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Summary 

The theory of nonlinear dynamic systems provides new ways to handle complex 

dynamic systems. Chaos theory offers new concepts, algorithms and methods for 

processing, enhancing and analyzing the measured signals. In recent years, researchers 

have been applying the concepts of chaos theory to bio-signal analysis. In this work, the 

complex dynamics of the heart (Electrocardiogram (ECG)) and the brain 

(Electroencephalogram (EEG)) signals are analyzed in detail using the tools of chaos 

theory.  

In the modern world, every year several thousands of people die of cardiac 

problems. This makes the automatic analysis and the assessment of risk for these 

problems a critical task. Analyses using the conventional linear methods are often found 

to produce inconclusive results. Therefore in this work we propose and apply 

unconventional methods of nonlinear dynamics to analyze ECG and EEG signals.  

In the case of ECG, the heart rate variability (HRV) signal is analyzed using 

various complexity measures that are basing on symbolic dynamics. These complexity 

measures with the parameters in the frequency domain serve to be a promising way to get 

a more precise definition of individual risk. This is done in two stages: (i) feature 

extraction and (ii) classification. A feature library with more than ten features extracted 

from the HRV signal is developed for eight different cardiac health states. The measures 



  

vii 

are then validated with neural network and fuzzy classifiers for their ability to do more 

precise classification. A classification accuracy of about 80-95% is achieved in our work.  

In EEG analysis, the search for the hidden information for identification of 

seizures has a long history. In this work, an effort is made to analyze the normal and 

epileptic EEGs using the chaos theory. In this work, emphasis is made on the extraction 

and selection of key and relevant features that distinguish EEG (on the same subject) with 

and without the epileptic seizures. The features extracted include chaotic invariants and 

information theory features. Results obtained are promising and clear differences are seen 

in the extracted features between normal and epileptic EEGs.   

At present, new biomedical signal processing algorithms are usually evaluated by 

applying them to signals acquired from real patients. Most cases, the signals are of short 

duration for the evaluator to decide on the accuracy and reliability of the given algorithm. 

To facilitate this evaluation, it is required to generate longer duration signals from these 

short duration signals while preserving the characteristics of the signal. In this work, we 

have proposed linear and nonlinear techniques to model the HRV and EEG signals from 

their respective short duration data.  From the models, longer duration signals are 

synthesized for further analysis. Results of these generated signals show that the models 

can generate the HRV and EEG signals that approximate the real HRV and EEG signals. 

The HRV signal models are useful in the prediction of the heart rate signals and 

subsequently help in the analysis and diagnosis of cardiac abnormalities. The modeling of 

EEG signals can be a very useful tool in the prediction of seizures. 
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In this work, we have also proposed a new nonlinear model architecture using 

pipelined recurrent neural network (PRNN) to model the HRV and EEG signals. The new 

architecture performs better in terms of prediction error (measured as normalized root 

mean square error (NRMSE)) and signal to noise ratio (SNR). The signals modeled using 

the proposed architecture is able to successfully model the inherent nonlinear 

characteristics of the experimental signals. From the results it can be clearly seen that the 

proposed architecture clearly outperforms the linear models. This is due to the nonlinear 

model’s inherent ability to model the underlying nonlinearity of the system under 

investigation. 
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Chapter 1   Introduction 

1.1 Introduction 

Computer technology has an important role in structuring biological systems. The 

explosive growth of high performance computing techniques in recent years with regard 

to the development of good and accurate models of biological systems has contributed 

significantly to new approaches to fundamental problems of modeling transient behavior 

of biological systems. 

The importance of biological time series analysis, which exhibits typically 

complex dynamics, has long been recognized in the area of non-linear analysis. Several 

approaches have been proposed to detect the (hidden) important dynamical properties of 

the physiological phenomenon. The nonlinear dynamical techniques are based on the 

theory of chaos and have been applied to many areas including the areas of medicine and 

biology [1].  

A great deal of attention has been focused on the extraction of dynamical 

information from chaotic time series [1-3]. Chaos is the state in which a nonlinear 

dynamical system exhibits bounded motion, with exponential sensitivity to initial 

conditions. The initially neighboring state of a chaotic system diverges exponentially as 
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the system evolves forward in time [4].  Chaotic time series analysis has greatly enhanced 

the understanding of chaos in experimental systems by allowing multidimensional 

dynamical information to be recovered from a time series of measurements of a single 

variable [1-3]. This is achieved using the method of time delay embedding, which allows 

the recovery of information from all degrees of freedom which are coupled to the 

observable [1]. This allows the strange attractor
1
 of a chaotic dynamical system to be 

extracted from a time series of measurements of a single variable. The simplicity of the 

technique and the accessibility of experimental time series have encouraged the rapid 

exploration of numerous fields as varied as plasma fluctuations [2], climatic variations 

[5], non-equilibrium chemical systems [6], etc. 

In this work, methods of chaotic time series analysis are applied to bio-signals 

such as the heart rate variability (HRV) signal and the electroencephalogram (EEG) 

signal. The HRV is extracted from the electrocardiogram (ECG) signal. The ECG is the 

electrical signal generated by the heart’s muscles measured on the skin surface of the 

body. On the other hand, the EEG represents the time series that maps the voltage 

corresponding to neurological activity of the brain as a function of time. These two 

signals are essentially non-stationary in nature; they display a fractal
2
 like structure. They 

may contain indicators of current disease, or even warnings about impending diseases. 

The indicators may be present at all times or may occur at random in the time scale. 

                                                 

1
 An aattractor is a set of states to which a dynamical system evolves after long enough time. An attractor is 

described as strange attractor if it has non-integer dimension and dynamics on it are chaotic. 
2
 Fractal is a fragmented geometric shape that exhibits self similarity by having same type of structures on 

all scales. 
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However, to (study and) pinpoint anomalies in voluminous data collected over several 

hours is strenuous and time consuming. Therefore, computer based analytical tools for in-

depth study and classification of data over day long intervals can be very useful in 

diagnostics.  

1.2 Motivation 

ECG has a basic role in cardiology since it consists of effective simple 

noninvasive low cost procedures for the diagnosis of cardiac disorders that have high 

epidemiological incidence and are very relevant for their impact on patient life and social 

costs.  Pathological alterations observable by ECG are cardiac rhythm disturbances (or 

arrhythmia), dysfunction of myocardial blood perfusion (or cardiac ischemia), chronic 

alteration of the mechanical structure of the heart.  Arrhythmias are considered to lead to 

life threatening conditions and the patients with arrhythmias are subjected to continuous 

monitoring in the intensive care units.  Thus the automated and reliable detection of 

abnormalities in intensive care patients is very essential and critical.  Recently lot of 

research is being carried out for automating the detection of abnormalities by applying 

various engineering methods and unconventional techniques to help the doctor to 

diagnose and act faster in case of emergency conditions.  And also designing low cost 

high performance simple to use and portable equipment for ECG offering a combination 

of diagnostic features seem to be globally worthwhile.  Such equipment should embed 

and integrate several techniques of data analysis such as signal processing, pattern 
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detection and recognition, decision support and human computer interaction.  Thus 

computerized methods are to be applied for detection and classification of abnormalities.  

Epilepsy is a pathological condition characterized by spiky patterns in continuous 

EEG and seizure at times [7]. Approximately one percent of the world’s population has 

epilepsy, one third of whom have seizures not controlled by medications [7, 8]. 

Individuals with epilepsy suffer considerable disability from seizures and resulting 

injuries, the stigma and social isolation attached to having seizures, and from side effects 

of medical and other therapies. In some patients, whose seizures reliably begin in one 

discrete region, usually in the mesial (middle) temporal lobe, may be cured by surgery. 

This requires removing large volumes of brain tissues, due to the lack of a reliable 

method for accurately locating the region of seizure onset and the pathways through 

which seizures spread. Successful surgical treatment of focal epilepsies requires exact 

localization of the epileptic focus and its delineation from functionally relevant areas. For 

this purpose, different pre-surgical evaluation methodologies are currently in use [9]. 

Neurological and neuropsychological examinations are complemented by neuro-imaging 

techniques that try to identify potential morphological correlates. Currently, for 

localization of the epileptic focus, the patient’s spontaneous habitual seizure is recorded 

using electroencephalography. Depending on the individual occurrence of seizures this 

task requires long lasting and continuous recordings of EEG. In case of ambiguous scalp 

EEG findings, invasive recordings of electrocorticogram and stereo-EEG via implanted 

depth electrodes are used. This procedure is time consuming and offers greater risk to the 
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patient. Thus reliable EEG analysis techniques are required to localize and to demarcate 

the epileptic focus. 

1.3 Objectives 

The present work is to perform nonlinear time series analysis on ECG and EEG 

signals and use neural network techniques to classify and model these signals. Various 

milestones in this work are:  

• To identify appropriate and relevant set of features to detect various 

cardiac abnormalities from the HRV signals. 

• To analyze EEG signals and to identify set of features that distinguishes 

different types of EEG, specifically the epileptic EEG.  

• To identify suitable network architecture to classify the signals for the 

abnormalities based on the chosen feature set. 

• To identify and implement a suitable algorithms for dynamic 

reconstruction model of the signals. 
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1.4 Contributions 

The contributions derived from this research are summarized below: 

• The implementation of an automatic approach to achieve highly reliable 

detection of cardiac abnormalities, which entails feature extraction, feature 

selection, feature fusion, event classification and assessment. 

• Evaluation of large set of features extracted using nonlinear time series 

analysis techniques for detection of cardiac abnormalities. 

• Identification of suitable classifier architecture and classifier inputs to 

reliably detect various cardiac abnormalities. 

• Characterization of normal and epileptic EEG signals using chaotic 

invariants and information theory. 

• Identification of the classifier architecture and classifier inputs to classify 

EEG signals from the extracted features. 

• Implementation of linear and nonlinear models for the reconstruction of 

HRV and EEG signals. 

• Developed a new model architecture based on pipelined recurrent neural 

network (PRNN) for the reconstruction of HRV and EEG signals.  
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• Comparison and validation of the performance of the proposed 

architecture with existing linear and nonlinear architectures.   

1.5 Organization of the Thesis 

The thesis is organized in a systematic manner starting from introduction to 

literature review, nonlinear analysis of signals, modeling of signals and finally the 

conclusion. 

• Chapter 1 - Introduction 

The introduction to the current work in terms of motivation, objectives and the 

contributions is discussed in this chapter.  

• Chapter 2 – Literature Review 

Review of the previous research work done by others in the area of cardiac health 

diagnosis, chaotic signal processing, EEG signal analysis and linear and nonlinear 

modeling of signals.  

• Chapter 3 – Chaotic analysis of heart signals 

In this chapter, the chaotic invariants (fractal dimensions, correlation dimension, 

Lyapunov exponent, Hurst exponent) and information theory features of HRV signals are 

extracted and analyzed in detail.  
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• Chapter 4 – Nonlinear dynamics of EEG signals 

In this chapter, a comprehensive chaotic analysis of the normal, background and 

epileptic EEG signals is carried out. The chaotic measures distinguish the different types 

of EEG signals and offer insight into the dynamical nature and variability of these 

signals. 

• Chapter 5 – Classifier architectures for cardiac health state diagnosis and 

mental health diagnosis 

The neural network classifier, fuzzy classifier and adaptive neuro fuzzy inference 

system (ANFIS) classifier are presented as diagnostic tools to aid the physician in the 

analysis of heart diseases. The characteristic features of the HRV signals from the feature 

library are evaluated for the suitability to do classification. A comparative analysis of the 

results of the classifiers is presented and the performances of the classifiers are evaluated 

in terms of classification accuracy. 

Similarly, the ability and effectiveness of the nonlinear measures of EEG in 

diagnosing various mental states are evaluated using neural network classifier, fuzzy 

classifier and ANFIS classifier.  

• Chapter 6 – Linear modeling of heart and brain signals 

The HRV and EEG signals are modeled using linear modeling methods such as 

the Welch method and Burg’s method. The performances of the two methods in modeling 
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these signals are analyzed.  The dynamic characteristics of the modeled signals are 

compared with the original signals.   

• Chapter 7 – Nonlinear modeling of heart and brain signals 

The nonlinear model using Elman neural network is developed to model the HRV 

and EEG signals individually. A novel nonlinear modeling architecture is proposed using 

pipelined recurrent neural network (PRNN). The results of the proposed architecture and 

the Elman model are compared and evaluated using the dynamic characteristics of the 

reconstructed signals.  

• Chapter 8 – Conclusion 

The conclusion and comments of the work done in this project are discussed.  

Various suggestions for future work are also given.  
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Chapter 2   Literature Review 

Physiological time series such as ECG and EEG typically are short, nonlinear and 

noisy. Such time series usually cannot be studied satisfactorily by linear time series 

analysis. Although linear techniques such as Fourier analysis are useful to study 

characteristic oscillations in detail, these methods fail to detect any non-linear 

correlations present and cannot provide a complete characterization of the underlying 

dynamics. 

Over the last two decades many non-linear time series methods have been 

developed in the theory of non-linear dynamics, commonly known as chaos theory. These 

methods are suited to characterize the dynamics in noise free, low-dimensional 

deterministic systems and have proven highly successful in characterizing irregular 

(chaotic) time series from mathematical models and well controlled physical 

experiments. Biological systems are subjected to changes in their environment triggered 

both by stochastic sources and feedback control mechanisms. Thus the time series 

recorded from the natural world consist of a mixture of random and deterministic 

features. Hence, in early 90’s investigators explored the way to apply the nonlinear time 

series analysis techniques [10-13] to analyze and characterize apparently irregular 

behavior – a distinct feature of physiological signals. Later researchers tuned the focus of 

attention in applying chaos theory to bio-signal analysis in two directions. They are the 
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detection and characterization of nonlinear dynamics of the underlying physiological 

system and to develop new and robust nonlinear measures that are more suited to all 

types of data. Various techniques discussed in the literature of chaos theory to 

characterize the nonlinear behavior include the estimates of an effective correlation 

dimension, entropy related measures, Lyapunov exponents, measures for determinism, 

self-similarity, interdependencies, recurrence quantification and tests for nonlinearity. 

In 1991, Kaplan et. al. applied the theory of chaos to detect the cardiac arrhythmia 

such as ventricular fibrillation (VF) [14].  They tried to identify whether the fibrillation 

originates from a chaotic system by constructing a dynamical system representation of 

the signal and testing directly for signs of chaos by calculating Lyapunov exponents. 

However they were unsuccessful in constructing a phase-space representation of 

ventricular fibrillation that distinguishes between ventricular fibrillation and a similar, but 

random, signal. Researchers have applied the concepts of chaos in cardiology and tried to 

address the different heart diseases including whether chaos represents the healthy or 

diseased state.  As most of these approaches to chaotic modelling rely on discrete models 

of continuous problems, in 1995, Cohen et. al. developed a continuous nodal based on a 

conjectured solution to the logistic equation [15]. As a result of this approach, two 

practical methods for quantifying variability in data sets have been derived. The first 

method is a graphical representation obtained by using second-order difference plots of 

time series data [15]. The second is a central tendency measure (CTM) that quantifies this 

degree of variability [15]. The CTM is then used as a feature for a neural network to 

differentiate congestive heart failure patients as compared to normal controls. 
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Efforts have been made in estimating nonlinear characterizing parameters like 

correlation dimension for pathological signals and it has been shown that they are useful 

indicators of pathologies.  Further progress made in the field using measures of chaos has 

attracted scientific community applying these tools in studying physiological systems. 

Several methods for estimating invariants from nonlinear dynamical systems is reported 

in the literature[16-23]. Crucial for the application of nonlinear methods is the 

reconstruction (embedding) of the time series in a phase space with appropriate 

dimension. In 1999, Fell et. al.[16], in their work have demonstrated the importance of 

embedding the time series in a state-space with appropriate dimension in nonlinear 

analysis. In their study, only healthy subjects were considered and the necessity to choose 

the proper embedding dimension is explained. In their work, proper embedding 

dimension was determined by application of two techniques, the false nearest neighbours 

method and the saturation of the correlation dimension. Results are then compared with 

findings for simulated data (quasiperiodic dynamics, Lorenz data, and white noise) and 

for phase randomized surrogates. This result paved the foundation to find the proper 

embedding dimension and used by most of the current research in the nonlinear analysis 

of bio signals to appropriate embedding dimension for the topologically proper 

reconstruction of the bio signals considered. 

Khadra et. al.[17] have proposed classification of life-threatening cardiac 

arrhythmias using Wavelet transform. In this work, three types of arrhythmia such as 

ventricular fibrillation, atrial fibrillation and ventricular tachycardia were identified using 

the energy parameter from the wavelet transform. Later, Al-Fahoum et. al.[18], extended 



Chapter 2: Literature Review 

 
13 

the study by using six different energy descriptors from the wavelet transformations. 

They tried with nine different wavelets and generated a feature vector using these wavelet 

energy descriptors and used as an input to radial basis function (RBF) neural networks for 

classifying the above mentioned three arrhythmias and the normal class. Further, the 

studies using wavelet transform was extended to identify the underlying phenomenon of 

the physiological process. Paul et. al, [19] showed that the coordinated mechanical 

activity in the heart during ventricular fibrillation may be made visible in the surface 

ECG using wavelet transform (WT). The results have been demonstrated using an animal 

model for cardiac arrest that the WTs allow this underlying the coordinated atrial activity 

to be detected using the non-invasive ECG recording. These results paved a way for 

many other researchers to look into different nonlinear parameters that differentiate the 

diseased states in physiological signals and also to apply these features as inputs to the 

different classifiers architectures and study the performance.  

Sun et. al.[20] included few other additional types of arrhythmia such as pre-

ventricular contraction in their analysis for detection of arrhythmia using nonlinear 

techniques. Then, Owis et. al.[21] applied the features extracted based on nonlinear 

dynamical modeling in ECG signals for arrhythmia detection and classification. In their 

work, they have used correlation dimension and Lyapunov exponents for classification 

using three different classifiers such as the minimum distance, Bayesian and the k-nearest 

neighbors. Six signal classes have been shown to be statistically different but poor 

classification results were observed, indicating that their distributions have significant 

overlap. This suggests that the proposed features were able to detect the presence of 
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abnormality rather than to specify the type of abnormality. Dingfei et. al.[22] evaluated 

different types of classifier architectures to classify cardiac arrhythmia into six classes 

using autoregressive (AR) modeling parameters. All these work shows the horizon of 

research on application of nonlinear techniques for ECG analysis even tough consistent 

and clinical application results are yet to be reached.   

During the past decades, a great deal of work has been devoted in understanding 

the physiological information behind the variability of the cardiac cycle. Task force 

(1996) gave guidelines for Heart rate variability (HRV) - standards of measurement, 

physiological interpretation for clinical use [23]. Since then many researchers started to 

try to apply the nonlinear techniques to these HRV signals and look into feasibility of 

using the HRV signal as a reliable diagnostic tool.   

Methods based on chaos theory have been applied in tracking the HRV signals. 

Researchers have used phase-space technique to distinguish normal and abnormal 

cardiovascular signals [24].  In this effort, it has been shown that phase space 

representation differentiated the HRV signals and the arterial pressure signals into two 

classes such as the normal and abnormal class. Further research in literature, indicates the 

importance and evolution of application of nonlinear techniques to study HRV in both 

healthy and many diseased subjects [16-25]. 

It has been shown that the variability in heart rate reflects the vagal and 

sympathetic function of the autonomic nervous system, and can be used as a monitoring 

tool in clinical conditions characterized by altered autonomic nervous system function. 
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Spectral analysis of beat-to-beat variability is applied as a non-invasive technique to 

evaluate autonomic dysfunction. Radhakrishna et. al. [25] have tried the nonlinear 

analysis of HRV signals to investigate the autonomic changes associated with panic 

disorder. Even though well established analysis tools from linear system theory can 

provide valuable information for physiological and clinical interpretation of the HRV, it 

has been speculated that methods from nonlinear dynamics may provide a powerful tool 

to deduce more information for better understanding the mechanisms of cardiovascular 

control [23].  

From the literature studies, it can be seen that there has been extensive research 

done on applying nonlinear techniques to ECG signals as compared to HRV signals for 

identification of cardiac abnormalities. There is still the problem in the automatic 

identification of cardiac abnormalities as there is no specific methods or features has been 

identified to classify the many different types of cardiac abnormalities. Accordingly in 

this work, we address the problem of characterizing the nonlinear dynamics of the HRV 

signals of different cardiac abnormalities and access their suitability for classifying many 

cardiac abnormities rather than just a few. This is required as healthcare industry is 

getting more and more sophisticated and looking for ways for more automated diagnosis 

and indices for rapid diagnosis. 

