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Characterization of Healthy and Pathological Voice
Through Measures Based on Nonlinear Dynamics
Patricia Henríquez, Jesús B. Alonso, Miguel A. Ferrer, Carlos M. Travieso, Juan I. Godino-Llorente, and

Fernando Díaz-de-María

Abstract—In this paper, we propose to quantify the quality of
the recorded voice through objective nonlinear measures. Quan-
tification of speech signal quality has been traditionally carried out
with linear techniques since the classical model of voice produc-
tion is a linear approximation. Nevertheless, nonlinear behaviors in
the voice production process have been shown. This paper studies
the usefulness of six nonlinear chaotic measures based on non-
linear dynamics theory in the discrimination between two levels of
voice quality: healthy and pathological. The studied measures are
first- and second-order Rényi entropies, the correlation entropy
and the correlation dimension. These measures were obtained from
the speech signal in the phase-space domain. The values of the first
minimum of mutual information function and Shannon entropy
were also studied. Two databases were used to assess the useful-
ness of the measures: a multiquality database composed of four
levels of voice quality (healthy voice and three levels of patholog-
ical voice); and a commercial database (MEEI Voice Disorders)
composed of two levels of voice quality (healthy and pathological
voices). A classifier based on standard neural networks was imple-
mented in order to evaluate the measures proposed. Global success
rates of 82.47% (multiquality database) and 99.69% (commercial
database) were obtained.

Index Terms—Chaos, disordered speech, entropy, nonlinearity.

I. INTRODUCTION

T HE main methods used by the medical community to
evaluate the speech production system and diagnose

pathologies are either direct ones which require direct inspec-
tion of vocal folds (using laryngoscopical techniques such as
fiberscope) and cause discomfort to the patient, or subjective
ones in which voice quality is evaluated by a doctor’s direct
audition (GRBAS and RBH methods [45], [46]). These tech-
niques require trained expert doctors. The use of voice quality
measures obtained from recorded voice allows us to quantify
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the voice quality and to document the patient evolution using
objective measures. They are noninvasive, quick and automatic
techniques and can be a help to traditional techniques used in
medicine.

The use of these techniques combined with classification
methods provides the development of expert aided systems for
the detection of speech system pathologies. These systems can
be applied as portable tools in preventive medicine, especially
for professional singers or presenters who have more risks of
suffering from voice disorders. They are also useful tools for
postoperative monitoring. Moreover, their use in telemedicine
environments is possible as a remote and automatic screening
method. Finally, they can be used as a medical–legal documen-
tation tool to express in a quantitative manner the success of a
surgical intervention.

In the last decades, some studies have provided objective
measures of voice quality. Measures are obtained of the voice
signal in time, spectral and cepstral domains. The most impor-
tant measures used in existing literature are: fundamental fre-
quency [1], [2], whose determination is important because sev-
eral measures depend on its correct estimation, pitch perturba-
tion (jitter) [3], [4], amplitude perturbation (shimmer) [3], [4],
harmonic to noise ratio [5], low to high energy ratio [6], nor-
malized noise energy [7], glottal to noise excitation ratio (GNE)
[8], dynamic time warping and Itakura–Saito distorsion mea-
sure [47]. Using a combination of these sets of measures, laryn-
geal pathologies detection systems using recorded voice signal
have been developed obtaining different success rates in the
classification between healthy and pathological voices: 93.5%
[9], 85.8% [10], 76.67% [11], 96.1% [12]. The comparison of
mentioned rates is difficult because each system has been eval-
uated with different databases, since a reference database does
not exist. Moreover, as reported in [43], the evaluation of the
results is far from being robust.

Nevertheless, most measures considered in these works do
not take into account nonlinearity in the speech system despite
the fact that some studies show the underlying process of
speech generation exhibiting nonlinear components [13]–[17].
As a result, recent works consider this new approach in order
to reveal discriminative measures between healthy and patho-
logical voices. Examples are measures based on high order
statistics (HOS) [18], [19] and AM–FM modelling of voice
signal [20]–[23].

