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ABSTRACT

In professional and other social settings, networks play an important role in people’s lives. The

communication between individuals and their positions in the network, may have a large impact on

many aspects of their lives.In this work, I evaluate fairness from different perspectives.

First, to measure fairness from group perspective, I propose the novel information unfairness

criterion, which measures whether information spreads fairly to different groups in a network. Using

this criterion, I perform a case study and measure fairness in information flow in different computer

science co-authorship networks with respect to gender.

Then, I consider two applications and show how to increase fairness with respect to a fairness metric.

The first application is increasing fairness in information flow by adding a set of edges. I propose

two algorithms- MaxFair and MinIUF- which are based on detecting those pairs of nodes whose

connection would increase flow to disadvantaged groups. The second application is increasing

fairness in organizational networks through employee hiring and assignment. I propose FairEA, a

novel algorithm that allows organizations to gauge their success in achieving a diverse network.

Next, I examine fairness from an individual perspective. I proposestratification assortativity,

a novel metric that evaluates the tendency of the network to be divided into ordered classes. Then, I

perform a case study on several co-authorship networks and examine the evolution of these net-

works over time and show that networks evolve into a highly stratified state. Finally, I introduce an

agent-based model for network evolution to explain why social stratification emerges in a network.
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Chapter 1

INTRODUCTION

Social networks, including friendship, community, and professional networks, are an important

part of people’s lives, and communication between individuals plays a critical role in individuals’

decision-making processes [19]. The position of individuals within these various networks and their

communications with their social connections may thus have a large impact on many aspects of

their lives.

First, note that individuals in social and professional networks primarily form new connections via

their mutual connections [82] and so the current position and communications of individuals in a

network can determine the connections that they can make in the future. Individuals who are closer

to successful people may have a better chance of forming important connections that will help them

with life trajectories, such as meeting the right recruiter to bridge the gap between the person and

employment or learning from and collaborating with successful people [116]. Such connections and

communications may affect that individual’s entire life [47].

Second, social and professional networks play a vital role in the spread of information through a

population, and individuals in networks make important decisions based on the information to which

they have access. Through these communications, individuals hear about different opportunities like

employment, promotion, mentor-ship, scholarship, new research ideas, different events and other

useful information that has an impact on individuals’ lives. Those who have access to more or better

1



information may thus benefit more. The position of individuals in a network largely determines the

information to which they have access [22].

For these reasons, it is important to study the fairness of a network’s structure. Fairness can be defined

in many ways, and in this dissertation, I examine network fairness from several different perspectives.

In the first part of my work, I focus on measuring the fairness of a network’s structure from a group

fairness perspective. In this perspective, the objective is to understand whether so-called protected

groups- i.e., those based on protected attributes like race or religion- benefit equally from the net-

work’s structure. Depending on the structure of the social networks, it is possible that individuals

from different protected groups are systematically deprived of equal access to the information that

spreads in the network. This is of particular concern when the information of interest has the poten-

tial to affect the life trajectory of an individual, such as knowledge of employment opportunities. For

example, in professional networks, central positions in a company (e.g., executive positions) are often

occupied by white men, while women and minorities are on the fringes [83]. If news of promotion

opportunities tends to flow disproportionately to white men, then this further consolidates that

group’s power and disadvantages other groups. This has been observed in real settings: for example,

students from poor backgrounds may be unaware of options for attending selective colleges [6].

Thus, it is important to measure whether individuals from different groups have equal access to the

information that is spreading in the network. For instance, are male and female students equally

likely to hear about a new scholarship?

In Chapter 3, I introduce the novel information unfairness (IUF) criterion, which measures

whether information spreads fairly to all groups in a network. Information unfairness is related

to existing network metrics, including attribute assortativity coefficient, but as I will show, networks

that are strongly assortative (i.e., segregated) may still have low information unfairness (and

vice versa). The IUF computation uses distance between flows of information between two pairs of

groups. To compute flows of information between two nodes in the network, I use the Susceptible-

Infected (SI) contagion model and walk-based model to compute the amount of information flowing
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within and between groups.

To demonstrate the usage of the information unfairness criterion, I perform a case study on

several DBLP computer science co-authorship networks to examine gender inequality in the Com-

puter Science (CS). I conduct an in-depth analysis of these co-authorship networks by performing

statistical significance tests to investigate the impact of topological properties of the network on

unfairness, determine the reasons behind unfairness in each network, and identify privileged groups

within each network.

After detecting that unfairness with respect to any metric exists in the network, then special efforts

can be made to spread the information to the groups that are neglected. In Chapters 4 and 5, I

provide techniques for mitigating structural unfairness by modifying a network. These methods are

motivated by two different use cases.

First, in Chapter 4, I introduce the problem of adding a set of edges to the network to reduce

information unfairness. This is of interest when companies want to increase fairness in their

organizational network by adding, for instance, mentorship connections or collaborations, or when

social media platforms suggest new friendship connections. For this application, I propose two

novel algorithms – MaxFair and MinIUF – which are based on detecting those pairs of nodes that

connecting them will increase flow to the neglected group. Using an iterative process, these two

algorithms compute scores for each pair of nodes that are not currently connected in the network.

These scores represent the amount by which unfairness would be decreased if an edge between

the two nodes were added. The algorithm then selects the highest-scoring edges for addition to

the network. MaxFair uses an attribute-based centrality measure to estimate the score of each pair

of nodes, and MinIUF refines this estimate by considering flows of varying lengths. Experimental

results show that MaxFair and MinIUF can obtain large decreases in information unfairness

when adding only a small number of edges.

Second, in Chapter 5, I consider the problem of improving fairness through node attribute assign-
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ment. This problem is motivated by the application of performing hiring and assignment tasks in

professional networks. It is known that the profitability and success of commercial and non-profit

organizations depends in large part on their employees [43] and that a diverse workplace increases

performance of employees [3]. Accordingly, I consider the problem of assigning employment can-

didates to open positions, with the twin objectives of maximizing the fitness of the assignment

and minimizing segregation in the network. I propose Fair Employee Assignment (FairEA), a

novel algorithm for identifying assignments of candidates to open positions with the goals of maxi-

mizing fitness and minimizing segregation to ensure that the most suitable candidates are matched

to open positions, and individuals from different groups have access to each other. By comparing

the diversity and fitness of the organization’s actual hiring/assignment decisions to these ‘ideal’

outcomes, one can gauge the extent to which a less-segregated assignment is possible. Through

experiments on both real and synthetic network datasets demonstrate that FairEA outperforms the

baseline strategies at finding a complete matching while satisfying the goals.

In Chapter 6, I switch from a group-based fairness perspective to an individual-based fairness per-

spective. Real networks are continuously evolving, and the structure of networks changes based

on individuals’ actions, including entering or leaving the network, making new connections, and

reinforcing or removing old connections. Ideally, in a fair network, the trajectory of an individual

through the network will depend on their own merits, as opposed to their initial network properties,

as in the so-called ‘American dream’ belief [168], which states that each person, regardless of their

class and where they are born, should be able to succeed in society, and that the success of people

should depend on their ability, hard work, sacrifices, and willingness to take risks, rather than the

circumstances of their birth. In other words, in a fair social network, upward mobility is possible for

every individual.

However, real networks are known to be socially stratified [99], and individuals are divided into a

hierarchical arrangement based on different attributes such as importance, wealth, knowledge, and

power. This stratification can lead to social immobility [64]. Social stratification has been extensively
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documented in non-network settings, and to my knowledge, there is no single metric to quantify the

level of stratification using the structure of social networks and although some can be adapted, they

are flawed. For instance, metrics based on an inter/intra-class measurement like modularity [126] or

assortativity coefficients [124] that are used for measuring homophily or the Gini index to measure

inequality [44] can’t capture the desired property for measuring stratification like division of the

network into ordered tiers based on an attribute of interest.

In chapter 6, I introduce stratification assortativity criterion, which measures social strati-

fication in a network. Stratification assortativity evaluates the tendency of the network to

be divided into ordered classes. Stratification assortativity is high if individuals connect

to other similar individuals from the same class and there are few or no connections between indi-

viduals who are not similar. Stratification assortativity differs from existing assortativity

metrics in that it is based on scalar characteristics that give rise to a set of ordered classes, whereas

other assortativity metrics are either based on categorical characteristics that divides network into

non-ordered groups (discrete assortativity coefficient, modularity) or scalar characteristics that do

not consider group memberships (scalar assortativity coefficient) [125]. I then propose a heuristic for

finding stratification assortativity when classes are not known ahead of time.

To demonstrate the usage of the stratification assortativity criterion, I perform a case

study on several co-authorship networks. I examine the evolution of these networks over time and

demonstrate that networks evolve into a highly stratified state; and that once the network stratifies,

the success of newcomers is increasingly determined by their starting point in the network.

In Chapter 7, in order to see why social stratification emerges in the networks, I introduce an agent-

based model for network evolution. In this model, individuals are assigned a ‘merit’ score (which

can represent ability at some tasks, perseverance, intelligence, etc., or even a combination of such

traits), and individuals are motivated to connect to other individuals with high ‘merit’ scores. My

goal is to determine whether local preferences of individuals lead to an ultimately fair or unfair

network. I observe that under specific settings, the network will evolve to a highly stratified state in
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which individuals of similar ‘merit’ scores cluster together. Then, I study different factors that have

an impact on the evolution process and can delay or prevent stratification. Finally, I study different

social phenomena that can be predicted using the evolution model.

My key contributions are as follows:

□ I introduce the novel Information UnFairness (IUF) metric, which measures the extent

to which individuals from different groups have equal access to the information spreading in

the network (Chapter 3).

1. I operationalize IUF with two different models of information spread- one based on non-

backtracking walks, and one based on the SI-contagion model- and compare results.

2. I show how to interpret IUF by using three versions of normalization (degree based,

density based, and attribute based) and measure them using statistical significance

testing.

3. I perform a case study on DBLP co-authorship networks on five computer science sub-

fields and show the structural factors that contribute to a high IUF in these networks.

□ I introduce MaxFair and MinIUF algorithms for increasing fairness of a network by adding

a small number of edges and show that it achieves significant reductions in information

unfairness (Chapter 4).