Many investigators, for example, Duke et. al. [12] has proved that complex 

dynamical evolutions lead to chaotic regimes. In the last thirty years, experimental 

observations have pointed out that, in fact, chaotic systems are common in nature [26]. In 
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theoretical modeling of neural systems, emphasis has been put mainly on either stable or 

cyclic behaviors. In the past, a wide range of work has been done in understanding the 

complexities associated with the brain through multiple windows of mathematics, 

physics, engineering and chemistry, physiology etc [27]. Until about 1970, EEG 

interpretation was mainly heuristic and of a descriptive nature. Although several papers 

have discussed quantitative techniques to assist in EEG interpretation [28], in clinical 

terms the situation remained unchanged. Nonlinear dynamics theory opened new and 

powerful window for understanding behavior of the EEG. In 1985, first Babloyantz et. 

al., used nonlinear techniques to study the slow wave sleep signal [29].  According to 

their research, the analysis of electroencephalogram data from the human brain during the 

sleep cycle reveals the existence of chaotic attractors for sleep stages two and four. The 

onset of sleep is followed by increasing “coherence” towards deterministic dynamics 

involving a limited set of variables. They have applied techniques such as Phase space 

representations and Lyapunov exponents and provided the possibility for these techniques 

to be further explored in the analysis of EEG signals.  

Subsequently there has been a sustained interest in describing neural processes 

and brain signals, especially the EEG, within the context of nonlinear dynamics and 

theory of deterministic chaos [30]. Rapp et. al.  indicated that the correlation dimension 

estimate of the EEG signal can distinguish between a subject at rest and a cognitively 

active subject (doing mental subtraction or addition). These results also suggested that 

nonlinear analysis techniques can provide a characterization of changes in cerebral 

electrical activity associated with changes in cognitive behaviour.  Since that time, 
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applications of EEG to several research areas have significantly increased and researchers  

further tired to apply the nonlinear techniques on brain signals for understanding the 

chaotic behavior and the dynamic process at neural level for various brain disturbances 

such as the  schizophrenia, insomnia, epilepsy and other disorders [31-33].  

In 1997, Stam et. al. [34] studied the abnormal dynamics of cortical neural 

networks in Creutzfeldt–Jakob disease (CJD) by applying nonlinear techniques to the 

EEG signals. They showed that in the EEG the CJD episodes coincide with the 

occurrence of periodic slow waves and can be predicted much better than the irregular 

background activity. The results suggested the usefulness of non-linear models to gain a 

better understanding of brain dynamics.  Later, Rezek et. al. [35] applied four stochastic-

complexity features on EEG signals recorded during periods of Cheyne–Stokes 

respiration, anaesthesia, sleep, and motor-cortex investigation. They successfully 

demonstrated the use of entropy measures for characterising the various phenomenons 

from the EEG signals even though these techniques were not applied for identification of 

any brain disorders.  Jaeseung et. al. [32] further investigated the use of nonlinear 

parameters for identification of brain disorders such as Alzheimer’s disease and vascular 

dementia. In this work, to assess nonlinear EEG activity in patients with Alzheimer’s 

disease (AD) and vascular dementia (VaD), the authors estimated the correlation 

dimension (D2) and the first positive Lyapunov exponent (L1) of the EEGs in both 

patients and age-matched healthy control subjects. The AD patients had significantly 

lower D2 and L1 values than the normal control subjects whereas the VaD patients had 

relatively increased values of D2 and L1 compared with the AD patients.  In addition, the 
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authors detected that the VaD patients had an uneven distribution of D2 values over the 

regions than the AD patients and the normal control subjects whereas AD patients had 

uniformly lower D2 values in most regions, indicating that AD patients have less 

complex temporal characteristics of the EEG in entire regions. These nonlinear analyses 

of the EEG signals paved a way to provide insight in understanding the nonlinear 

dynamics of the observed EEG activity in different brain disorders. Further studies has 

been done in understanding the EEG dynamics for prediction of epileptic seizures 

[36,37], characterization of sleep phenomena [38], encephalopathy’s [39] or Creutzfeldt–

Jakob disease [34] and  monitoring of depth of anesthesia [35,40]. Eventually, 

researchers started exploring the application of these techniques in a clinical scenario.  

In the analysis of EEG data for clinical applications, different chaotic measures 

such as the correlation dimension, Lyapunov exponent and entropy are used in the 

literature [41 - 46]. Jing and Takigawa [41] applied the correlation dimension techniques 

to analyze EEG at different neurological states. These estimates of correlation dimensions 

were calculated for control EEG, ictal and inter-ictal EEG signals. The estimates were 

calculated for different regions of the brain and also with respect to the different 

frequency ranges. This study provided an in-depth analysis of application of correlation 

dimension to EEG signals and their conclusions on the variation of the dimension 

estimates proved as an evidence to apply correlation dimension estimate for future 

analysis of brain states from EEG signals. Lehnertz and Elger [42] used the correlation 

dimension to test whether a relationship exists between spatio-temporal alterations of 

neuronal complexity and spatial extent and temporal dynamics of the epileptogenic area. 
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Casdagli et. al.[43] showed that the techniques developed to study of nonlinear systems 

can be used to characterize the epileptogenic regions of the brain during the inter-ictal 

period. The correlation integral, a measure sensitive to a wide variety of nonlinearities, 

was used for detection. And statistical significance was determined by comparison of the 

original signal to surrogate datasets. The results showed that statistically significant non-

linearities were present in signals generated by the epileptogenic hippocampus and inter-

ictal spike foci in the temporal neocortex. These results indicated that techniques 

developed for the study of non-linear systems can be used to characterize the 

epileptogenic regions of the brain during the inter-ictal period and can elucidate the 

dynamical mechanisms of the epileptic transition. Further adding to the research, 

investigators explored the ways to apply the nonlinear analysis for prediction of seizures 

and measure the level of synchronization in the brain during different mental states. [44-

46]. Arnhold et. al. [46] have used measures such as correlation dimension and mean 

phase coherence to characterize the inter-ictal EEG for prediction of seizures. The 

effective correlation dimension revealed that values calculated from inter-ictal recordings 

were significantly lower for the epileptic focus as compared to remote areas of the brain. 

Also the epileptogenic process during the inter-ictal state is characterized by a 

pathologically increased level of synchronization as measured by the mean phase 

coherence. All the above mentioned research proved that nonlinear analysis techniques 

can be used for analysis of EEG signals but they are all specific for the scenario or the 

problem that is considered. Lot more research is required to identify the specific 

techniques for diagnosis of different and more specific brain disorders or states. 
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Despite the many applications of EEG in clinical neurophysiology [47-52], its 

visual interpretation is very subjective and does not lend itself to statistical analysis. As a 

result, a number of research groups have proposed methods to quantify the information 

content of the EEG. Among these are the Fourier transform (FT), WT, chaos, entropy, 

and sub-band wavelet entropy [53-56]. The importance and necessity for EEG signal 

modeling to achieve a better understanding of the physical mechanisms generating these 

signals and to identify the causes of EEG signals changes was emphasized by Bai et. 

al.[57]. The results lead to the application of estimated model parameters for 

identification and classification of EEG abnormalities in future research. Modeling can 

also be used for predicting the future neurological outcome and for data compression. 

Simulation based on EEG signal model can be used to better demonstrate the 

effectiveness of a certain quantitative analysis method or EEG feature extraction system. 

There are many publications relating to the prediction of seizures by analyzing the 

EEG with characterizing measures [58]. However in these studies, the authors have 

envisioned the feasibility of predicting the seizures. There are work done [59] to 

statistically validate these measures that are used to predict seizures. One such method is 

application of surrogates to evaluate the performance of seizure prediction algorithms and 

has concluded that the approach of surrogates is a promising work in this field. The 

analysis and prediction of epileptic seizures is still strong area to research and conclusive 

results are yet to be obtained.  
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With this scenario, in this work, the control, background and epileptic EEGs are 

characterized using various nonlinear measures and their suitability for diagnosis are 

assessed. The possibilities of predicting the seizure horizon is also explored and 

attempted in this work by dynamically reconstructing the EEG signals and evaluate using 

a set of chosen nonlinear features. Furthermore, in this work, attempt is made to analyze 

both heart and brain signals using nonlinear techniques and evaluate the cardiac and 

mental health states. This attempt is essential as the future in healthcare is to provide 

more and more sophisticated and automated monitoring and diagnosing using multimodal 

physiological signals.  

Considering a scenario of Cardiac arrest (CA), which is one of the most 

commonly occurring critical coronary unit disorders, due to the technological 

developments of implantable and portable defibrillators, most of the patients of CA have 

successful resuscitation in or outside the hospital. However, a large majority of 

resuscitated patients are left with significant neurological impairment. Neuronal damage 

from CA occurs within minutes and rapidly devastates brain function with permanent 

consequences shortly after its onset. These patients usually have undetected seizures and 

are mostly known after the brain is damaged. This lead to situation of patients with the 

heart functioning but the brain damaged. Furthermore, the lack of sensitive detection and 

monitoring methods has impeded clinical investigations into improving diagnosis and 

recovery of brain function. Still, the overall compelling goal is to bring to the bedside 

state-of-the art equipment for rapid and accurate detection and monitoring of both heart 

and brain functions [60]. 
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Here in this work, a different approach of application of non-linear time series 

analysis techniques is adopted to demonstrate that concepts originating from the theory of 

non-linear dynamics can be used to characterize the underlying dynamics of EEG and 

HRV signals. In particular, recently developed statistical and non-linear time series 

methods are applied to evaluate the feasibility of diagnosing the cardiac and mental 

health states from the predicted EEG and HRV signals.  
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Chapter 3   Chaotic Analysis of HRV 

Signals 

The process of analyzing time series using mathematical and numerical data 

transformations or even appropriate graphical displays constitutes a field of science 

known as time-series analysis. Conventional signal processing techniques include FT, 

autocorrelation functions and AR data modeling. These methods generally are and have 

often been found insensitive for describing the nonlinear structure of chaotic time series. 

Chaotic time-series analysis (CTSA), or nonlinear time-series analysis (NTSA), refers to 

a class of data-analysis techniques employed to provide a richer description of time series 

generated for chaotic systems. In this chapter, various techniques of nonlinear time series 

analysis which are based on the paradigm of deterministic chaos are discussed.  

The HRV signal, extracted from the ECG signal can be used as a reliable 

indicator of heart diseases. Using the HRV signal as the base signal, a feature library with 

more than ten features is developed for diagnosis of eight different cardiac health states. 

In this work, parameters such as correlation dimension ( 2D ), largest Lyapunov exponent 

( 1λ ), Kolmogorov-Sinai entropy ( KSEN ), spectral entropy ( SEN ), approximate entropy 

( APEN ) and Renyi’s entropy ( REN ) are used to quantitatively describe the attractor in 

multidimensional space. The extracted chaotic features are accurate only if the signals are 
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reconstructed in a multi-dimensional state-space with optimal embedding dimension ( m ) 

and embedding time delay (τ ). The optimal τ  and m are determined before proceeding 

with the chaotic features extraction. The signals are tested for nonlinearity and 

stationarity as well, as the measurements of these parameters are valid only if the data 

under consideration are nonlinear and stationary. 

3.1 Description of the Data 

ECG data for the analysis was obtained from PhysioBank Biomedical Signals 

Archive
3
[61]. The ECG signals available in the database were pre-processed to remove 

noise due to power line interference, respiration, muscle tremors, spikes etc. The 

sampling frequency of the data is 360 Hz.  The number of dataset chosen for each of the 

eight classes of cardiac health states is given in Table 3.1.  Each dataset consists of 

around 10,000 samples. The heart rate is calculated by identifying the R peaks of ECG 

signals using Tompkins’s algorithm [62]. The interval between two successive QRS 

complexes is defined as the RR interval ( RRt − ) and the heart rate (HR) in beats per minute 

(BPM) is given by, 

RRt
HR

−

=
60

      (3.1) 

                                                 

3
 http://www.physionet.org/physiobank/database/ 
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In this work, an effort is made to characterize and classify eight different classes 

with one normal class and seven different cardiac abnormalities.  The HRV signal is 

extracted from the ECG signal for each class.  

Type NSR PVC CHB SSS LBBB ISCH  AF VF 

No. of 

datasets 
100 75 53 52 46 52 55 53 

Table 3.1 ECG Data for eight cardiac health states 

The eight cardiac states are: 

Normal Sinus Rhythm (NSR): All P-waves upright, rounded and similar in size and shape. 

A P-wave exists for every QRS complex.  Each P-wave is the same distance from the 

QRS complex – less than 0.20 seconds. All QRS complexes are the same size and shape 

and point in the same direction. Each QRS is the same distance from the T-waves and the 

QRS the duration is 0.10 seconds or less. The heart rate in this case varies between 60-

100 BPM and is rhythmic. 

Preventricular Contraction (PVC): In this case, extra beats occur in the normal sinus 

rhythm causing irregularity in the usual rhythm of the heart. These extra beats occur 

when there is an ectopic focus in the ventricle, causing it to send premature electrical 

impulse that spreads to the sino-atrial (SA) node. The QRS complex is widened and not 

associated with the preceding P-wave. The T-wave is inverted after PVC. It is often 

followed by a compensatory pause. In couplets, there are two consecutive PVCs exist. In 

Bigeminy, there is PVC after every other NSR. In this case, heart rate increases from 

normal rhythm and varies between 100- 160BPM. 
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Complete Heart Block (CHB): In this case, the heart rate will be usually between 30-

35BPM. P-waves are not conducted to the ventricles because of the block at the atrio-

ventricular (AV) node. In this case, the P-waves show no relation to the QRS complexes. 

They ‘probe’ every part of the ventricular cycle but are never conducted. All the impulses 

generated from the sinus node are not conducted to the ventricle.  No impulses are 

conducted and the ventricular rate becomes dependent on spontaneous ventricular 

depolarizations. In this case, the ECG exhibits bradycardia with HR = 20-40 BPM. The 

ventricles are depolarized by a ventricular escape rhythm.  

Sick Sinus Syndrome (SSS): It is a disturbance of the normal rhythm of the heart. The 

electrical impulse that drives the heart beat starts in the SA node of the heart, and then 

spreads through specialized conduction pathways, causing orderly depolarization and 

contraction of the heart muscle. This can be traced on an ECG. There is rhythmic 

variation in the heart rate swinging between higher and lower heart rates.  

Atrial Fibrillation (AF): In AF, sinus rhythm does not occur. Instead, multiple “patterns” 

of electrical impulses travel randomly through the atria, leading to random activation of 

different parts of the atria at different times. Because the tissues of the right and left atria 

are not stimulated to contract in an organized manner, the walls of the atria quiver 

resulting in an irregular ventricular rhythm. Sometimes on a first look the rhythm may 

appear regular but on closer inspection it is clearly irregular. 

Ischemic/Dilated Cardiomyopathy (ISCH): Ischemic cardiomyopathy is the ventricular 

systolic dysfunction caused by the atherosclerotic coronary artery disease (CAD). As a 
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result of smoking, hypertension, diabetes mellitus, lipid disorders, chronic inflammation, 

and genetic susceptibility, atherosclerotic plaque accumulates in the walls of coronary 

arteries resulting in reduced flow of blood and oxygen to the heart. Irregular heartbeats 

can be observed under this condition.  

Left Bundle Branch Block (LBBB): This belongs to a group of heart problems called 

intraventricular conduction defects (IVCD). Patients with LBBB may have left 

ventricular disease or cardiomyopathy. The pattern seen in the ECG indicates pulses in a 

heart beat and their duration. QRS duration of greater than 110 milliseconds is a 

diagnostic indication of LBBB. 

Ventricular fibrillation (VF): Ventricular fibrillation causes rapid, ineffective and 

uncoordinated contractions of the heart. It is caused by abnormal heart beats which are 

initiated by electrical activity in the lower heart chambers or ventricles. This condition is 

a common complication of heart attacks and can also be caused by electrocution or 

drowning. The ECG is bizarre, irregular and random. 

Using the HRV signal as the base signal, the eight cardiac states are characterized 

using the nonlinear, chaotic and information theory features. These signals are analyzed 

using fractal dimensions, correlation dimension, Lyapunov exponent, entropies and 

detrended fluctuation analysis. 
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3.2 Fractal Dimension Analysis 

The term "fractal" was first introduced by Mandelbrot in 1983 [63]. A fractal is a 

set of points that when looked at smaller scales, resembles the whole set. The concept of 

fractal dimension (FD) refers to a non-integer or fractional dimension and originates from 

fractal geometry. In traditional geometry, the topological or Euclidean dimension of an 

object is the number of independent directions that the object occupies in space. This 

definition of dimension works well for geometrical objects whose level of detail, 

complexity or "space-filling" is the same. However, when considering two fractals of the 

same topological dimension, their level of "space-filling" is different, and that 

information is not given by the topological dimension. The FD emerges to provide a 

measure of how much space an object occupies between Euclidean dimensions. The FD 

of a waveform represents a powerful tool for transient detection. This feature has been 

used in the analysis of ECG and EEG to identify and distinguish specific states of 

physiologic function. Many algorithms are available to determine the FD of the 

waveform. In this work, algorithms proposed by Higuchi and Katz [64, 65] are 

implemented for analysis of ECG and EEG signals. 

3.2.1 Higuchi’s Algorithm 

Consider },,2,1);({ Niix K= , the time sequence to be analyzed. Here N is the 

total number of samples in the dataset. Construct k new time series 

 { }),(),.....,2(),(),(: kmxkmxkmxmxxasx
k

mNk

m

k

m
−+++=  for m=1, 2, …, k, where m indicates 
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the initial time value, and k indicates the discrete time interval between points, and  a  

means the integer part of a or a rounded down to the nearest integer. For each of the k 

time series or curves k

mx , the length )(kLm  is computed by, 

 

 ka

Nkimxikmx

kL

a

i
m

∑
=

−−+−+

= 1

)1())1(()(

)( ,       (3.2) 

where  kaN )1( −  is a normalization factor and 
k

mN
a

−
= . An average length is computed 

as the mean of the k lengths )(kLm  for 1, 2,...,m k= . This procedure is repeated for each k 

ranging from 1 to max ,k  obtaining an average length for each k. In the curve of ln(Lm(k)) 

versus ln(1/k), the slope of the least-squares linear best fit is the estimate of the FD 

( )HiguchiD [64]. 

3.2.2 Katz Algorithm 

Using Katz's method [65], the FD of a curve can be defined as,  

)(log

)(log

10

10

x

Katz

d

L
D =  ,             (3.3) 

where L is the total length of the curve or sum of distances between successive points, 

and xd  is the diameter estimated as the distance between the first point of the sequence 

and the point of the sequence that provides the farthest distance. Mathematically, xd  can 



Chapter 3: Chaotic Analysis of HRV signals 

 
30 

be expressed as ( ))(),1(max ixxd x =  for Ni ...,3,2= . Here )(),( jxix  represents the 

Euclidean norm of the distance between the points )(ix and )( jx . 

Considering the distance between each point of the sequence and the first, point i 

is the one that maximizes the distance with respect to the first point. The FD compares 

the actual number of units that compose a curve with the minimum number of units 

required to reproduce a pattern of the same spatial extent. FDs computed in this fashion 

depend upon the measurement units used. If the units are different, then so are the FDs. 

Katz’s approach solves this problem by creating a general unit or yardstick: the average 

step or average distance between successive points, avd . Normalizing the distances, 

KatzD is then given by, 

)/(log

)/(log

10

10

avx

avKatz

dd

dL
D = .     (3.4) 

3.2.3 Validation of the FD Algorithms 

The FD algorithms discussed above are validated using synthetic data generated 

using the Weiestrass cosine function [66] given by, 

∑ <<= −

i

iiY

Y YttW 10),2cos()( πγγ ,   (3.5) 

where 1>γ . The FD (theoretical) of this signal is given by YD −= 2 . FD’s of this 

synthetic signal range from 1.001 to 1.991.  Figure 3.1 shows the FD values obtained by 
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each of the analysis methods plotted against the theoretical FDs of the synthetic data. The 

perfect reproduction of the theoretical FDs should yield a straight line of slope equal to 

one. From this study, it is seen that the Higuchi’s algorithm provides the most accurate 

estimate of FD. 

FD results from synthetic data
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Figure 3.1 FD computed using Higuchi and Katz method versus theoretical FD 

3.3 State-space Reconstruction 

All further analysis of the time series depends on the precondition of a successful 

reconstruction of the state-space of the underlying process. There exist a number of 
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rigorous theorems about the possibility to reconstruct a state-space from a scalar time 

series. The reconstructed attractor from the observed scalar data must preserve the 

invariant characteristics of the original unknown attractor. This is done by using an 

appropriate embedding dimension, m, and embedding delay time, τ (delay coordinate 

method).  Taken's embedding theorem [67] allows for the reconstruction of the attractor 

in the time delayed embedded space, preserving its topological characteristics. The 

reconstruction of the attractor is done from a finite time series of the observation of a 

single variable.  Takens embedding theorem asserts that  if a time series ( )(),...,2(),1( Nxxx ) 

is one component of an attractor that can be represented by a smooth d-dimensional 

manifold (where d is an integer), then the topological properties of the attractor such as 

dimensions and Lyapunov exponents are equivalent to the topological properties of the 

embedding formed by the m-dimensional state-space vectors, 

)])1((,),2(),(),([ τττ −+++= mixixixixi KKx ,  (3.6) 

for 12 +≥ dm . In equation (3.6), τ  is the embedding delay time and m  is the embedding 

dimension. Different choices of m  and τ  yield different reconstructed trajectories. There 

exist several methods for estimating the optimum values τ  and m , which are 

summarized as follows [68]: 

Analytical methods for estimating τ : 

• Autocorrelation and power spectrum functions 

• Average mutual information (AMI) function 
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• Degree of separation function 

• Lyapunov exponents 

 

Analytical methods for estimating m : 

• False nearest neighbor method (FNN)   

• Bad prediction method  

• Fractal and correlation dimensions  

Empirical methods (for estimating both τ and m ): 

• Neural networks (NN) 

• Derivative-free global optimization methods, like genetic algorithms  

3.3.1 Estimation of Embedding Dimension 

The dimension m  is the minimum number of time-delay coordinates needed so 

that the trajectories ix  do not intersect in m  dimensions. In dimensions < m , trajectories 

can intersect because they are projected down into too few dimensions. Subsequent 

calculations, such as predictions, may then be corrupted. If it is too large, noise and other 

contamination may corrupt other calculations because noise fills any dimension.  