Chaos theory, an area of nonlinear dynamics systems theory,
applied to nonlinear time series has recently been adopted as
a new nonlinear approach to speech signal processing. The
application of nonlinear chaotic techniques in speech signal
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processing so far are based on chaotic modelling or extraction
of chaotic characteristics (Lyapunov exponents, correlation
dimension, etc.). The main chaotic characteristics studied are
the Lyapunov exponents [24]–[26] and dimensions of attractor,
especially the correlation dimension. The correlation dimension
has been shown to be capable of distinguishing healthy voices
from pathological ones [24], [27]–[29] and even distinguishing
between different types of pathologies such as ataxic dysarthia
and hyperkinetic extrapyramidal dysarthia [29]. A high-quality
vowel synthesizer based on chaotic techniques has also been
developed [30]. The entropy has been applied to detect complex
dynamics in disordered speech [31] in a preliminary study.

Our aim is to study the usefulness of six nonlinear chaotic
measures in the automatic discrimination of two levels of voice
quality (healthy and pathological speakers) measured from
speech recordings. In order to assess the usefulness of the
measures an automatic classification system is used. As far as
we know, this is the first time that the six measures proposed
in this work have been used together in order to discriminate
between healthy and pathological speakers for screening pur-
poses. Furthermore, two databases have been used to assess
the usefulness of the measures and to compare results. As the
multiquality database is labelled with different levels of voice
quality a deeper analysis is carried out with this database. Four
levels of voice qualities have been considered, from healthy to
severe pathological voice. The more pathological a voice is the
less quality it presents. The results obtained show that these
characteristics provide high classification rates.

This paper is divided into the following sections: methods,
data, experiments, results, and conclusion. The methods sec-
tion is devoted to a brief theoretical description of nonlinear dy-
namics system. The data section is related to the two databases
used in the experiments. In the experiments section, the experi-
mental procedure is explained. In the results section, the results
are shown and discussed.

II. METHODS

A. Nonlinear Dynamics System

Equations of several complex systems are usually unknown.
As a result they can only be analyzed from the information
within a time series as an output of the system. If some indi-
cators show that time series have nonlinear behavior, nonlinear
techniques such as chaos theory can be applied to extract non-
linear characteristics of the system.

Deterministic dynamical systems describe the time evolution
of a system in some phase space ( -dimensional vec-
torial space), where a state is specified by a vector .
The evolution in time can be expressed by ordinary differen-
tial equations

(1)

or in discrete time by maps

(2)

A sequence of points ( or ) that solve the equations
of the system are called trajectories. The initial conditions are

or , respectively. The solution depends on or and
on initial conditions. The region of the phase space in which all
trajectories originated in a range of initial conditions converge
after a transition time is called attractor. It represents the long-
term behavior of the system [31], [33].

The dynamical system underlying the speech production
process is very complex and its equations are not known.
Nevertheless, Takens’ embedding theorem [34] establishes that
it is possible to reconstruct a phase space diffeomorphically
equivalent to the original one from the time series of a system.
The delays method is used to reconstruct the state-space vector

formed by time-delayed samples of the observation (the
speech signal)

(3)

where is the speech signal, is the embedding dimen-
sion of phase space reconstructed and is the time delay. The
speech signal is embedded in the reconstructed phase space. Its
long-term evolution in the reconstructed phase space is called
attractor. When ( is the attractor dimension) the
reconstructed phase space is diffeomorphically equivalent to the
original one.

Takens’ theorem is strictly an existence theorem and does not
suggest how to find the embedding dimension and time
delay . Nevertheless, can be estimated by the first min-
imum of mutual information function (FMMI) [35] or by the
first zero of the autocorrelation function (FZA). The false neigh-
bors method [36] and false strands method [37] can be used to
estimate .