1. I introduce an attribute-based centrality metric that can determine the ability of nodes

to transmit information to members of different groups.

2. I propose MaxFair and MinIUF, two algorithms that select the best set of nodes to be

added to the network based on this centrality to increase fairness.

3. I compare the performance of MaxFair and MinIUF over different baseline methods

and show that they can increase fairness dramatically by adding a few edges.
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□ I introduce the problem of maximizing fairness by assigning candidates to open positions and

propose FairEA, for solving the employee assignment problem (chapter 5).

1. I formulate the multi-objective optimization problem of assigning candidates to open

positions to maximize fitness and fairness-related objectives in terms of social relations.

2. I discuss challenges in designing a near-optimal heuristic for the proposed problem and

propose FairEA, a novel algorithm for solving the employee assignment problem.

3. I show via simulation on real and synthetic data that my method outperforms several

baseline methods in achieving the goals above and how FairEA can be used to assess

the quality of hiring/assignments.

□ I study social stratification in networks which lead to unfairness form individual perspective

(Chapter 6).

1. I propose the novel stratification assortativity metric, which measures the

extent to which a network is stratified into different ordered tiers.

2. I introduce a heuristic to identify tiers that maximizestratification assortativity.

3. I perform a case study on co-authorship networks and evaluate fairness in evolution

of these networks. I demonstrate that the stratification assortativity metric

captures important insights that other metrics do not; and use the metric to explore

properties of those networks

□ I explain why social stratification and unfairness emerges in a network by simulating the

evolution of a network (Chapter 7).

1. I propose an agent-based model for network evolution and show under specific settings,

networks evolve into ordered tiers.

2. I study different factors that have influence on the evolution process and can delay or
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prevent stratification.

3. I discuss different social science phenomena that can be predicted by the model

The remainder of this document is organized as follows. In Chapter 2, I discuss important related work.

In Chapter 3, I describe various fairness metrics, and propose the novel information unfairness

metric. In Chapter 4, I propose two algorithms for reducing information unfairness by adding

edges to a network. In Chapter 5, I propose an algorithm for reducing segregation in a network

through node assignments. In Chapter 6, I study social stratification in networks and propose

stratification assortativity for measuring stratification. In Chapter 7, I introduce an agent-

based model for network evolution to explain network stratification. Finally, Chapter 8 concludes

the dissertation.
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Chapter 2

RELATED WORK

Recently, the topic of algorithmic fairness has attracted a great deal of attention from the algorithmic

community [6]. Researchers have studied problems relating to fairness in algorithms used in the

criminal justice system, hiring, credit scoring, and many other domains [6]. At a very high level, one

primary motivation behind such works is that algorithms should treat individuals from different

groups equally. Most of the existing work on algorithmic fairness has been on machine learning

algorithms, including for applications like credit scoring, criminal sentencing, and others [6]. In

contrast to most of the work on algorithmic fairness, my primary goal is not to analyze the fairness of

an algorithm’s output, or design algorithms that are ‘fair’, but rather to understand the effect of a

network’s structure itself on fair outcomes.

There have been recent works on fairness in network applications; from works on 1) the impact

of communities on fairness by Santos et al. [144], Beilinson et al. [8] and Han et al. [71], 2) using

network-based role assignment to increase fairness by Teixeira et al. [162], 3) fairness in influence

maximization by Stocia et al. [156], Fish et al. [50] and Tsang et al. [169], 4) fairness in link prediction

and recommendation systems by Stocia et al. [156] and Masrour et al. [110], 6) fairness in node

classification and network sampling using machine learning techniques by Masrour et al. [150], 7)

algorithmic fairness in network data by Masrour et al. [109] and 8) fairness in the structure of network;

structural inequalities in citation networks by Nettasingh et al. [122].
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In the first part of my work, I propose a metric for measuring fairness in information flow in a network.

Closely related to my work, are works on fairness in influence maximization. For example, Fish et al.’s

goal is to select seeds in a way that information spread is maximized while different groups have

equal access to the information that is spreading in the network. Wang et al. studies the equality of

information access in different dynamic network models and shows the tradeoff between efficiency

of information access and equality [175].

Two related concepts to fairness in information flow are echo chambers and homophily in networks.

Echo chambers occur when beliefs of members in a group are amplified by other members of

that group [5]. Most works on echo chambers are focused on political opinions [55]. Homophily,

which is a measure of segregation of networks, is the tendency of individuals to associate with

like-minded others. In network science, homophily is often measured by the attribute assortativity

coefficient [125]. Such segregation has been observed in professional networks [81], and in societal

networks, can lead to educational inequality [127], reduced health outcomes [98], and reduced

exposure to advertising [151]. Halberstam and Knight show that members of a majority group can

receive more pieces of information than members of a minority group [70] and Karimi, et al. show

that as homophily increases, majority nodes have a harder time accessing information coming from

minority nodes and vice versa [87]. However, I will show later, homophily does not capture the same

nuance of information flow as my proposed IUF metric.

The second part of my work is to propose methods for increasing fairness by modifying a network.

Modification can be considered in terms of adding edges or proposing methods for increasing

fairness in professional networks via assignment. There is some existing work on increasing flow

in a network by adding edges [167, 40], but these works have not considered the problem from a

fairness perspective. D’Angelo et al. consider the problem of adding connections to a network to

maximize flow and show that this problem is NP-hard [40].

For increasing fairness in professional networks, the recent scientific literature contains many studies

on modeling bias in human recruiting systems. For example, Smith et al. examine strategies for
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hiring diverse faculty in universities [153], Bjerk et al. show the different likelihoods of hiring and

promotion for candidates from different groups with equal skills [12], Newman et al. address the

tradeoff between performance goals and company diversity [123], and Raghavan et al. analyze

practices related to bias in algorithms used in hiring from both technical and legal perspectives [137].

Other studies show the importance of fairness with respect to diversity and access to support groups

in different levels of organizations [52, 177]. Mazzola et al. show a positive relationship between

board member racial and gender diversity to performance of nonprofits [112], and Thompson et al.

show that minorities experience difficulty in a majority dominated environment [165]. Camper et al.

and Fernandez et al. show that screening processes can result in racial/gender bias [49, 23], Lee et

al. study diversity in hiring when decision makers have different opinions about diversity [97] , and

Koch et al. examine the effects of decision maker’s gender and motivations on gender bias in hiring

decisions [93].

Unfortunately, automating recruiting systems will not necessarily solve problems of discrimination

in hiring [42]. One solution is to make sure that protected attributes do not influence algorithmic

decisions [91, 140] but De-Arteaga et al. show that gender bias exists even after scrubbing gender

indicators from a classifier [41]. Rupp et al. provide a survey of existing methods and their flaws and

show that methods based on a Pareto-optimal weighting technique can address these problems

[142].

Traditional approaches measure diversity of organizations in terms of numbers [129]. However,

social science studies show that organizations are social networks [36], where the structure of

an organization is determined by people’s social relations and their distance from others in the

network [20]. In social networks, it is important for individuals or groups to have access to resources

in the network [51]. So-called ‘social capital’ [17] is the sum of potential and actual resources in

the network and derives from social ties [121]. Different forms of social capital have benefits for

individuals, and affect entrepreneurial success, mobility through occupational ladders, and access

to employment [134]. For instance, Granovetter et al. use the ‘strength of weak tie’ to define an
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informal employment referral system that comes from the indirect influences outside the circle of

close friends or immediate families [60], Burt et al. use ‘structural holes’ to define alternative ways of

behaving and thinking for people who are connected across groups compared to those who are just

connected inside groups [21], and Floress et al. show that access to social capital aids watershed

groups achieve desired outcomes [51].

The third part of my work is on studying network structure from the individual perspective. I do this by

studying social stratification in networks and explaining how an individual’s decision leads to social

stratification in the network. The study of social and economic stratification has been one of the

most important topics in modern sociology [90]. Grusky offers a definition of a stratified system as

one in which resources are distributed unequally, and social processes designate certain resources

as more valuable, control the allocation of resources across various social roles and the assignment

of individuals to those roles, and govern mobility between roles [65]. Moreover, stratification tends

to be pervasive across generations [16]. Social stratification is intrinsically connected to social

mobility [65]. Featherman suggests that social mobility (or the lack thereof) is a driving process

behind stratification [48]. Much of the existing sociological work on stratification assumes pre-defined

strata, and then examines social mobility between these strata [172, 84]. It is common to use the Gini

index to measure inequality [44]; but inequality is not identical to stratification. In network settings,

stratification is obviously very closely related to existing measures of homophily/assortativity: the

tendency of people to connect to others similar to them [125]. Leo et al. use an inter/intra-class

measurement similar to modularity to examine stratification in communications networks [99].

Hodler et al. offer an index that uses ethnicity as a proxy for social distance and examines connections

between individuals in the context of wealth [74]. This index, effectively, measures the probability that

for any random pair of individuals, the poorer individual feels deprived of opportunities associated

with ethnic class boundaries [74]. Stratification is somewhat related to the Matthew effect (the

rich-get-richer/preferential attachment phenomenon) [115], and numerous works have explored

quantifying the strength of such a phenomenon [132, 139, 166].
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The latter part of my work examines stratification in scientific co-authorship networks. There is a vast

existing literature on the structure of scientific fields, and although I cannot exhaustively describe it

here, I note several closely related works. Much of this work has examined inequalities in science.

For example, Xie argues that inequalities in resources, research outcomes, and rewards have grown

over time [179]. It is well-known that faculty hiring is strongly biased towards graduates from top-

ranked universities [32]. Qi et al. show the importance of collaborating with high-status individuals

on the trajectory of young researchers [136], and Servia-Rodriguez et al. show the importance of

one’s co-authorship network on success [148]. Li-chun et al. explore stratification in a collaboration

network and demonstrate the presence of an elite set, albeit not a ‘closed’ set [181]. Ma et al. show

the importance of geographical proximity in creating collaboration ties, suggesting that geographical

distance may be interpreted as a sort of social distance [107].
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Chapter 3

MEASURING FAIRNESS IN INFORMATION FLOW

3.1 Introduction

In professional and other social settings, networks play an important role in people’s lives, and com-

munication between individuals can have a significant effect on individuals’ decision making [19].