Sauer et al. [69] has generalized the Taken’s theorem to find an optimal 

embedding dimension. If the attractor has a box counting dimension 0D , then an 

embedding dimension of 12 0 +≥ Dm  is sufficient to ensure that the reconstruction is a 
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one to one embedding. If the attractor has a correlation dimension 2D , then an embedding 

dimension of 2Dm ≥  is sufficient to measure the 2D  from the embedding. In practical 

applications, the Grassberger-Procaccia algorithm [70] is used to measure the 2D  of 

reconstructions for different embedding dimensions. The minimum embedding 

dimension of the attractor is 1+m , where m  is the embedding dimension above which 

the measured value of the 2D  saturates. 

Correlation Dimension of Normal HRV signals for various 
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Figure 3.2 Variation of correlation dimension for different embedding dimension 

Using the Grassberger-Procaccia algorithm (discussed in Section 3.6.1), 2D  of 

the HRV signals are estimated for different embedding dimensions. The optimum 

embedding dimension of the attractor is 1+=
sat

mm , where 
sat

m  is the embedding 
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dimension above which the measured value of 2D  saturates.  The graph of 2D  vs. m  for 

normal HRV signal is shown in Figure 3.2.  It is observed that the 2D  saturates at 

6=
sat

m  and the optimum embedding dimension is chosen as 7=m  for the analysis 

of HRV signals. 

3.3.2 Estimation of Embedding Delay Time 

A one-to-one embedding can be obtained for any value of 0>τ . However, both 

too small and too large values for τ  will cause failures of the reconstruction. 

• Small time delay: If τ  is small, the values of )(ix  and )( τ+ix  will be 

almost equal, since the system did not have time to change its state 

significantly. So there is little gain of information between them. Then 

each reconstructed vector consists of almost equal components i.e 

redundant information. Therefore the reconstructed attractor will be 

concentrated around the main diagonal of the reconstruction space 

forming a long and thin object in the state-space. 

• Large time delay: If τ  is large and the dynamical system is chaotic, the 

effect of sensitive dependence on the initial conditions will make the 

information about the state of the system at instant i  almost irrelevant for 

the state at instant τ+i . During the time interval ),( τ+ii  the system has 

almost forgotten the state )(ix  and the deterministic correlation between 
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the states at both times could be detected by resolving very small scales in 

the reconstruction space for which high precision measurements are 

required. 

The optimal time delay is determined by using the AMI function. The delay at 

which first minimum of the AMI function occurs is identified to be the optimum τ . 

Mutual information function for normal HRV signal is given Figure 3.3. It can be clearly 

seen that the mutual information reaches its first minimum at  4=τ  . Hence the optimal 

embedding delay τ  is chosen as 4 for our analysis of HRV signals. 

 

Figure 3.3 AMI of normal HRV signal 
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Figure 3.4 shows the 3-D plot of the reconstructed attractor of the HRV signals 

with a time delay of 4=τ . As dimensions greater than three cannot be shown 

graphically, unfolding of the attractor in three dimensions is given. It can be seen from 

this Figure 3.4 that even in three dimensions, the attractor show clear differences in their 

structure between the eight classes of cardiac abnormalities. The plot of the attractors 

serve as a descriptive representation of the signal and still parametric representations of 

the reconstructed attractor are needed to quantify the signals. x(n) 

 
(a) 
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     (b) 

 
     (c) 
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(d) 
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(f) 

 

 

 
(g) 
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(h) 

Figure 3.4 Phase-space plot of eight classes of HRV signals 

3.4 Nonlinearity  

One of the objectives of this work is to determine the nonlinear dynamics of the 

HRV and EEG signals. Before applying any nonlinear time series analysis algorithms on 

the data, it is necessary to test the presence of nonlinearity in the data under 

consideration. One of the efficient methods to test for nonlinearity in the data is the 

surrogate data test proposed by Theiler et. al. [71] in 1992. 
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3.4.1 Test for Nonlinearity 

Surrogate signal is produced by phase randomizing the original data. It has similar 

spectral properties as of the given data. The surrogate data sequence has the same mean, 

the same variance, the same autocorrelation function and therefore the same power 

spectrum as the original sequence, but phase relations are destroyed. In the case of data 

shuffling, the histograms of the surrogate sequence and the reference sequence are 

identical. The random phase spectrum is generated by using any of the three methods 

described below. 

1. Random phase: here the complex phase values of the Fourier transformed input 

signal are chosen randomly. 

2. Phase shuffle: here the phase values of the original spectrum are used in 

random order. 

3. Data shuffle: here the phase values of the original spectrum are used in random 

order and the sorted values of the surrogate sequence are substituted by the corresponding 

sorted values of the reference sequence additionally. 

The measured topological properties of the experimental time series are then 

compared with that of the measured topological properties of the surrogate data sets. If 

both the experimental data and the surrogate data yield the same results then by the null 

hypothesis, the experimental data is set of random noise and the underlying process is 

linear. 
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Type NSR PVC LBBB AF VF CHB SSS ISCH 

)(OriginalAPEN  1.75 1.51 1.47 1.57 1.09 0.97 1.57 0.76 

)(SurrogateAPEN  0.78 0.67 0.61 0.73 0.45 0.43 0.73 0.26 

% Difference 55.43% 55.63% 58.50% 53.50% 58.72% 55.67% 53.50% 65.79% 

 

 )(2 OriginalD  3.58 2.29 3.2 2.58 2.9 2.72 2.35 3.3 

)(2 SurrogateD  1.34 1.11 1.28 1.08 1.12 1.12 1.06 1.11 

% Difference 62.57% 51.53% 60.00% 58.14% 61.38% 58.82% 54.89% 66.36% 

Table 3.2 Surrogate Data analysis for eight cardiac health states 

In this work, the surrogates for the HRV signals are generated by the Fourier 

decomposition with the same amplitudes as the empirical data decomposition but with 

random phase components. 20 sets of surrogate data are generated for each of the eight 

classes. Approximate entropy (APEN) and 2D  are obtained for both the original and 

surrogate data sets and given in Table 3.2. It has been found that, the surrogate data 

APEN and original data APEN, are different from each other by more than 50%. Similar 

procedure is repeated for 2D  as well. The surrogate data 2D and the original data 2D are 

different from each other by more than of 50%. This rejects the null hypothesis and 

confirms that the original data is nonlinear. 

3.5 Stationarity  

A scientific measurement of any kind is only useful if it is reproducible. In the 

case of time series measurements, the dynamic properties of the data under consideration 

are relevant and valid only if the data is stationary. Stationarity requires that all 

parameters of the studied system relevant for its dynamics have to be fixed and constant 

during the measurement period. Recurrence plots (RPs) are used to reveal non-
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stationarity of a series. It was first proposed by Eckmann et. al.[72] in order to study 

state-space orbits. RP is a graphical to represent the hidden drift and periodicities in the 

signal. It is an array of dots in an NN × square where a dot is placed at ),( ji  whenever 

jx is closer to ix  within a small radius ir  around ix . To obtain the recurrence plot from 

time series },,2,1);({ Nnnx K= , m-dimensional orbit of ix  is constructed by method of 

delays. Then ir  is chosen such that reasonable of jx  points are around ix  within the 

radius ir . Finally, the recurrence plot is obtained by plotting a dot at each point 

),( ji when jx  is within the ball of radius ir  centered at ix .  

The RP is illustrated for periodic, stationary and non-stationary process [Figure 

3.5]. The RPs are constructed with 5,2 == τm  and ×= 15.0r standard deviation of the 

signal. The 10Hz sinusoidal signal and its recurrence plot is given in Figure 3.5a and 

Figure 3.5b, respectively. The diagonal lines segments parallel to ji =  indicate the 

periodic nature of the signal. The exponentially damped sinusoidal signal and its RP is 

given in Figure 3.5c and Figure 3.5d, respectively. The fading pattern in the RP is due to 

the non-stationarity in the signal. The white Gaussian noise and its RP is given in Figure 

3.5e and Figure 3.5f. The plot is uniform indicating stationary process without any 

periodicity. 
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   (a)     (b) 

 
   (c)     (d) 

 
   (e)     (f) 

 

Figure 3.5 Illustration of Recurrence plots 
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For a stationary system, the RP is homogeneous along the diagonal. The RP of 

HRV signals of eight cardiac states are shown in Figure 3.6. The RP is constructed with 

5,2 == τm  and ×= 15.0r standard deviation of the signal.  It can be seen that the plot is 

symmetric along the diagonal and the overall pattern is fairly uniform. The uniform 

distribution of the pattern indicates that the underlying process for the HRV signal is a 

stationary process. 
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Figure 3.6 Recurrence plot of the HRV signals of eight cardiac states. 

3.6 Chaotic Invariants Analysis 

The dimension of a system can give much information about the nature of the 

system. The estimation of the dimension from the experimental data (time series) is 

therefore very useful to the understanding of the system, particularly if the system is 

periodic, chaotic, or noisy. There is a broad spectrum of dimensions used to characterize 

nonlinear systems. In particular, 2D  is discussed here in detail. Besides the spectrum of 
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generalized dimensions, there are other geometric quantities like the spectrum of 

Lyapunov exponents and entropies that are invariant under embedding. Lyapunov 

exponent and entropies characterize the dynamics of the deterministic systems.  

3.6.1 Correlation Dimension 

2D  is one of the most widely used measures of FD.  Here we adapt the algorithm 

proposed by Grassberger and Procaccia [70] to estimate 2D  values of the experimental 

time series.  The idea is to construct a correlation function )(rC  that is the probability that 

two arbitrary points on the orbit are closer together than r in the state-space.  Here r is the 

radial distance around each reference point  ix  in the state-space. This is done by 

calculating the separation between every pair of N data points and sorting them into bins 

of width dr proportionate to r.  The 2D  can be calculated using the distances between 

each pair of points ix  and jx  in the state-space ( Njijis ji ,,2,1,,),( L=−= xx ), in the 

set of N number of points. 

A correlation function, C(r), is then calculated using,  

( )∑∑
=

≠
=

−
−−Θ=

N

i

N

ij
j

jiNN
rrC

1 1
)1(

2)( xx  ,    (3.7) 

where, Θ  is the Heaviside function.  

2D  is calculated using the fundamental definition 
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)log(

)(log
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r
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= .      (3.8) 

The data points used in calculating the C(r) comes from a time series, which has 

too small or too large time resolution may introduce spurious effects. If the time 

resolution is too small, the data may contain multiple copies of essentially the same 

measurements, which leads to multiple-counting. The 2D  is then artificially low because 

all the points are temporally close to each other.  This effect occurs when the time 

resolution of the analyzed data is much smaller than the τ (or any characteristic time 

scale).  

The correction proposed by Theiler [73] is, for each reference point ix to include 

measurements jx which are at least τ  steps away from ix  

( )∑ ∑
= +=
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−−Θ=′

N

i
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jiNN
rrC

1

)1(
2)(

τ

xx .    (3.9) 

This correlation integral )(rC′ is used in equation (3.8) to calculate 2D . 

3.6.2 Lyapunov Exponents 

Lyapunov exponents (λ) is a quantitative measure of the sensitive dependence on 

the initial conditions. It defines the average rate of divergence or convergence of two 

neighboring trajectories in the state-space. An exponential divergence of initially nearby 

trajectories in state-space coupled with folding of trajectories, to ensure that the solutions 
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will remain finite, is the general mechanism for generating deterministic randomness and 

unpredictability. Therefore, the existence of a positive λ for almost all initial conditions 

in a bounded dynamical system is the widely used definition of deterministic chaos. To 

discriminate between chaotic dynamics and periodic signals, λs are often used. The 

trajectories of chaotic signals in state-space follow typical patterns. Closely spaced 

trajectories converge and diverge exponentially, relative to each other. A negative 

exponent implies that the orbits approach a common fixed point. A zero exponent means 

the orbits maintain their relative positions; they are on a stable attractor. Finally, a 

positive exponent implies the orbits are on a chaotic attractor.   

The algorithm proposed by Wolf et. al. [74] is used to determine the largest 

Lyapunov exponent ( 1λ ) in this study. For two nearby points in a state-space ix  and 

xx ∆+i , that are function of time and each of which will generate an orbit of its own in 

the state, the separation between the two orbits x∆  will also be a function of time.  This 

separation is also a function of the location of the initial value and has the form 

),( Kixx∆ , where K is the value of time steps forward in the trajectory.  For chaotic data 

set, the mean exponential rate of divergence of two initially close orbits is characterized 

by, 

x

xx

∆

∆
=

∞→

),(
ln

1
lim

K

K

i

K
λ .            (3.10) 

The maximum positive λ  is chosen to be 1λ . 
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3.6.3 Hurst Exponent 

The Hurst exponent (H) is a measure that has been widely used
 
to evaluate the 

self-similarity and correlation properties of
 
fractional Brownian noise, the time series 

produced by a fractional
 
(fractal) Gaussian process. H is used

 
to evaluate the presence or 

absence of long-range dependence and
 
its degree in a time series. However, local trends 

(nonstationarities) are often present in physiological data and may compromise the
 
ability 

of some methods to measure self-similarity. H is the measure of the smoothness of a 

fractal time series based on the asymptotic behavior of the rescaled range of the process. 

The H is defined as [75],  

)log(

log

N

S

R

H










= ,              (3.11) 

where N is the duration of the sample of data and R/S the corresponding value of rescaled 

range. The rescaled range R/S is the ratio of the range of values in the time series to the 

standard deviation of the values of the considered time series. The above expression is 

obtained from the Hurst’s generalized equation of time series that is also valid for 

Brownian motion. If H=0.5, the behavior of the time-series is similar to a random walk.  

If H<0.5, the time-series cover less “distance” than a random walk. But if H>0.5, the 

time-series covers more “distance” than a random walk. H is related to the dimension 2D  

by,  

      21 DdH −+= .                          (3.12) 
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Here, d is the Euclidean dimension.  

3.6.4 Poincare Geometry 

HRV analysis provides a noninvasive measure to asses the autonomic status of the 

heart. Under abnormal heart conditions, there will be perturbations to this autonomic 

activity, which is reflected as fluctuations in the heart rate. These fluctuations can be 

characterized using Poincare plots.  

The Poincare plot, a technique taken from nonlinear dynamics, portrays the nature 

of R-R interval fluctuations. It is a graph in which each R-R interval is plotted as a 

function of the previous R-R interval.  Poincare plot analysis is an emerging quantitative-

visual technique whereby the shape of the plot is categorized into functional classes that 

indicate the degree of the heart failure in a subject [76]. The plot provides summary 

information as well as detailed beat-to-beat information on the behavior of the heart [77].  

The geometry of the Poincare plot provides information on the beat-to-beat 

variation of the HRV signal. A common way to describe the geometry is to fit an ellipse 

to the graph. The ellipse is fitted onto the so called line-of-identity at 45
0
 to the normal 

axis. The standard deviation of the points perpendicular to the line-of-identity denoted by 

SD1 describes short-term variability which is mainly caused by respiratory sinus 

arrhythmia (RSA). The standard deviation along the line-of-identity denoted by SD2 

describes long-term variability. 
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 Statistically, the plot displays the correlation between consecutive intervals in a 

graphical manner. Nonlinear dynamics considers the Poincare plot as the two 

dimensional (2-D) reconstructed R-R interval state-space, which is a projection of the 

reconstructed attractor describing the dynamics of the cardiac system. The R-R interval 

Poincare plot typically appears as an elongated cloud of points oriented along the line-of-

identity. The dispersion of points perpendicular to the line-of-identity reflects the level of 

short term variability. The dispersion of points along the line-of-identity is thought to 

indicate the level of long-term variability.  

The Poincare plot may be analyzed quantitatively by calculating the standard 

deviations of the distances of the points x(i) in the time series to the lines xy =  and 

xxy 2+= , where x   is the mean of all x(i) [77]. The standard deviations are referred to 

as SD1 and SD2, respectively. SD1 related to the fast beat-to-beat variability in the data, 

while SD2 describes the longer-term variability of x(i). The ratio SD1/SD2 may also be 

computed to describe the relation between these components.  The Poincare plots of the 

eight classes of HRV signals are given in Figure 3.7. From the results it can be seen that 

the pattern of the Poincare plots, the position of the ellipse and the ranges of SD1 and 

SD2 values are distinct for each type of cardiac abnormality.  For NSR HRV signal, the 

R-R interval dispersion is more as the rhythm is more periodic. More ball shaped plot is 

seen for PVC and CHB characterizing the symmetrical R-R interval clusters around the 

centre of the plot. The narrow plot for ISCH indicates very low dispersion of R-R 
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intervals. These plots are quantatively described using the ratio SD1/SD2 and the results 

are given in Table 3.3. 

 

   

(a) Poincare plot for Normal   (b) Poincare plot for PVC 

   

(c) Poincare plot for AF   (d) Poincare plot for CHB 
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(e) Poincare plot for SSS   (f) Poincare plot for ISCH 

  

(g) Poincare plot for LBBB   (h) Poincare plot for VF 

Figure 3.7 Poincare plot for the 8 classes of HRV signals 

3.6.5 Detrended Fluctuation Analysis 

 The concept of a fractal is most associated with geometrical objects satisfying two 

criteria: self-similarity and fractal dimensionality. Self-similarity means that an object is 

composed of sub-units and sub-sub-units on multiple levels that statistically resemble the 

structure of the whole object. The second criteria for fractal object is that it has a FD, also 
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called fractal, that can be defined to be any curve or surface that is independent of scale. 

This concept of fractal structure can be extended to the analysis of heart rate signals. 

 The detrended fluctuation analysis (DFA) is used to quantify the fractal scaling 

properties of short interval R-R signals. This technique is a modification of root-mean-

square analysis of random walks applied to non-stationary   signals [78]. The root-mean-

square fluctuation of an integrated and detrended time series is measured at different 

observation windows and plotted against the size of the observation window on a log-log 

scale.     

First, the R-R time series (of total length N) is integrated using the equation, 

])([
1

∑
=

−=
N

i

kkk RRaviRRy ,    ],,2,1 Lk L=        (3.13) 

where yk is the k
th

 value of the integrated series, L is the number of the datasets, RRk(i) is 

the i
th

 inter beat interval, and the RRavk is the average inter beat interval over the entire 

series. 

Then, the integrated time series is divided into windows of equal length, n. In 

each window of length n, a least-squares line is fitted to the R-R interval data 

(representing the trend in that window). The y coordinate of the straight line segments are 

denoted by yk(n). Next, we detrend the integrated time series, yk(n), in each window. The 

root-mean-square fluctuation of this integrated and detrended series is calculated using 

the equation: 
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This computation is repeated over all time scales (window sizes) to obtain the 

relationship between F(n) and the window size n ( i.e., the number of beats in a window 

that is the size of the window of observation). Typically, F(n) will increase with window 

size. The fluctuation in small windows are characterized by a scaling exponent (self-

similarity factor), α , representing the slope of the line relating log F(n)  to log n. In this 

method, a fractal like signal results in a scaling exponent value of 1 (α =1). White 

Gaussian noise (totally random signal) results in a value of 0.5, and a Brownian noise 

signal with spectrum rapidly decreasing in power in the higher frequencies results in an 

exponent value of 1.5 [78].  

The value of α  can be viewed as an indicator of the “roughness” of the original 

time series: the larger the value of the α , the smoother the time series is. A good linear 

fit of the log10F(n)  to log10n plot indicates F(n) is proportional to 
α

n where α is the 

single exponent describing the correlation properties of the entire range of heart rate 

signal. In most cases, the linear fit for the entire range data is not feasible. So it was 

suggested to use two different slopes to fit the data – with one above the breakpoint and 

one below the breakpoint. This results in one short range scaling exponent sα  and a long 

range exponent lα  as shown in Figure 3.8 for a normal heart rate signal.  
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Figure 3.8 )(nF  plotted against several box sizes, n , on a log-log scale 

3.7 Entropy Analysis 

Entropy is a thermodynamic quantity describing the amount of disorder in the 

system.  From an information theoretic perspective, the above concept of entropy is 

generalized as the amount of information stored in a more general probability 

distribution. First, Shannon applied the concept of information or logical entropy to the 

science of information theory and data communications. Recently a number of different 

entropy estimators [79] have been applied to quantify the complexity of the signal. 

