75 research outputs found

    Adaptive Neuro-Fuzzy Inference System for Prediction of Surgery Time for Ischemic Stroke Patients

    Get PDF
    With the advent of machine learning techniques, creation and utilization of prediction models for different medical procedures including prediction of diagnosis, treatment and recovery of different medical conditions has become the norm. Recent studies focus on the automation of infarction volume growth rate prediction by the utilization of machine learning techniques. These techniques when effectively applied, could significantly help in reducing the time needed to attend to stroke patients. We propose, in this proposal, a Fuzzy Inference System that can determine when a stroke patient should undergo Decompressive Hemicraniectomy. The second infarction volume growth rate and the decision whether a patient needs to undergo this procedure, both predicted outputs of two trained models, act as inputs to this system. While the initial prediction model, that which predicts the second infarction volume growth rate is adopted from an earlier model, we propose the later model in this paper. Three Machine Learning techniques - Support Vector Machine, Artificial Neural Network and Adaptive Neuro Fuzzy Inference System with and without the feature reduction technique of Principle Component Analysis were modelled and evaluated, the best of which was selected to model the proposed prediction model. We also defined the structure of Fuzzy Inference System along with its rules and obtained an overall accuracy of 95.7% with a precision of 1 showing promising results from the use of fuzzy logic

    Application of Machine Learning Techniques for The Prediction of Decompressive Hemicraniectomy Prognosis in Acute Ischemic Stroke

    Get PDF
    Stroke is one of the leading causes of death in the world with the number of people suffering from it increasing every year. Ischemic strokes, one of the two main types of stroke, occur when blood clots block brain arteries which leads to infarction eventually leading to brain edema. If not addressed quickly enough it may lead to disability and in worst case scenario may even lead to death. In this thesis we proposed a machine learning based MATLAB tool that aids in speeding up the prognosis of acute ischemic stroke patients. From a set of patient medical data such as patient age, blood pressure reading and infarction volume from first CT scan, we created three prediction models which predict second infarction volume, decision for surgery and treatment time. We also experimented with utilizing the technique of feature reduction and implementing Fuzzy Inference System to consider improving the generated models and combined the best performing models into a MATLAB application

    Designing and Implementing an ANFIS Based Medical Decision Support System to Predict Chronic Kidney Disease Progression

    Get PDF
    Background and objective: Chronic kidney disease (CKD) has a covert nature in its early stages that could postpone its diagnosis. Early diagnosis can reduce or prevent the progression of renal damage. The present study introduces an expert medical decision support system (MDSS) based on adaptive neuro-fuzzy inference system (ANFIS) to predict the timeframe of renal failure.Methods: The core system of the MDSS is a Takagi-Sugeno type ANFIS model that predicts the glomerular filtration rate (GFR) values as the biological marker of the renal failure. The model uses 10-year clinical records of newly diagnosed CKD patients and considers the threshold value of 15 cc/kg/min/1.73 m2 of GFR as the marker of renal failure. Following the evaluation of 10 variables, the ANFIS model uses the weight, diastolic blood pressure, and diabetes mellitus as underlying disease, and current GFR(t) as the inputs of the predicting model to predict the GFR values at future intervals. Then, a user-friendly graphical user interface of the model was built in MATLAB, in which the user can enter the physiological parameters obtained from patient recordings to determine the renal failure time as the output.Results: Assessing the performance of the MDSS against the real data of male and female CKD patients showed that this decision support model could accurately estimate GFR variations in all sequential periods of 6, 12, and 18 months, with a normalized mean absolute error lower than 5%. Despite the high uncertainties of the human body and the dynamic nature of CKD progression, our model can accurately predict the GFR variations at long future periods.Conclusions: The MDSS GUI could be useful in medical centers and used by experts to predict renal failure progression and, through taking effective actions, CKD can be prevented or effectively delayed

    A systematic review of machine learning models for predicting outcomes of stroke with structured data

    Get PDF
    Background and purposeMachine learning (ML) has attracted much attention with the hope that it could make use of large, routinely collected datasets and deliver accurate personalised prognosis. The aim of this systematic review is to identify and critically appraise the reporting and developing of ML models for predicting outcomes after stroke.MethodsWe searched PubMed and Web of Science from 1990 to March 2019, using previously published search filters for stroke, ML, and prediction models. We focused on structured clinical data, excluding image and text analysis. This review was registered with PROSPERO (CRD42019127154).ResultsEighteen studies were eligible for inclusion. Most studies reported less than half of the terms in the reporting quality checklist. The most frequently predicted stroke outcomes were mortality (7 studies) and functional outcome (5 studies). The most commonly used ML methods were random forests (9 studies), support vector machines (8 studies), decision trees (6 studies), and neural networks (6 studies). The median sample size was 475 (range 70-3184), with a median of 22 predictors (range 4-152) considered. All studies evaluated discrimination with thirteen using area under the ROC curve whilst calibration was assessed in three. Two studies performed external validation. None described the final model sufficiently well to reproduce it.ConclusionsThe use of ML for predicting stroke outcomes is increasing. However, few met basic reporting standards for clinical prediction tools and none made their models available in a way which could be used or evaluated. Major improvements in ML study conduct and reporting are needed before it can meaningfully be considered for practice

