47 research outputs found

    Spectroscopy-supported digital soil mapping

    Get PDF
    Global environmental changes have resulted in changes in key ecosystem services that soils provide. It is necessary to have up to date soil information on regional and global scales to ensure that these services continue to be provided. As a result, Digital Soil Mapping (DSM) research priorities are among others, advancing methods for data collection and analyses tailored towards large-scale mapping of soil properties. Scientifically, this thesis contributed to the development of methodologies, which aim to optimally use remote and proximal sensing (RS and PS) for DSM to facilitate regional soil mapping. The main contributions of this work with respect to the latter are (I) the critical evaluation of recent research achievements and identification of knowledge gaps for large-scale DSM using RS and PS data, (II) the development of a sparse RS-based sampling approach to represent major soil variability at regional scale, (III) the evaluation and development of different state-of-the-art methods to retrieve soil mineral information from PS, (IV) the improvement of spatially explicit soil prediction models and (V) the integration of RS and PS methods with geostatistical and DSM methods. A review on existing literature about the use of RS and PS for soil and terrain mapping was presented in Chapter 2. Recent work indicated the large potential of using RS and PS methods for DSM. However, for large-scale mapping, current methods will need to be extended beyond the plot. Improvements may be expected in the fields of developing more quantitative methods, enhanced geostatistical analysis and improved transferability to other areas. From these findings, three major research interests were selected: (I) soil sampling strategies, (II) retrieval of soil information from PS and (III) spatially continuous mapping of soil properties at larger scales using RS. Budgetary constraints, limited time and available soil legacy data restricted the soil data acquisition, presented in Chapter 3. A 15.000 km2 area located in Northern Morocco served as test case. Here, a sample was collected using constrained Latin Hypercube Sampling (cLHS) of RS and elevation data. The RS data served as proxy for soil variability, as alternative for the required soil legacy data supporting the sampling strategy. The sampling aim was to optimally sample the variability in the RS data while minimizing the acquisition efforts. This sample resulted in a dataset representing major soil variability. The cLHS sample failed to express spatial correlation; constraining the LHS by a distance criterion favoured large spatial variability over short distances. The absence of spatial correlation in the sampled soil variability precludes the use of additional geostatistical analyses to spatially predict soil properties. Predicting soil properties using the cLHS sample is thus restricted to a modelled statistical relation between the sample and exhaustive predictor variables. For this, the RS data provided the necessary spatial information because of the strong spatial correlation while the spectral information provided the variability of the environment (Chapter 3 and 6). Concluding, the RS-based cLHS approach is considered a time and cost efficient method for acquiring information on soil resources over extended areas. This sample was further used for developing methods to derive soil mineral information from PS, and to characterize regional soil mineralogy using RS. In Chapter 4, the influences of complex scattering within the mixture and overlapping absorption features were investigated. This was done by comparing the success of PRISM’s MICA in determining mineralogy of natural samples and modelled spectra. The modelled spectra were developed by a linearly forward model of reflectance spectra, using the fraction of known constituents within the sample. The modelled spectra accounted for the co-occurrence of absorption features but eluded the complex interaction between the components. It was found that more minerals could be determined with higher accuracy using modelled reflectance. The absorption features in the natural samples were less distinct or even absent, which hampered the classification routine. Nevertheless, grouping the individual minerals into mineral categories significantly improved the classification accuracy. These mineral categories are particularly useful for regional scale studies, as key soil property for parent material characterization and soil formation. Characterizing