Through such communications, individuals learn about employment, promotion, and award oppor-

tunities, as well make valuable connections to mentors or sponsors, all of which can influence the

trajectories of their lives. Moreover, through such networks, individuals learn of new professional

ideas, events and other useful information that can affect their professional success. As such, it is of

interest to understand whether information is flowing fairly to nodes in social networks.

In particular, depending on the structure of a social network, it is possible that individuals from

certain protected groups (i.e., those based on so-called protected attributes like race or gender) are

deprived of equal access to information spreading in the network. For instance, consider a company’s

professional network (describing interactions between employees) where white men occupy the

majority of central positions, and women and minorities are on the fringes of the network [83]. If

such network structure results in greater information flow to members of the advantaged group,

then that allows the group to further consolidate power, worsening inequality. Such consequences

have been observed in reality: for example, students from poor backgrounds are often unaware of
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opportunities for attending college and might not become aware of them through their connections,

thus perpetuating the cycle of poverty [6].

It is thus important to quantify the extent to which individuals from different attribute groups have

equal access to information spreading in the network (as discussed above. In this chapter, I use

different measures of fairness in networks and then define the Information UnFairness (IUF)

metric, which quantifies inequality in access to information across protected groups. I then provide

an in-depth analysis of information flow to gender-based groups in computer science co-authorship

networks.

My contributions are as follows:

□ I propose IUF, a metric that measures the extent to which individuals from different groups

have equal access to the information spreading in the network. IUF can be computed using

either non-backtracking walks or probability based methods to measure information flow

between pairs of nodes (Section 3.3.1).

□ I show how to interpret IUF by using three versions of normalization (degree-based, density

based, and attribute based) and measure them using statistical significance testing (Sec-

tion 3.3.2).

□ I perform a detailed case study of IUF on the DBLP co-authorship networks of five computer

science subfields with respect to gender. I explore the structural properties of these networks

that lead to high or low IUF (Section 3.4).

3.2 Existing Measures of Fairness in Networks

There are different ways to define fairness in a network. The goal in this chapter is to measure fairness

in information flow. Segregation in networks is a notion that is closely related to measuring fairness

with this respect. The literature contains techniques for measuring segregation in networks (e.g.,

homophily/assortativity [124]).
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Homophily is a measure of the extent to which individuals tend to associate to others that are like

them. Homophily has been studied extensively in the social science literature and is closely tied to

segregation. For example, both gender and race-based homophily can be present in professional

networks [79, 81, 80], with potentially harmful effects. Racial and social group homophily have

been observed in grade schools [118], professional schools [117], marriage [85], online social net-

works [111], and other domains. The negative side effects of segregation are well-known: for example,

it can lead to reduced health outcomes [98], worsen poverty [108], and increase educational inequal-

ity [127]. In network settings, homophily is often measured using the attribute assortativity coefficient

given in [125], which uses the trace of the mixing matrix of the attribute under study with higher

values indicating stronger tendencies of individuals to connect to others with the same attribute

value as them. Formally, discrete attribute assortativity r can be measured as r =
∑
i eii−

∑
i aibi

1−
∑
i aibi

, where

e is the matrix whose elements are eij (the fraction of edges in a network that connects a node with

attribute i to one with attribute j) and ai and bi are the fraction of each attribute of end of an edge

that is attached to nodes of attribute i [125].1

Also tied closely to homophily is the notion of echo chambers. Echo chambers occur when opinions

‘echo’ within a community, amplifying those beliefs to members of that community and possibly

leading to confirmation bias [5]. Most works on echo chambers have focused on political opinions,

with some evidence that echo chambers can lead to increased extremism [55]. Musco, et al. consider

how to modify opinions so that polarization is reduced [120]. Guo, et al. show a relationship between

political opinion homophily and echo chambers on Twitter [66]. Halberstam and Knight argue that

members of a majority group receive more pieces of information, and more quickly, than members

of a minority group [70].
1This value is equal to the modularity of the attribute groups normalized by the maximum possible modularity of the

network [131].
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fair
unfairunfair

Figure 3.1: Three networks with the same number of nodes and edges from each group but different
information flows.

3.3 Information Unfairness

In this section, I define the novel Information UnFairness (IUF) metric, which measures the

extent to which information flows fairly between protected groups. At a high level, the intuition

behind IUF is to determine whether the structure of the network, including how individuals are

positioned in the network, allows groups to benefit equally in terms of their access to information.

As an example, Figure 3.1 shows three networks with the same number of nodes and edges, where

half of the nodes are members of the red group, and the other half are members of the blue group. In

the left-hand network, red nodes have difficulty accessing information starting at other red nodes: in

other words, they are isolated from one another. In the right network, red and blue nodes can easily

access information starting from their group-mates but have difficulty accessing the information that

are from the other group: in other words, they are segregated. In the middle network, both red and

blue nodes can easily access the information that starts from anywhere in the network: this network

is fair.

3.3.1 Computation

IUF measures whether individuals from different protected groups have different levels of access to

the information flowing in the network. Although it is not expected that all individuals spread and

receive information equally, a network is considered unfair when a protected group is disproportion-

ately deprived of the ability to access or spread information.
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Table 3.1: Notation

Symbol Definition
G(V ,E) Weighted/simple, undirected/directed attributed graph

V = {vi , ..., vn} Nodes inG
n,m Number of nodes and edges inG
Mn×n Adjacency matrix ofG ,mi j : probability of vj receives information from vi

P = {p1, ...,l } Set of protected groups
PMn×l Protected group membership matrix: pmij : probability of node vi to be member

of protected group cj
k Maximum length cascade considered

Sn×n Normalization matrix
Mk Backtracking expected probability matrix:mkij : probability of information

passing through a walk of length k from vi to vj
Bk Non-backtracking expected probability matrix: b′kij : probability of information

passing through a non-backtracking walk of length k from vi to vj
A,A′ Accessibility & normalized accessibility matrix
Dpipj Joint attribute accessibility distribution of protected groups pi and pj
FMl×l Flow Mean matrix, fmij : mean of flow from protected group pi to protected

group pj

The symbols used in my computation are shown in Table 3.1. The inputs to IUF are:

□ Network G = (V ,E): a network with n vertices V = {v1, ..., vn} and m edges E with

adjacency matrixMn×n, 0 < mij ≤ 1 if there is an edge between nodes vi and vj andmij = 0

otherwise (G can be directed or undirected, weighted or simple).mij denotes the probability

that node vi transmits information directly to node vj . (In later discussion, I describe what can

be done if only the existence of edges, but not the transmission probabilities, are known.)

□ A set of l protected groups P = {p1, ..., pl} and protected group membership matrixPMn×l ,

wherepmij shows the strength of node vi ’s membership in grouppj . For each node vi ,Σj∈{1,..,l}

pmij = 1. These protected groups represent the groups of interest based on attributes like

race or gender.

□ k ∈ N : the maximum information cascade length. Because most important information has

an ‘expiration date’ (e.g., deadline to apply for a job), I do not consider arbitrarily long cascades.

□ Normalization matrix Sm×m (optional) (details are provided in Section 3.3.2).

□ A distance functionDist(D1,D2) for computing the distance between two distributions. This
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Accessibility matrix 𝑨 ( k = 4)
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Figure 3.2: Overview of information unfairness computation process.

distance function could be, e.g., Earth Mover’s Distance.

Given this input, IUF is computed as follows (details of the various steps are discussed further below).

A fair network will have IUF value close to zero, and higher values indicate greater unfairness.

1. Accessibility matrix construction: Construct the accessibility matrix Am×m, where aij shows

the amount of information that is expected to flow from node vi to node vj using adjacency

matrixM and maximum cascade length k .

2. Normalization: If normalization matrix S is provided, normalized accessibility matrixA′ =

A⊘ S. As I discuss later, the normalization matrix can be defined based on density, degree,

attribute of interest or any other desired properties.

3. Characterizing flow between protected groups: Compute a list of joint attribute accessibility

distributions LD : {Dfg : f , g ∈ {1, .., l}} fromA orA′ that characterize flow between each

pair of protected groups pf and pg , where {pi , pj} ∈ {p1, .., pl}.

4. Computing the Information Unfairness (IUF): Using the given distance function, find the

distance between each pair of joint attribute accessibility distributions and return the maximum

such distance: IUF = max({Dist(Dh,Dz) : Dh,Dz ∈ LD}).
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ACCESSIBILITY MATRIX CONSTRUCTION: Matrix A describes the flow of information between each

pair of nodes. More formally, aij is the expected amount of information that node vj will receive

from node vi and can be computed in accordance with whatever model of information flow one

desires. Here, I consider three different ways to construct this matrix. The first two methods, based on

backtracking and non-backtracking walks respectively, allows one to compute the expected amount

of information flowing between each pair of nodes. The third method, which uses the SI contagion

model, allows one to compute the probability that information is shared between a pair of nodes.

There are various benefits and drawbacks to these methods: the first two methods are faster to

compute and are deterministic, but the third may give results that are of greater interest.

1) Backtracking walks: In simple networks with binary adjacency matrixM,Mk shows the number

of walks of length-k (mkij shows the number of walks between nodes vi and vj ). In a weighted version

where elements ofM show probability of information flow along an edge, each elementmkij ofMk

shows the expected number of times that node vj hears about a piece of information starting from

node vj that passes along walks of length k . Using this idea, one way to compute accessibility matrix

A isA =M+M2 + ... +Mk where aij shows the expected number of times that node vj will hear

about a piece of information starting from node vi by using walks of length at most k [4]. IfM is

invertible, thenA = (I −M)−1(̇I −Mk+1)− I . Note that ifM is not invertible, adding a tiny noise

ϵ to diagonal elements will make it invertible and this noise will not have an impact on the result.

After constructingA, I set elements from the diagonal to zero, because the information about whether

a node transmitted information to itself is not important here. Note that as node vi can receive

multiple cascades starting from node vj ,aij can be greater than 1. Based on application, the number of

cascades might be irrelevant and what matters is whether such cascades exist. For those applications,

matrixA can be truncated and elements with values greater than one replaced by 1.

