal map), areas (authalic maps), lengths (isometric map), etc.
But maps which are both conformal and authalic maps are isometric, and only
developable surfaces have an isometric flat parameterization. In practice, people
often look for conformal maps. They preserve angles, lengths ratios locally, and
more generally the local aspect of the mesh. It is often sufficient to obtain a good
parameterization.

In this paper we present a new algorithm to compute conformal parameteri-
zations using the definition of discrete conformity given in [13]. Although, it was
first used for meshes, with floating point coordinates, it has the main advantage



Fig. 1. Triangular mesh parameterization, E = H + L
� (see p. 9)

Fig. 2. Digital torus parameterization

of being easily adaptable to digital surfaces, with integer coordinates. We show
that, in the case of triangular meshes, it is a generalization of the cotan con-
formal coordinates method [16] and establish a discrete version of the Riemann
mapping theorem. The boundary conditions introduced are closer to the real
continuous theorem than those of classical conformal methods.

Our algorithm consists in minimizing a discrete energy to measure confor-
mity. It can be generalized to preserve other properties such as faces areas and/or
edges lengths allowing to obtain a more isometric parameterization. These ener-
gies can also be used to obtain parameterizations with free-boundary conditions
as detailed in [5, 10, 12, 17] and give better results around the boundary.

The rest of the paper is organized as follows. Section 1 introduces the def-
inition of discrete conformal maps for quad meshes and show how it can be
generalized to digital surfaces and triangular meshes. In Section 2, we explain
how to choose boundary conditions, i.e. fix the position of some boundary points,
to ensure uniqueness. We mainly focus on the two choices which lead to a discrete
version of the Riemann mapping theorem and to the same parameterization as
the cotan conformal coordinates. In Section 3, we describe precisely how we pro-
ceed in practice to compute parameterizations. Numerical illustrations are given
in Section 4.

1 Discrete conformal parameterizations

1.1 Quad meshes

In real continuous theory, a surface parameterization is a bijective application
from the surface S in R3 to the plane: (x, y, z) ∈ S �→

�
s(x, y, z), t(x, y, z)

�
∈
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R2. For meshes, it boils down to a point v
� = (s, t) assigned to each vertex

v = (x, y, z). In the sequel, we will identify v
� with the complex number s+ it.

Locally identifying each face (v0, v1, v2, v3) of a quad mesh to points in the
plane (in one way or another) we can view the diagonals v2 − v0 and v3 − v1

as two complex numbers and compute the ratio ρ = v3−v1
i(v2−v0)

, which is defined

up to a global similarity. Following [13], we call this data a discrete conformal
structure and we say that a parameterization is discrete conformal if it preserves
the ratios ρ. In other words, for all faces of the mesh, we require that

v
�
3 − v

�
1

v
�
2 − v

�
0

= iρ. (1)

Geometrically, such a parameterization preserves the angle between the diagonals
and the ratio of their lengths. It is a property we expect since faces are small
with respect to the whole mesh and a conformal map locally preserve angles and
lengths ratios (its derivative is a similarity), For simplicity, we can rewrite (1)
as a linear equation

v
�
3 − v

�
1 = iρ(v�2 − v

�
0), (2)

consequently a conformal parameterization can be seen as a solution of a (com-
plex valued) linear system.

Remark 1. Even if the four vertices of a quad are not in the same plane we can
define the ratio ρ. Indeed, the diagonals in R3, when not colinear, can be viewed
as two vectors spanning a plane, wherein the complex ratio can be computed.
This choice amounts to defining the normal to the surface as the cross-product of
these diagonals. A prior knowledge of the normal, therefore of the tangent plane,
is another way to identify the quad-face to a quadrilateral in the complex plane,
by projecting the vertices onto this tangent plane. The ratio does not depend on
the choice of the normal basis identifying the tangent plane with the complex
numbers. Together, all these identifications of the tangent plane at each quad,
considered as local charts, form an atlas of the surface.

1.2 Triangular meshes

In general, faces of meshes are not quads but triangles and the definition extends
to this case: we add a new (combinatorial) dual point to each face and to each
boundary edge, a standard procedure in remeshing. Then for each edge of the
initial mesh we form a quad by joining the extremities of the edge and

– the two dual points inside the adjacent faces if it is not a boundary edge
– the dual points inside the adjacent face and on the edge if it is a boundary

edge.