regional soil mineralogy by mineral categories was further described in Chapter 6. Retrieval of refined information from natural samples, such as mineral abundances, is more complex; estimating abundances requires a method that accounts for the interaction between minerals within the intimate mixture. This can be done by addressing the interaction with a non-linear model (Chapter 5). Chapter 5 showed that mineral abundances in complex mixtures could be estimated using absorption features in the 2.1–2.4 µm wavelength region. First, the absorption behaviour of mineral mixtures was parameterized by exponential Gaussian optimization (EGO). Next, mineral abundances were successfully predicted by regression tree analysis, using these parameters as inputs. Estimating mineral abundances using prepared mixes of calcite, kaolinite, montmorillonite and dioctahedral mica or field samples proved the validity of the proposed method. Estimating mineral abundances of field samples showed the necessity to deconvolve spectra by EGO. Due to the nature of the field samples, the simple representation of the complex scattering behaviour by a few Gaussian bands required the parameters asymmetry and saturation to accurately deconvolve the spectra. Also, asymmetry of the EGO profiles showed to be an important parameter for estimating the abundances of the field samples. The robustness of the method in handling the omission of minerals during the training phase was tested by replacing part of the quartz with chlorite. It was found that the accuracy of the predicted mineral content was hardly affected. Concluding, the proposed method allowed for estimating more than two minerals within a mixture. This approach advances existing PS methods and has the potential to quantify a wider set of soil properties. With this method the soil science community was provided an improved inference method to derive and quantify soil properties The final challenge of this thesis was to spatially explicit model regional soil mineralogy using the sparse sample from Chapter 3. Prediction models have especially difficulties relating predictor variables to sampled properties having high spatial correlation. Chapter 6 presented a methodology that improved prediction models by using scale-dependent spatial variability observed in RS data. Mineral predictions were made using the abundances from X-ray diffraction analysis and mineral categories determined by PRISM. The models indicated that using the original RS data resulted in lower model performance than those models using scaled RS data. Key to the improved predictions was representing the variability of the RS data at the same scale as the sampled soil variability. This was realized by considering the medium and long-range spatial variability in the RS data. Using Fixed Rank Kriging allowed smoothing the massive RS datasets to these ranges. The resulting images resembled more closely the regional spatial variability of soil and environmental properties. Further improvements resulted from using multi-scale soil-landscape relationships to predict mineralogy. The maps of predicted mineralogy showed agreement between the mineral categories and abundances. Using a geostatistical approach in combination with a small sample, substantially improves the feasibility to quantitatively map regional mineralogy. Moreover, the spectroscopic method appeared sufficiently detailed to map major mineral variability. Finally, this approach has the potential for modelling various natural resources and thereby enhances the perspective of a global system for inventorying and monitoring the earth’s soil resources. With this thesis it is demonstrated that RS and PS methods are an important but also an essential source for regional-scale DSM. Following the main findings from this thesis, it can be concluded that: Improvements in regional-scale DSM result from the integrated use of RS and PS with geostatistical methods. In every step of the soil mapping process, spectroscopy can play a key role and can deliver data in a time and cost efficient manner. Nevertheless, there are issues that need to be resolved in the near future. Research priorities involve the development of operational tools to quantify soil properties, sensor integration, spatiotemporal modelling and the use of geostatistical methods that allow working with massive RS datasets. This will allow us in the near future to deliver more accurate and comprehensive information about soils, soil resources and ecosystem services provided by soils at regional and, ultimately, global scale.</p

    Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences

    Get PDF
    The aim of the Special Issue “Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences” was to present a selection of innovative studies using hyperspectral imaging (HSI) in different thematic fields. This intention reflects the technical developments in the last three decades, which have brought the capacity of HSI to provide spectrally, spatially and temporally detailed data, favoured by e.g., hyperspectral snapshot technologies, miniaturized hyperspectral sensors and hyperspectral microscopy imaging. The present book comprises a suite of papers in various fields of environmental sciences—geology/mineral exploration, digital soil mapping, mapping and characterization of vegetation, and sensing of water bodies (including under-ice and underwater applications). In addition, there are two rather methodically/technically-oriented contributions dealing with the optimized processing of UAV data and on the design and test of a multi-channel optical receiver for ground-based applications. All in all, this compilation documents that HSI is a multi-faceted research topic and will remain so in the future

    Remote Sensing Monitoring of Land Surface Temperature (LST)

    Get PDF
    This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research

    Archaeological remote sensing: visualisation and analysis of grass-dominated environments using airborne laser scanning and digital spectral data

    Get PDF
    The use of airborne remote sensing data for archaeological prospection is not a novel concept, but it is one that has been brought to the forefront of current work in the discipline of landscape archaeology by the increasing availability and application of airborne laser scanning data (ALS). It is considered that ALS, coupled with imaging of the non-visible wavelengths using digital spectral sensors has the potential to revolutionise the field of archaeological remote sensing, overcoming some of the issues identified with the most common current technique of oblique aerial photography. However, as with many methods borrowed from geographic or environmental sciences, archaeologists have yet to understand or utilise the full potential of these sensors for deriving archaeological feature information. This thesis presents the work undertaken between 2008-11 at Bournemouth University that aimed to assess the full information content of airborne laser scanned and digital spectral data systematically with respect to identifying archaeological remains in non-alluvial environments. A range of techniques were evaluated for two study areas on Salisbury Plain, Wiltshire (Everleigh and Upavon) to establish how the information from these sensors can best be extracted and utilised. For the Everleigh Study Area archive airborne data were analysed with respect to the existing transcription from archive aerial photographs recorded by English Heritage's National Mapping Programme. At Upavon, spectral and airborne laser scanned data were collected by the NERC Airborne Research and Survey Facility to the specifications of the project in conjunction with a series of ground-based measures designed to shed light on the contemporary environmental factors influencing feature detectability. Through the study of visual and semi-automatic methods for detection of archaeological features, this research has provided a quantitative and comparative assessment of airborne remote sensing data for archaeological prospection, the first time that this has been achieved in the UK. In addition the study has provided a proof of concept for the use of the remote sensing techniques trialled in temperate grassland environments, a novel application in a field previously dominated by examples from alluvial and Mediterranean landscapes. In comparison to the baseline record of the Wiltshire HER, ALS was shown to be the most effective technique, detecting 76% of all previously know features and 72% of all the total number of features recorded in the study. Combining the spectral data from both January and May raised this total to 83% recovery of all previously known features, illustrating the value of multi-sensor survey. It has also been possible to clarify the strengths and weaknesses of a wide range of visualisation techniques through detailed comparative analysis and to show that some techniques in particular local relief modelling (ALS) and single band mapping (digital spectral data) are more suited to the aims of archaeological prospection than others, including common techniques such as shaded relief modelling (ALS) and True Colour Composites (digital spectral data). In total the use of “non-standard” or previously underused visualisation techniques was shown to improve feature detection by up to 18% for a single sensor type. Investigation of multiple archive spectral acquisitions highlighted seasonal differences in detectability of features that had not been previously observed in these data, with the January spectral data allowing the detection of 7% more features than the May acquisition. A clearer picture of spectral sensitivity of archaeological features was also gained for this environment with the best performing spectral band lying in the NIR for both datasets (706-717nm) and allowing detection c.68% of all the features visible across all the wavelengths. Finally, significant progress has been made in the testing of methods for combining data from different airborne sensors and analysing airborne data with respect to ground observations, showing that Brovey sharpening can be used to combine ALS and spectral data with up to 87% recovery of the features predicted by transcription from the contributing source data. This thesis concludes that the airborne remote sensing techniques studied have quantifiable benefit for detection of archaeological features at a landscape scale especially when used in conjunction with one another. The caveat to this is that appropriate use of the sensors from deployment, to processing, analysis and interpretation of features must be underpinned by a detailed understanding of how and why archaeological features might be represented in the data collected. This research goes some way towards achieving this, especially for grass-dominated environments but it is only with repeated, comparative analyses of these airborne data in conjunction with environmental observations that archaeologists will be able to advance knowledge in this field and thus put airborne remote sensing data to most effective use

    Global monitoring of soil multifunctionality in drylands using satellite imagery and field data

    Get PDF
    Models derived from satellite image data are needed to monitor the status of terrestrial ecosystems across large spatial scales. However, a remote sensing-based approach to quantify soil multifunctionality at the global scale is missing despite significant research efforts on this topic. A major constraint for doing so is the availability of suitable global-scale field data to calibrate remote sensing indicators (RSI) and, to a lesser extent, the sensitivity of spectral data of available satellite sensors to soil background and atmospheric conditions. Here, we aimed to develop a soil multifunctionality model to monitor global drylands coupling ground data on 14 soil functions of 222 dryland areas from six continents to 18 RSI derived from a time series (2006–2013) Landsat dataset. Among the RSI evaluated, the chlorophyll absorption ratio index was the best predictor of soil multifunctionality in single-variable-based models (r = 0.66, P < 0.01, NMRSE = 0.17). However, a multi-variable RSI model combining the chlorophyll absorption ratio index, the global environment monitoring index and the canopy-air temperature difference improved the accuracy of quantifying soil multifunctionality (r = 0.73, P < 0.01, NMRSE = 0.15). Furthermore, the correlation between RSI and soil variables shows a wide range of accuracy with upper and lower values obtained for AMI (r = 0.889, NMRSE = 0.05) and BGL (r = 0.685, NMRSE = 0.18) respectively. Our results provide new insights on assessing soil multifunctionality using RSI that may help to monitor temporal changes in the functioning of global drylands effectively.Field data were obtained with the support of the European Research Council (ERC) grant agreement 242658 (BIOCOM). Hernández-Clemente R was supported by the Ramón y Cajal program (RYC2020-029187-I) and the State Plan for Scientific and Subprogram for Knowledge Generation (PID2021-124058OA-I00) from the Spanish Ministry of Science and Innovation (RYC2020-029187-I). Maestre FT acknowledges support from Generalitat Valenciana (CIDEGENT/2018/041) and the Spanish Ministry of Science and Innovation (EUR2022-134048)