If networkG is simple and adjacency matrixM is binary where the propagation probability among

edges is not provided, equal propagation probability for each pair of nodes is considered. ThenA

can be computed by integrating over all values of propagation probabilities in range [0, 1]which
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can be found by:A = 1
2
M1 + 1

3
M2 + ... + 1

k+1
Mk [2].

2) Non-backtracking walks:Mk shows the number of walks of length-k with backtrack. However,

for computing access to information that spreads in the networks, walks that backtrack out from

a node and then return to the same node on the next step are better to be avoided. Recently the

idea of restricting to back-tracking walks have been used in different graph analysis applications [2].

In this chapter, using the method introduced in [2], accessibility matrix is computed asA = B1 +

B2 + ... +Bk , where bkij shows the expected number of times that node vj will hear about a piece of

information starting from node vi by using non-backtracking walks of length at most k .Bk = Bkr+B
k
l

2

andBkr andBkl are computed as follows (note that ifG is undirected,Bkr = Bkl .).

Let

B1l =M,B
1
r =M

T ,B2l =M ·MT −D1

B2r =M
T ·M−D2,D1 = diag(M ·MT ),D2 = diag(MT ·M)

for k > 2, if k is even:

Bkl = B
k−1
l ·MT + Bk−2l · (I−D1),Bkr = Bk−1r ·M+ Bk−2r (̇I−D2)

and if k is odd:

Bkl = B
k−1
l ·M+ Bk−2l (̇I−D2),B

k
r = B

k−1
r ·MT + Bk−2r (̇I−D1).

3) SI Contagion-Based Method: Although the above methods are tractable and deterministic,

there are more sophisticated models for information flow. Many of these models are based on the

SI (Susceptible-Infected) model of disease spread [119]. One can use such a model to measure

information flow between each pair of nodes; however, it is computationally difficult to compute the

nodes that will be influenced by a set of seeds, and so extensive simulations are required [180]. This

approach is thus best suited for small networks.
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The SI model is a classic epidemic model and is commonly used to simulate information spread. It

was originally designed to describe how disease spreads through a population [119]. In this model,

every node has two states: susceptible and infected. In each iteration, every infected node will

infect its susceptible adjacent nodes with a certain probability. The SI model is an application of the

Independent Cascade (IC) model [57], which assumes that the information spreading process begins

from an initial active node set S . At time t , let St denote the set of activated nodes. Every node in

the set St will independently attempt to infect its susceptible neighbors and will succeed with a

specified probability. This process repeats in the next iteration, making the Independent Cascade

(IC) model stochastic and progressive [28]. A Monte Carlo (MC) simulation [89] is applied to estimate

the information spreading results. Monte Carlo methods are typically used in models where the

probability of outcomes cannot be determined due to random variable intervention. The core idea of

Monte Carlo simulations is to constantly repeat random sampling to approximate the desired results.

The Monte Carlo simulation repeats the information diffusion process for t iterations independently.

At each iteration t , the spreading probability accessibility matrix SAt is computed as follows: for

each node vi , vi is set as the only activated node in the initial set S0. Across k iterations, nodes in

Sk will activate their neighbors with probabilitymij , and activated nodes will be added to Sk + 1

(each active node can activate its neighbor only once). For each node uj that is activated during the

k steps where S0 = ui , saij = 1 and for all non-activated nodes uj , saij = 0. Finally, A is computed

by taking the average over all computed matrices SA1 to SAt . This represents the probability that a

node receives a piece of information starting at another node, where transmission probabilities are

given byM.

CHARACTERIZING FLOW BETWEEN PROTECTED GROUPS: Elements inA show the flow between each

pair of nodes. However, the ultimate goal is to understand the flow between the pairs of protected

groups. Thus, joint attribute accessibility distribution is defined asDfg for protected groups pf and

pg where {pf , pg} ∈ P = {p1, ..., pl}.Dfg = {aij · pmif · pmjg : i , j ∈ {1, .., n}}. A list of all such

distributions is computed as LD : {Dfg : f , g ∈ {1, .., l}} fromA.
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COMPUTING IUF : After computing all the joint accessibility distributions, the Information Unfairness

of the network is given by: IUF = max({Dist(Dh,Dz) : Dh,Dz ∈ LD}). Here Dist is a function for

computing the distance between two distributions.

Informally, theIUFof a network measures the differences between the joint accessibility distributions.

For instance, if there are two protected groups- a minority and a majority- in the network, the goal

is to determine whether information flows equally within the minority group, within the majority

group, and between the two groups.

Choice of Distance Function There are a multitude of distance measures for computing the dif-

ference between two distributions. Examples include K-L Divergence (KLD), Earth Mover’s Distance

(EMD), distance between weighted means (WM), distance between truncated weighted means (TWM),

distance between weighted medians (WME) and so on. Selection of the best distance function de-

pends on the distributions under study. In this work, I consider the distance function as the weighted

distance between their means. Note that, by summarizing a distribution into its means, one might

lose important information. For comparison, I also experimented with other distance measures,

including EMD, WM, TWM and WME, and saw similar results on the datasets used in this work. (For

this work, KLD is not a good choice as it doesn’t consider the distance of the values into account:

e.g., using KLD,Dist([1, 1, ..., 1], [2, 2, ..., 2]) = Dist([1, 1, ..., 1], [3, 3, ..., 3]).)

Matrix based computation of IUF: If distance between weighted means (WM) is used as the distance

function, IUF can be computed directly from matricesA andPM using matrix multiplications as

follows:

□ Compute the flow sum matrix FSl×l = PMT · A · PM, where fsfg is sum of the flows from all

nodes from protected group pf to all nodes from protected group pg .

□ Compute weight matrixWl×l = PMT · (M−Diag(M) ·PM), wherewfg is the weight matrix

used for computing weighted mean of distributions.

□ Compute flow Mean matrix FMl×l = FS⊘W.
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□ IUF = max(FM)−min(FM)

An overview of the IUF computation process is given in Figure 3.2.

3.3.2 Normalization Matrix Computation

The accessibility matrix describes the amount of flow between each pair of nodes; however, it may

also be of interest to know how this flow compares to what one would expect in a random graph

with some of the same properties as the actual graph. To compare the flow of information in the

network to the flow in random networks with the same desired topological properties, the user may

provide a normalization matrix S. The goal of such normalization is to obtain the specific topological

properties that lead to unfairness in information flow because nodes in the network have different

structural properties that may have an influence on their accessibility score. This is comparable to

identifying the causal effect, where different characteristics of treatment groups have influence on

the scores used in computing causal effect and propensity score normalization is used to overcome

this bias [141].

The purpose of normalization is to compare the information flow in the original network to the

expected information in a random network with specific topological properties. To do so, element-

wise division of accessibility matrix of original networkA is done by expected accessibility matrix of

random network S. In order to compute S, one can generate t random networks with the particular

properties of interest and compute accessibility matrix for each random network. Then, matrix S

is the average over all accessibility matrices of t random networks. If t is large enough, sij is an

approximation of the expected flow that starts from node vi and reaches node vj .

However, generating t networks and computing accessibility matrices for each one, is computa-

tionally expensive. In this work, I use three ways of normalization based on 1) density, 2) degree

and 3) attributes of interest and discuss ways to quickly and effectively estimate S using walk-based

methods. In Section 3.4, I measure the accuracy of my estimations by comparing the estimated

values to those generated by generating a large number of random networks.
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DENSITY-BASED NORMALIZATION: A drawback in using the unnormalized matrix A is that nodes

naturally receive more information in a dense graph compared to a sparse graph, so differences

between groups are magnified. The IUF of a dense graph may thus be higher than IUF of a sparse

graph, but this does not necessarily indicate that the dense graph is less fair than the sparse graph.

To compare the IUF of graphs of different densities, it is necessary to normalizeA by density (Sden).

Sden can be computed by taking the average over accessibility matrices of t random networks with

the same density as networkG . As computing Sden using this process is slow, Sden is estimated by

first defining matrixMden so that all elements are equal to the density of the graph. This value is

given by 2m/n2, wherem and n represent the number of edges and the number of nodes in the

network respectively.Mden is an estimation over the average of adjacency matrices of t random

graphs with the same number of edges and nodes produces without generating these graphs. After

generatingMden, Sden can be generated the same way thatAwas generated fromM. Note that if

backtracking walks is used for computing accessibility matrices, it can be proved that elements in

Sden for cascades of up to length k is equal to 2m(pp)((2m(pp))
kn(−k)−1)

2mn(pp)−n2 .

DEGREE-BASED NORMALIZATION.: To see the impact of the number of connections (degrees) of nodes

in each protected group on the information unfairness of a network, one can use degree-based

normalization. For instance, in a collaboration network of STEMM scientists, it is possible that highest

degree nodes are more likely to be senior researchers and thus disproportionately male, as women

have only entered the field in large numbers in the past few decades [75]. It is useful to know whether

unfairness is due to differences in degree (though such an explanation would not necessarily excuse

unfairness). Thus, to explore the impact on degree distributions of nodes on unfairness, it is necessary

to normalizeA by degree (Sdeg). As mentioned before, Sdeg can be computed by taking the average

over accessibility matrices of t random networks with the same degree distributions as networkG .

As computing Sdeg using this process is slow, S is estimated as follows:

MatrixMdeg is first defined so thatmij =
dvi dvj
2m

wherem is the number of edges and dvx is degree of

node vx . Note that this is the same as the normalization used in the modularity metric for charac-
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terizing and detecting communities in the network [126].Mdeg is an estimation over the average of

adjacency matrices of t random graphs with the same degree distributions without generating these

graphs. After generatingMdeg , Sdeg can be generated the same way thatAwas generated fromM.

ATTRIBUTE-BASED NORMALIZATION.: Finally, attribute-based normalization is considered, in which

the expected information flow in a network is compared with the same topology and protected

group sizes, but in which the protected attributes are assigned to nodes at random. This type of

normalization is somewhat counter-intuitive, because in non-network contexts, one would expect

no significant differences between protected groups if attributes were assigned at random, as long

as the dataset is sufficiently large. However, in network settings, small sets of nodes may have a

very large effect on overall unfairness: for example, cliques and hub nodes can dramatically affect

information flow. If there are few such structures, it is possible that even when attributes are assigned

at random, there is a non-negligible probability that members of the same protected group – purely

by coincidence– are assigned to a disproportionate number of such ‘important’ nodes. Normalizing

based on attributes is particularly of interest in professional contexts, where the structure of an

organizational network is fixed. For instance, the head of the sales department is connected to the

head of the engineering department and employees in each team are connected to each other.