    Intelligent strategies for mobile robotics in laboratory automation

    Get PDF
    In this thesis a new intelligent framework is presented for the mobile robots in laboratory automation, which includes: a new multi-floor indoor navigation method is presented and an intelligent multi-floor path planning is proposed; a new signal filtering method is presented for the robots to forecast their indoor coordinates; a new human feature based strategy is proposed for the robot-human smart collision avoidance; a new robot power forecasting method is proposed to decide a distributed transportation task; a new blind approach is presented for the arm manipulations for the robots

    Hybrid System of Tiered Multivariate Analysis and Artificial Neural Network for Coronary Heart Disease Diagnosis

    Get PDF
    Improved system performance diagnosis of coronary heart disease becomes an important topic in research for several decades. One improvement would be done by features selection, so only the attributes that influence is used in the diagnosis system using data mining algorithms. Unfortunately, the most feature selection is done with the assumption has provided all the necessary attributes, regardless of the stage of obtaining the attribute, and cost required. This research proposes a hybrid model system for diagnosis of coronary heart disease. System diagnosis preceded the feature selection process, using tiered multivariate analysis. The analytical method used is logistic regression. The next stage, the classification by using multi-layer perceptron neural network. Based on test results, system performance proposed value for accuracy 86.3%, sensitivity 84.80%, specificity 88.20%, positive prediction value (PPV) 90.03%, negative prediction value (NPV) 81.80%, accuracy 86,30%  and area under the curve (AUC) of 92.1%. The performance of a diagnosis using a combination attributes of risk factors,symptoms and exercise ECG. The conclusion that can be drawn is that the proposed diagnosis system capable of delivering performance in the very good category, with a number of attributes that are not a lot of checks and a relatively low cost

    Nonlinear dynamics and modeling of heart and brain signals

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Estimating and understanding motion : from diagnostic to robotic surgery