Entropy estimators are broadly classified into two categories: (i) spectral entropies and 

(ii) embedding entropies. The spectral entropies use the amplitude components of the 

power spectrum of the signal as the probabilities in entropy calculations. In this topic the 

spectral entropies – Shannon entropy and Renyi’s entropy are discussed. The embedding 
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entropies use the time series directly to estimate the entropy. Kolmogorov-Sinai entropy 

and the approximate entropy are the embedding entropies discussed here. 

3.7.1 Spectral Entropy 

Spectral entropy (SEN) [80] is the normalized form of Shannon’s entropy. It 

quantifies the spectral complexity of the time series.  A variety of spectral 

transformations exist.  Of these the FT is most probably the well-known transformation 

method from which the power spectral density (PSD) can be obtained.  Thus 

normalization of PSD with respect to the total spectral power will yield a probability 

density function (pdf).  Application of Shannon’s channel entropy gives an estimate of 

the spectral entropy of the process where entropy is given by   

∑ 









=

f f

f
p

pSEN
1

log ,     (3.15) 

where 
f

p  is the pdf value at frequency f.  Heuristically, the entropy has been interpreted 

as a measure of uncertainty about the event at f.  Thus, entropy SEN may be used as a 

measure of system complexity. It measures the spread of data. Data with broad, flat 

probability distribution have high entropy where as data with narrow, peaked distribution 

will have low entropy. SEN is also a special case of a series of entropies termed Renyi 

entropies. 
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3.7.2 Renyi’s Entropy 

Renyi’s entropy [81] is generalization of Shannon spectral entropy to quantify the 

diversity, uncertainity and randomness of the system. The Renyi’s entropy of order β  is 

defined as, 

∑ ≠
−

−= )1(log
1

β
β

β

β
f

pREN .   (3.16) 

where 
f

p  is the pdf value at frequency f.  In this work, we have used the value of 2=β  

and determined the REN  for biosignals. REN  differs from SEN in that the sum is 

weighted towards frequencies in the lower frequency band (1-20 Hz). In the higher 

frequency band (20-45 Hz), the SEN and REN  are similar. This is particularly helpful in 

the analysis of EEG. 

3.7.3 Kalmogorov Sinai Entropy 

Entropy is determined from the embedded time series data by finding points on 

the trajectory that are close together in state-space but which occurred at different times 

(i.e., are not time correlated).  These two points are then followed into the future to 

observe how rapidly they move apart from one another.  The time it takes for point pairs 

to move apart is related to the so-called Kolmogorov entropy [10], KSEN , by 

tKSEN

divt
)(2−=〉〈  where 〉〈 divt is the average time for the pair to diverge apart and KSEN  

is expressed in bits per second.  Entropy reflects how well one can predict the behavior of 
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each respective part of the trajectory from the other.  Higher entropy indicates less 

predictability and a closer approach to stochastic nature.   

3.7.4 Approximate Entropy 

KSEN entropy measure diverges to a value of infinity when the signal is 

contaminated by the slightest noise.  Pincus [82] proposed Approximate Entropy 

( APEN ) as a solution to these problems and successfully applied it to relatively short 

and noisy data. The APEN  was used by Bruhn [83] to analyze EEG signals in patients 

under general anesthesia.  In the calculation of APEN , two parameters m and r must be 

chosen prior to the computation of APEN . The APEN  measure is obtained by 
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where Ci
m
(r)  is the correlation integral with embedding dimension m and time lag of 1.  

For this study, m is set to 2 and r is set to 15% of the standard deviation of each 

time series. These values are selected on the basis of previous studies indicating good 

statistical validity for APEN  within these variable ranges [84]. 



Chapter 3: Chaotic Analysis of HRV signals 

 
62 

3.8 Feature Extraction Results and Discussion 

Methods derived from the field of nonlinear dynamics and chaos has resulted in 

the investigation of cardiovascular systems and has been utilized with the main purposes 

of classifying and detecting different signals. A complex system such as a cardiovascular 

system cannot be linear by nature, and by considering it as a nonlinear system, better 

understanding of the system dynamics can be achieved. Since a linear method fails to 

extract the nonlinear properties of heart dynamics [28, 29, 36], we prefer to use nonlinear 

methods rather than linear methods. For example, if the time series is stationary, we can 

apply standard spectral analysis techniques and calculate the power spectrum. But heart 

rate time series are not really stationary, because the signal generated by a fractal process 

is nonstationary. Heart rate dynamics even under normal conditions displays 

nonequilibrium fluctuations that cannot be detected or analyzed with traditional methods.  

In this study, real experimental data were used to extract nonlinear properties of 

HRV time series. The chaotic features were discussed and compared in seven groups of 

patients with AF, PVC, LBBB, ISCH, SSS, CHB and VF and healthy subjects. The 

results are summarized in Table 3.3 and the corresponding distribution is shown using 

box plots in Figure 3.9.   

Results show the non-integer 2D  values and the positive sign of 1λ  for all types 

of HRV time series. In the analysis of the ECG data, different chaotic measures such as 
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2D  and 1λ  have been used in recent studies. It is known that the 2D  of the same person 

is different for different lead ECG signals [37], and also it depends on selecting the time 

delay and embedding dimension as discussed in Section 3.3. 

Results show that 2D  is significantly different among the groups, and a normal 

signal has the highest value for 2D . These results show that the 2D  values increase from 

PVC, AF, and VF to Normal (2.29 to 2.58, to 2.90, and to 3.58). In the case of CHB, the 

estimated value of 2D  is 2.72 ±0.139. The range is low, indicating low variation in the 

heart rate data. In ISCH, the variation between the consecutive heart rates is low ( 2D   = 

3.3 ±0.142).   For SSS, the 2D   is low ( 2D  = 2.35 ±0.44) indicating the inherent 

periodicity, for AF has too much variation ( 2D  =2.58 ±0.033). During PVC, the variation 

is high ( 2D  = 2.29±0.099), finally, for the normal subjects the variation in their heart 

rates ( 2D  =3.58±0.23) is high. In the case of LBBB ( 2D  =3.2±0.41) and VF ( 2D  

=2.9±0.039). For the normal subjects, ectopic and AF, the 2D   is high and as the 

abnormality becomes more severe (CHB, SSS, ISCH) the 2D  will fall from the normal 

case. The reverse trend is observed with H. This is in agreement with the definition of H, 

when 2D  decreases H will increase. The results, obtained from clinical data, confirm the 

previous studies [20, 85]. From the median point of view, physiological function and 

control of the entire body is maintained by both the sympathetic and parasympathetic 

sections, which act in opposite directions. Thus, the observed heart rate variability is an 

indicator of the dynamic interaction and balance between these two branches of the 
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system. When the correlation dimension of HRV is decreased, the heart cannot react to 

unexpected changes [86]. 

TYPE NSR PVC LBBB AF VF CHB SSS ISCHEMIC p value 

α -slope 
0.77 ±  

0.076 

0.27 ±  

0.014 

0.43 ±  

0.11 

0.13 ±  

0.043 

0.34 ±  

0.022 

0.54 ±  

0.034 

0.55 ±  

0.013 

0.97 ±  

0.11 

0.076 

SD1/SD2 
0.80 ±  

0.16 

1.42 ±  

0.54 

0.7 ±  

0.20 

2.98 ±  

1.56 

1.13 ±  

0.47 

0.64 ±  

0.024 

0.96 ±  

0.32 

0.59 ±  

0.37 

0.011 

2D  
3.58 ±  

0.23 

2.29 ±  

0.099 

3.20 ±  

0.415 

2.58 ±  

0.033 

2.90 ±  

0.039 

2.72 ±  

0.139 

2.35 ±  

0.448 

3.30 ±  

0.142 

0.032 

1λ  
0.50 ±  

0.058 

0.62 ±  

0.003 

0.47 ±  

0.044 

0.56 ±  

0.112 

0.42 ±  

0..036 

0.17 ±  

0.011 

0.82 ±  

0.102 

0.193 ±  

0.066 

0.056 

H 
0.611 ±  

0.019 

0.873 ±  

0.032 

0.643 ±  

0.011 

0.796 ±  

0.043 

0.706 ±  

0.021 

0.748 ±  

0.011 

0.821 ±  

0.023 

0.654 ±  

0.021 

0.081 

SEN 
1.63 ±  

0.025 

1.14 ±  

0.057 

1.24 ±  

0.047 

1.20 ±  

0.037 

1.06 ±  

0.003 

0.86 ±  

0.054 

1.27 ±  

0.135 

1.12 ±  

0.11 

0.064 

REN 
3.481 ±  

0.221 

2.46 ±  

0.065 

2.72 ±  

0.237 

2.63 ±  

0.112 

2.32 ±  

0.713 

2.19 ±  

0.081 

2.76 ±  

0.089 

2.42 ±  

0.116 

0.067 

APEN 
1.75 ±  

0.077 

1.51 ±  

0.091 

1.47 ±  

0.137 

1.57 ±  

0.23 

1.09 ±  

0.173 

0.97 ±  

0.15 

1.57 ±  

0.097 

0.76 ±  

0.065 

0.065 

KSEN 
0.573 ±
0.023 

0.496 ±
0.002 

0.429 ±  

0.010 

0.445 ±  

0.022 

0.409 ±
0.156 

0.457 ±  

0.052 

0.278 ±  

0.061 

0.34 ±  

0.115 

0.061 

HiguchiD  
1.36 ±  

0.043 

1.19 ±  

0.043 

1.31 ±  

0.032 

1.21 ±  

0.036 

1.27 ±  

0.039 

1.24 ±  

0.042 

1.21 ±  

0.021 

1.32 ±  

0.024 

0.072 

Katz
D  

1.58 ±  

0.016 

1.31 ±  

0.019 

1.53 ±  

0.021 

1.39 ±  

0.023 

1.46 ±  

0.021 

1.41 ±  

0.033 

1.36 ±  

0.011 

1.52 ±  

0.017 

0.046 

Table 3.3 Results of  HRV analysis. 
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Figure 3.9 Variation of the chaotic measures of the HRV signals. 
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Figure 3.10 Results of multiple comparison test of the chaotic measures of the 

HRV signals. 
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The 1λ  was significantly higher in the patient groups, and the largest reported 

value has been reported for SSS groups. The Lyapunov exponent of the HRV signals can 

be considered as a complementary tool to improve diagnosis of heart diseases. By 

comparing the normal and patient groups, the result shows some differences in nonlinear 

properties of the HRV time series as shown in Table 3.3.  The 1λ  for the normal subjects 

is higher (0.50±0.058), indicating the higher R-R variation. For PVC, it has still higher 

value (0.62±0.003) indicating higher R-R variation than normal subjects. In the case of 

LBBB, the 1λ  has sligtly lower value than normal subjcts due to the reduced R-R 

variation.  For SSS (0.82±0.10), VF (0.56±0.11) and  AF (0.42±0.036) the R-R variation 

is gradually decreases and as a result the 1λ  is also falls respectively. For ISCH 

cardiomyopathy (0.193± 0.06) and CHB (0.17±0.01), the 1λ  values are very low 

compared to normal subjects, because the R-R variation is negligible. 

From Table 3.3, it can be seen that the fractal dimesions HiguchiD  and Katz
D  

decreases for the various cardiac abnormalities with respect to the normal subject. This 

indicates that the irregularity or randomness of the HRV signal is lesser for cardiac 

abnormalities. Thus, FDs behave as a reliable indicator of heart diseases with a 

confidence of 90%. 

The results of applying the entropy measures to the data sets are also presented in 

Table 3.3. The entropy values are always higher for normal subjects, so the healthy group 

can be distinguished from the patient groups. Entropy measures the degree of randomness 

or complexity of dynamical systems. As mentioned previously, APEN quantifies the 
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regularity of the time series. From another point of view, the more random the time series 

is, the higher the APEN values [82]. Therefore, this method quantifies the 

unpredictability of fluctuations in a time series such as the instantaneous HRV time 

series. Our results of APEN entropy has shown that the healthy group enjoys a higher 

APEN value, compared to that of the patient group. On the other hand, for the normal 

subjects the heart rate is more random Or has a higher variation (more chaotic). This 

range of values decreases as the beat to beat variation in the R-R interval decreases.  It 

can be seen from the above results that, the range of values for the ISCH and CHB is 

small, due to their low variation in the R-R interval. For SSS, AF, PVC, LBBB, and VF, 

the R-R interval variation gradually decreases, hence the APEN range of values also falls 

respectively. The same trend is exhibited by the results of KSEN, REN and SEN.  

From the results of DFA analysis, it canbe seen that the slope (α ) for the normal 

subjects is found to be closer to 1, and it falls in different ranges for various types of 

cardiac abnormalities. This slope is very low for very highly varying signals like PVC, 

LBBB, AF and VF. But for rhythmically varying signals like SSS, CHB and ISCH this 

value is slightly higher. The value itself doesn’t provide any conclusive results but it 

helps to observe the trend in HRV signals for different types of cardiac abnormalities.  

Table 3.3 shows the Poincare plot indices, measured from Poincare plots 

reconstructed with a lag of one beat, recalling that both axes were greater in the healthy 

group than in the patient groups. The Poincare plot is formed through the long-term ECG 

recordings of R-R intervals, and it might be used as another diagnostic tool. The problem 



Chapter 3: Chaotic Analysis of HRV signals 

 
71 

regarding Poincare plot use has been the lack of obvious quantitative measures to 

characterize the salient features of the plot. The SD1/SD2 ratio reflects nonlinear 

information of HRV. One advantage of this selection is that the quantitative Poincare plot 

analysis does not require preprocessing or stationarity of the signal, and the parameters 

SD1 and SD2 can be computed very quickly. It is interesting to note that SD1 is 

connected to the vagal tone, while SD2 and the ratio SD1/SD2 are connected to the 

sympathetic tone [87]. SD1/SD2 did not significantly correlate with entropy measures. 

SD1/SD2 shows the ratio of short interval variation to long interval variation. This ratio 

is high in the case of PVC, AF, and VF due to more variation in the R-R interval; 

however the ratio falls for the slowly varying signals such as ISCHEMIC subjects. The 

results of extracted features are tested for statistical significance using ANOVA test and a 

p-value that is less than 0.1 is obtained in all cases. This indicates that atleast there is one 

group or class of the signals with mean significantly different from the other groups with 

90% confidence. In this work, we have considered eight groups and eleven features and it 

is necessary to identify the groups that have distinct means and corresponding distinct 

features. To achieve this, multiple comparison test is performed and the results are given 

in Figure 3.10. It can be seen that Hurst exponent and the fractal dimension using had the 

significantly different means for all groups whereas Renyi entropy had only two groups 

with significant means. It can be noted that control group had significant means for all the 

features. It indicates that all the features are capable of significantly distinguishing the 

normal and abnormal group but within the abnormal group the features are distinct only 
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for few groups. As there are many cardiac abnormalities, it is necessary to evaluate a 

wide pool of features and identify the features for characterizing specific abnormalities.  

3.9 Conclusion 

The results from this study show that there is a clear separation between the time 

series of normal and patient groups, but it can be seen that there is no single feature that 

distinguishes all the seven cardiac abnormalities because the range of the values of 

patient groups overlapped considerably for few groups. From the results of the multi-

comparison test (Figure 3.10), it can also be observed that each of these features can 

atleast distinguish any five of the eight classes and different features are predominant for 

different cardiac abnormalities. So it becomes clear that there is need for an intelligent 

system to identify the cardiac abnormalities by combining the information obtained from 

the features. Hence in Chapter 5 various classifier architectures are discussed to identify 

the cardiac states from the above mentioned features. A feature library with the above 

mentioned eleven features is developed for the eight classes of HRV signals. Features 

extracted are from different domains and it gives wide range to cover the different aspects 

of the underlying behavior of the system.  
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Chapter 4   Nonlinear Dynamics of 

Brain Signals 

The brain is the most complex organ of the human body. Understanding the 

behavior and dynamics of billions of highly interconnected neurons involves a very 

difficult task that requires the fusion of several signal processing techniques, from the 

linear and nonlinear domains, and its correlation to the physiological events.  An EEG is 

the measure and record of the electrical activity of the brain. Special sensors are attached 

on the scalp surface or sometimes subdural in the cerebral cortex and connected to a 

computer to record the brain's electrical activity. Certain conditions, such as seizures, are 

seen as the changes in the normal pattern of the brain's electrical activity. 

An EEG measures primarily brain functions. The largest part of the brain is 

comprised of the cerebrum, which is split into right and left hemispheres. The cerebrum 

controls voluntary actions, thought, speech, and memory. In humans, the cerebrum 

comprises most of the brain, while in other mammals it is relatively small.  

The outer layer of the cerebrum, called the cerebral cortex, is responsible for 

higher brain functions such as thought, reasoning, memory, and voluntary muscle 

movement. The cerebral cortex is mostly made up of neurons, which are nerve cells that 

carry messages throughout the body. In turn, the activity of the cerebral cortex is 
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regulated by two structures that are deeper in the brain: (i) the thalamus, which is located 

in the center of the brain and carries signals from the sensory organs to the brain, and (ii) 

the reticular activating system, which sends signals to tell us to go to sleep and to wake us 

up. 

The electrical activity of all these structures is the primary focus of the EEG. The 

cerebral signal observed in the scalp EEG falls in the range of 1-30 Hz [88]. The EEG 

typically described in terms of (i) rhythmic activity and (ii) transients. The rhythmic 

activity is divided into bands by frequency. They are,  

• Delta waves - frequency range up to 3 Hz. It tends to be the highest in 

amplitude and the slowest waves. It is seen normally in adults in slow 

wave sleep and also in babies. 

• Theta waves - frequency range from 4 Hz to 7 Hz. It is seen normally in 

young children. It is seen in drowsiness or arousal in older children and 

adults and also during meditation. Excess theta represents abnormal 

activity. 

• Alpha waves - frequency range from 8 Hz to 12 Hz. This activity is seen 

in the posterior regions of the head on both sides, being higher in 

amplitude on the dominant side. It is increased by closing the eyes and by 

relaxation. It will attenuate with eye opening or mental exertion. 
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• Beta waves - frequency range from 12 Hz to about 30 Hz. It is seen 

usually on both sides in symmetrical distribution and is most evident in 

frontal lobes. Low amplitude beta with multiple and varying frequencies is 

often associated with active, busy or anxious thinking and active 

concentration. 

• Gamma waves - frequency range approximately 30–100 Hz. Due to the 

filtering properties of the skull and scalp, and due to contamination by 

EMG and minute eye movements, gamma rhythms are usually recorded 

using electrocorticography or possibly with magneto encephalography. 

Some of the applications of EEG measurements are:  

• Diagnose epilepsy and identify the type of seizures. EEG is the most 

useful and important test in confirming a diagnosis of epilepsy.  

• Check for problems with loss of consciousness or dementia.  

• To find out a person's chance of recovery after a change in consciousness.  

• To find out if a person who is in a coma is brain-dead.  

• Study sleep disorders, such as narcolepsy.  

• Watch brain activity of the person receiving general anesthesia during 

brain surgery.  

• To find out if a person has a physical problem (problems in the brain, 

spinal cord, or nervous system) or a mental health problem.  
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4.1 Description of the Data 

The EEG data for our analysis were obtained from the EEG database available 

with the Bonn University [89]. Three sets each containing 30 single channel EEG 

segments of 23.6-sec duration, were composed for the study. These segments were 

selected and cut out from continuous multi-channel EEG recordings after visual 

inspection for artifacts, e.g., due to muscle activity or eye movements. Normal data sets 

consisted of segments taken from surface EEG recordings that were carried out on five 

healthy volunteers using a standard electrode placement scheme. Volunteers were relaxed 

in an awake state with eyes open.  For epileptic data, EEG is obtained from five patients 

diagnosed with epilepsy and recorded during seizure activity. The background EEG data 

was recorded from the same five epilepsy patients when there is no seizure.  All EEG 

signals were recorded with the same 128-channel amplifier system, digitized with a 

sampling rate of 173.61 Hz and 12 bit A/D resolution. The electrodes are placed as per 

the standard 10-20 electrode placement scheme for measuring EEG. The data was filtered 

using a band pass filter with settings 0.5340Hz~12 dB/octave. Sample recordings of 

normal, background and epileptic EEG are given in Figure 4.1.  
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(a) 

 

(b) 
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(c) 

Figure 4.1 (a) Normal EEG signal  (b) Epileptic EEG signal (c) Background EEG 

signal 

 

In this work, we have analyzed the normal, background and epileptic EEGs using 

various nonlinear characteristic measures such as 2D , 1λ , H, katzD , HiguchiD , KSEN , 

APEN, REN and SEN . The characteristics measures are computed using a running 

window method, as given in Figure 4.2 and Figure 4.3. The shaded area is the sliding 

observation window, which moves through the data as the measures are computed. The 

data points inside this sliding window are used for feature generation as the window 

moves through the data. Therefore the observation window is continuously collapsed and 

the characteristic measure is computed for the data in new observation window. In our 

analysis, we have used the window size to be 200 samples with an overlap of 150 

samples between consecutive windows. The window size of 200 samples corresponds to 
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more than one sec of the signal and we have used a overlap of 150 samples considering 

the nonstationarity of the signal. Hence there will be 80 such windows per dataset. 