In such cases, it is useful to see whether different attribute assignments could lead to a more fair

network.

To explore the impact of the attribute of nodes on unfairness, A is normalized by attribute (Satt ).

Satt can be computed by taking the average over accessibility matrices of t random networks with

the same structure and the same attribute group sizes, but random attribute assignments.

The process of computing accessibility of node vi for information starting at node vj depends on

the structure of the network and is not dependent on the attributes of nodes vi and vj . Thus, the

accessibility matrix of each random network is a shuffled version of the accessibility matrix of the

original network.
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Note that while estimation of matrixSdeg andSden were provided for walk-based methods, estimation

of Satt is independent of how accessibility matrixA is generated.

3.3.3 Example

Figure 3.1 depicts three graphs with the same density (20 nodes and 19 edges) and different values of

information fairness. For pp = 0.5 and k = 4, for each graph,A is computed using both walk-based

and SI-based methods. For the non-backtracking walk-based methodAW = 0.5B1 + 0.25B2 +

0.125B3+0.0.625B4. For the SI-based method,ASI is computed by running 1000 simulations and

taking the average accessibility matrix over all trials. After computing accessibility matrices, three

distributions are identified to characterize flow between different group pairs (red-red, red-blue and

blue-blue node pairs). As all three networks have the same number of nodes and edges and are

compared directly without density normalization.

Using accessibility matrices computed by the walk-based method, for the left, middle, and right

networks, respectively, the red-red distribution has a mean of (0.04,0.12,0.17), the blue-blue distribu-

tion has a mean of (0.18,0.11,0.20), and the red-blue distribution has a mean of (0.12,0.12,0.08). In

all networks, there is good flow within the set of blue nodes. The middle graph also has good flow

within the set of red nodes and between red and blue nodes. However, the graph on the right has

minimal flow between red and blue nodes (but good flow within the set of red nodes), and the graph

on the left has minimal flow within the set of red nodes (and good flow between red and blue nodes).

IUF is computed by computing the distance between maximum means and minimum means, giving

us 0.18 - 0.04 = 0.14 for the left network, 0.12 - 0.11 = 0.01 for the middle network and 0.20 - 0.08 =

0.12 for the right network.

Using accessibility matrices computed by the SI-based method, for the left, middle, and right net-

works, respectively, the red-red distribution has a mean of (0.05, 0.14, 0.21), the blue-blue distribu-

tion has a mean of (0.23, 0.13, 0.25), and the red-blue distribution has a mean of (0.13, 0.15, 0.10).

On these networks, the results are close to the results of the walk-based method. The IUF values are
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then 0.23 - 0.05 = 0.18 for the left network, 0.15 - 0.13 = 0.02 for the middle network, and 0.25 - 0.10 =

0.15 for the right network.

It is clear that the middle network should have much lower information unfairness than the ones

on both sides. Both left and right networks are unfair, but for different reasons. The left network

suffers from isolation of red nodes (low red-red flow) and the right network suffers from segregation

of groups (low red-blue flow). In real contexts, these problems would require different remedies: for

instance, in the left network, one should attempt to build connections between members of the

red group (e.g., peer group-type connections), while in the right network, more integration between

groups is required.

3.3.4 Interpretation

Interpreting IUF values is easier after normalization with respect to a null model (e.g., degree- or

density-based normalization, as described earlier). Through such normalization, IUF value is not

affected by different group sizes. Each joint attribute accessibility distribution tells us how information

flows from members of one attribute group to members of another attribute group. IUF deals with

the two most different pairs of attribute groups, and computes the distance between their flow

distributions. For instance, in the right network in Figure 3.1, which is a segregated network, I see

good flow between blue nodes (blue group to blue group), good flow between red nodes (red

group to red group) and weak flow between red and blue nodes (red group to blue group). The

greatest distance happens in comparing either (blue-blue to red-blue) or (red-red to red-blue). In

the normalization process based on a null model like degree, density or attribute, each value of the

accessibility matrix is divided by the expected value in the random network. Thus, each element

aij after normalization corresponds to the actual amount of flow between vi and vj , divided by the

expected amount of flow between vi and vj in a random graph with the same topological properties.

Note that in a fair network, we don’t necessarily expect to see the same flow between nodes vi and

vj as we see in the random network. However, the reason behind doing this normalization is to
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(a) Graph(a) (b) Graph(b) (c) Graph(c)

Figure 3.3: Graphs with same assortativity coefficient values, but different information unfairness scores

see whether nodes from each group as a whole have been harmed or benefited from the structure

equally. For instance, if we see the flow between two groups (red-blue) is 50% higher in original

network compared to the random network, then in order for the network to be fair, we need to see

the flow between two groups (red-red) or (blue-blue) is also 50% higher in the original network

compared to the random network. Thus, the distance between two distributions is then relative to

the null model.

3.3.5 IUF vs. Assortativity

As a concept,IUF is related to discrete assortativity coefficient [125], which is a measure of homophily.

However, because assortativity is a dyadic measure, there are important differences. Figure 3.3 shows

three graphs with the same discrete assortativity coefficient value (0.67) but different values of IUF:

the left graph, middle graph, and right graph have walk-based IUF values equal to 0.64, 0.15 and

0.57 respectively and SI-based IUF equal to 0.40, 0.12 and 0.35 respectively. The right network has

a significantly higher IUF than the middle network and slightly higher IUF than the left graph. It is

easy to see that in all graphs, information flows easily between nodes in the same group (red-red

and blue-blue), however, information flows much more easily from a blue node to a red node in the

middle graph. Assortativity does not capture these differences.
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Table 3.2: Dataset Statistics

Name #nodes #edges Assort Attributes Mean Degree
Parallel 1251 4356 0.06 Men, Women Men , Women

(82%), (18%) (7.12), (6.25)
Graphics 3525 10399 0.06 Men, Women Men, Women

(71%), (29%) (6.08), (6.26)
Security 1962 5976 0.07 Men , Women Men , Women

(80%), (20%) (5.90), (5.67)
Databases 3185 9386 0.10 Men , Women Men , Women

(68%), (32%) (5.91), (5.84)
Data Mining 2272 7643 0.08 Men , Women Men, Women

(66%), (34%) (6.70), (6.69)

3.4 Case Study: IUF in Co-Authorship Networks

In recent years, there has been a huge push to increase the representation of women in Computer Sci-

ence (CS) and related fields [29].2 There is some evidence that these efforts have been successful: e.g.,

Ceci, et al. compare male and female researchers in CS by evaluating bias in manuscript or proposal

reviewing, and suggest that much of the bias that once existed is gone [25]; however, in addition to

studying such statistics, it is useful to examine the co-authorship networks themselves, under the

(admittedly noisy) assumption that such networks represent research collaboration networks.

My goal with this case study is to go beyond evaluating representation by simply counting the number

of women and understand how women are situated within the field with respect to information

access. To investigate gender inequality in computer science collaboration networks, I analyze the

DBLP co-authorship networks of papers published in 2015-2019 with respect to gender. In this

section, I first describe the datasets of my study, then discuss my experimental setup, and end with a

discussion of results.
2According to a study about women’s positions in the computer science field in 2017, 17% of bachelor’s degrees ,

26% of master’s degrees and 19% of doctoral degrees were awarded to women. Moreover, 17.5% of tenured track faculty
members in computer science are women. [182]
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3.4.1 Datasets

Here, I examine five computer science subfield networks from the DBLP co-authorship dataset [160]

(Parallel Processing, Graphics, Security, Database and Data Mining)3. To extract these datasets, for

each sub-field, I extract the papers published in the top tier conferences4 published in 2015 to 2019

and select the largest connected component. Dataset statistics are shown in Table 3.2.

INFERRING GENDER: I infer gender of the authors using Gender API5 which has shown to perform

the best among different competing libraries for inferring gender [143]. For each name, Gender API

provides a gender and corresponding probability (for most names, Gender API predicts a greater than

90% accuracy). The Gender API database contains 6,084,389 validated names from 189 countries and

191 languages [143]. This database is created from publicly reachable government and social media

sources, allowing for high accuracy in predicting gender. In contrast, genderize.io only supports 79

countries and 89 languages. In my datasets, I observed that gender-API had much greater ability to

associate genders to Asian and South African names than did genderize.io. A detailed comparison of

the usage of various gender identification API’s is presented in [143].

3.4.2 Experiments

In this section, I provide four sets of experiments. In these experiments, I consider the same Propaga-

tion Probability pp for all nodes in the network and generate an adjacency matrixM based on the

pp.mij = pp if there is an edge between vertices vi and vj andmij = 0 otherwise.

THE IUF OF CS CO-AUTHORSHIP NETWORKS: In the first experiment, I compare the IUF of the five

co-authorship networks, normalizing with respect to degree, density, and attributes. I assign each

node to the gender considered most likely by the Gender API library (later, in Section 3.4.2, I account

for the probability that a node belongs to each gender). I consider k ∈ {2, 4, 6, 10} and pp ∈
3Available at https://www.aminer.cn/citation/v11
4https://webdocs.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html
5https://gender-api.com/en/

31

https://www.aminer.cn/citation/v11
https://webdocs.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html
https://gender-api.com/en/


{0.1, 0.3, 0.5, 0.9} (I assume that each node has the same pp value). I considered a maximum

cascade length of 10, because cascades longer than this are not common in practice [100]. I compute

both the walk-based and SI-based values of IUF. Note that these two values aim to measure two

different things: in the walk-based method, one is measuring the amount of information flowing

between two nodes, while in the SI-based method, one is measuring whether information is expected

to flow between two nodes. The choice of method thus depends on which of these two objectives is

most important.

Figure 3.4 shows results for k ∈ {2, 6} and pp ∈ {0.1, 0.3, 0.5, 0.9} for both the SI-based and

non-backtracking walk-based methods (results for k ∈ {4, 10} are not shown, but were similar).