    Flaring and pollution detection in the Niger Delta using Remote Sensing

    Get PDF
    Merged with duplicate record 10026.1/6553 on 28.02.2017 by CS (TIS)Abstract Through the Global Gas Flaring Reduction (GGFR) initiative a substantial amount of effort and international attention has been focused on the reduction of gas flaring since 2002 (Elvidge et al., 2009). Nigeria is rated as the second country in the world for gas flaring, after Russia. In an attempt to reduce and eliminate gas flaring the federal government of Nigeria has implemented a number of gas flaring reduction projects, but poor governmental regulatory policies have been mostly unsuccessful in phasing it out. This study examines the effects of pollution from gas flaring using multiple satellite based sensors (Landsat 5 TM and Landsat 7 ETM+) with a focus on vegetation health in the Niger Delta. Over 131 flaring sites in all 9 states (Abia, Akwa Ibom, Bayelsa, Cross Rivers, Delta, Edo, Imo, Ondo and Rivers) of the Niger Delta region have been identified, out of which 11 sites in Rivers State were examined using a case study approach. Land Surface Temperature data were derived using a novel procedure drawing in visible band information to mask out clouds and identify appropriate emissivity values for different land cover types. In 2503 out of 3001 Landsat subscenes analysed, Land Surface Temperature was elevated by at least 1 ℃ within 450 m of the flare. The results from fieldwork, carried out at the Eleme Refinery II Petroleum Company and Onne Flow Station, are compared to the Landsat 5 TM and Landsat 7 ETM+ data. Results indicate that Landsat data can detect gas flares and their associated pollution on vegetation health with acceptable accuracy for both Land Surface Temperature (range: 0.120 to 1.907 K) and Normalized Differential Vegetation Index (sd ± 0.004). Available environmental factors such as size of facility, height of stack, and time were considered. Finally, the assessment of the impact of pollution on a time series analysis (1984 to 2013) of vegetation health shows a decrease in NDVI annually within 120 m from the flare and that the spatio-temporal variability of NDVI for each site is influenced by local factors. This research demonstrated that only 5 % of the variability in δLST and only 12 % of the variability in δNDVI, with distance from the flare stack, could be accounted for by the available variables considered in this study. This suggests that other missing factors (the gas flaring volume and vegetation speciation) play a significant role in the variability in δLST and δNDVI respectively

    Data driven estimation of soil and vegetation attributes using airborne remote sensing

    Get PDF
    Airborne remote sensing using imaging spectroscopy and LiDAR (Light Detection and Ranging) measurements enable us to quantify ecosystem and land surface attributes. In this study we use high resolution airborne remote sensing to characterize soil attributes and the structure of vegetation canopy. Soil texture, organic matter, and chemical constituents are critical to ecosystem functioning, plant growth, and food security. However, most of the soil data available globally are of coarse resolutions at scales of 1:5 million and lack quantitative information for modeling and land management decisions at field or catchment scales. Thus the need for a spatially contiguous quantitative soil information is of immense scientific merit which can be obtained using airborne and space-borne imaging spectroscopy. Towards this goal we systematically explore the feasibility of characterizing soil properties from imaging spectroscopy using data driven modeling approaches. We have developed a modeling framework for quantitative prediction of different soil attributes using airborne imaging spectroscopy and limited field soil grab sample datasets. The results of our analysis using fine resolution (7.6m) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data collected over midwestern United States immediately after the large 2011 Mississippi River flood indicate the feasibility of using the developed models for quantitative spatial prediction of soil attributes over large areas (> 700 sq. km) of the landscape. The quantitative predictions reveal coherent spatial correlations of the difference in constituent concentrations with legacy landscape features, and immediate disturbances on the landscape due to extreme events. Further for model validation using independent test data, we demonstrate that the results are better represented as a probability density function compared to a single validation subset. We have simulated up-scaled datasets at multiple spatial resolutions ranging from 10m to 90m from the AVIRIS data, including future space based Hyperspectral Infrared Imager (HyspIRI) like observations. These datasets are used to investigate the applicability of the developed modeling framework over increasing spatial resolutions on the characterization of soil constituents. We have outlined an evaluation framework with a set of metrics that considers the point-scale model performance as well as the consistency of cross-scale spatial predictions. The results indicate that the ensemble quantification method is scalable over the entire range of airborne to space-borne spatial resolutions and establishes the feasibility of quantification of soil constituents from space- based observations. Further, we develop a retrieval framework from satellites, which combines the developed modeling framework and spectral similarity measures for global scale characterization of soils using a weighted constrained optimization framework. The retrieval algorithm takes advantage of the potential of repeat temporal satellite measurements to evolve a dynamic spectral library and improve soil characterization. Finally, we demonstrate that in addition to soil constituents, hyperspectral data can add value to characterizations of leaf area density (LAD) estimations for dense overlapping canopies. We develop a method for the estimation of the vertical distribution of foliage or LAD using a combination of airborne LiDAR and hyperspectral data using a feature based data fusion approach. Tree species classification from hyperspectral data is used to develop a novel ellipsoidal ‘tree shaped’ voxel approach for characterizing the LAD of individual trees in a riparian forest setting. We found that the tree shaped voxels represents a more realistic characterization of the upper and middle parts of the tree canopy in terms of higher LAD values, for trees of different heights in a forest stand