B. Value of First Minimum of Mutual Information Function

The mutual information function measures the mutual depen-
dency between two variables. When these two variables are a
discrete signal and its delayed version (being the
delay), the mutual information function measures the quantity
of information we already possess about the value of
if we know . A histogram for the probability distribution of
the data is created, being the probability of finding a time se-
ries value inside the th bin of the histogram and the joint
probability that is in bin and in bin . The mutual
information estimator reads as [32]

(4)

The FMMI function marks the delay where mutual informa-
tion adds maximal information to the knowledge we have from

.

C. Correlation Dimension (Taken’s Estimator)

The correlation dimension gives an idea of the complexity of
the dynamics and the attractor. More complex systems have a
higher correlation dimension. In random processes, the correla-
tion dimension is not bounded, while in deterministic systems
there tends to be a finite value and it can be a non integer number
(fractal dimension). The correlation dimension is given as [32]

(5)

Authorized licensed use limited to: Purdue University. Downloaded on November 12, 2009 at 12:38 from IEEE Xplore.  Restrictions apply. 



1188 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 6, AUGUST 2009

with being the correlation sum of a set of points
of the speech signal attractor in the reconstructed phase

space

(6)

where if and if , which counts
the number of points inside the sphere with radius around .

is the average fraction of points within a distance of
from any other point. Equation (6) converges very slowly as
tends to zero. To circumvent this problem the local slope can be
estimated as

(7)

is estimated by calculating the local slope of the curve
against when the curve has a plateau. When is

significantly large, converges with the increase of . Since
is not known a priori, the convergence of is checked

varying the value of .
The application of a maximum-likelihood estimator to obtain

optimal values for , Takens–Theiler estimator [42] has been
suggested. It can be obtained as follows

(8)

D. Entropies

Entropy describes the quantity of disorder or complexity of a
system. Shannon entropy estimator and Rényi entropy estima-
tors were studied.

1) Shannon Entropy: Let us consider a system in which its
output falls into the unit interval and divide it into bins. De-
note by the probability that one of the outputs falls into th
bin. Entropy of a system reads as

(9)

When is maximum, the amount of additional information
needed to specify the result of a measurement is at a maximum.
If , then no additional information is needed. The more
chaotic and nonlinear a signal is the higher is its entropy because
its values fall in several different bins.

2) Rényi Entropies: Rényi entropies, based on transition
probabilities, quantify the loss of information in time. Let us
consider observables where the partition elements are intervals

of size . Let us introduce joint probabilities that
an arbitrary time the observable falls into the interval and
in time it falls into interval and so on. Then, block
entropies of block size reads as [32]

(10)

Order Rényi entropy is defined as

(11)

Rényi entropies quantify the loss of information in time in a
dynamic system. In a nonchaotic system, initially nearby points
in phase space will be nearby in another region of the phase
space at any later point in time; therefore, Rényi entropies will
tend to zero. In a chaotic system, the property of sensitivity to
the initial conditions implies the divergence of nearby trajecto-
ries. It will be more difficult to predict subsequent states. More
information is necessary to specify a state of the system with
precision adequate for prediction. Nearby points in phase space
will evolve to far points, so Rényi entropies are greater than zero.
In random systems all phase space regions are possible in the
long-term so Rényi entropies are infinite.

We consider the following measurements: called
correlation entropy, called first-order Rényi block entropy
and called second-order Rényi block entropy for .

III. DATABASES

A. Multiquality Database

The multiquality database was recorded at the General Hos-
pital “Doctor Negrín” in Gran Canaria (Spain) [18]. Specialist
doctors diagnosed the healthy and pathological voices according
to the degree of hoarseness (G) of the GRBAS scale [45]. The
different levels are graded form 0 to 3. 0, 1, 2, and 3 correspond
to healthy voice, light pathological (LP) voice, moderate patho-
logical (MP) voice, and severe pathological (SP) voice, respec-
tively.