 

Figure 4.2 Sliding observation window (Normal EEG signal) 

 

Figure 4.3 Sliding observation window (Epileptic EEG signal) 
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4.2 Test of Nonlinearity 

Surrogate data analysis is used here to test the nonlinearity of the EEG signals. 

The complex phase values of the Fourier transformed input signal is used to produce the 

surrogate data set of the EEG data under consideration. Surrogate data sets are generated 

for 20 sets each of control, background and epileptic EEG signals. The 20 sets are 

selected randomly. The APEN  and 2D  measures are used as the discriminating statistics 

and the values for the original and the surrogate data are given in Table 4.1 .  The 

discussion on calculation of APEN and D2 is given in Chapter 3. The calculation is done 

on 200 samples window and averaged. It can be seen that the APEN   values of the 

surrogate data and the original data are quite distinct and they differ by more than 60%. 

Similarly, in the case of using 2D ,  as the discriminating statistics as well, the surrogate 

data and original data are differing from each other by more than 50%. Thus, the null 

hypothesis that the data is generated from a linear process is rejected and hence the EEG 

data considered are nonlinear. 

Type 
Normal 
EEG 

Epileptic 
EEG 

Background 
EEG 

)(OriginalAPEN  0.7103 0.6542 0.6735 

)(SurrogateAPEN  0.2791 0.2411 0.2564 

% Difference 60.7 % 63.1 % 61.9 % 

 

)(2 OriginalD  4.8768 3.9407 4.2672 

)(2 SurrogateD  2.2421 1.5429 1.987 

% Difference 54.0 % 53.12 % 53.43% 

Table 4.1  Results of surrogate data analysis 
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4.3 Chaotic Invariants Analysis 

The optimum embedding parameters m and τ  are determined using the method 

described in Chapter 3.  The graph of 2D  vs m  for normal, background and epileptic 

EEG is shown in Figure 4.4.  2D  saturates at 9=
sat

m  and the optimum embedding 

dimension is chosen as 10=m  for the analysis of EEG signals. 
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Figure 4.4 Variation of correlation dimension for different embedding dimension 
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Mutual information function for normal, epileptic and background EEG is given 

in Figure 4.5, Figure 4.6 and  Figure 4.7 respectively. It can be clearly seen that the 

average mutual information reaches its first minimum at  5=τ  for all the three types of 

EEG signals. Hence the optimal embedding delay τ  is chosen as 5 for our analysis. 

 

 

Figure 4.5 AMI of normal EEG signal 

 



Chapter 4: Nonlinear dynamics of brain signals 

 
83 

 

Figure 4.6 AMI of epileptic EEG signal 

 

Figure 4.7 AMI of background EEG signal 
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Figure 4.8 shows the 3-D plot of the reconstructed attractor of the EEG signal 

from control subject with a time delay of 5=τ , while the reconstructed attractor of the 

epileptic EEG is given in Figure 4.9 with the same conditions. Figure 4.10 shows the 3-D 

reconstruction of the background EEG. It can be seen from Figure 4.8 and Figure 4.9 that 

even in three dimensions, the attractor show clear differences in their structure between 

the epileptic EEG and that of control subject. The reconstructed attractor from an 

epileptic EEG shows more rhythmic activity and thus less chaotic. The attractor describes 

how the system trajectories are attracted as time tends to infinity. 

 

Figure 4.8 Phase-space plot of normal EEG signal 
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Figure 4.9 Phase-space plot of epileptic EEG signal 

 

Figure 4.10 Phase-space plot of background EEG signal 
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Plot of the attractors serve as a descriptive representation of the signal and 

parametric representations of the reconstructed attractors are needed to quantify the 

signals. In this work, parameters such as 2D , 1λ , KSEN , SEN , APEN and REN  are 

used to quantitatively describe the attractor in multidimensional space. The 

measurements of these parameters are accurate only if the data under consideration are 

stationary. The stationarity of the normal, background and epileptic EEG signals used for 

analysis is tested using the recurrence plot method. The recurrence plots of normal, 

epileptic and background EEG signals are given in Figure 4.11, Figure 4.12 and Figure 

4.13. It can be seen that the plots are symmetric along the diagonal and the overall pattern 

is fairly uniform. The uniform distribution of the pattern indicates that the process is a 

stationary process.  

 
Figure 4.11 Recurrence plot of normal EEG signal. 
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Figure 4.12 Recurrence plot of epileptic EEG signal. 

 
Figure 4.13 Recurrence plot of background EEG signal. 
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Table 4.2 shows results of nonlinear time series analysis of EEGs during seizures. 

From each EEG-recording, we have computed the chaotic invariants described in Chapter 

3. 2D , the parameter that quantifies the variability of the time series is computed for 

embedding dimensions 3- 10 and the graph of 2D  for different values of m is shown in 

Figure 4.4.  The results indicate that, the 2D values are higher for normal subjects with 

mean and SD values of 4.8768 + 0.3667, compared with the 2D  values of the 

background EEG signals of 4.3451 + 0.182 and epileptic EEG’s of  3.9407 + 0.2582. 

This shows that the degree of complexity of epileptic EEG is less as compared to that of 

non-epileptic activity.  This shows that the degree of complexity decreases gradually 

from the normal group, background and epileptic EEG signals in different stages 

respectively. The results are in agreement with the studies [36] on dimension analysis of 

EEG that epileptic seizures are emergent states with reduced dimensionality compared to 

non-epileptic activity. This concept finds support in the observations [42] that neuronal 

hyper-synchrony underlies seizures; a phenomenon during which the number of 

independent variables required to describe the system is smaller than at other times. The 

results are also supported by our statistical analysis using t-test (p< 0.0001) indicating 

extreme statistical significance. The intersubject variation of 2D  for normal, epileptic and 

background EEG is shown in Figure 4.14, 4.15 and 4.16., respectively. From these 

figures, it can be clearly seen that  2D  remains distinctly different for normal, background 

and epileptic states. 
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Chaotic 

measures 
Normal EEG Epileptic EEG Background EEG p-value 

2D  4.8768 + 0.3667 3.9407 + 0.2582 4.3451 + 0.182 0.0001 

1λ  0.2036 + 0.0156 0.1845 + 0.0319 0.1912 + 0.0114 0.0241 

H 0.3248 + 0.0588 0.3563 + 0.0614 0.3411 + 0.0181 0.0092 

KSEN 0.6033 + 0.0713 0.4926 + 0.0474 0.5391 + 0.0617 0.0001 

APEN 0.7096 + 0.0749 0.6484 + 0.0117 0.6731 + 0.0231 0.0001 

SEN -0.2215 + 0.0139 -0.735 + 0.0527  -0.513 + 0.0312  0.0001 

REN -0.1897 + 0.0172 -0.207 + 0.0324 -0.194 + 0.011 0.0365 

Table 4.2  Chaotic measures of control, background and epileptic groups 

 
Figure 4.14 Inter subject variation of 2D  for normal EEG signal 
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Figure 4.15 Inter subject variation of 2D  for epileptic EEG signal 

 
Figure 4.16 Inter subject variation of 2D  for background EEG signal 
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Figure 4.17 Variation of Chaotic measures for the EEG signal 
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Figure 4.18 Results of Multiple comparison test of EEG chaotic measures 
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From the Figure 4.17 it can be seen that he results of 1λ  are similar to that 

observed for 2D .  The positive values of 1λ  describes the divergence of trajectories 

starting at nearby initial states and corresponds to the flexibility of information 

processing in the brain [80]. In this context, flexibility refers to the ability of the central 

nervous system to reach different states of information processing from similar initial 

states. From the results in Table 4.2, it can be seen that the 1λ  of epileptic EEG (0.1845 + 

0.0319) is lesser than background and normal with mean and standard deviation value of 

(0.1912 + 0.0114) and (0.2036 + 0.0156), respectively. This means that, the brain during 

a seizure which has a smaller 1λ , indicate a drop in its flexibility of information 

processing. This result suggests a decreased complexity in the epileptic EEG and shows 

that there are less independent, parallel, functional brain processes active in the epileptic 

group than in the normal group. Also in our analysis, the 1λ  were positive in all cases 

giving an evidence of chaotic activity.  

In time series analysis of EEG, H and 2D  were used by Dangel et. al. [75] for 

characterize the non-stationary behavior of the sleep EEG episodes. In their results they 

showed that there is a there is clearly a negative correlation between the values of 2D  

and H and that is the expected behavior of a stochastic system with power-law spectra, 

),
1

max(
2

2 m
H

D = , where  m  is the embedding dimension. From Table 4.2 it can be 

seen that our results also exhibited a similar trend and the H value increased for 

background and epileptic EEG compared to normal. Increase in the value of the Hurst 
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exponent indicates less complexity and more synchronization. The increasing trend of H 

as shown in the multiple comparison plot in Figure 4.18 indicates more synchronizing 

activity in the underlying phenomena of the brain as it changes form normal to inter-

icatal and then ictal states. This is in accordance with our other results that the brain 

exhibit less chaotic behavior during a seizure.  

According to Sleigh et. al. [90] the changes in entropy of the EEG are expected to 

indirectly coarsely measure changes in the entropy occurring within the cerebral cortex 

itself. KSEN  is one of the widely used measures of chaotic behavior and it describes the 

rate at which information about the state of the dynamics process is lost with time.  

0=KSEN  implies an ordered system and ∞=KSEN  corresponds to a totally stochastic 

situation. The higher the KSEN , the more closer the system to be stochastic. From Table 

4.2 it can be seen that KSEN  of normal EEG is greater than that of background and 

epileptic EEG indicating more mental activity in the brain for a normal subject.  

APEN  gives a robust entropy estimate from short and noisy data sets and 

increasing values correspond to more irregularity or to increasing complexity in the time 

series [82]. Our results show that the epileptic EEG signals have significantly lower 

APEN  values (0.6484 + 0.0117) than background (0.6731 + 0.0231) and normal EEG 

(0.7096 + 0.0749). This indicates that EEG during a seizure is more regular and less 

complex than the normal. This can be due to the dynamic processes underlying the EEG 

recording that are less complex for epileptic subjects than for normal subjects.  This is in 

support of the studies that there will be decrease in brain complexity due to neuronal 

death, a general effect of neurotransmitter deficiency and loss of connectivity of local 
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neural networks as a result of nerve cell death [91, 92]. It can be seen from Table 4.2 that 

the results of SEN  and REN  also exhibit a similar trend like APEN  and KSEN .  

From the results of analysis of various measures such as 2D , 1λ , H , KSEN , 

SEN , APEN and REN , we can infer that the complexity or irregularity of the EEG 

signal is reduced during epilepsy.  Also the values of these measures are distinct for 

normal and epileptic EEG signals. The results of the statistical analysis of these measures 

given in Table 4.2, also indicate extreme statistical significance with p<0.01 tested with 

ANOVA, for the chaotic measures such as 2D , 1λ , katzD , HiguchiD , KSEN  and SEN .  

Similar to HRV analysis, here also the multiple comparison tests are performed even 

though there are only three groups.  The results are given in Figure 4.18. The results 

show most of the features considered have distinct mean for all the three groups expect 

for Hurst exponent and Renyi entropy. It can also be from the Figure 4.18, that the 

normal, background and epileptic EEG features values exhibit a increasing or decreasing 

trend. It indicates there is a gradual transition the brain activity from normal to seizure. 

This paves a way to look into feasibility of predicting the onset of the seizure. 

4.4 Fractal Dimension Analysis 

The FD of the EEG signals is computed using a sliding window approach. An 

overlapping sliding window with a size of 200 samples with 150 samples overlap is used. 

FD’s are calculated for each set of data points that lay inside the window and the mean is 

taken to report the FD of the signal. Figure 4.19 and Figure 4.20 shows the variation of 
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FD of a normal EEG, epileptic EEG and background EEG with the sliding window 

determined by the two methods discussed earlier. Equivalent results were obtained for the 

all the records studied. It can be seen that Katz algorithm performs better compared to 

Higuchi’s algorithm in discriminating epileptic EEG from normal EEG. In these cases, it 

appears that the actual value of the FD is not as important as the changes in FD 

associated with different brain states. 

FD Normal EEG Epileptic EEG Background EEG p-value 

Higuchi
D  1.5132 + 0.0431 1.3546 + 0.0724 1.4042 + 0.0339 0.0001 

Katz
D  1.8649 + 0.0572 1.5139 + 0.0970 1.5634 + 0.0173 0.0001 

Table 4.3  Results of Higuchi’s and Katz FD algorithms 
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Figure 4.19 FD of EEG signals using Higuichi’s algorithm  
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FD using Katz Algorithm
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Figure 4.20 FD of EEG signals using Katz algorithm 

The FD results obtained are given in Table 4.3 . It can be observed that both 

Higuchi’s algorithm and Katz algorithm indicates similar trend of reduction in FD value 

for epileptic EEG as compared to background and normal EEG. The Katz algorithm 

reported a higher value of FD for both epileptic, background and normal EEG as 

compared to Higuchi’s method. The reduction in FD values characterizes the reduction in 

brain system complexity for patients with epilepsy.  

4.5 Conclusion 

Epilepsy is one of the most frequently occurring malfunctions of the central 

nervous system and is characterized by a hyper-synchronous and hyper-excitable 

behavior of neuronal assemblies. Seizure activity is induced when the number of 

synchronized nerve cells exceeds a critical value. The EEG is the most important clinical 
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tool for the diagnosis of epileptic disorders. The study of EEG signals using techniques 

from nonlinear time series analysis is advantageous in gaining information about the 

dynamics of the system. The noninvasive nature and computational viability of these 

methods score above the more expensive imaging techniques used for diagnostics.  In this 

study, we have analyzed the EEG signals of normal and epileptic subjects using a wide 

range of nonlinear time series analysis techniques expecting to extract quantitative 

measures that can reliably distinguish the EEG of an epileptic subject from that of a 

normal subject. 

The results of our analysis demonstrated the potential of complexity measures 

such as 2D , 1λ , H , katzD , HiguchiD , KSEN , SEN , APEN and REN  in quantifying the 

regularity of EEG signal of normal and epileptic subjects. It is clearly shown that the 

values are higher for normal subject compared to that of epilepsy. The statistical results 

also support the discriminating ability of these measures in identifying epileptic and 

normal. These measures can serve as quantitative descriptors of EEG in automatic 

identification of normal and epileptic EEG signals.  Also, the analysis of nonlinear 

dynamics in EEG signals can help in understanding the underlying physiological 

processes in the brain. 

In Chapter 3 and Chapter 4, we discussed the extraction of nonlinear features 

from the ECG and EEG signals. In chapter 5, the detection of various abnormalities using 

the extracted feature set is discussed. 
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Chapter 5   Classifier Architectures for 

Cardiac Health and Mental Health 

Diagnosis 

The HRV and EEG signals are used for monitoring the cardiac health and mental 

health diagnosis respectively. The abnormalities in the signals are detected using 

classifiers. The classifiers use the extracted features (discussed in Chapter 3 and Chapter 

4) as inputs. In this work, we propose to use three different classifiers employing neural 

network (NN), fuzzy and ANFIS techniques. The performance of these classifiers are 

discussed and compared in this chapter.  

A classifier can be viewed as a mapping operator that projects the M selected 

features contained in the feature vector onto a K
c
-dimensional decision space, where K

c
 is 

the number of classes in the classification problem. The feature extraction and selection 

plays a crucial role in the classification results; however, it is highly important to select 

classifier architecture suitable to the underlying feature distribution in order to obtain a 

better recognition performance. In this work, emphasis is given to NN and fuzzy 

classifiers. 



Chapter 5: Classifier Architectures for cardiac health and mental health diagnosis 

 
100 

5.1 Neural Network Classifier 

Artificial Neural Networks (ANN) are biologically inspired networks – inspired   

by the human brain in its organization of neurons and decision making process  – which 

are useful in application areas such as pattern recognition, classification etc [93].  The 

decision making process of the ANN is more holistic, based on the aggregate of entire 

input patterns, whereas the conventional   computer has to wade through the processing 

of individual data elements to arrive at a conclusion. The NNs derive their power due to 

their massively parallel structure, and an ability to learn from experience.  They can be 

used for fairly accurate classification of fresh input data into categories, provided they are 

previously trained to do so.  The accuracy of the classification depends on the efficacy of 

training, which in turn depends upon the rigor and depth of the training. The knowledge 

gained by the learning experience is stored in the form of connection weights, which are 

used to make decisions on   the fresh   input.  

The characteristics of ANN are:  

• Adaptive learning: An ability to learn how to do tasks based on the data 

given for training or initial experience.  

• Self-Organization: An ANN can create its own organization or 

representation of the information it receives during the learning phase.  
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• Real time operation: ANN computations may be carried out in parallel, 

and special hardware devices are being designed and manufactured which 

take advantage of this capability.  

In the human brain, a typical neuron (Figure 5.1) collects signals from others 

through a host of fine structures called dendrites. The neuron sends out spikes of 

electrical activity through a long, thin strand known as an axon, which splits into 

thousands of branches. At the end of each branch, a structure called a synapse converts 

the activity from the axon into electrical effects that inhibit or excite activity from the 

axon into electrical effects that inhibit or excite activity in the connected neurons. When a 

neuron receives excitatory input that is sufficiently large compared with its inhibitory 

input, it sends a spike of electrical activity down its axon. Learning occurs by changing 

the effectiveness of the synapses so that the influence of one neuron on another changes.  

ANN is a model (Figure 5.2) to simulate these features. 

 

Figure 5.1 A typical neuron 
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Figure 5.2 Neuron model 

The common type of ANN consists of layers: a layer of "input" units is connected 

to a layer of "hidden" units, which is connected to a layer of "output" units. The inputs 

represent the raw information that is fed into the network. The activity of each hidden 

unit is determined by the inputs and the weights on the connections between the input and 

the hidden units. The behavior of the output units depends on the activity of the hidden 

units and the weights between the hidden and output units. The research on NNs has led 

to the development of different types of NNs to suit the purpose. 

Three issues need to be settled in designing an ANN for a specific application: (i) 

topology of the network (ii) training algorithm and (iii) neuron activation function. The 

processing elements are organized into layers, and layers interconnected to form a 

network. The inputs to the processing unit are weighted signals derived from similar 

processing units of the previous layer. Usually, a processing element is linked to all the 

neurons of its immediate neighboring layers, which gives rise to a massive parallelism in 

architecture. The ANN can be organized into different topologies, such as feed forward 

and feedback networks. As noted above, to distinguish linearly separable classes, a single 
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layer perceptron classifier employing binary activation function is quite adequate.  If the 

boundaries can be   piecewise linear approximated, then two layer perceptron classifier 

with binary activation function can be used. If the nature  of  the classification  is more  

complex,  a  three  layer   feed forward  neural network, with  sigmoid  activation  

function  is  more suitable [94]. In  the  present  case,  the  boundary between  different  

classes  for the chosen feature set is not linear and  therefore  NN classifier using radial 

basis functions techniques is adapted.  

5.1.1 Radial Basis Function  

A NN classifier is implemented using radial basis functions (RBF) [95] as shown 

in Figure 5.3.  The net input to the radial basis transfer function is the vector distance 

between its weight vector w and the input feature vector v and multiplied with a bias b. 

The radial basis function has a maximum output of 1 when its input is 0.  As the distance 

between w and v decreases, the output increases.  Thus a radial basis neuron acts as a 

detector, which produces 1 whenever the input v is identical to its weight vector w. 

Probabilistic neural network, which is a variant of radial basis network is used for 

classification purpose. When an input is presented, the first layer computes distances 

from the input vector to the training vectors and produces a vector whose element 

indicate how close the input is to a training vector.  The second layer sums these 

contributions for each class of inputs to produce as its net output vector probabilities.  

Finally, in the output layer, the maximum of these probabilities are chosen and a ‘1’ is 
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produced for that class and a ‘0’ for the other classes.  The architecture for this system is 

shown in Figure 5.3.  

For the input set of D training vector/target vector pairs associated with one of K
c
 

classes, the first layer input weights w is set to the transpose of the matrix formed from 

the D training pairs. As the number of training vectors is 160 and input feature vector has 

M=3 inputs, the weight matrix formed is of dimension 3 x 160.  When an input v of 

dimension 1 x 3 is presented, vw −  is calculated. vw −  indicates how close the input 

is to the vectors of the training set.  These elements are multiplied, element-by-element, 

by the bias and sent to the radial basis transfer function.  An input vector close to a 

training vector will be represented by a number close to 1 in the output vector q.   The 

second layer weights p are set to the matrix t of target vectors.  Each vector has a one 

only in the row associated with that particular class of input, and zeros elsewhere.  At the 

competitive layer, sum of qp is obtained at each node.  Finally, at the output layer 

maximum value of the outputs of competitive layer is detected and a ‘1’ is generated 

corresponding to the maximum element and zeros elsewhere.  Thus the network has 

classified the input vector into a specific one of K
c
 classes because that class had the 

maximum probability of being correct. 
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Figure 5.3 RBF network architecture 

5.2 Fuzzy Classifier 

In a fuzzy classification system, pattern space is divided into multiple subspaces. 