    High-Spatial Resolution Monitoring of Phycocyanin and Chlorophyll-a Using Airborne Hyperspectral Imagery

    Get PDF
    Hyperspectral imagery (HSI) provides substantial information on optical features of water bodies that is usually applicable to water quality monitoring. However, it generates considerable uncertainties in assessments of spatial and temporal variation in water quality. Thus, this study explored the influence of different optical methods on the spatial distribution and concentration of phycocyanin (PC), chlorophyll-a (Chl-a), and total suspended solids (TSSs) and evaluated the dependence of algal distribution on flow velocity. Four ground-based and airborne monitoring campaigns were conducted to measure water surface reflectance. The actual concentrations of PC, Chl-a, and TSSs were also determined, while four bio-optical algorithms were calibrated to estimate the PC and Chl-a concentrations. Artificial neural network atmospheric correction achieved Nash-Sutcliffe Efficiency (NSE) values of 0.80 and 0.76 for the training and validation steps, respectively. Moderate resolution atmospheric transmission 6 (MODTRAN 6) showed an NSE value &gt;0.8; whereas, atmospheric and topographic correction 4 (ATCOR 4) yielded a negative NSE value. The MODTRAN 6 correction led to the highest R-2 values and lowest root mean square error values for all algorithms in terms of PC and Chl-a. The PC:Chl-a distribution generated using HSI proved to be negatively dependent on flow velocity (p-value = 0.003) and successfully indicated cyanobacteria risk regions in the study area

    Retrieval of vertical profiles of cloud droplet effective radius using solar reflectance from cloud sides

    Get PDF
    Convective clouds play an essential role for Earth’s climate as well as for regional weather events since they have a large influence on the global radiation budget and the global water cycle. In particular, cloud albedo and the formation of precipitation are influenced by aerosol particles within clouds. In order to improve the understanding of processes from aerosol activation, over cloud droplet growth to changes in cloud properties, remote sensing techniques to monitor these microphysical processes throughout the cloud are becoming more and more important. While passive retrievals for spaceborne observations have become sophisticated and commonplace to infer cloud optical thickness and droplet size from cloud tops, cloud sides have remained largely uncharted territory for passive remote sensing. Faced with the small-scale structure of cloud sides, ‘classical’ passive remote sensing techniques, like Nakajima-King, are rendered inappropriate. The aim of this work is to test the theoretical and practical feasibility to gain new insights into the vertical evolution of cloud droplet effective radius by using reflected solar radiation from cloud sides. A central aspect of this study was the close analysis of the impact unknown cloud surface geometry has on effective radius retrievals. In order to handle spatially highly resolved measurements from cloud sides, this work therefore rethought the Nakajima-King approach in the context of a unknown cloud surface geometry. Using extensive Monte-Carlo calculations to explore 3D-effects at convective cloud sides, the sensitivity of reflected solar radiation to cloud droplet size was examined. Furthermore, a method was established to resolve ambiguous radiance regions and thus enhance this sensitivity. Influencing factors were identified and masked out like shadows, ground reflections and cloud ice phase. Based on these findings, a statistical approach was used to develop an effective radius retrieval. Putting the method into practice, the new hyperspectral cloud and sky imager specMACS (Spectrometer of the Munich Aerosol Cloud Scanner) was developed and thoroughly characterized in this work. Additionally, the instrument was applied to convective cloud sides from a ground-based perspective as well as on board the new German research aircraft HALO (High Altitude and LOng Range Research Aircraft). In order to validate this approach, the retrieval was compared to aircraft in situ measurements made during the ACRIDICON-CHUVA experiment conducted over the Brazilian rain forest. The present thesis demonstrates the feasibility to retrieve cloud particle size profiles from cloud sides and thus marks a further important step towards an operational application of this technique
    corecore