First, consider Figures 3.4.a and 3.4.b, which show results when normalizing by density, allowing us

to compare networks of different sizes. In the walk-based method, as pp increases (for sufficiently

large k ), unfairness generally increases. This is because IUF is computed using the powers of pp and

of the adjacency matrix, so as pp gets larger, differences between pairwise group flows are magnified.

In contrast, in the SI-based method, as pp increases, unfairness decreases, because information

spreads farther from its source, thus reducing any unfairness caused by segregation.

As k increases, unfairness increases for both SI- and walk-based methods. This is because of the

combinatorial explosion in the amount of flow between nodes that are near each other: because

of this, as k increases, the amount of flow between nodes that are near each other dramatically

increases, and if nodes have any preference for connecting to others in their group, IUF will also

rapidly increase.

Next, using degree and attribute normalization allows us to investigate the extent to which unfairness

is due to differences in degree or the distribution of attributes within the network. By examining

the y -axes in Figures 3.4.c and 3.4.d, I see that the values are generally lower than in Figures 3.4.a

and 3.4.b, indicating that much of the unfairness is due to differences in group degrees or how the

groups are situated within the network. (At first glance, it seems odd to say that unfairness is not
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fully explained by how the attribute groups are situated in the network- after all, what else could

it be explained by? The reason that group positioning doesn’t explain all of the unfairness is that

in some network topologies- e.g., those in which a very small number of nodes have an extremely

high degree, like in a typical power law degree distribution- even if one assigns attributes purely at

random, it is not unlikely that many high degree nodes will get assigned to the same attribute group,

simply because there are so few such nodes. If this happens, high unfairness will directly follow.

Thus, in some cases, unfairness can be attributed to the topology itself, and not just how attributes

are distributed across the topology.)

Of the considered networks, when using the walk-based method, the Parallel Processing network is

by far the least fair. When investigating the reason for this behavior, I discovered that this network

contains a very large clique, which has 38 men and only 1 woman. (There are several large cliques;

this is the largest.) Due to the combinatorial explosion of walks discussed above this clique will be

responsible for a huge amount of flow between men. When the clique is removed from the network

the unnormalized IUF value decreased from 1409 to 33 (for k = 6, p = 0.4, with similar results at

other parameter values).

To investigate whether the results obtained so far are statistically significant, I perform hypothesis

testing, which quantifies whether a result is likely due to random chance or to some factor of interest

by computing a p-value in order to support or reject the null hypothesis. The smaller the p-value, the

stronger the evidence that one should reject the null hypothesis. To perform these tests, I generate

1000 random graphs that preserve some aspect of the original graph and compare the IUF in these

random graphs to the IUF in the observed graph. The p-value is then the fraction of random graphs

that generated an IUF greater than the actual IUF. If the p-value is greater than 0.05, then the IUF of

the original graph can be considered to not be statistically significant (i.e., may be explained by that

particular aspect).

For the density-based significance test, I generate random graphs with the same number of nodes

and edges as the original graph, using a slightly modified Erdös-Renyi model that returns a graph
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Figure 3.4: IUF results for DBLP subfields.

with exactly the desired number of edges [46]. For the degree-based significance test, the random

networks have the same degree distribution as the original network. For the attribute-based sig-

nificance test, the topology of the random networks is the same as the original network (the same

nodes and edges) but attributes in the graph are shuffled.

Table 3.3 shows the fraction of random networks with IUF is greater than the IUF of the original

network for the walk-based method using k = 4 and pp = 0.5. (This procedure is too slow for the

SI-based model, so I used the faster, more tractable walk-based method). From Table 3.3, one can

observe that the results are statistically significant when accounting for density and degree (p-values

are 0 or close to 0 for density and degree, respectively). This shows that IUF cannot be explained

entirely by the density and degree of the graph.

However, in many cases, a large fraction of graphs has higher IUF than the original when attributes

are assigned randomly to nodes. This result is very interesting, because it shows even when shuffling

the attributes randomly, there is a very good chance that the IUF could be at least as high as that
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in the observed graph! This indicates that there is something inherent in the graph’s topology, not

considering attribute distribution, that makes unfairness very likely to occur. As discussed before, this

may be due to cliques (as in the Parallel Processing network) or a very skewed degree distribution.

Table 3.3: Percentage of graphs that have IUF higher than the original graph

Normalization Parallel Security Data Mining Database Graphics
Density 0.0% 0.0% 0.0% 0.0% 0.0%
Degree 0.0% 0.1% 0.2% 0.1% 0.1%
Attribute 11.2% 28.4% 43.3% 53.6% 18.3%

ANALYSIS OF JOINT ATTRIBUTE ACCESSIBILITY DISTRIBUTIONS: In order to further drill down into why

unfairness occurs in different networks, I compare the mean value for different joint attribute accessi-

bility distributions (Men-Men, Men-Women and Women-Women: because the network is undirected,

the Women-Men distribution is the same as Men-Women distribution) using both the walk- and

SI-based methods.

Table 3.4 shows these results for k = 4 and pp = 0.5 (the pattern for other values were similar) and

density-based normalization (allowing us to compare networks of different sizes). Interestingly, in

only one network- Parallel Processing- is the Men-Men flow higher than the Women-Women flow!

As discussed before, this is largely due to the presence of a large, almost entirely male clique in

the Parallel Processing network and because, as shown in Table 3.2, men in this network have a

substantially higher mean degree than women. In contrast, for the other subfields, Women-Women

flow is slightly greater than Men-Men flow.

As the mean values for joint distributions in many cases were close to each other, to determine

whether the differences between means are meaningful, the t-test is performed for the means of each

pair of joint attribute distributions. I use the ttest − ind function from the Python SciPy library [174],

which performs a two-sided test for the null hypothesis that two independent samples have identical

average values. Table 3.5 shows the p − value for this test between each pair of joint attribute

distributions using density-based normalization. The results show that in all cases the p-value for

comparing Men-Men and Women-Women flow is below 0.05, indicating statistical significance.
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Table 3.4: Mean value for different joint attribute accessibility distribution: Men-Men (M-M), Men-Women
(M-W), Women-Women (W-W)

Walk SI
Dataset M-M M-W W-W M-M M-W W-W

Parallel 26.6 6.63 4.05 0.21 0.20 0.21
Security 2.26 2.45 2.71 0.40 0.42 0.48
Graphics 2.64 2.69 3.18 0.66 0.67 0.73
Database 3.07 3.23 3.52 0.47 0.48 0.52
Data Mining 4.39 4.71 5.04 0.80 0.82 0.85

Table 3.5: T-test results for different pairs of joint attribute accessibility distribution: Men-Men to Men-
Female (M-M to M-W), Men-Men to Women-Women (M-M to W-W), Men-Women to Women-Women (M-W
toW-W)

Walk SI
Dataset M-M M-M M-W M-M M-M M-W

to to to to to to
M-W W-W W-W M-W W-W W-W

Parallel 0.00 0.00 0.26 0.13 0.09 0.03
Security 0.00 0.00 0.08 0.00 0.00 0.00
Graphics 0.14 0.00 0.00 0.00 0.00 0.00
Database 0.06 0.02 0.16 0.20 0.00 0.00
Data Mining 0.00 0.00 0.05 0.00 0.00 0.06

ACCOUNTING FOR ERROR ASSOCIATED WITH INFERRING GENDER: Recall that in these datasets, I inferred

gender using the Gender API library. This library associates a probability or confidence with each

inference. In order to explore the account for these probabilities, I compute a version of IUF in which

the group membership matrix is non-binary, allowing an individual to partially belong to both groups

(weights sum to one). I compare the resulting IUF to the IUF values computed before, using a binary

group membership matrix.

Figure 3.5 shows the results for k = 2 and k = 6 for the walk-based method, with solid lines

showing the original IUF values, and dashed lines showing the recomputed IUF values. In most

cases IUF does not change dramatically (and certainly, patterns stay the same). In the recomputed

version of IUF, unfairness generally decreases. This is because, in some sense, group memberships

are ‘flattened out’, reducing disparities between pairwise group flows. For example, in the Parallel

Processing dataset (which has the greatest decrease), the large clique that was responsible for high
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Figure 3.5: Information unfairness results for DBLP subfields. Dashed lines show information unfairness
value for weighted version.

Men-Men flow now has some Women-Women flow associated with that clique.

VALIDATING NORMALIZATION: One important aspect of IUF computation is the normalization step.

Recall that in this step, to compare the flow between each pair of nodes in the actual network to the

flow between the same nodes expected in a random graph sharing some properties with the original

network (e.g., density or degree distribution), element-wise division of the accessibility matrix of the

original networkA by the expected accessibility matrix of random network S is performed.

However, properly computing matrix S as the average of all possible accessibility matrices is com-

putationally infeasible (except in certain very limited cases), as one would need to generate every

graph with the desired properties, and then compute its accessibility matrix. Instead, I computed a

single accessibility matrix corresponding to the average of the adjacency matrices for all possible

graphs. The distinction here is subtle but important, and so it is useful to understand the extent to

which my simplification changes the outcome.

In this section, I compare IUF results computed using my approximation to the results obtained by

normalization using the average accessibility matrix of 1000 random graphs. Table 3.6 shows results
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for k = 4 and pp = 0.5 (‘Estimated IUF’ represents the original results and ‘Actual IUF’ shows the

recomputed values), and while there are some differences, values are generally similar.

Table 3.6: Comparison results of actual vs. estimated normalization

Dataset Density Density
Estimated IUF Actual IUF Estimated IUF Actual IUF

Parallel 22.60 22.16 0.10 0.12
Security 0.46 0.47 0.11 0.14
Graphics 0.54 0.43 0.15 0.17
Database 0.45 0.38 0.08 0.10
Data Mining 0.65 0.61 0.04 0.04

3.4.3 Discussion

Observation 1: All subfields exhibit some degree of unfairness. All networks exhibit non-zero

IUF, regardless of normalization. However, this unfairness occurs due to different reasons. In the

Parallel Processing network, women are severely disadvantaged: they receive less information than

men both from men and from other women. This is in large part due to the presence of large, male-

dominated cliques, and removing these cliques increases fairness substantially. In other subfields,

Women-Women flow is the highest. (Exploring the sociological causes for such behavior is outside

the scope of this chapter; one possibility is that efforts to build mentorship and other networks

among women have been successful.)