For each subspace, the relationships between the target patterns and their classes are 

described by if-then type fuzzy rules. The advantage of this system is that a nonlinear 

classification boundary can be easily implemented. Unknown patterns are classified by 

fuzzy inference, and patterns that belong to an unknown class which was not considered 

at learning can be easily rejected. Ishibuchi et. al.[96, 97] proposed methods to acquire a 

fuzzy classification system automatically by a simple learning procedure and a genetic 
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algorithm. With these methods, however, a pattern space is divided lattice-like. 

Therefore, many fuzzy rules corresponding to fine subspaces are required to implement a 

complicated classification boundary. 

 

 

Figure 5.4 A fuzzy classification system 

A fuzzy classifier [98] using subtractive clustering and Sugeno fuzzy inference 

system is implemented as a classifier as shown in Figure 5.4. The algorithm for 

implementation is as follows: 

Step 1 - Fuzzify Inputs: The input is fuzzified using symmetric gaussian 

membership function given by   

2
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e

f ,         (5.1) 

where v is the input vector, σ and µ are variance and mean respectively. 

Step 2 - Fuzzy inference: Fuzzy inference is the process of formulating the 

mapping from a given input to an output using fuzzy logic for making decisions. From 

the fuzzified inputs, the cluster centers are determined using subtractive clustering 

method.  In this method, 

• The data point with the highest potential to be the first cluster center is 

selected. 
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• All data points in the vicinity of the first cluster center (as determined by 

radii) is removed in order to determine the next data cluster and its center 

location. 

• This process is iterated until all of the data is within the radii of a cluster 

center  

Step 3 - Obtaining the output: Final output is obtained using the Sugeno fuzzy 

model. The output membership function is linear and is given by  

ri = ax + by + cz + d.      (5.2) 

where a, b, c and d are membership parameters. 

In the output layer, ri of each rule is weighted by the firing strength wi of the rule. 

The final output of the system is the weighted average of all rule outputs, computed as 

 

Final Output  = 
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∑
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=

N

i
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rw
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1 .     (5.3) 

5.3 Adaptive Neuro Fuzzy Classifier 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) was first introduced by 

Jang [99] for classification purposes.   

The neuro-adaptive learning techniques provide a method for the fuzzy modeling 

procedure to learn information about a data set, in order to compute the membership 
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function parameters that best allow the associated fuzzy inference system to track the 

given input/output data. This learning method works similarly to that of NNs. Using a 

given input/output data set, the MATLAB toolbox function “anfis” constructs a fuzzy 

inference system (FIS) whose membership function parameters are tuned (adjusted) using 

either a backpropagation algorithm alone, or in combination with a least squares type of 

method. This allows the fuzzy systems to learn from the data they are modeling. A 

network-type structure similar to that of a NN, which maps inputs through input 

membership functions and associated parameters, and then through output membership 

functions and associated parameters to outputs, is used to interpret the input/output map. 

The parameters associated with the membership functions will change through the 

learning process. The computation of these parameters (or their adjustment) is facilitated 

by a gradient vector, which provides a measure of how well the fuzzy inference system is 

modeling the input/output data for a given set of parameters. 

The ANFIS network chosen is shown in Figure 5.5 with a first-order Sugeno 

model.  For each input iv , five fuzzy sets jiU , with the corresponding membership 

functions )( iji vµ , were chosen for  i =1 to 3 (inputs) and j = 1 to 5. Thus, the ANFIS 

network has a total of 125 (5
3
) fuzzy rules and one output, F.   The rule structure, for e.g, 

the n-th rule is of the form: 

   If 1v  is 1iU  and 2v  is 2jU  and 3v  is 3kU  then nkjin dvdvdvdf +++= 332211 ,  
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where ),,,( 321 nkji dddd  are adaptable parameters and )1(25)1(5 −+−+= ijkn  for i, j, k 

=1 to 5.  

The architecture of the ANFIS system shown in Figure 5.5 is explained below: 

• Layer 1: Every node i in this layer is square node ( takes in one input) with 

the node function given by 

)( ijiji vU µ=         (5.4) 

where iv  is the input and )( iji vµ  is the activation function for the input   

iv  given by, 

[ ]( ) 12
/)(1)(

−

−+= jib

jijiiiji acvvµ      (5.5) 

where ),,( jijiji cba  are adaptable parameters.   

• Layer 2: Every node in this layer is a circle node ( takes in multiple inputs) 

labeled Π  which multiplies the incoming signals and send the product 

out. For example, 

)()()( 3132121111 vvvw µµµ ××=     (5.6) 

• Layer 3: Every node in this layer is a circle node labeled N. The i
th

 node 

calculates the ratio of the i
th

 rule firing strength to the sum of all the rules 

firing strengths. For example, 
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• Layer 4:   Every node in this layer is a square node that generates the node 

output nn wf . 

• Layer 5: This is the output layer with single node that generates the final 

output by adding all the outputs of Layer 4.  
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Figure 5.5 ANFIS architecture 
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5.4 Classification of HRV Signals  

The characteristic measures are evaluated for their suitability for classification. 

The classification is done using three different classification techniques as discussed in 

the previous sections. Three features SEN, SD1/SD2 and 1λ  extracted from the HRV 

signals are used for the proposed classification. These features are chosen based on trials 

for optimal performance in terms of better classification accuracy. 

The NN classifier is implemented with 30 nodes in the radial basis layer and 8 

nodes in the competitive layer.  The classification results of the NN classifier is given in 

Table 5.1. The network is trained with 279 training vectors. The fuzzy classifier is 

implemented with Gaussian membership function. The classification results of the fuzzy 

classifier are given in Table 5.2. The ANFIS classifier is implemented with generalized 

bell-shaped membership. The network is trained with 279 datasets and back-propagation 

method is chosen for optimization. The initial and final (after training) input membership 

function for the input 1λ  is shown in Figure 5.6 and Figure 5.7.  The “in1mf1” refers to 

the input1 membership function1. Each input is fuzzified with 5 membership functions. 

During the training phase the network converged at 100 epochs with a mean-squared-

error of 9x10
-3

.  After training association, rules in the form of if-then, are generated and 

extracted.  The final decision surfaces for input1 and input2, input1 and input3, and 

input3 and input2 are given in Figure 5.8, Figure 5.9 and Figure 5.10 respectively. The 

classification results of the ANFIS classifier is given in Table 5.3. 
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Fuzzy classifier works better than the NN classifier (Table 5.2). This 

classification is further improved using ANFIS classifier (Table 5.3).  The classification 

accuracy is more than 90% for all disease classes in the neuro-fuzzy classifier.  From 

Table 5.1, Table 5.2 and Table 5.3, it can be seen that there is a significant increase in the 

classification accuracy for cardiac abnormalities when ANFIS is used as classifier. The 

above results are compared with a simple IF-THEN-ELSE classifier using one input 

feature.  The input feature value of the test data is compared with the range (mean + 

standard deviation) of the feature values given in Table 3.3 and the correct class is 

identified.  The classifier is tried with all the eleven features as input but with one at a 

time. Due to overlap in the range of values of some of the classes, the classification 

accuracy was about 60 to 70% as given in Table 5.4. For sake of fair comparison between 

different classifiers the same set of test data is used for all the classifiers including the 

simple classifier. When the simple classifier is tried with a combination of two or more 

inputs, the classification accuracies are poor. Even though the features are statistically 

significant for many groups but only intelligent classifiers using nonlinear techniques 

yield better accuracy and improved classification. These intelligent classifiers with fine 

tuning and training can yield better results and has to be evaluated for more cardiac 

abnormalities.  

The neural network classifier, fuzzy classifier and ANFIS classifier are presented 

as diagnostic tools to aid the physician in the analysis of heart diseases.  However, these 

tools generally do not yield results with 100% accuracy. The accuracy of the tools depend 

on several factors, such as the size and quality of the training set, the rigor of the training 
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imparted, and the inputs itself. However, from the analysis of the results listed in Table 

5.1, Table 5.2 and Table 5.3, it is evident that the classifiers presented are effective to the 

tune of more than 80% accuracy. 

 
Figure 5.6 Initial membership function for input 1( 1λ ) 

 
Figure 5.7 Final membership function for input 1( 1λ ) 
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Figure 5.8 Final decision surface for input 1( 1λ ) and input 2 (SEN) 

 

Figure 5.9 Final decision surface for input 1( 1λ ) and input 3 (SD1/SD2) 

 

Figure 5.10 Final decision surface for input 3(SD1/SD2) and input 2 (SEN) 
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HRV signal 

types 

No. of datasets 

(training) 

No. of datasets 

(testing) 

Classification 

accuracy 

LBBB 28 18 88.88 

NSR 60 40 87.5 

PVC 45 30 86.66 

AF 30 25 85 

VF 28 25 92 

CHB 28 25 84 

ISCH 30 22 86.36 

SSS 30 22 90.9 

Table 5.1 Results of ANN classifier 

 

HRV signal 

types 

No. of datasets 

(training) 

No. of datasets 

(testing) 

Classification 

accuracy 

LBBB 28 18 83.33 

NSR 60 40 92.5 

PVC 45 30 86.66 

AF 30 25 88 

VF 28 25 92 

CHB 28 25 88 

ISCH 30 22 86.36 

SSS 30 22 90.9 

Table 5.2 Results of fuzzy classifier 

 

HRV signal 

types 

No. of datasets 

(training) 

No. of datasets 

(testing) 

Classification 

accuracy 

LBBB 28 18 88.88 

NSR 60 40 95 

PVC 45 30 93.33 

AF 30 25 92 

VF 28 25 88 

CHB 28 25 92 

ISCH 30 22 90.91 

SSS 30 22 90.91 

Table 5.3 Results of ANFIS classifier 
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Input Feature Classification Accuracy 

α -slope 67.3% 

SD1/SD2 61.1% 

2D  77.1% 

1λ  70.9% 

H 72.0% 

SEN 75.6% 

REN 61.1% 

APEN 60.4% 

KSEN 61.5% 

HiguchiD  61.8% 

Katz
D  73.1% 

Table 5.4 Results of a simple classifier implemented with one input feature 

 

5.5 Classification of EEG Signals  

The characteristic measures of the EEG signals discussed in Chapter 4 are 

evaluated for the suitability to do classification. The classification is done using three 

different classification techniques discussed in the sections 5.1, 5.2 and 5.3. The four 

entropy estimators SEN , REN , KSEN  and APEN  are used as inputs to the classifiers.  

The NN classifier is implemented with 12 nodes in the radial basis layer and 3 

nodes in the competitive layer.  The classification results of the NN classifier is given in 

Table 5.5. The network is trained with 180 training vectors. The fuzzy classifier is 

implemented with Gaussian membership function. The classification results of the fuzzy 
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classifier are given in Table 5.6. The ANFIS classifier is implemented with generalized 

with generalized bell shaped membership function.  The ANFIS network chosen with a 

first-order Sugeno model is used as given in Figure 5.11.  For each input iv , three fuzzy 

sets jiU , with the corresponding membership functions )( iji vµ , were chosen for  i =1 to 

4 and j = 1 to 3.  

 

Figure 5.11 ANFIS architecture for classification of EEG signals 
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EEG signal 

types 

No. of datasets 

(training) 

No. of datasets 

(testing) 

Classification 

accuracy 

Normal 60 43 88.37 

Epileptic 60 47 82.98 

Background 60 47 85.11 

Table 5.5 Results of ANN classifier for EEG signal classification 

EEG signal 

types 

No. of datasets 

(training) 

No. of datasets 

(testing) 

Classification 

accuracy 

Normal 60 43 93.02 

Epileptic 60 47 89.36 

Background 60 47 85.11 

Table 5.6 Results of FUZZY classifier for EEG signal classification 

EEG signal 

types 

No. of datasets 

(training) 

No. of datasets 

(testing) 

Classification 

accuracy 

Normal 60 43 93.02 

Epileptic 60 47 91.49 

Background 60 47 91.49 

Table 5.7 Results of ANFIS classifier for EEG signal classification 

With one input With two inputs 

Input feature 

Classification 

Accuracy Input features 

Classification 

Accuracy 

        

 CD 83.3% CD & SEN 86.7% 

 LE 62.5% CD & LE 72.5% 

H 41.7%   CD  & KSEN 76.7% 

KSEN 73.3% APEN & SEN 77.5% 

APEN 35.8% SEN & KSEN 80.0% 

SEN 93.3% REN & SEN 76.7% 

REN 59.2% SEN & H 61.7% 

Table 5.8 Results of simple classifier implemented with one/ two input 

features. 
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Table 5.5, Table 5.6 and Table 5.7 shows the results of EEG signal classification. 

The classification accuracy of more than 80% is achieved with the entropy estimators as 

input to the classifiers. ANFIS classifier gives a better classification accuracy of more 

than 90% when compared to the other classifiers. The above results are compared with 

the results of a simple IF-THEN-ELSE classifier using one / two input features given in 

Table 5.8. The simple classifier is implemented in the same way as it is implemented for 

classifying HRV signals. It can be seen that in certain cases the accuracy is even better 

than the intelligent classifiers. This may be due to the fact that the number of classes for 

identification is only three and that particular feature is completely significant for the 

three classes considered. The classification accuracy was about 70% when two features 

are used in combination for classification using the simple classifier. These classifiers 

may not perform well when more number of classes is considered as there will be some 

overlap in the features of different groups. In that scenario, intelligent classifiers are 

needed and need to be tuned for optimal performance. In this work, we evaluated three 

intelligent classifiers and ANFIS classifier performed better compared to the other two 

classifiers.  

5.6 Conclusion  

Three types of classifier architectures are described in this chapter. These 

classifier architectures classify the HRV and EEG signals with an accuracy of about 90%. 

The classifiers can identify the various abnormalities using the extracted feature set of 
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HRV and EEG signals. To further understand the characteristics of the signal, to predict 

the signal and to generate synthetic data, it is necessary to model the signals. The 

modeled signals are valid only if they exhibit similar characteristics as the original signal. 

Modeling of the HRV and EEG signals using linear and nonlinear modeling techniques 

are discussed in Chapter 6 and Chapter 7, respectively.  
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Chapter 6   Linear Modeling of Heart 

and Brain Signals 

The nonlinear dynamics of the HRV and EEG signals presented in Chapter 3 and 

Chapter 4 aid to the diagnosis of various cardiac and mental health states discussed in 

Chapter 5. To further understand the characteristics and enhance the analysis of the 

signals, it is necessary to model these signals. The modeled signals are valid only if they 

exhibit similar characteristics as the original signal. In this work, first we propose linear 

techniques to model the HRV and EEG signals analyze the performance in detail.  

6.1 Signal Modeling 

Signal modeling is an important step in signal processing. Once the model of a 

signal is identified, characteristics of that signal can be easily controlled by changing the 

parameters of this model. The synthesized signal can then be used to validate and 

compare various signal processing algorithms. In addition, if the model does faithfully 

reflect the physiological process of the signal, it can be used to study the physiological 

mechanism of this signal as well.  
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Extracting useful clinical information from the experimental (noisy) ECG requires 

the application of reliable signal processing techniques. These include R-peak detection, 

QT-interval detection, and the derivation of heart rate and respiration rate from the ECG. 

The variability of the R-R intervals reveals important information about the physiological 

state of the subject.  

At present, new biomedical signal processing algorithms are usually evaluated by 

applying them to ECGs acquired from real patients. Usually it will be of short duration 

not sufficiently long enough for the evaluator to decide on the accuracy and reliability of 

a given algorithm. To facilitate this evaluation, it is required to generate longer duration 

signals from these short duration signals while preserving the characteristics of the signal 

in time domain and as well as in frequency domain. A realistic artificial biomedical 

signal generator that is able to encompass the range of signals observed for both normal 

and abnormal subjects is therefore a useful tool. Furthermore, the ability to rapidly create 

a re-generable time series enables a researcher to quickly prototype applications and test 

theories on both normal and abnormal signals. The linear models for generating a 

synthetic HRV and EEG signals with realistic and prescribed dynamical characteristics is 

discussed in this chapter.  

In this chapter, a detailed discussion on the prediction of HRV and EEG signals 

using linear techniques is presented. The simulated signal is validated using the 

frequency domain measures of LF and HF components. The time-domain performance 
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measures such as normalized root mean square error (NRMSE) and the signal to noise 

ratio (SNR) are also used for comparison.   

The NRMSE is the most popular measure of the differences between the values 

predicted by a model and the actual values. NRMSE is given by 

minmax

2)ˆ(

xx

E
NRMSE

−

−
=

xx
     (6.1) 

where 2)ˆ( xx −E  is the mean of the square of the error, x̂  is the predicted signal, 

x is the actual signal, maxx is the maximum value of the signal x   and minx is the 

minimum value of the signal x . 

The SNR is defined as the ratio of signal power to the noise power present in the 

signal under consideration. It is given by 
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where P is the average power and A is the amplitude. Usually SNR is expressed in 

dB and is given by 
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6.2 Modeling Techniques 

Signal modeling is concerned with the representation of signals in an efficient 

manner. In general, there are two steps in the modeling process. The first is to choose an 

appropriate parametric form for the model.  Once the form of the model has been 

selected, the next step is to find the model parameters that provide the best approximation 

to the given signal. There are, however, many different ways to define what is meant by 

the best approximation. Based on the definition that is used, there will be different 

solutions to the modeling problem along with different techniques for finding the model 

parameters. Therefore, in developing an approach to signal modeling, it is important not 

only to find a model that is useful, i.e., works well, but one that has a computationally 

efficient procedure for deriving the model parameters from the given data.    

6.3 Linear Models 

Linear modeling techniques are based on the estimation of a linear time-invariant 

model that has white noise as input and the signal to be analyzed as output. There are 

power spectrum estimate methods that use models without zeros (AR) and models 

without poles (MA). AR models lead to power spectrum with sharp peaks. Moreover the 

linear equations, to find the coefficients of AR models, are simpler to be solved. The 

various AR modeling techniques are Yule-Walker, Burg, covariance, and modified 

covariance methods. The Yule-Walker and covariance methods solve the set of linear 
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equations by minimizing the forward prediction error in the least squares sense. The Burg 

and modified covariance methods solve the set of linear equations by minimizing the 

forward and backward prediction errors in the least squares sense. The Yule-Walker and 

Burg approaches always guarantee a stable model. Unfortunately, the performance of the 

Yule-Walker approach degrades when the number of samples decreases. The covariance-

based approaches perform well also when the model order p is chosen smaller than the 

number of sinusoids actually present in the analyzed signal. The Burg’s approach yields a 

more stable and robust to estimate of the AR model parameters [100]. 

6.3.1 Parametric Model 

The AR model [100, 101] is one of the linear prediction techniques that attempt to 

predict an output )1(ˆ +nx  of a system based on the previous inputs 

( )(,...),2(),1(),( pnxnxnxnx −−− ), where p  is the order of the predictor. It is also 

known in the filter design industry as an infinite impulse response filter (IIR) or an all 

pole filter, and is sometimes known as a maximum entropy model in physics 

applications. The definition used here is as follows: 

∑
=

+−=+
p

i

i tinxanx
1

)()(.)1(ˆ ε     (6.4) 

where piai ,,2,1, L=  are the AR coefficients. The noise term or residue, )(tε  in the 

equation (6.4), is almost always assumed to be Gaussian white noise. The current term of 

the series can be estimated by a linear weighted sum of previous terms in the series. The 
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weights are the autoregression coefficients. The problem in AR analysis is to derive the 

"best" values for ia  given a series },,2,1);({ Niix K= . The majority of methods assume 

the series x  is linear and stationary. By convention the series x  is assumed to be zero 

mean, if not this is simply another term 0a  in front of the summation in the equation 

above.  

The power spectrum of a p
th 

order AR process is  

2
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fkj
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ea

fP

π

σ
     (6.5)  

where 2σ  is the driving white noise variance. The Burg method results in high resolution 

and yields a stable AR model. 

 It is essential to choose the appropriate model order. The order of the AR model 

has a major effect on the spectral estimate for the time series. Too low order will result in 

a smoothed spectrum and too high order will increase the resolution of the spectrum and 

introduce spurious peaks. The estimate for the power associated with the single 

component is also dependent on the order that is selected. The orders p=15-20 are often 

satisfactory for heart rate signal prediction.  Several penalty function methods for model 

order selection exist that utilize the prediction error variance such as FPE (final 

prediction error) and AIC ( Akaike information criteria) [102, 103]. 
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6.4 Modeling of HRV Signals 

The model is to provide a standard realistic HRV signal with known 

characteristics. The main characteristics of an HRV signal are discussed in Chapter 3. In 

the time domain, the signal is neither periodic nor completely random and in the 

frequency domain, the signal consists mainly of three spectral peaks, i.e., a high 

frequency (HF) peak around 0.20 Hz, a low frequency (LF) peak around 0.10 Hz, and a 

very low frequency (VLF) peak, which is also called the l/f component because its 

spectral magnitude increases with the decrease of frequency. Thus, the simulated HRV 

signal must atleast be able to reveal the following characteristic parameters: the HF 

component frequency, the LF component frequency, and the parameters governing the l/f 

spectrum of the VLF component. 