The recordings of abnormal quality of voice were obtained
from speakers with disordered speech, considering a great range
of speech system pathologies (hypofunction, hyperfunction,
vocal fold paralysis, vocal folds nodule, sessile polyp, pedun-
culated polyp, Reinke’s edema, adult papiloma, carcinoma,
ulcer, chronic laryngitis, etc.).

The database consists of 142 speakers, 85 healthy speakers,
and 57 pathological speakers. Each sample of the database com-
prises the five Spanish vowels (/a/, /e/, /i/, /o/, /u/ in the In-
ternational Phonetic Alphabet) pronounced in a sustained way
for approximately two seconds for each vowel separated by si-
lences. Sustained vowels were used because the voice produc-
tion system uses most part of its mechanisms (e.g., glottal flux
of constant air, vibration of the vocal folds in a continuous way,
etc.) in the phonation of this kind of sound. This way, many
types of anomalies of these mechanisms can be detected. Be-
sides, sustained phonations are independent of the language.
Additional information about sex, type, and level of pathology
and labels that indicates the beginning of each vowel is stored
in each sample.

Speaker voice was recorded with a conventional sound
card (SoundBlaster) and a basic microphone (VIVANCO MF
15/13166 with a linear range up to 10 kHz). Speakers were
recorded in a hospital room with realistic acoustic conditions,
taking care that the signals presented neither inadequate level
of intensity nor saturation. The speaker was situated about 25
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cm from the microphone and the voice signals were digitized
with a sampling rate of 22 050 Hz and 16 bits per sample.

B. MEEI Voice Disorders database

The Massachusetts Eye and Ear Infirmary (MEEI) Voice Dis-
orders Database distributed by Kay Elemetrics [40] was also
used. To the present date, it is the only database that is com-
mercially available. It contains recordings of sustained phona-
tion of vowel /a/, 53 healthy and 657 pathological files at a sam-
pling rate of 25 kHz. We have considered only a subset of the
database, 53 healthy, and 173 pathological voices. The selection
was accomplished, identical to the subset considered by Parsa
and Jamieson [41], to assure that all the files have a diagnosis,
and gender and age characteristics are uniformily distributed
between normal and pathological files. The duration of these
vowel samples was 3 s for healthy voices and 1 s for patholog-
ical voices. All the files were down-sampled to 22 050 Hz.

IV. EXPERIMENTS

In this paper, we present a study of nonlinear properties
of the speech signal versus voice quality. The characteristics
studied are: the Takens–Theiler estimator of correlation dimen-
sion (CD), first- and second-order Rényi entropies (RE1, RE2)
correlation entropy (CE), the Shannon entropy (SE) and the
value of the FMMI function. The motivation of this study is to
assess the usefulness of these measures to discriminate between
healthy and pathological voices. Two databases were used in
order to validate and compare results: a multiquality database
[18] and the MEEI database [40].

The process used in the experiment is basically the same for
both databases. The next subsection is focused on the experi-
ment with the multiquality database. The differences with the
MEEI database are pointed in the second subsection.

A. Experiment With the Multiquality Database

The process used in the experiment is divided in three stages:
signal preprocessing, extraction of the measurements and clas-
sification. In the signal preprocessing stage, the samples of the
database (the five Spanish vowels) are normalized between 1
and 1 and the mean is removed. Then, a selection of the stable
part of the phonation for each vowel is carried out. The 20% of
the vowel length is eliminated, the 10% of the beginning and
the 10% of the end of the vowel because they show transitory
behavior. Then, the central second of each vowel is used for the
experiment.

The extraction of the measurements is computed for each
vowel independently because the value of measurements de-
pends on the vowel [39]. Consequently, five sets of measure-
ments for each sample (a set for each vowel) are computed. Each
vowel is segmented into 10 equally spaced asynchronous frames
(nonoverlapped) using rectangular windows. The length of each
frame is 30 ms. Measurements are extracted from these frames.
In the case of the Shannon entropy, the entire voice is used. Fi-
nally, the values of the measurements per frame are averaged.
This way, it is obtained a value per vowel and measurement. In

order to extract the measurements, the TISEAN software [38]
has been used.