Observation 2: As pp increases, walk-based IUF tends to increase, and SI-based IUF tends to

decrease. This occurs because these two different ways of measuring information flow are measuring

different things. When the accessibility matrix is computed using walks, I am measuring the amount

of information flowing between pairs of nodes, while when computed using an SI-type contagion, I

am measuring whether information is expected to flow between each pair of nodes. In the former

method, I observe combinatorial explosions, where as pp increases, the amount of flow between

nodes that are near one another increases dramatically. If nodes tend to connect with others with

the same attribute, then this further increases unfairness. In contrast, with the SI-based method, as

pp increases, information travels farther from its source, decreasing unfairness.
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Note that there are some exceptions to this: for example, in the degree normalized version, for low

k values, IUF decreases as pp increases. For large k , cascades are able to travel farther from the

originating node, and the local effects of homophily are diminished. Note, though, that this can only

happen for large pp (because at small pp, even if k allows for long cascades, in practice very little

information will travel far from the source). However, even for large pp, this effect is countered by the

combinatorial explosion of cascades (walks) that stay in the local neighborhood of the originating

node. For each network, I observe some ‘balance point’ between k and pp where cascades can grow

long enough to overcome the local effects of homophily but are not so long as to encounter such

combinatorial explosions. With such cascades, information unfairness decreases as pp increases.

Observation 3: Degree and attribute distributions account for a large part of the networks’

information unfairness. The density-normalized IUF values, which account only for the size of

the graph, are much higher than IUF values computed when normalizing with respect to degree or

attribute distribution. For instance, for k = 6 and pp = 0.5, the Parallel Processing subfield has IUF

values of 802.85, 0.90 and 1.26 for density, degree and attribute-based normalization respectively.

While this is the most extreme example, differences are evident in other subfields as well.

Observation 4: Women often have an advantage in sending or receiving information. Except

for the Parallel Processing network, the Women-Women flow is higher than the Women-Men and

Men-Men flows. Although explaining this phenomenon is not within the scope of my work, a possible

explanation is that attempts to build professional networks among women in computer science

have been successful.

3.5 Conclusion

In this chapter, I introducedInformation Unfairness (IUF)which measures the extent to which

information flows to individuals from different protected groups equally. I performed an in depth

analysis of the DBLP co-authorship network, in which I studied five subfields of computer science

(Parallel, Graphics, Database, Data mining and Security) and analyzed what causes unfairness in

these networks.
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Chapter 4

INCREASING FAIRNESS IN INFORMATION FLOW

In the previous chapter, I introduced IUF (IUF) and showed how to measure fairness in information

flow in the network and did a case study on computer science co-authorship networks and showed

that none of the networks are fair. In this chapter, I consider the problem of adding a set of edges to

a network to reduce its IUF and propose two novel algorithms MaxFair and MinIUF for this task.

Experimental results show that MaxFair and MinIUF can obtain large decreases in IUFwhen adding

only a small number of edges.

In brief, MaxFair uses a power iteration-like process to compute a score for each pair of unconnected

nodes, where the score represents the decrease in IUF that would be obtained by connecting those

nodes. MinIUF is an improved version of MaxFair. While MaxFair estimates the effect of adding an

edge on overall flow to each group, MinIUF makes this estimate more accurate by considering the

effect of adding an edge on flows based on walks of different length.

My contributions are as follows:

1. I introduce MaxFair, an algorithm for decreasing the IUF of a network by adding a small

number of edges (Section 4.1.3).

2. I introduceMinIUF, an improved version of MaxFair for reducingIUFand show that it achieves

significant reductions in IUF (Section 4.1.4).
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3. I compare the performance of MaxFair and MinIUF over different baseline methods and

show that they can increase fairness dramatically by adding a few edges (Section 4.1.5).

4.1 Reducing Information Unfairness

Depending on the application domain, it might be possible to reduce the IUF of a network by adding

edges. For instance, if a company detects high values of IUF for its professional network, then it can

reduce it by adding key employees to a mailing list, planning meetings where specific individuals

are present, forming social groups, etc.

4.1.1 Problem Statement

Given a network G with adjacency matrix PM, cascade length k , optional propagation matrix P,

class membership matrixCM and budget b. The goal is to find a set of b edges among all the edges

that are not present inG such that adding them toG will minimize IUF.

4.1.2 Challenges

First, the problem of minimizing IUF is not sub-modular. Figure 4.1 shows an example that adding a

single edge will not decrease IUF, but adding multiple edges decreases IUF. Second, it is not easy to

estimate the changes in flow after adding a set of edges. Although there are works on characterizing

flow in the network using its spectral decomposition properties [26] and how to add edge to the

network such that overall flow in the network is maximized [167]. These methods can’t be used

for my problem because (1) they seek to increase the overall flow, whereas I seek to increase flow

between specific attribute classes and (2) spectral decomposition considers flow where k goes to

infinity, whereas I consider flow for small values of k because as I mentioned before, high values of

k are not practical for information flow, and I am interested in information that might expire after

some time.
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Figure 4.1: Adding single edge increases IUF while adding multiple edges decreases IUF

4.1.3 MaxFair Algorithm

In this section, I introduce MaxFair for reducing IUF. This algorithm aims to reduce walk-based

unfairness. This algorithm is based on attribute-based centrality and the idea is to select those pairs

of nodes with highest centrality with respect to the neglected group. In this section, I first show how

to compute attribute-based centrality and then show how to compute MaxFair.

ATTRIBUTE-BASED CENTRALITY: When estimating the effect of adding edge (u, v) on flow between

attribute groupsCf andCg , one must quantify how well nodes u and v spread information to groups

Cf andCg . If u has good flow toCf , and v has good flow toCg , then adding edge (u, v)will facilitate

flow between the two groups.

To capture this concept, MaxFair performs a power iteration-type method. Suppose that one wish

to create a vector vecf containing each node’s centrality with respect to group Cf . First, initialize

vecf ,0 so that the j th element is 1 if j ∈ Cf and 0 otherwise. Perform k − 1 iterations, where in each

iteration j , set vecf ,j(u) = sum([vecf ,j−1(v) : (u, v) ∈ G ]). Then, define vecf = pp × vecf ,0 +

pp2 × vecf ,1 + ... + ppk × vecf ,k . If propagation probability pp is not provided, one can integrate

over pp ∈ [0, 1], as before. Next, divide by |Cf | to compute the mean. Finally, for each node u ∈ Cf ,

add 1 to vecf (u) (because if u ∈ Cf , adding an edge to v increases flow to Cf , even if u does not

subsequently spread to other members ofCf ). This parallels the computation of the accessibility

matrix, by finding the number of length-i cascades from u to nodes inCf , weighted by powers of pp,

and summing over i from 1 to k .
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MAXFAIR COMPUTATION: MaxFair consists of b iterations. LetGj denote the graph at the beginning

of iteration j (G1 = G). In iteration j , MaxFair performs the following, usingGj :

1. Compute the attribute-based centrality vector vecf for each attribute groupCf .

2. Compute the joint attribute accessibility distributionsDfg for all group pairsCf andCg .

3. Compute the mean of eachDfg distribution, and the mean all_mean of the distribution means.

Let sfg = all_mean −mean(Dfg).

4. Iterate over all pairs of nodes (u, v) that are not already connected inGj . Define score(u, v) =∑
f ,g sfg ∗ (vecf (u) ∗ vecg(v) + vecg(u) ∗ vecf (v)).

5. Select the highest scoring edge to add toGj .

The fourth step is the heart of MaxFair. Here, edges receive a reward for increasing flow between

group pairs that have below-average flow, and a penalty for increasing flow between above-average

group pairs.

I make two efficiency improvements to MaxFair. First, instead of recomputing IUF in every step, re-

compute every j iteration. Second, instead of scoring all candidate edges, prune the set by finding the

top-q% highest scoring nodes with respect to attribute centrality for each attribute group, and only

consider candidate edges between nodes in those sets. I discuss the effects of these improvements

in Section 4.1.5.

4.1.4 MinIUF Algorithm

In this section, I introduce MinIUFwhich, like the MaxFair algorithm, reduces walk-based unfairness.

This algorithm is based on the idea that when an edge (vi , vj) is added, it has influence on flows of

different length, starting from 1 to k on any protected group on the network. This is because the flow

of information between two nodes is equal to the sum of flows of information of different length

between two nodes. Thus, when one wants to add an edge, its effect on flows of different length
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needs to be considered.

MINIUF COMPUTATION: MinIUF consists of x steps and at each step, it computes the score for all the

edges that are not present in GraphG and then select the b
x

top highest scoring edges to add toG

as follows:

1. Initialize counter = 0:

2. LetAk be the accessibility matrix of cascades up to length k andBk be the matrix of expected

number of times a node hears from another node using non-backtracking walks (see sec-

tion 3.3.1) andCM be the class membership matrix. Define matricesACkn×l = Ak · CM and

BCkn×l = B
k · CM.

3. Compute flow means matrix FMl×l fromAk andCM as described in section 3.3.1.

4. Set IUFbefore = max(FM)−min(FM)

5. For each pair of nodes vi , vj :

□ DefineU = FM.

□ ufg = ufg + pijΣk′∈{1,...,k−1}cm
k′ [i , f ] · bmk−k

′−1[j , g] + cmk
′
[j , f ] · bmk−k

′−1[i , g]

+cmk
′
[i , g] · bmk−k

′−1[j , f ] + cmk
′
[j , g] · bmk−k

′−1[i , f ]

□ IUFafter = max(U)−min(U)

□ score(ui , uj) = IUFafter − IUFbefore

6. Select top b
x

edges with highest score and add them toG .

7. IncrementCounter , If counter < x go to 2, terminate otherwise.

MinIUF is based on computation of IUF using flow mean matrix FM described in section 3.3.1. As

IUF = max(FM)−min(FM), by estimating the changes in matrix FM after connecting each pair

of nodes, one can select the best pairs of nodes to connect. To compute the changes in matrix FM,
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MinIUF estimates the changes in flow of information that is caused by new non-backtracking walks

of different length at step 4. The major contributors to MinIUF’s running time are recalculation of

matrices FM and AM. Choosing lower values for x increases running time but might affect the

performance.

