566 research outputs found

    Learning Laplacian Matrix in Smooth Graph Signal Representations

    Full text link
    The construction of a meaningful graph plays a crucial role in the success of many graph-based representations and algorithms for handling structured data, especially in the emerging field of graph signal processing. However, a meaningful graph is not always readily available from the data, nor easy to define depending on the application domain. In particular, it is often desirable in graph signal processing applications that a graph is chosen such that the data admit certain regularity or smoothness on the graph. In this paper, we address the problem of learning graph Laplacians, which is equivalent to learning graph topologies, such that the input data form graph signals with smooth variations on the resulting topology. To this end, we adopt a factor analysis model for the graph signals and impose a Gaussian probabilistic prior on the latent variables that control these signals. We show that the Gaussian prior leads to an efficient representation that favors the smoothness property of the graph signals. We then propose an algorithm for learning graphs that enforces such property and is based on minimizing the variations of the signals on the learned graph. Experiments on both synthetic and real world data demonstrate that the proposed graph learning framework can efficiently infer meaningful graph topologies from signal observations under the smoothness prior

    Characterization of Healthy and Pathological Voice Through Measures Based on Nonlinear Dynamics

    Get PDF
    In this paper, we propose to quantify the quality of the recorded voice through objective nonlinear measures. Quantification of speech signal quality has been traditionally carried out with linear techniques since the classical model of voice production is a linear approximation. Nevertheless, nonlinear behaviors in the voice production process have been shown. This paper studies the usefulness of six nonlinear chaotic measures based on nonlinear dynamics theory in the discrimination between two levels of voice quality: healthy and pathological. The studied measures are first- and second-order Renyi entropies, the correlation entropy and the correlation dimension. These measures were obtained from the speech signal in the phase-space domain. The values of the first minimum of mutual information function and Shannon entropy were also studied. Two databases were used to assess the usefulness of the measures: a multiquality database composed of four levels of voice quality (healthy voice and three levels of pathological voice); and a commercial database (MEEI Voice Disorders) composed of two levels of voice quality (healthy and pathological voices). A classifier based on standard neural networks was implemented in order to evaluate the measures proposed. Global success rates of 82.47% (multiquality database) and 99.69% (commercial database) were obtained.Publicad

    Community landscapes: an integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics

    Get PDF
    Background: Network communities help the functional organization and evolution of complex networks. However, the development of a method, which is both fast and accurate, provides modular overlaps and partitions of a heterogeneous network, has proven to be rather difficult. Methodology/Principal Findings: Here we introduce the novel concept of ModuLand, an integrative method family determining overlapping network modules as hills of an influence function-based, centrality-type community landscape, and including several widely used modularization methods as special cases. As various adaptations of the method family, we developed several algorithms, which provide an efficient analysis of weighted and directed networks, and (1) determine pervasively overlapping modules with high resolution; (2) uncover a detailed hierarchical network structure allowing an efficient, zoom-in analysis of large networks; (3) allow the determination of key network nodes and (4) help to predict network dynamics. Conclusions/Significance: The concept opens a wide range of possibilities to develop new approaches and applications including network routing, classification, comparison and prediction.Comment: 25 pages with 6 figures and a Glossary + Supporting Information containing pseudo-codes of all algorithms used, 14 Figures, 5 Tables (with 18 module definitions, 129 different modularization methods, 13 module comparision methods) and 396 references. All algorithms can be downloaded from this web-site: http://www.linkgroup.hu/modules.ph

    Annual Report: 2009

    Get PDF
    I submit herewith the annual report from the Agricultural and Forestry Experiment Station, School of Natural Resources and Agricultural Sciences, University of Alaska Fairbanks, for the period ending December 31, 2009. This is done in accordance with an act of Congress, approved March 2, 1887, entitled, “An act to establish agricultural experiment stations, in connection with the agricultural college established in the several states under the provisions of an act approved July 2, 1862, and under the acts supplementary thereto,” and also of the act of the Alaska Territorial Legislature, approved March 12, 1935, accepting the provisions of the act of Congress. The research reports are organized according to our strategic plan, which focuses on high-latitude soils, high-latitude agriculture, natural resources use and allocation, ecosystems management, and geographic information. These areas cross department and unit lines, linking them and unifying the research. We have also included in our financial statement information on the special grants we receive. These special grants allow us to provide research and outreach that is targeted toward economic development in Alaska. Research conducted by our graduate and undergraduate students plays an important role in these grants and the impact they make on Alaska.Financial statement -- Grants -- Students -- Research Reports: Partners, Facilities, and Programs; Geography; High-Latitude Agriculture; High-Latitude Soils; Management of Ecosystems; Natural Resources Use and Allocation; Index to Reports -- Publications -- Facult

    Test-retest reliability of modular-relevant analysis in brain functional network

    Get PDF
    Introduction: The human brain could be modeled as a complex network via functional magnetic resonance imaging (fMRI), and the architecture of these brain functional networks can be studied from multiple spatial scales with different graph theory tools. Detecting modules is an important mesoscale network measuring approach that has provided crucial insights for uncovering how brain organizes itself among different functional subsystems. Despite its successful application in a wide range of brain network studies, the lack of comprehensive reliability assessment prevents its potential extension to clinical trials. Methods: To fill this gap, this paper, using resting-state test-retest fMRI data, systematically explored the reliabilities of five popular network metrics derived from modular structure. Considering the repeatability of network partition depends heavily on network size and module detection algorithm, we constructed three types of brain functional networks for each subject by using a set of coarse-to-fine brain atlases and adopted four methods for single-subject module detection and twelve methods for group-level module detection. Results: The results reported moderate-to-good reliability in modularity, intra- and inter-modular functional connectivities, within-modular degree and participation coefficient at both individual and group levels, indicating modular-relevant network metrics can provide robust evaluation results. Further analysis identified the significant influence of module detection algorithm and node definition approach on reliabilities of network partitions and its derived network analysis results. Discussion: This paper provides important guidance for choosing reliable modular-relevant network metrics and analysis strategies in future studies

    Scalable Community Detection

    Get PDF

    Fairness in Social Networks

    Get PDF
    In professional and other social settings, networks play an important role in people\u27s lives. The communication between individuals and their positions in the network, may have a large impact on many aspects of their lives.In this work, I evaluate fairness from different perspectives.First,tomeasurefairnessfromgroupperspective,Iproposethenovelinformation unfairness criterion, which measures whether information spreads fairly to different groups in a network. Using this criterion, I perform a case study and measure fairness in information flow in different computer science co-authorship networks with respect to gender. Then, I consider two applications and show how to increase fairness with respect to a fairness metric. The first application is increasing fairness in information flow by adding a set of edges. I propose two algorithms- MaxFair and MinIUF- which are based on detecting those pairs of nodes whose connection would increase flow to disadvantaged groups. The second application is increasing fairness in organizational networks through employee hiring and assignment. I propose FairEA, a novel algorithm that allows organizations to gauge their success in achieving a diverse network. Next,Iexaminefairnessfromanindividualperspective.Iproposestratification assortativity, a novel metric that evaluates the tendency of the network to be divided into ordered classes. Then, I perform a case study on several co-authorship networks and examine the evolution of these networks over time and show that networks evolve into a highly stratified state. Finally, I introduce an agent-based model for network evolution to explain why social stratification emerges in a network

    Pacific Symposium on Biocomputing 2023

    Get PDF
    The Pacific Symposium on Biocomputing (PSB) 2023 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2023 will be held on January 3-7, 2023 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2023 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology.The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's 'hot topics.' In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field
    • …
    corecore