The construction is shown in Figure 3. On the left, we display the initial trian-
gular mesh and the dual points, and on the right the new quad mesh.

By definition, quads consist of two triangles that do not necessarily belong
to the same plane. To determine the ρ coefficient, we rotate one of them until it
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Fig. 3. Introduction of dual points

Fig. 4. Definition of ρ for digital surfaces

belongs to the plane of second, that is to say we flatten them using the intrinsic
metric of the polyhedral surface. Once we have this quad structure and a ρ for
each quad we can look for a parameterization in the same way as in Section 1.1.
Thus we parameterize not only the initial vertices but also the dual points.

The use of the extrinsic or intrinsic distances does not seem to imply big
differences as noted in another context in [2].

1.3 Digital surfaces

The definition we gave in the previous section is not interesting as such when us-
ing digital surfaces whose faces are surfels. Indeed, these faces are planar squares
and all the ρ coefficients equal 1. Therefore a more meaningful discrete confor-
mal structure has to be defined, using extrinsic or non local data such as a given
normal vector [14]: we compute a normal vector of each face using for instance
the method described in [8], or coming from the scanned data. It allows us to
determine the tangent plane of the surface in each surfel. Firstly, we project the
four edgels on this plane, obtaining a parallelogram which better approximates
the continuous surface than the initial surfel. Secondly we define the ρ coeffi-
cient of a surfel as the one of this projected parallelogram. An example of the
construction is depicted in Figure 4.

2 Boundary conditions

2.1 Solutions of the system

The linear system (2) does not have a unique solution since there are more
unknowns than equations: If we denote by nf , ne, nb and nv the number of faces,
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edges, border edges and vertices of the mesh, it consists of 2nf real equations
and has 2nv real unknowns. We have on the one hand (Euler characteristic of
the disc)

1 = nf − ne + nv, (3)

and on the other hand (mesh property)

4nf = 2ne − nb. (4)

Adding 2× (3) to (4) we obtain

2(nv − nf ) = nb + 2.

Hence, in order to ensure uniqueness we need nb + 2 real constraints.

2.2 Connection to real continuous theory

The Riemann mapping theorem states that each surface homeomorphic to the
closed disc is in fact conformally equivalent to the closed disc. Besides the holo-
morphic map is unique if one boundary is mapped to the other one and the
images of 3 boundary points are fixed [1, 19, 3, 9].

In the same way, we can map the boundary of the mesh to the unit circle.
Thus we obtain nb additional real constraints. Then, if we fix the images of two
of the boundary vertices, we have the

(nb − 2) + (2× 2) = nb + 2

real constraints we are looking for.
This leads to the following discrete version of Riemann mapping theorem: if

two (almost three) boundary vertices are fixed, there exists only one discrete con-
formal parameterization whose boundary points belong to the unit circle. These
boundary points are not different from other boundary points. Our boundary
conditions are much closer to the Riemann theorem than those of other classical
discrete conformal algorithms: [7, 16] fix all the boundary points and [5, 12] fix
two boundary points (that accumulate conformal distortion) but the other ones
are not mapped on the circle.

2.3 Connection to the cotan conformal coordinates

In this section, we will show that our method is a generalization of parameteri-
zations with the cotan conformal coordinates [5, 16]. We remind the reader that
this method applies to triangular meshes and consists in

1. fixing the images of the boundary points, often on a convex boundary,
2. solving the following system:

for each vertex vi which is not on the boundary of the mesh
�

j : vj neighbour of vi

�
cotαij + cotαji

�
(v�j − v

�
i) = 0 (5)

(the angle αij and αji are defined on Figure 5, left picture).
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vi vj

αij

αji

c
v0 v1

v2

v3

v4

v5

α1

α2

β

Fig. 5. Definition of the angles in the cotan formula

Suppose that in the construction of dual points described in Section 1.2 we
add the circumcenter of the triangles and the middle of the boundary edges.
Consider two adjacent triangles faces (v0, v1, v2) and (v0, v3, v1). We denote by
v3 and v4 their circumcenters and by c the middle of [v0, v1]. An example of the
construction is shown in Figure 5 (right picture). We want to compute the ρ

coefficient of the quad (v0, v5, v1, v4).
First, since the angle in c is right, ρ is real:

ρ =
�v4 − c�
�v1 − v0�

+
�v5 − c�
�v1 − v0�

.