    Get PDF
    Estimating and understanding motion from an image sequence is a central topic in computer vision. The high interest in this topic is because we are living in a world where many events that occur in the environment are dynamic. This makes motion estimation and understanding a natural component and a key factor in a widespread of applications including object recognition , 3D shape reconstruction, autonomous navigation and medica! diagnosis. Particularly, we focus on the medical domain in which understanding the human body for clinical purposes requires retrieving the organs' complex motion patterns, which is in general a hard problem when using only image data. In this thesis, we cope with this problem by posing the question - How to achieve a realistic motion estimation to offer a better clinical understanding? We focus this thesis on answering this question by using a variational formulation as a basis to understand one of the most complex motions in the human's body, the heart motion, through three different applications: (i) cardiac motion estimation for diagnostic, (ii) force estimation and (iii) motion prediction, both for robotic surgery. Firstly, we focus on a central topic in cardiac imaging that is the estimation of the cardiac motion. The main aim is to offer objective and understandable measures to physicians for helping them in the diagnostic of cardiovascular diseases. We employ ultrafast ultrasound data and tools for imaging motion drawn from diverse areas such as low-rank analysis and variational deformation to perform a realistic cardiac motion estimation. The significance is that by taking low-rank data with carefully chosen penalization, synergies in this complex variational problem can be created. We demonstrate how our proposed solution deals with complex deformations through careful numerical experiments using realistic and simulated data. We then move from diagnostic to robotic surgeries where surgeons perform delicate procedures remotely through robotic manipulators without directly interacting with the patients. As a result, they lack force feedback, which is an important primary sense for increasing surgeon-patient transparency and avoiding injuries and high mental workload. To solve this problem, we follow the conservation principies of continuum mechanics in which it is clear that the change in shape of an elastic object is directly proportional to the force applied. Thus, we create a variational framework to acquire the deformation that the tissues undergo due to an applied force. Then, this information is used in a learning system to find the nonlinear relationship between the given data and the applied force. We carried out experiments with in-vivo and ex-vivo data and combined statistical, graphical and perceptual analyses to demonstrate the strength of our solution. Finally, we explore robotic cardiac surgery, which allows carrying out complex procedures including Off-Pump Coronary Artery Bypass Grafting (OPCABG). This procedure avoids the associated complications of using Cardiopulmonary Bypass (CPB) since the heart is not arrested while performing the surgery on a beating heart. Thus, surgeons have to deal with a dynamic target that compromisetheir dexterity and the surgery's precision. To compensate the heart motion, we propase a solution composed of three elements: an energy function to estimate the 3D heart motion, a specular highlight detection strategy and a prediction approach for increasing the robustness of the solution. We conduct evaluation of our solution using phantom and realistic datasets. We conclude the thesis by reporting our findings on these three applications and highlight the dependency between motion estimation and motion understanding at any dynamic event, particularly in clinical scenarios.L’estimació i comprensió del moviment dins d’una seqüència d’imatges és un tema central en la visió per ordinador, el que genera un gran interès perquè vivim en un entorn ple d’esdeveniments dinàmics. Per aquest motiu és considerat com un component natural i factor clau dins d’un ampli ventall d’aplicacions, el qual inclou el reconeixement d’objectes, la reconstrucció de formes tridimensionals, la navegació autònoma i el diagnòstic de malalties. En particular, ens situem en l’àmbit mèdic en el qual la comprensió del cos humà, amb finalitats clíniques, requereix l’obtenció de patrons complexos de moviment dels òrgans. Aquesta és, en general, una tasca difícil quan s’utilitzen només dades de tipus visual. En aquesta tesi afrontem el problema plantejant-nos la pregunta - Com es pot aconseguir una estimació realista del moviment amb l’objectiu d’oferir una millor comprensió clínica? La tesi se centra en la resposta mitjançant l’ús d’una formulació variacional com a base per entendre un dels moviments més complexos del cos humà, el del cor, a través de tres aplicacions: (i) estimació del moviment cardíac per al diagnòstic, (ii) estimació de forces i (iii) predicció del moviment, orientant-se les dues últimes en cirurgia robòtica. En primer lloc, ens centrem en un tema principal en la imatge cardíaca, que és l’estimació del moviment cardíac. L’objectiu principal és oferir als metges mesures objectives i comprensibles per ajudar-los en el diagnòstic de les malalties cardiovasculars. Fem servir dades d’ultrasons ultraràpids i eines per al moviment d’imatges procedents de diverses àrees, com ara l’anàlisi de baix rang i la deformació variacional, per fer una estimació realista del moviment cardíac. La importància rau en que, en prendre les dades de baix rang amb una penalització acurada, es poden crear sinergies en aquest problema variacional complex. Mitjançant acurats experiments numèrics, amb dades realístiques i simulades, hem demostrat com les nostres propostes solucionen deformacions complexes. Després passem del diagnòstic a la cirurgia robòtica, on els cirurgians realitzen procediments delicats remotament, a través de manipuladors robòtics, sense interactuar directament amb els pacients. Com a conseqüència, no tenen la percepció de la força com a resposta, que és un sentit primari important per augmentar la transparència entre el cirurgià i el pacient, per evitar lesions i per reduir la càrrega de treball mental. Resolem aquest problema seguint els principis de conservació de la mecànica del medi continu, en els quals està clar que el canvi en la forma d’un objecte elàstic és directament proporcional a la força aplicada. Per això hem creat un marc variacional que adquireix la deformació que pateixen els teixits per l’aplicació d’una força. Aquesta informació s’utilitza en un sistema d’aprenentatge, per trobar la relació no lineal entre les dades donades i la força aplicada. Hem dut a terme experiments amb dades in-vivo i ex-vivo i hem combinat l’anàlisi estadístic, gràfic i de percepció que demostren la robustesa de la nostra solució. Finalment, explorem la cirurgia cardíaca robòtica, la qual cosa permet realitzar procediments complexos, incloent la cirurgia coronària sense bomba (off-pump coronary artery bypass grafting o OPCAB). Aquest procediment evita les complicacions associades a l’ús de circulació extracorpòria (Cardiopulmonary Bypass o CPB), ja que el cor no s’atura mentre es realitza la cirurgia. Això comporta que els cirurgians han de tractar amb un objectiu dinàmic que compromet la seva destresa i la precisió de la cirurgia. Per compensar el moviment del cor, proposem una solució composta de tres elements: un funcional d’energia per estimar el moviment tridimensional del cor, una estratègia de detecció de les reflexions especulars i una aproximació basada en mètodes de predicció, per tal d’augmentar la robustesa de la solució. L’avaluació de la nostra solució s’ha dut a terme mitjançant conjunts de dades sintètiques i realistes. La tesi conclou informant dels nostres resultats en aquestes tres aplicacions i posant de relleu la dependència entre l’estimació i la comprensió del moviment en qualsevol esdeveniment dinàmic, especialment en escenaris clínics.Postprint (published version
    corecore