The delay was chosen as a tradeoff between the FMMI
function and the FZA function. FMMI and FZA were computed
for each sample of the database. Then, the average values of
FMMI and FZA were obtained. Finally, the mean value of these
values was computed. The value of the delay is 8 samples (0.36
ms because the sample frequency used was 22 050 Hz). The
embedding dimension was varied between 1 and 10.

In the classification stage, each set of measurements per
vowel is the input of a classifier, so five classifiers are used, one
for each vowel. Each classifier is based on a standard neural
network. They evaluate the measurements in a quantitative way
and discriminate between healthy and pathological vowels.
A sample of the database is diagnosed as pathological if the
number of pathological vowels detected is equal to or more
than three.

For each classifier, multilayer feedforward neural networks
with one hidden layer are used. Supervised learning is carried
out using backpropagation train algorithm. The input layer is
made up of either as many inputs as characteristics (when all
characteristics are evaluated combined) or is made up of one
input (when only one characteristic is evaluated). The output
layer has one node. The activation functions on the hidden nodes
are tansigmoids (hyperbolic tangents) and the activation func-
tion of the output node is linear. The connection weights and
biases are initialized according to the Nguyen–Widrow initial-
ization algorithm [44]. The training process is stopped when a
relative error of 0.005 is reached.

The database is split into a training subset and a testing subset
with 70% and 30% of each type of voice, respectively. The data
in the training set are z-score normalized. The test set is nor-
malized by subtracting the training set mean and dividing by the
training set standard deviation for each characteristic. The test
set is normalized according to the normalization values used for
the training set. The characteristics are evaluated individually
and combined. The experiments were repeated 20 times, each
time using different training and test sets randomly chosen.

The equal error rate (EER), the point for which the false posi-
tives rate (healthy files classified as pathological files) equals the
false negative rate (pathological files classified as healthy files),
is obtained varying the threshold in the output of each classi-
fier and computing the false positive rate and false negative rate
(each characteristic individually and combined).

B. Experiment With the MEEI Database

In the case of the MEEI Voice Disorders Database [40], as
the vowel /a/ samples appear to include only the stable part of
the phonation, the selection of the stable part was skipped in the
preprocessing stage. In the classification stage, as this database
is comprised of samples of vowel /a/, only one classifier was
used and the EER was obtained only for vowel /a/. The delay
computed in the multiquality database was applied to the MEEI
database.
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Fig. 1. Attractors of different kinds of 30-ms frame voice from vowel /a/:
healthy voice (upper left), light pathological voice (upper right), moderate
pathological voice (bottom left), and severe pathological voice (bottom right).
Embedding dimension � � � and samples delay � � � (0.36 ms).

Fig. 2. Information function for each kind of 30-ms frame voice from vowel
/a/: healthy voice (upper left), light pathological voice (upper right), moderate
pathological voice (bottom left), and severe pathological voice (bottom right).
The estimated value of the first minimum of mutual information function is
marked.

V. RESULTS

A. Study of the Discrimination of the Measurements

The graphical results for some characteristics (from multi-
quality database) are illustrated for a healthy frame of vowel /a/
and for different levels of pathological frames of vowel /a/ in
order to observe the differences between them (Figs. 1–3) and
to explain the way the measurements were computed. Besides,
the data distribution of each measurement is shown in box plots
(Fig. 4). Fig. 5 also shows the data distribution of each measure-
ment for the MEEI database. This way, a comparison between
different kinds of voice can be accomplished. In the next para-
graphs, each illustration is discussed.