Second,
�v4 − c�
�v1 − v0�

= cotβ = cotα1.

since the triangle (v0, c, v4) is right in c (first equality) and α1 =
�v0v4v1
2

accord-

ing of the inscribed angle theorem (second equality).
Finally

ρ = cotα1 + cotα2.

Note that the coefficients are the same as in (5).
We denote by ρ(vi, vj) the ρ coefficient of the quad containing the diagonal

[vi, vj ]. Adding the equations in (2) involving a particular initial vertex vi we
obtain �

j : vj neighbour of vi

ρ(vi, vj)(v
�
j − v

�
i) = 0

It is in fact the sum over the dual edges which form a loop. Hence the system
(2) is equivalent to a system which has (5) as a subsystem.

Due, to the results of section 2.1 we have to add nb
2 + 1 real constraints to

ensure uniqueness. We choose to fix the initial boundary points (those of the
triangular mesh) and one of the dual boundary points. Hence the coordinates
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v
�
i of the initial mesh satisfy the same linear system as with cotan conformal
coordinates and we obtain the same solution.

We have proved that our method is a generalisation with arbitrary dual
points and boundary constraints of the cotan conformal coordinates. It can be
of interest when some angles of the triangles are obtuse. Then the circumcenters
are not necessarily inside the triangles and the coefficients in (5) can be negative.
Thus conditions of Tutte theorem [18] are not verified and the cotan conformal
coordinates method can fail.

3 Practical computation

3.1 Energy minimization

Many parameterizations methods, including [5, 7, 12, 16], consist in solving sparse
linear systems. As the system of equations (2) is also sparse, we could think of
using similar techniques. But the boundary condition, i.e. remaining on a circle,
is not linear and even not quadratic. That is why we implement a non-linear
minimization technique.

We denote by ρ(vi, vj) the ρ coefficient of the face containing the diagonal
[vi, vj ]. Then we introduce the conformal energy

H =
���(v�l − v

�
j)− ρ(vi, vk)

�
v
�
k − v

�
i

���2

where the sum is over all the quads (vi, vj , vk, vl) of the mesh,
and the boundary energy

C =
��

|v�i|2 − 1
�2

where the sum is over all the boundary vertices vi except the two ones whose
parameters are fixed. We search the parameters v

�
i which minimize the total

energy
E = αH + βC

for chosen positive real numbers α and β. The minimization is performed using
a conjugate gradient method (Fletcher-Reeves algorithm, [15]).

3.2 Initial conditions

The minimization algorithms we use are guaranteed to converge to a local min-
imum but not necessarily to the global one. It is a very important issue in this
case since there is no uniqueness in the Riemann theorem if the map is not one
to one. For example, the one to one parameterization of the unit disc with three
fixed points is the identity map. However, with convenient initial conditions our
algorithm can perfectly lead to a discrete approximation of the z �→ z

2 map.
In practice, it works quite well to set at the beginning the images of the

boundary points on a circle with the same distances between them as on the
boundary of the mesh. And we set the initial positions of the images of the
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Fig. 6. Example of initial configuration

interior points at the origin. The algorithm more or less acts like the relaxation
of a network of springs. We must also mention that in order to have less distortion
it is generally better to choose the fixed points as far as possible from each other.
For example when we fix two points, we try to select points with around half of
the boundary length between them. An example is given in Figure 6 where the
fixed points are represented by big dots.

3.3 Preservation of lengths and areas

Yet, we focused on computing conformal maps to preserve angles and thus shapes
locally. It is certainly a key feature in mesh parameterization but not enough
to ensure a good result. Indeed, conformal maps can lead to parameterizations
which are very tight in some regions and more sparse in others. If we map a
checkerboard with such a parameterization we obtain big squares in the first
regions and little ones in the others which is of course unsatisfactory.

To avoid these artifacts we define new energies attached to preserving metric
properties such as:

1. the area of the faces,
2. the length of the edges.