Generating a long duration HRV signal from the given short duration signal 

facilitates a comparison of different signal processing techniques. The HRV signal 

generated with the prescribed time domain and frequency domain characteristics can be 

used for diagnostic purposes by predicting the nature of the HRV signals. The model also 

can be used for numerous applications such as (i) the synthetic HRV could be used to 

assess the effectiveness of different techniques for noise and artifact removal. These 

could be evaluated by adding noise and/or artifact onto the synthetic signal and then 

comparing the original with the processed signal. (ii) Abnormal morphological changes 

could be introduced to the lead II signal and the long term changes could be observed and 

(iii) Abnormal beats can be predicted on a long run and used for diagnostic purposes. The 
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linear modeling techniques discussed in Section 6.3 are applied to eight different types of 

HRV signals. The original NSR, VF, AF, ISCH, CHB, LBBB, PVC and SSS segments, 

the corresponding AR modeled segments reconstructed using Burg’s method and the 

error signals are shown in Figure 6.1. The error signal obtained by comparing the original 

and the reconstructed signal. 

 
(a) 
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(b) 

 
(c) 
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(d) 

 
(e) 
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(f) 

 
(g) 
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(h) 

Figure 6.1 Original, reconstructed and error signals for various HRV signals using 

the AR modeling technique. 

 

The signals are reconstructed using an All-Pole Filter with White Noise as Input. 

Thirty datasets are reconstructed for each class of the HRV signal with each dataset 

having 200 samples. Two main criteria, SNR and NRMSE are used to evaluate the 

performance of the linear model. The SNR was calculated to be from 15 dB to 35 dB. 

Table 6.1 shows the SNR and the NRMSE of the predicted HRV signals.  
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HRV signal types SNR NRMSE 

NSR 21 0.49+0.13 

AF 30 21.63+1.31 

VF 30 10.68+0.53 

CHB 26 7.32+1.11 

ISCH 24 10.54+1.63 

PVC 30 31.33+1.91 

SSS 30 26.69+3.12 

LBBB 21 2.61+1.22 

Table 6.1 SNR and NRMSE (%) values of the predicted signals using Burg’s 

method. 

6.4.1 Validation of the Signal Model 

The generated HRV signals are validated using LF/HF ratio and the chaotic 

invariant measures.  The commonly used frequency domain measure for HRV signal is 

the low frequency/ high frequency (LF/HF) ratio, defined as the ratio of power between 

0.015–0.15 Hz and 0.15–0.4 Hz in the R-R tachogram. The LF/HF power ratio of the 

HRV signals varies for various cardiac abnormalities and aids in the assessment of 

cardiovascular disease. The heart rate may be increased by slow acting sympathetic 

activity or decreased by fast acting parasympathetic (vagal) activity. The balance between 

the effects of the sympathetic and parasympathetic systems, the two opposite acting 

branches of the autonomic nervous system, is referred to as the sympathovagal balance 

and is believed to be reflected in the beat-to-beat changes of the cardiac cycle. The heart 

rate is given by the reciprocal of the R-R interval in units of beats per minute. Spectral 
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analysis of the R-R tachogram is typically used to estimate the effect of the sympathetic 

and parasympathetic modulation of the R-R intervals. The two main frequency bands of 

interest are referred to as the LF band (0.04–0.15 Hz) and the HF band (0.15–0.4 Hz). 

Sympathetic tone is believed to influence the LF component whereas both sympathetic 

and parasympathetic activity has an effect on the HF component. The ratio of the power 

contained in the LF and HF components has been used as a measure of the 

sympathovagal balance.  

From the Figure 6.1, it can be that the modeled signal closely follows the original 

signal in the time domain. In frequency domain, the results of LF/HF ratio given in Table 

6.2 measure indicate the preservance of the frequency domain features in the predicted 

signal. The % difference of the ratio between the modeled and actual signal is less than 

10% for modeled signal using Burg’s method. The modeled signals are also validated 

using the chaotic measures discussed in Chapter 3.  The results of the chaotic measures of 

the synthesized HRV signals modeled using the Burg’s method is given in Table 6.4. By 

comparing the results with the results of the actual signal given in Table 6.3, it can be 

seen that the Burg’s method results closely follows the actual signal results.  It can be 

seen that the results of the FDs and H are not significant for each class. The variation of 

the characteristic features is more than 10% for the synthesized signals as compared to 

the actual signal.  
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LF/HF RATIO 

BURG 
HRV 

SIGNAL 

TYPES 
ORIGINAL 

SIGNAL 
PREDICTED 

SIGNAL 

% 

difference 

NSR 0.8635 0.8861 2.6141 

LBBB 0.2441 0.2642 8.2516 

PVC 1.3453 1.2122 9.8938 

AF 0.5498 0.5581 1.5010 

VF 0.2853 0.3011 5.5316 

CHB 1.1532 1.2529 8.6417 

ISCH 2.9948 3.2674 9.1041 

SSS 0.4185 0.4378 4.6202 

Table 6.2 Comparison of LF/HF Ratio of the predicted signals with the original 

signal. 

Chaotic 

measures 
NSR PVC LBBB AF VF CHB SSS ISCH 

2D  
3.58 2.29 3.2 2.58 2.9 2.72 2.35 3.3 

1λ  
0.5 0.62 0.47 0.56 0.42 0.17 0.82 0.193 

H 
0.611 0.873 0.643 0.796 0.706 0.748 0.821 0.654 

KSEN 
0.573 0.496 0.429 0.445 0.409 0.457 0.278 0.34 

APEN 
1.75 1.51 1.47 1.57 1.09 0.97 1.57 0.76 

SEN 
1.63 1.14 1.24 1.2 1.06 0.86 1.27 1.12 

REN 
3.481 2.46 2.72 2.63 2.32 2.19 2.76 2.42 

Higuchi
D  1.36 1.19 1.31 1.21 1.27 1.24 1.21 1.32 

Katz
D  1.58 1.31 1.53 1.39 1.46 1.41 1.36 1.52 

Table 6.3 Chaotic measures of HRV signal - Actual. 
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Chaotic 

measures 
NSR PVC LBBB AF VF CHB SSS ISCH 

2D  
3.513 2.268 3.17 2.578 2.85 2.641 2.329 3.299 

1λ  
0.475 0.538 0.465 0.525 0.389 0.138 0.795 0.13 

H 
0.527 0.789 0.612 0.752 0.608 0.71 0.721 0.599 

KSEN 
0.492 0.458 0.402 0.372 0.354 0.434 0.215 0.314 

APEN 
1.705 1.438 1.404 1.56 1.049 0.966 1.542 0.734 

SEN 
1.544 1.101 1.228 1.144 0.974 0.797 1.187 1.021 

REN 
3.471 2.439 2.706 2.626 2.26 2.103 2.737 2.34 

Higuchi
D  1.301 1.111 1.257 1.159 1.259 1.151 1.123 1.232 

Katz
D  1.533 1.309 1.493 1.348 1.368 1.387 1.334 1.519 

Table 6.4 Chaotic measures of modeled HRV signal – Burg’s method. 

6.5 Modeling of EEG Signals 

The linear modeling techniques discussed in Section 6.3 are used to model the 

three categories of the EEG signals – normal, background and epileptic. The AR model is 

implemented with the model order p=16. The original EEG signals and the corresponding 

reconstructed signal using Burgs method along with the error is given in Figure 6.2.  Two 

main criteria, NRMSE and SNR are used to evaluate the performance of the linear model. 

The results are given in Table 6.5.  
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(a) 

 
(b) 
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(c) 

 

Figure 6.2 Actual and reconstructed EEG signals using Burg’s method 

 

EEG signal 

Types 
SNR NRMSE 

Normal 16 8.691+1.121 

Background 18 6.621+1.561 

Epileptic 15 14.368+1.253 

Table 6.5 SNR and NRMSE (%) values of the predicted signals from the model. 
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6.5.1 Validation of the Signal Model 

The synthesized EEG signals are validated using the nonlinear characteristic 

measures discussed in Chapter 4. The results of the synthesized normal, background and 

epileptic EEG signals are given in Table 6.6, Table 6.7 and Table 6.8 respectively. The 

characteristics measures are calculated for all the categories of the EEG signals 

reconstructed using the Burg’s method. It can also be seen that the characteristic 

measures are not distinct for the three categories. This may be due to the fact that the 

linear models are unsuccessful in capturing the nonlinear features of the signal.  

Chaotic 

measures Actual Burg 

2D  

4.8768 4.5672 

1λ  

0.2036 0.1876 

H 

0.3248 0.2974 

KSEN 

0.6033 0.5788 

APEN 

0.7096 0.6933 

SEN 

-0.2215 -0.2341 

REN 

-0.1927 -0.2109 
Higuchi

D  
1.5132 1.4874 

Katz
D  

1.8649 1.7991 

Table 6.6 Chaotic measures of the modeled normal EEG signal 
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Chaotic 

measures 
Actual Burg 

2D  
4.3451 4.1141 

1λ  
0.1912 0.1832 

H 
0.3411 0.3121 

KSEN 
0.5391 0.5121 

APEN 
0.6731 0.6534 

SEN 
-0.4818 -0.5121 

REN 
-0.183 -0.2012 

Higuchi
D  1.4051 1.2987 

Katz
D  1.5634 1.4521 

Table 6.7 Chaotic measures of the modeled background EEG signal 

Chaotic 

measures 
Actual Burg 

2D  
3.9407 3.7534 

1λ  
0.1845 0.1564 

H 
0.3563 0.3231 

KSEN 
0.4926 0.4571 

APEN 
0.6484 0.6153 

SEN 
-0.735 -0.7561 

REN 
-0.195 -0.2111 

Higuchi
D  1.3546 1.2567 

Katz
D  1.5139 1.3967 

Table 6.8 Chaotic measures of the modeled epileptic EEG signal 
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6.6 Conclusion 

In this chapter, we discussed the modeling of the HRV and EEG signals using 

linear techniques. The parametric modeling using Burg’s method is implemented. The 

modeled signals are given and the performances of the models are evaluated using 

NRMSE and SNR as the performance measures. The signals are validated using the 

characteristic measures as well. From the results it can be seen that the nonlinear and 

chaotic measures are not significant for each case using the modeled signals. This may be 

because the linear models are unable to completely capture the nonlinearity in the signal 

being modeled. This necessitates the need for the nonlinear models which is discussed in 

Chapter 7.  
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Chapter 7  Nonlinear Modeling of Heart 

and Brain Signals 

7.1 Nonlinear Modeling 

In conventional modeling, it is assumed that the signal is the output of a linear 

system driven by random noise. In other words, signals are treated as realizations of some 

random process and the underlying systems are modeled as linear [100, 104]. After the 

discovery of chaos, deterministic systems with few degrees of freedom can produce 

signals that exhibit uncertainty and possess noise like spectra [105]. A chaotic system is a 

nonlinear dynamical system and the uncertainty existing in its output is originated from 

the system dynamics instead of an external driving force. Therefore, it is appropriate to 

apply nonlinear methods to model the underlying dynamics of the chaotic signal such as 

the HRV signal and EEG signal and is discussed in detail in this chapter.  

ANN, regarded as a dynamical system, is a powerful tool for modeling 

nonlinearity [106]. The relaxation of the neural networks can exhibit a rich variety of 

dynamical behavior [107, 108]. This property is highly desirable in dynamic modeling to 

preserve the dynamics of the original system. The advantage of ANN is their ability to 
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generalize what they learn during training to new situations. If the signal to be modeled is 

noisy and has finite length, it is desirable that a model is able to interpolate and 

extrapolate the mapping from the training examples in a sensible way. Due to their 

plasticity, function approximation capability, wide spectrum of possible dynamics and 

generalization capability, ANNs are often used as a tool in modeling nonlinear signals. 

7.2 Modeling Techniques 

There are several ANN architectures that are used for modeling signals. Recurrent 

neural networks (RNN) involving dynamic elements and internal feedback connections 

have been considered to be more suitable for nonlinear modeling purposes [109]. In the 

last few years, various works have been presented showing that the recurrent neural 

networks are quite effective in modeling nonlinear dynamical systems. [110,111]. The 

critical issue in the application of RNN is the choice of network architecture and the 

training (suitable) algorithm. For the application of modeling HRV and EEG signals, a 

recurrent Elman network using back propagation algorithm is chosen [112].  

7.2.1 Recurrent Neural Network (Elman Method) 

Feed-forward neural networks have been successfully used to solve problems that 

require the computation of a static function i.e a function whose output depends only on 

the current input, and not on any previous inputs. In the real world however, one 

encounters many problems which cannot be solved by learning a static function because 
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the function being computed changes with each input received.  In such cases, system 

needs to predict the outputs with some knowledge of how the past inputs affect the 

processing of the present input, as well as a way of storing the past inputs. In other words 

such a system must have a memory of the past input and a way to use that memory to 

process the current input. It should be clear from the architecture of feed-forward neural 

networks that past inputs have no way of influencing the processing of future inputs. This 

situation can be rectified by the introduction of feedback connections in the network. This 

way the network activation produced by past inputs can cycle back and affect the 

processing of future inputs. The classes of neural networks which contain cycles or 

feedback connections are called RNNs. While the set of topologies of feed-forward 

networks is fairly constrained, an RNN can take on any arbitrary topology as any node in 

the network may be linked with any other node (including itself). The only requirement 

we make is that the network have clearly defined input and output nodes.  

Recurrent networks are the state of the art in nonlinear time series prediction, 

system identification, and temporal pattern classification. As the output of the network at 

time t is used along with a new input to compute the output of the network at time n + 1, 

the response of the network is dynamic. There are few RNN architectures proposed by 

Frasconi, Gori-Soda,  Narendra-Parthasarathy , Williams and Zipser, and Elman[113].  

Elman networks [112, 114 - 115] are a form of RNNs which have connections 

from their hidden layer back to a special copy layer. This means that the function learnt 

by the network can be based on the current inputs plus a record of the previous state(s) 
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and outputs of the network. In other words, the Elman network is a finite state machine 

that learns what state to remember (i.e., what is relevant). The special copy layer is 

treated as just another set of inputs and hence the standard back-propagation learning 

techniques can be used (something which is not generally possible with recurrent 

networks).  

7.2.1.1 Architecture of a Simple Elman Network 

An Elman network is a general feed-forward NN extended with a context layer. 

The context layer acts as another input to the network. It is added to provide the network 

with memory.  The architecture of the Elman network is shown in Figure 7.1. The 

network contains p nodes in the input layer, J nodes both in the hidden and the context 

layers and one node in the output layer. The context layer provides the recurrent 

connection to the feed-forward network.  
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Figure 7.1 Elman network architecture 

 

Recurrent connections in this network are implemented as follows: At any time 

instant n, the values in the hidden nodes are stored one-to-one in context nodes. The 

context nodes are connected in the forward direction to the hidden nodes in the one-to-
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one fashion. The presence of this simple loop implies that the activations of the hidden 

units at time n can influence the activations of the hidden units at instant n+1. There are 

same numbers of context units as hidden units and the connections from the latter to the 

former are one-to-one and have weights fixed at 1. The context units can be connected to 

the hidden units in a one-to-many fashion. In our implementation, the context units are 

connected to the hidden units in the forward direction in a one-to-one fashion with fixed 

weights of 1. For HRV signal and EEG signal modeling, the Elman network is 

implemented with p = 16 and J = 8. The parameters are chosen such that the given 

network produces optimal results i.e with minimum NRMSE. There is signal 

extrapolation. The reconstructed signals shown in Figure 7.5 and Figure 7.7 are the 

extrapolated signals based on the previous values of the actual signals. 

7.2.1.2 Training Elman Networks 

At each time step, a copy of the hidden layer units is made to a copy layer. 

Training the Elman network consisted of the following steps: 

1. Initialize the context layer with random weights. 

2. Present the first set of inputs to the input layer. 

3. Calculate the hidden layer output with the inputs from input layer and the 

context layer. 

4. Calculate the predicted output. 
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5. Compare the predicted output with the expected output. 

6. Backpropagate the error by adjusting the weights of the hidden layer and the 

output layer. 

7. Copy the hidden layer output to the context layer. 

8. Repeat steps 3-7, this time by presenting the next set of inputs. Repeat until the 

end of the data sequence is reached. 

9. Repeat steps 1-8 until the training error is sufficiently small. 

The output of the hidden layer )(ny j  is given by 

))(()( nnetfny jj =              (7.1) 

∑∑ +−+−=
l

hljl

i

ijij nyuinxwnnet θ)1()()(   (7.2) 

where jiw is the weight between the thj  hidden node and the th
i  input node, jlu  is the 

weight between the thj  hidden node and the th
l  context node, ).(f is the activation 

function at the hidden layer. The final output )1(ˆ +nx  is given by 

))(()1(ˆ nnetgnx k=+       (7.3) 

o

j

jkjk nyvnnet θ+=∑ )()(      (7.4) 
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where hθ  is the bias input to the hidden layer, oθ  is the bias input to the output layer, 

kjv is the output layer weights and ).(g is the activation function at the output layer.  

As all of the trainable weights are in the forward direction, the standard back 

propagation algorithm is used to train this network. In the generalized version of the 

Elman network, the activations of hidden units and input units of many previous time 

steps are stored and a specialized version of the back propagation algorithm called back 

propagation through time (BPTT) is used. 

7.2.2 Pipelined - Recurrent Neural Network (PRNN) 

A neural network is well suited for the nonlinear prediction of signals by virtue of 

the distributed nonlinearity built into its design and the ability of the network to learn 

from its environment. The recurrent time recurrent learning (RTRL) architecture is 

capable of continuously learning which is required in bio-signals such as heart and brain 

signals. In large scale, the computational complexity of the RTRL algorithm increases. 

To address this problem, a pipelined recurrent neural network (PRNN) is proposed that 

uses RTRL learning algorithm with a modular and recurrent architecture [113]. The 

PRNN consists of T nonlinear subsections or modules connected in a linear fashion. Each 

nonlinear subsection by itself is a simple recurrent architecture. By combining nonlinear 

sections in a linear fashion, the architecture can model the signals with its both linear and 

nonlinear characteristics. The modeled signal is expected to preserve both the linear and 
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nonlinear characteristics of the signal. The block diagram of the PRNN is given in Figure 

7.2. 

 

Figure 7.2 Block diagram of the PRNN model 

7.2.2.1 Architecture of a PRNN Network 

The detailed architecture of the PRNN is shown in Figure 7.3  and the architecture 

for the i
th

 module is shown in Figure 7.4. The nonlinear subsection consists of T modules 

as given in Figure 7.3a. Each module has a neural network module and a comparator. The 

neural network module at each level is a RNN with p external inputs, Q-1 inputs from the 

current network output, one input from the previous level output and one bias input. All 

the modules operate in the same fashion and have exactly same number of inputs, 

outputs, layers and neurons. For computational simplicity, all the modules are designed to 

have same synaptic weight matrix. The comparator compares the output of each module 

to generate the error signal. The linear subsection given in Figure 7.3b has an order of q 

and generates the predicted output )1(ˆ +nx  from the nonlinear subsection output, )(ny . 
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(b) 

Figure 7.3 PRNN Network architecture (a) Nonlinear subsection (b) Linear 

subsection 

Z
-1

 Z
-1

 Z
-1

 

Σ 

wi,0 wi,1 wi,2 wi,q-2 wi,q-1 

Σ Σ Σ 

y1,1(n-2) y1,1(n) y1,1(n-1) y1,1(n-q+2) y1,1(n-q+1) 

)1(ˆ +nx



Chapter 7: Nonlinear modeling of heart and brain signals 

 
153 

 

Figure 7.4 Generalized PRNN architecture of  i
th

 module 

 

The output of each level )(, ny ki  is given by, 

))(exp(1

1
))(()(

,

,,
nv

nvny
ki

kiki
−+

== φ ,    (7.5) 

Module i 

x(n-i) 

x(n-(i+1)) 

x(n-(i+p-1)) 

1 

ri,1(n) 

Z
-1

 

x(n-i+1) ei(n) 

+ 

- 

.. 

.. 
ri,2(n) 

ri,Q(n) 

.. 

yi,1(n) 

yi,2(n) 

yi,Q(n) 

.. 



Chapter 7: Nonlinear modeling of heart and brain signals 

 
154 

where Ti ,,1 L= and Qk L,1= . The function )(, nv ki  is the net internal activation of the 

th
k neuron and )(, ny ki is the output of the th

k  neuron at the th
i  module at the th

n  time 

point [94].  

The synaptic weight matrix W for each module is a QbyQp −−++ )1( matrix. 