In Figs. 4 and 5, the boxes have lines at the lower quartile,
median, and upper quartile values. The whiskers are lines ex-

Fig. 3. Takens–Theiler estimator for each kind of 30-ms frame voice from
vowel /a/: healthy voice (upper left), light pathological voice (upper right), mod-
erate pathological voice (bottom left), and severe pathological voice (bottom
right). The lower curve corresponds to embedding dimension � � � and the
upper curve to � � ��. The straight line is the value of the Takens–Theiler
estimator. The value of the estimator is written above the straight line.

tending from each end of the boxes to show the extent of the
rest of the data. Boxes whose notches do not overlap indicate
that the medians of the two groups differ at the 5% significance
level.

Fig. 1 illustrates the attractors from a healthy and different
levels of pathological 30-ms frames of voices of vowel /a/ (from
the multiquality database [18]) with and ms.
The attractor corresponding to the healthy voice is more regular
than the attractor corresponding to the pathological voices. The
more pathological the voice is, the more irregular is the corre-
sponding attractor.

The curve of the mutual information function for each kind
of voice is illustrated in Fig. 2. The value of the FMMI function,
marked in the figure, is estimated. The Shannon entropy is es-
timated as the value of the mutual information function at zero
time for the entire vowel. The minimum value of the mutual in-
formation between a signal and its delayed version is higher in
healthy voices. This means that in the time of maximum differ-
ence (i.e., when the FMMI occurs) of a signal with its delayed
version, this difference is lower in healthy voices than in patho-
logical voices. Fig. 4 proves this fact. This figure shows the data
distribution for healthy (H), pathological (P) and the different
levels of pathologic voice (LP, MP, and SP) for each measure-
ment and for /a/ vowel of the multiquality database. LP, MP, and
SP voices are subgroups of P voices. According to Fig. 4, clear
differences are observed among the medians of H and P voices
and even between LP, MP, and SP voices. It indicates that the
more pathological the voice is, the more irregular.

The CD curves (obtained with Takens–Theiler estimator)
are depicted in Fig. 3. Each curve represents the values

. The -axis represents the scale in which
the correlation dimension is computed (the size of the sphere
within which the neighbors of a point in the phase space are
counted for). When a plateau is found (the scaling range where
the value of the Takens–Theiler estimator is independent of
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Fig. 4. Data distribution of each kind of voice (H: healthy voice, P: pathological voice, LP: light pathological voice, MP: moderate pathological voice, SP: severe
pathological voice) for each measurement extracted from the /a/ vowel of the multiquality database (FMMI: first minimum of the mutual information function.
CD: correlation dimension. CE: correlation entropy. RE1: first-order Rényi block entropy. RE2: second-order Rényi block entropy. SE: Shannon entropy).

Fig. 5. Data distribution of each kind of voice (H: healthy voice, P: pathological voice) for each measurement extracted from the MEEI database (FMMI: first
minimum of the mutual information function. CD: correlation dimension. CE: correlation entropy. RE1: first-order Rényi block entropy. RE2: second-order Rényi
block entropy. SE: Shannon entropy).

and ), the value of the straight line that fits this plateau
is a good CD estimator. In Fig. 3, a straight line marks the
value of the correlation dimension estimated. A more complex
system has a higher CD, up to infinite value for stochastic
signals. In the case of frames of healthy voices the CD has a
lower value than in the case of frames of pathological voices.
This is an indicator of a more complex geometrical structure
in a pathological voice. According to Fig. 4, the differences
between the medians of H, P, LP, MP, and SP are evident. As a
conclusion, CD is discriminative between H and P voices and
between different kinds of pathological voices.

The same procedure as the correlation dimension estimator
is used to estimate the value of the correlation entropy. Fig. 4
shows clear differences between the medians of H and P voices.
The medians are higher in frames of pathological voices, as in
the case of correlation dimension. This is an indicator that a P
voice presents more loss of information in time than a H voice.
Besides, the value of the CE is higher in SP than in MP and
LP voices. The median of the MP is slightly higher than the

median of LP voices. The CE is also discriminative between the
different kinds of quality voices.