First, we introduce the authalic energy

A =
��

Im
�
(v�k − v

�
i)(v

�
l − v

�
j)
�2

−
�
�(vl − vi) ∧ (vk − vi)�+ �(vk − vi) ∧ (vj − vi)�

�2�2

where the sum is over all the quads (vi, vj , vk, vl) of the mesh,
and we secondly define the metric energy

L =
��

|v�i − v
�
j |2 − �vi − vj�2

�2
(6)

where the sum is over all the edges [vi, vj ]. Then, we consider the energy

E = αH + βA+ γL.
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There are many more equations and we are no longer looking for a unique so-
lution of a system but rather for the minimum of an energy. However, as any
isometric transformation of a given parameterization has the same energy, we
ensure uniqueness by fixing the image of one boundary point and the direction
of the next boundary edge.

Note that such a minimal energy parameterization will not be conformal,
unless the surface is developable. Indeed a map preserving both angles and areas
is isometric and only developable surface have an isometric flat parameterization.
But choosing the coefficient α, β and γ conveniently we can obtain more accurate
results. Moreover, as there is no longer a condition on the boundary we also
obtain a more “natural” boundary, adapted to the mesh. The choice moved
from the boundary points to the coefficients.

It can be quite slow to compute the energy L (and also A). To speed up our
algorithm, we can minimize only the distortion of the metric along the boundary.
Thus we introduce the metric energy L

� defined as (6) where the sum is over
the boundary edges only. It allows us to obtain a conformal map with a more
“natural” boundary, closer to another classical Riemann-Hilbert condition [19].
Note also that even with the initial conditions described in the previous section,
in general, for numerical reasons, the algorithm does not converge towards the
right local minimum if we do not use the energy C. It does, however, if we use
the following two steps process:

1. minimize H with a fixed boundary.
2. use this minimum as initial condition to minimize E.

Moreover, as the minimization is very fast when we fix all the boundary points,
it also speeds up the convergence.

4 Results

4.1 Comparison of the energies

We first computed parameterizations of the mesh (s, t) �→ cos(s) + cos(t) (dis-
cretized with quad faces) to show the main advantages and drawbacks of each
of the energies C (circle), L� (length of the boundary), L (length) and A (area).
You can see the corresponding results in Figure 7, 8, 9 and 10. Additionally, the
algorithm can be applied on triangular meshes as shown in Figure 1.

The parameterizations are displayed on the left. On the right, we mapped a
32×32 checkerboard on the surface using this parameterization. With the circle
boundary energy E = H+C (Figure 7), we obtain a conformal parameterization
(the shape of the squares is preserved) but the behavior around the boundary
is not natural (because a circle is very different from the true boundary of the
mesh). In particular there is a big distortion of the metric in this region. If we
use the boundary metric energy L

� instead of C (Figure 8), the map is still
conformal but the boundary is better preserved. We observed that the results
are visually quite close to those of other methods with free boundary (ABF,
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circle patterns, etc.). The use of the energies L and A has the same effect on
the boundary. Besides, even if the parameterization is not conformal (see all the
red points in Figure 7), the texture mapping looks more accurate since all the
squares have the same size. However, close inspection shows that some squares
of the checkerboard become rectangles after the mapping.

4.2 Digital surfaces

We also computed parameterizations of digital surfaces. We used a digital torus
consisting of around 1500 surfels. We first computed a parameterization using
the method for quad meshes without smoothing the normal. As expected the
resulting texture mapping is not good: we do not even distinguish the checker-
board squares in some regions of Figure 11. Then we use our method for digital
surfaces and obtain better results: we clearly distinguish the checkerboard on
Figure 12. This figure also shows that the influence of additional energies is the
same as with float meshes.

5 Conclusion and future work

We have described a new method of conformal parameterization that can be
applied to different meshes, including triangular meshes and digital surfaces.
As a proof of concept, we have used different cost functions whose minimum
preserves more or less the shape, the size, and the boundary conditions. An
important feature of our approach is the introduction of a recent definition of
discrete conformity allowing many possibilities for more accurate results. We
have shown various experimental results to illustrate the different possibilities.
In future work, we will study the choice of coefficients α, β, etc. In particular, it
would be interesting to compute the more isometric conformal parameterization.
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