Each element of this matrix is represented as ikw , which is the weight of the connection 

between th
k neuron from the th

i input node. The weight matrix W  is given by, 

],,,[ 1 Qk wwwW LL= ,     (7.6) 

where kw  is a 1)1( −−++ byQp vector defined by, 

T

Qpkkkk www ],,,[ 1,2,1, ++= Lw .    (7.7) 

The input signal )(nx contains the samples )(,),2(),1( Nxxx L . At any time 

instant n  the external input applied to module i is given by, 

T

i pinxinxinxnx ))]1((,)),1((),([)( −+−+−−= L , (7.8) 

where p is the nonlinear prediction order. The other input vector applied to the module i  

is the feedback from the output of module i  and it is given by, 

T

Qiiii nrnrnrnr )](,),(),([)( ,2,1, L= .    (7.9) 
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Each module also has a fixed bias input.  Therefore at the th
n  time point, the 

output )(, ny ki of neuron k in module i  is described by, 

))(()( ,, nvny kiki φ= ,        (7.10) 

where )(, nv ki  is given by, 

∑∑
++

+

+−+

=

++−+−=
1

2

)1(,,1,

1

,, )(*)1((*)(
Qp

p

piiikpk

p

i

ikki nrwwpinxwnv , (7.11) 

where the weight 1, +pkw represents the bias, the index Ti ,,1 L= and Qk L,1= .  

The feedback signal for module i  contains the first neuron’s output of the 

adjacent module 1+i and one step delayed output signals from modulei. Thus the 

feedback input )(nri is given by, 

T

Qiii

T

iii

nynyny

nrnynr

)]1(,),1(),([

)](),([)(

,2,1,1

'

1,1

−−=

=

+

+

L

 ,  (7.12) 

where 1,2,1 −= Ti L and )(' nri  denotes the feedback signals that originate from the 

module i. The last module, the module T is a fully connected recurrent neural network 

with the vector )(nyT fed back after a one time unit delay. Therefore 

)1()( −= nynr TT .      (7.13) 
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The predicted output from the PRNN is the output of first neuron of the first 

module, module 1 and is given by, 

)()( 1,1 nyny pred = .      (7.14) 

The output from the PRNN is then sent through a linear subsection consisting of a 

tapped delay line filter as given in Figure 7.3. The weight matrix of this linear subsection 

is given by,  

T

qiiii wwww ],,,[ 1,1,0, −= L ,     (7.15) 

where q is the total number of taps. The output of the linear subsection, which is the 

actual predicted output, is then given by, 

)()1(ˆ nywnx pred

T

i=+ .     (7.16) 

The output )1(ˆ +nx is the prediction of the actual sample )1( +nx of the input 

signal.  

7.3 Implementation of the PRNN Network  

The PRNN network for modeling the HRV and EEG signals is implemented with 

the following parameters. The nonlinear subsection consists of 8 modules i.e 8=T . Each 

module has 16 input neurons, 1 bias input, one input from the output of module 1+i  and 
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one input feed back input from the module i . The linear subsection contains 12 taps. 

Therefore using the past 36 samples of the input, the 37
th

 sample is predicted.  

7.4 Modeling of HRV Signals 

The HRV signals are predicted using the architecture given in Section 7.2 and 7.3. 

The eight types of HRV signals NSR, VF, AF, ISCH, CHB, LBBB, PVC and SSS 

segments, the corresponding modeled segments using Elman method and the PRNN 

method are shown in Figure 7.5 and Figure 7.6. Two main criteria, SNR and NRMSE are 

used to evaluate the performance of the nonlinear models.   
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Figure 7.5 Original, reconstructed and error signals for various HRV signals using 

the Elman network. 
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(a) 

 
(b) 
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(e) 

 
(f) 
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(g) 

 

(h) 

Figure 7.6 Original, reconstructed and error signals for various HRV signals using 

the PRNN network. 



Chapter 7: Nonlinear modeling of heart and brain signals 

 
163 

 

HRV signal 

types Elman PRNN 

NSR 0.35+0.18 0.29+0.11 

AF 16.56+2.37 10.42+2.13 

VF 2.87+1.11 0.93+0.26 

CHB 6.37+1.51 5.26+1.04 

ISCH 10.21+2.21 9.24+2.11 

PVC 27.65+2.87 22.47+2.85 

SSS 18.22+3.72 17.69+2.64 

LBBB 2.56+1.62 2.24+1.16 

Table 7.1 NRMSE (%) values of the predicted HRV signals from the Elman 

and PRNN model. 

HRV signal 

types Elman PRNN 

NSR 21 25 

AF 31 32 

VF 31 35 

CHB 27 28 

ISCH 25 27 

PVC 27 32 

SSS 28 30 

LBBB 22 25 

Table 7.2 SNR values of the predicted HRV signals from the Elman and 

PRNN model. 
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LF/HF RATIO 

ELMAN MODEL PRNN MODEL 
HRV 

SIGNAL 

TYPES 
ORIGINAL 

SIGNAL 
PREDICTED 

SIGNAL 

% 

difference 

PREDICTED 

SIGNAL 

% 

difference 

NSR 0.8635 0.8424 2.4465 0.8794 1.8382 

LBBB 0.2441 0.2612 7.0224 0.2591 6.1620 

PVC 1.3453 1.2781 4.9953 1.3369 0.6245 

AF 0.5498 0.5592 1.7011 0.5613 2.0830 

VF 0.2853 0.2986 4.6554 0.2912 2.0618 

CHB 1.1532 1.2368 7.2456 1.2154 5.3899 

ISCH 2.9948 3.1196 4.1688 3.0329 1.2737 

SSS 0.4185 0.4397 5.0743 0.4467 6.7471 

Table 7.3 Comparison of LF/HF ratio of the predicted signals with the 

original signal. 

The Elman and PRNN modeling are applied to eight different types of HRV 

signals discussed in Chapter 3. The original NSR, VF, AF, ISCH, CHB, LBBB, PVC and 

SSS segments, the corresponding Elman and PRNN modeled segments and the error 

signals are shown in Figure 7.5 and Figure 7.6.  The SNR values calculated for the 

predicted signals are given in Table 7.2. It can be seen that the SNR of the predicted 

signal from PRNN network is greater than 25. The SNR of the predicted signals from the 

PRNN model is better than for the signals of the Elman model. For critical abnormalities 

such as VF, PVC, ISCH, AF, CHB and SSS, the SNR is significantly higher in the 

predicted signals from the PRNN model. The % NRMSE values is computed for the 
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modeled signals and given in Table 7.1. It can be seen that the error is less for the PRNN 

model compared to the Elman model.  

7.4.1 Validation of the Signal Model 

Chaotic 

measures NSR PVC LBBB AF VF CHB SSS ISCH 

2D  3.6202 2.3032 3.218 2.5812 2.93 2.7674 2.3626 3.3006 

1λ  0.515 0.6692 0.473 0.581 0.4386 0.1892 0.835 0.2308 

H 0.6614 0.9234 0.6616 0.8224 0.7648 0.7708 0.881 0.687 

KSEN 0.6216 0.5188 0.4452 0.4888 0.442 0.4708 0.3158 0.3556 

APEN 1.777 1.5532 1.5096 1.576 1.1146 0.9724 1.5868 0.7756 

SEN 1.6816 1.1634 1.2472 1.2336 1.1116 0.8978 1.3198 1.1794 

REN 3.487 2.4726 2.7284 2.6324 2.356 2.2422 2.7738 2.468 

Higuchi
D  1.3954 1.2374 1.3418 1.2406 1.2766 1.2934 1.2622 1.3728 

Katz
D  1.6082 1.3106 1.5522 1.4152 1.5152 1.4238 1.3756 1.5206 

Table 7.4 Chaotic measures of the modeled HRV signal - Elman method 

The generated HRV signals are validated using NRMSE, SNR and LF/HF ratio 

measures. The NRMSE given in Table 7.1 indicates the predicted signal to be a close 

follower of the actual signal with the PRNN model performing better than the Elman 

model in the HRV signal types considered. The simulated normal HRV signal from the 

PRNN model closely follows the original signal with the NRMSE less than 0.3. Overall, 

the PRNN model generates signal with less signal amplitude difference and with a higher 

SNR. The modeled signal closely follows the original signal in the time domain. In 

frequency domain, the results of LF/HF ratio measure as given in Table 7.3 indicate the 
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perseverance of the frequency domain features in the predicted signal. The % difference 

of the LF/HF ratio of the modeled and actual signal is less then 10%.  The modeled 

signals are also validated using the chaotic measures discussed in Chapter 3.   

Chaotic 

measures NSR PVC LBBB AF VF CHB SSS ISCH 

2D  3.6001 2.2966 3.209 2.5806 2.915 2.7437 2.3563 3.3003 

1λ  0.5075 0.6446 0.4715 0.5705 0.4293 0.1796 0.8275 0.2119 

H 0.6362 0.8982 0.6523 0.8092 0.7354 0.7594 0.851 0.6705 

KSEN 0.5973 0.5074 0.4371 0.4669 0.4255 0.4639 0.2969 0.3478 

APEN 1.7635 1.5316 1.4898 1.573 1.1023 0.9712 1.5784 0.7678 

SEN 1.6558 1.1517 1.2436 1.2168 1.0858 0.8789 1.2949 1.1497 

REN 3.484 2.4663 2.7242 2.6312 2.338 2.2161 2.7669 2.444 

Higuchi
D  1.3777 1.2137 1.3259 1.2253 1.2733 1.2667 1.2361 1.3464 

Katz
D  1.5941 1.3103 1.5411 1.4026 1.4876 1.4169 1.3678 1.5203 

Table 7.5 Chaotic measures of the modeled HRV signal - PRNN method 

The results of the chaotic measures of the synthesized HRV signals modeled 

using the Elman method and the PRNN method are given in Table 7.4 and Table 7.5, 

respectively. By comparing the results with the results of the actual signal given in Table 

3.3, it can be seen that the chaotic measures of the synthesized using PRNN method 

closely follows the actual signal results.  The variation of the chaotic measures is more 

than 10% for the synthesized signals using Elman method as compared to the actual 

signal. The chaotic measures are distinct for each class when the signals are synthesized 

using PRNN method and a p-value of <0.01 is obtained when subjected to ANOVA test. 
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The p-value indicates good statistical significance for the results with a confidence 

interval of 90%. A p-value < 0.07 is obtained for the results of the Elman method. This 

indicates the PRNN method models the underlying process that generates the signal, 

more precisely than the Elman method.  

7.5 Modeling of EEG Signals 

The non linear modeling techniques discussed in Section 7.2 and 7.3 are used to 

model the three categories of the EEG signals – normal, background and epileptic. The 

original EEG signals and the corresponding reconstructed signal using PRNN method 

and error are given in Figure 7.7 and Figure 7.8.  The NRMSE and SNR values of the 

predicted signals are given in Table 7.6 and Table 7.7. It can be seen that the predicted 

signals using PRNN method has a lower NRMSE and higher SNR values.  

 

                                   (a)                                                    (b) 
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                                                  (c) 

Figure 7.7 Original, reconstructed and error signals for EEG signals using the Elman 

network. 

 

 
(a) 
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(b) 

 
(c) 

Figure 7.8 Original, reconstructed and error signals for EEG signals using the PRNN 

network. 
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7.5.1 Validation of the Signal Model 

The synthesized EEG signals are validated using the nonlinear characteristic 

measures discussed in Chapter 4. Results of the characteristics measures of the modeled 

normal, background and epileptic EEG signals using Elman and PRNN method are given 

in Table 7.8 and Table 7.9, respectively. It can be seen that for all the categories of the 

EEG signals, nonlinear model using the PRNN method perform better than the Elman 

method. It can be seen that the characteristic measures are distinct for the three 

categories.  

EEG signal Elman PRNN 

Normal 7.683+1.242 5.321+1.631 

Background 5.876+1.769 4.322+1.341 

Epileptic 12.491+1.665 8.965+1.348 

Table 7.6 NRMSE (%) values of the predicted EEG signals from the Elman 

and PRNN model. 

EEG signal Elman PRNN 

Normal 18 24 

Background 18 22 

Epileptic 17 22 

Table 7.7 SNR values of the predicted EEG signals from the Elman and 

PRNN model. 
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Chaotic 

measures 

Normal Epileptic Background 

2D  4.7731 3.8513 4.2311 

1λ  0.1903 0.1734 0.1891 

H 0.3124 0.3397 0.3265 

KSEN 0.5876 0.4791 0.5198 

APEN 0.6932 0.6278 0.6608 

SEN -0.2333 -0.7432 -0.4992 

REN -0.2121 -0.1993 -0.1914 

Higuchi
D  1.4972 1.2983 1.3528 

Katz
D  1.8123 1.4511 1.5112 

Table 7.8 Chaotic measures of the modeled EEG signals - Elman method 

Chaotic 

measures 

Normal Epileptic Background 

2D  4.8490 3.8960 4.2881 

1λ  0.1970 0.1790 0.1902 

H 0.3186 0.3480 0.3338 

K 0.5955 0.4859 0.5295 

APEN 0.7014 0.6381 0.6670 

SEN -0.2274 -0.7391 -0.4905 

REN -0.2024 -0.1972 -0.1872 

Higuchi
D  1.5052 1.3265 1.3790 

Katz
D  1.8386 1.4825 1.5373 

Table 7.9 Chaotic measures of the modeled EEG signals - PRNN method 
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7.6 Comparison of Linear and Nonlinear Modeling 

Techniques 

The results of the linear and nonlinear modeling are discussed in Chapter 6 and 

Chapter 7.  First, the linear modeling using parametric and nonparametric methods are 

discussed and the modeled HRV and EEG signals are given. The modeled signals are 

compared in terms of NRMSE, SNR and the chaotic measures. From the results tabulated 

in Table 6.1 and Table 7.1, it can be seen that the NRMSE is considerably lower for the 

nonlinear modeling techniques. Of the four modeling techniques used, the NRMSE is the 

lowest for all the eight classes of the reconstructed HRV signals using PRNN method. 

The results of SNR of the reconstructed HRV signals using linear and nonlinear methods 

are given in Table 6.1 and Table 7.2 respectively. The SNR values are higher for signals 

modeled using nonlinear methods, more specifically using the PRNN method. The results 

are in agreement with the results of NRMSE that the noise is lesser in the signals 

modeled using PRNN technique. The same trend is exhibited for EEG signals as well and 

is shown in Table 6.5, Table 7.6 and Table 7.7. The reduction in error when using PRNN 

technique is because the PRNN technique models the linear and nonlinear components of 

the underlying system dynamics effectively. The linear method such as Welch and Burg 

method models only the linear components and does not take into account the nonlinear 

dynamics of the system. The Elman network models the underlying nonlinear dynamics 

but fails to model the inherent linear dynamics of the system. The PRNN technique 
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combines both the linear and nonlinear dynamics of the system and hence successfully 

models the HRV and EEG signals with lower NRMSE and higher SNR values. This 

result is supported by the results of the characteristics measures given in Table 6.3 – 6.4, 

Table 6.6 – 6.8, Table 7.4 – 7.5 and Table 7.8 – 7.9. From the results, it is seen that the 

nonlinear and chaotic measures extracted from the modeled signals using linear 

techniques are not significant for each case. This may be because the linear models are 

unable to completely characterize the nonlinearity in the signal. The result of the Elman 

method is better than the linear methods but not as good as PRNN method. This is due to 

the fact that the network being purely nonlinear fails to model the inherent linear 

components of the signal. The HRV and EEG signals modeled using PRNN technique 

exhibited similar characteristics as the actual signal.  This demonstrates the capability of 

the PRNN modeling technique to model the underlying dynamics of the process.  The 

proposed PRNN predictor outperformed the linear methods and the Elman method in 

terms of NRMSE, SNR and the characteristic measures.  

7.7 Conclusion 

Of the two techniques discussed, it can be seen that the PRNN model can generate 

more reliable and accurate HRV and EEG signals. The reconstructed signals from the 

PRNN model exhibit higher SNR and less NRMSE. The modeling ability of the PRNN 

model in synthesizing the HRV and EEG signals is better than that of the linear models 

also. This is because the HRV and EEG signals are inherently chaotic and nonlinear. The 
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PRNN model can model the nonlinear aspects of the underlying system better than the 

linear model.  The true power and advantage of neural networks lies in their ability to 

represent both linear and non-linear relationships and in their ability to learn these 

relationships directly from the data being modeled.  
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Chapter 8 Conclusion 

8.1 Conclusion 

Recent technological developments in the medical field have resulted in 

sophisticated health care and increased chances of survival. For example, large majority 

of people who had CA have survived by implantable and portable defibrillators. Neuronal 

damage occurs within few minutes of CA and brain function starts to degrade rapidly. 

The neuronal damage usually goes unnoticed in the earlier stages until visible signs of 

permanent consequent start to appear. During this period, the brain has at least partially 

damaged and its functions cannot be restored. Sometimes it reaches the extent whereby 

the heart is functioning and brain is damaged.  This leads to the brain dead condition. 

Hence it is highly crucial to device methods to analyze the heart and brain signals and 

monitor the cardiac and mental health. In this work, various methods to analyze the heart 

and brain signals and techniques for detection of cardiac and mental health are proposed.  

In this work, HRV and EEG signals are characterized using nonlinear measures. 

A feature library with eleven features is developed for the eight classes of HRV signals. 

Extracted features are tested for statistical significance using ANOVA test. The results 

generated a p-value that is less than 0.1 in all cases. This indicates that the results are 

statistically significant with a confidence level of 90%.  The discriminating ability of the 
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feature set is tested by classifying the signals using the feature set. Three different 

classifiers NN classifier, fuzzy classifier and ANFIS classifier are proposed for this 

purpose. Using the feature set, these classifiers detected the eight classes of cardiac 

abnormalities with an accuracy of more than 90%.  The results demonstrated the usability 

and suitability of the extracted feature set in the diagnosis of cardiac diseases.   

The EEG signals of normal and epileptic subjects are analyzed using the nonlinear 

time series analysis techniques expecting to extract quantitative measures that can 

reliably distinguish the EEG of an epileptic subject from that of a normal subject. The 

results of our analysis demonstrated the potential of complexity measures such as 2D , 1λ , 

H , katzD , HiguchiD , KSEN , SEN , APEN and REN  in quantifying the EEG signals of 

normal and epileptic subjects.  It is clearly shown that the values are higher for normal 

subject compared to that of epilepsy. The statistical results also support the 

discriminating ability of these measures in identifying epileptic and normal EEG signals. 

These measures can serve as quantitative descriptors of EEG in automatic identification 

of normal and epileptic EEG signals.  The analysis of nonlinear dynamics in EEG signals 

serve as an aid in understanding the underlying physiological processes in the brain. 

These features are used for classification of EEG signals as well. The three classifiers 

used for classification of HRV signals are used for classification of EEG signals as well. 

The three classifier architectures classify EEG signals with an accuracy of about 90%. 

The ANFIS classifier outperformed the other two classifiers in identification of EEG 

signals.  
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To further understand the characteristics and enhance the analysis of the signals, it 

is necessary to model the signals. The synthesized signals are valid only if they exhibit 

similar characteristics as the original signal. In this work, we proposed to model the HRV 

and EEG signals using linear techniques, nonlinear techniques and finally by a 

combination of linear and nonlinear techniques to model the HRV and EEG signals. The 

performances of all the models are compared in detail.  

First, we discussed the modeling of the HRV and EEG signals using linear 

techniques. The parametric modeling using Burg’s method and nonparametric modeling 

using FFT – Welch method is implemented. The performances of the models are 

evaluated using the performance measures such as the NRMSE and SNR. The 

synthesized signals are validated using the characteristic measures. Results indicate that 

the Burg’s method perform better than the FFT method. From the results, it is seen that 

the nonlinear and chaotic measures extracted from the modeled signals are not significant 

for each case. This is attributed to the fact that the linear models are unable to capture the 

underlying nonlinearity in the original signal.  

To overcome this problem, we proposed to use the nonlinear techniques (using 

Elman method) to model the HRV and EEG signals. The results obtained using this 

predictor has a higher variation in terms of the characteristics feature values of the signal. 

This is because the network is able to capture the nonlinearity and not the linearity in the 

signals. This led us to propose a new predictor (PRNN) that takes models both the 

nonlinear and linear dynamics of the underlying process.  
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From the results, it is seen that the PRNN model generated more reliable and 

accurate HRV and EEG signals. The synthesized signals from the PRNN model exhibit 

higher SNR and lower NRMSE values. This is supported by the results of the chaotic 

analysis of the synthesized HRV and EEG signals. The PRNN model can model the 

nonlinear aspects of the underlying system better than the linear model.  The true power 

and advantage of neural networks lies in their ability to represent both linear and non-

linear relationships and in their ability to learn these relationships directly from the data 

being modeled. This characteristic is successfully demonstrated by the proposed PRNN 

predictor.  

8.2 Recommendations for Future Work 

With the current analysis as the base work, further studies can be conducted in the 

future to improve the system as recommended below: 

• The most imperative recommendation for future work is to analyze the 

HRV and EEG signals from the same subjects. Currently in our work, this 

is not implemented due to the constraints in obtaining the validated data.  

• The analysis can be extended to other types of EEG signals recorded with 

conditions such as dementia, change in consciousness, brain death , sleep 

disorders  and catatonia. 
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• Improvements can be made on the decision-making algorithm.  The results 

of the three networks can be combined by developing a hybrid decision 

making algorithm and a final decision can be made by using fuzzy logic 

rule or any other artificial intelligence methods.   

• The system can be enhanced to analyze and classify more classes and the 

degree of abnormality.   
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