In Fig. 4, the RE1, RE2, and SE also show higher values in
P voices than in H voices. This is an indicator of a more com-
plex geometrical structure in pathological voices. These mea-
surements are discriminative between H and P voices. However,
they are less discriminative between the different kinds of patho-
logical voices and even between LP and H voices (in the case of
the RE1 measurement).

Fig. 5 shows the data distribution for healthy (H) and patho-
logical (P) voices of the MEEI database. Fig. 5 shows similar re-
sults to the multiquality database in the discrimination between
H and P voices. However, the medians are more separate in CD
and SE than in the same measurements of the multiquality data-
base.

The main conclusion after observing Figs. 4 and 5 is that the
medians of H and P voices differ at the 5% significance level
in all the cases. This leads to the application of a classification
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TABLE I
EQUAL ERROR RATES FOR MULTIQUALITY DATABASE:

CHARACTERISTICS INDIVIDUALLY AND COMBINED

FMMI: First minimum of the mutual information function. CD: Correlation
dimension. CE: Correlation entropy. RE1: first-order Rényi block entropy.
RE2: second-order Rényi block entropy. SE: Shannon entropy.

TABLE II
SUCCESS RATES IN A CONFUSION MATRIX FOR MULTIQUALITY DATABASE

method to obtain a quantitative value of the discrimination be-
tween H and P voices.

B. Classification Results

It has been shown that the studied measurements have dif-
ferent values for different kinds of voices. Once this fact is evi-
dent, we use a classification system in order to evaluate the dis-
criminative usefulness of the characteristics against two voice
qualities (healthy and pathological voices). In the next lines the
results obtained using the classification system are discussed.

The results for the multiquality database [18] are shown in
Table I. The EER is shown for each vowel and each charac-
teristic individually and combined. These results were obtained
after evaluating the characteristics with different numbers of
neurons in the hidden layer of the neural network. Finally, the
best results were obtained with 60 neurons in the hidden layer.
According to Table I, combination of all characteristics yields
the lowest EER for each vowel.

Once a threshold for each vowel has been chosen, the per-
formance of the system is computed. Then a voice is diagnosed
as pathological if the number of pathological vowels is equal to
or more than three. Table II shows the confusion matrix of the
system with the mean and standard deviation values obtained
averaging the results for each individual experiment. The av-
eraged global success of the system is 82.47% with a standard
deviation of 3.1.

As the multiquality database is labeled with four levels of
quality, a deeper study of the classification rates is carried out.
As the level of pathology of each sample is known, a separation
of the percentage of each of the three pathological levels classi-
fied as pathological voices and wrongly classified as normal can
be made. Table III shows the confusion matrix with the scores of
different levels of pathologies added: percentage of LP speaker
classified as pathological speaker, percentage of MP speaker
classified as pathological speaker and percentage of SP speaker
classified as pathological speaker. The classification rate de-
creases in LP speakers since they are more likely to be confused
with healthy speakers.

TABLE III
SUCCESS RATES IN A CONFUSION MATRIX FOR MULTIQUALITY

DATABASE: LEVELS OF VOICE PATHOLOGIES ADDED

LP: light pathological voice, MP: moderate pathological voice,
SP: severe pathological voice.

TABLE IV
EQUAL ERROR RATES FOR MEEI DATABASE: CHARACTERISTICS

INDIVIDUALLY AND COMBINED

FMMI: First minimum of the mutual information function. CD: Correlation
dimension. CE: Correlation entropy. RE1: first-order Rényi block entropy.
RE2: second-order Rényi block entropy. SE: Shannon entropy.

TABLE V
SUCCESS RATES IN A CONFUSION MATRIX FOR MEEI DATABASE

In the case of the MEEI database the same procedure was
followed. In this case, the best results were obtained using ten
neurons in the hidden layer. Table IV shows the EER for each
characteristic individually and combined. Shannon entropy
and correlation dimension are the characteristics that show the
better EER. Consequently, they show the better success rate.
According to Table V, in which the confusion matrix for MEEI
database is shown for the EER point, the success rate for all
characteristics combined is 99.69% with a standard deviation

of 0.2.

C. Comparison With Works in Literature

The global results obtained in this paper are compared with
some results obtained in the literature in Table VI. This table
lists some studies on automatic detection and classification
of voice pathologies using different databases (the number of
normal and pathologic samples is detailed), measurements and
classification techniques (the results of the present paper are
added).

The classification rates obtained in these works are similar to
the present one for the multiquality database. For example, a set
of classical measurements (jitter, shimmer, etc.) are studied with
a classification based on neural network technique in Linder
[49] and a 80% classification rate was obtained. Shimmer, peri-
odicity, spectral and chaos measurements, neural network tech-
nique, and an extended version of our multiquality database
were used in Alonso [24] with a global performance of 92.76%.
In our work, using only six chaos measurements the success rate
is fairly good with the multiquality database (82.87%).

In the case of the results obtained with the MEEI database,
the comparison is only fair in the case of Parsa (98.7%) [41],
[48] and Saénz–Lechón (89.6%) [43] works because the same
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TABLE VI
COMPARISON WITH SOME RESEARCH WORKS ON VOICE PATHOLOGY DETECTION

data subset was used and the methodology is quite similar to
the one used in this paper. The global classification rate for the
MEEI database in this work (99.69%) is the highest found in the
literature (comparing only the works with the same data subset
and similar methodology).

VI. CONCLUSION

The usefulness of six nonlinear chaotic characteristics: first-
and second-order Rényi entropies, the correlation entropy, the
correlation dimension, the value of the first minimum of mutual
information function and Shannon entropy, has been evaluated
in order to distinguish between two voice qualities (healthy and
pathological voices). Two databases were used to evaluate the
characteristics, a multiquality database [18] and a commercial
one (MEEI Voice Disorders [40]) in order to obtain compara-
tive results between them. The multiquality database comprises
samples labeled with different kinds of voice quality according
to the hoarseness (G) of the GRBAS scale. The MEEI database
only has samples labeled as healthy and pathological voices.

A previous statistical study was carried to check the discrim-
ination of the characteristics for both databases. In the multi-
quality database, the statistical study showed remarkable dif-
ferences between healthy and pathological voices and even be-
tween the three different levels of pathologies for each of the
characteristics studied. Generally, the quantitative evaluation of
the measurements was correlated with the medical assessment.
The correlation dimension and the value of the first minimum of
mutual information function were the characteristics that better
discriminated among the different voice qualities of the mul-
tiquality database. The MEEI database also showed significa-
tive differences between the medians of the two classes of voice
(healthy and pathological voices). As a conclusion, the medians
of the healthy and pathological voices differ at the 5% signifi-
cance level in both databases and in all the characteristics.

The characteristics were evaluated with neural networks to
discriminate between healthy and pathological voices. Suc-
cessful results were obtained for both databases. The global
success rate obtained with the multiquality database [18] was
82.47% and with the MEEI database [40] 99.69%

. This demonstrates that the six proposed characteris-
tics are useful to discriminate between healthy and pathological
speakers.

The difference between the two classification rates of both
databases is due to the nonexistence of LP speakers in the MEEI
database. LP speakers are more likely to be classified as normal
speakers because the difference between healthy and LP or MP
speakers is lower than between a healthy and an MP or an SP
speaker. In the results, if the LP and MP speakers are removed,
the success rate of the multiquality database is similar to the
MEEI database (see SP speaker in Table III and compare with
the MEEI results in Table V).

The measurements studied in this research can be used to doc-
ument the patient evolution. They can also be used in help sys-
tems for pathology diagnosis in the speech production system.
As a new step, we propose the combination of the nonlinear
characteristics evaluated here and classical characteristics used
previously in order to evaluate if the combination results in
better classification rates.
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