4.1.5 Performance of Proposed Algorithms

In this section I first compare the performance of the two proposed methods MinIUF and Maxfair

on decreasing IUF compared to baseline methods and then I show the trade-off between accuracy

and running time for MinIUF.

DATASETS: In my Experiments, I use the same dataset that I used in my case study in the last chapter.

These datasets are co-authorship networks in five computer science sub-fields of Data Mining,

Database, Parallel Processing, Security and Graphics. Statistics are shown in Table 3.2.

COMPARISON RESULTS: I evaluate the performance of MaxFair and MinIUF on the DBLP dataset

that I used in my case study and compare it against five baseline methods: AttributeCentrality,

GlobalDegree, InternalDegree, Centrality and Random.

All the baseline methods use the same approach as MinIUF in a way that each one consists of

x steps and at each step, each selects the candidates with the highest score and connects them

into the network. The differences between these methods is in the score computation process.

AttributeCentrality is the same as MaxFair except that it computes attribute-based centrality in a

different way. Attribute-based centrality in this method is computed asAMn×l = SB · CMwhere

CM is class membership matrix andSB is an estimation of sum over walks of different length k based

on Katz-style centrality [88].SM =M′+M′2+... = (I −αM′)−1− I . Where 0 ≤ α ≤ ρ(M′)−1− I

and ρ(M′) is the spectral radius ofM′. By multiplyingM′ by α, one makes sure that the geometric

series generated byM′ converges [61]. InternalDegree uses the same approach as MaxFair, except

that it uses the degree of each node with respect to each group Cf instead of attribute centrality.

45



Parallel Security Graphics Database Datamining

40

20

0

20

40

Pe
rc

en
ta

ge
 R

ed
uc

tio
n 

in
 IU

F

(a) k=2, pp=0.2.
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(b) k=6, pp=0.2.
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(c) k=2, pp=0.5.
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(d) k=6, pp=0.5.
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(e) k=2, pp=0.7.

Parallel Security Graphics Database Datamining

40

20

0

20

40

60

80

100

Pe
rc

en
ta

ge
 R

ed
uc

tio
n 

in
 IU

F

(f) k=6, pp=0.7.

Figure 4.2: IUF results for DBLP subfields. Dashed lines show IUF value for weighted version.

GlobalDegree, and Random first detect the joint attribute accessibility distributionDfg that has the

lowest mean, then GlobalDegree selects two nodes from groups Cf andCg that are not connected

and have the highest degree product and Random selects two nodes from groupsCf andCg that

are not connected at random. Finally, Centrality selects the node pairs with the highest eigenvector

centrality product.

For all networks, I setb = 1%|E |whereE is the set of edges in the network and set x = 10. Figure 4.2

shows results for k ∈ {2, 6} and pp ∈ {0.2, 0.5, 0.7}. I selected three levels (low, medium, high) for

probability and two levels for k to see the performance of MinIUF in different settings. The results
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show that in almost all cases MinIUF outperforms baseline methods. The results show that adding

few edges (1% of the existing edges in the network) can decrease unfairness dramatically. For k = 2

the unfairness increases by almost 40% and for or k = 6 the unfairness increases by almost 80%

for lower value of pp and almost 90% for higher values of pp for all datasets except parallel. As I

mentioned in my case study, there is a clique in the network that is dominated by men and adding

few edges won’t solve its unfairness problem dramatically.

RUNNING TIME: MinIUF consists of x iterations and the main contributors to its running time are

the number of times the scores are recalculated which is equal to x . In my previous experiment, I set

x = 10. In this experiment I compute the percentage reduction in IUF for x ∈ {4, 8, 16, 32} and

show the percentage improvement on IUF and the corresponding running time in seconds. Table 4.1

shows the results for k = 4 and pp = 0.5 (Experiments run on a 2019 MacBook Pro with a 2.8 GHz

Quad Core i7 processor). The results demonstrate the challenge that I described in section 4.1.2

that sometimes adding groups of edges might decrease IUF while adding individual edges might

increase it. We see in the Database dataset that when x = 8, we see a better reduction compared to

x = 16. However, in all cases when x is greater than 8, we see a good amount of reduction in IUF

and we don’t have to consider large values for x .

Table 4.1: Percentage Improvement (PI) over IUF and its corresponding running time in seconds for
different x values

Dataset x=4 x=8 x=16 x=32
Parallel Percentage Improvement 38% 39% 38% 38%

Running Time 108 218 498 972
Graphics Percentage Improvement 45% 58% 82% 85%

Running Time 2082 2788 4574 7729
Security Percentage Improvement 23% 72% 69% 69%

Running Time 376 652 1249 3395
Data Mining Percentage Improvement 53% 80% 80% 80%

Running Time 586 874 1681 3060
Database Percentage Improvement 13% 76% 67% 73%

Running Time 1677 2247 3706 7814

47



4.2 Conclusion

In this chapter, I showed how to reduce unfairness of these networks by adding a specified number

of edges using MaxFair and MinIUF algorithms. I showed that MaxFair and MinIUF are capable of

reducing IUF dramatically. While MaxFair is good at reducing unfairness when k and pp are small.

MinIUF outperforms baseline methods in different settings.
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Chapter 5

INCREASING FAIRNESS WITH ASSIGNMENT

5.1 Introduction

The profitability and success of commercial and nonprofit organizations depends in large part on

their employees [43]. Thus, it is important for organizations to attract and recruit skilled employees

and ensure that employees have an environment in which they can succeed. Often, when seeking

an employee for a role, companies attempt to simply identify the most qualified candidates, in

terms of characteristics like skill-set and experience [38]. However, organizations have recognized

the importance of a fair workforce in terms of diversity [3].

Diversity in organizations has often been measured simply in terms of numbers [129]. This is a

good start but misses important aspects of the structure of the organization. It is well-known in the

sociological literature that organizations are relational entities and should be conceptualized as

networks [36]. The position of people in the network and their distance from others determines the

structure of a network [20], and it is important for an organization to be fair with respect to network

structure.

For example, are minority groups segregated, or well-integrated into the larger population? Are

they able to access mentorship resources? Depending on how minority individuals are situated

in the organizational network, they may be systematically deprived of the ability to learn of new
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opportunities, find mentors or role models [105, 18], connect to high-performing employees [1], and

so on. I examine this problem from a network perspective, taking the view that diversity should be

measured in terms of social relations [154], and not just numbers.

In this work, I present a method to assess the quality of an organization’s hiring and assignment

practices with respect to the diversity of the organizational network. I do this by determining how

to assign a set of newly hired employees or employment candidates to open positions in the or-

ganization such that both the fit of employees to open positions (fitness) and the diversity of the

organizational network are maximized and compare it with the organization’s practices in hiring or

assignment.

It has long been recognized that negative effects may happen when the network is structured in a

way that important resources are not accessible through the social capital accessible to members of

a minority group [54]. Social capital is the sum of potential and actual resources in the network that

are derived from and accessed through the social relationships in the network [121]. Social capital is

divided into bridging resources, which are accessed from outside of an individual’s group (inter-group

connections) and bonding resources, which are accessed from internal group connections (intra-

group connections) [102]. It is thus problematic if individuals have access to only intra- or inter-group

connections. For instance, in a company where women are segregated into certain departments,

individuals from male or female groups have access to resources coming largely from the same

gender individuals (intra-group connections) but may lack access to resources from the other group

(inter-group connections). Conversely, if minority individuals are scattered throughout the network

and are isolated from one another, they have access to resources coming from majority individuals

(inter-group connections) but do not have access to resources (including support) coming from

members of their own minority group (intra-group connections).

My goal is to provide a technique to quantitatively assess an organization’s hiring and assignment

procedures, given a set of open positions and employment candidates. Each potential employee

has a categorical attribute denoting their membership in a group of interest (e.g., their gender). I
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propose Fair Employee Assignment (FairEA), a novel algorithm for identifying assignments

of candidates to open positions with the multiple goals of maximizing fitness, minimizing segregation,

and other diversity-related objectives to ensure that the most suitable candidates are matched to

open positions, and individuals from different groups have access to social capital. By comparing

the diversity and fitness of the organization’s actual hiring/assignment decisions to these ‘ideal’

outcomes, one can gauge the extent to which a less-segregated assignment is possible. For example,

suppose that FairEA is able to find a high-quality matching of employees to positions, and that

matching is substantially more diverse than the actual matching. The company may then infer

that their current hiring techniques are problematic and revise those practices. Their revised hiring

techniques may include practices like the Rooney Rule (the policy to interview at least one minority

candidate for a position), which has been successfully used by the American National Football

League. Similar efforts are used in corporate settings [35].

Note that in the United States and other countries, it is illegal to make employment decisions based

on protected attributes like race or religion.1 For this reason, although the output of FairEA is a

matching of candidates to positions, it is not intended to be used directly to make assignments.

Rather, the quality of this matching (in terms of fitness and diversity-related objectives) can be used

as a baseline. Through experiments on both real and synthetic network datasets, I demonstrate

that FairEA outperforms the baseline strategies at finding a complete matching while satisfying the

goals above.

My key contributions are as follows:

1. I formulate the multi-objective optimization problem of assigning candidates to open positions

to maximize fitness and diversity-related objectives in terms of social relations. (Section 5.2).

2. I discuss challenges in designing a near-optimal heuristic (Section 5.2.3).

3. I propose FairEA, a novel algorithm for solving the employee assignment problem (Sec-
1https://www.eeoc.gov/laws/practices/
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Figure 5.1: Overview of the problem.

tion 5.3), and show via simulation on real and synthetic data that FairEA outperforms a

number of baseline methods in achieving the goals above and how FairEA can be used to

assess the quality of hiring/assignments. (Section 5.4).

5.2 Problem Formulation

I formulate a multi-objective problem in which the goal is to assign a set of newly-hired employ-

ees/employment candidates (without loss of generality, the ‘candidates’) to open positions so as to

maximize (1) the fitness of employees to positions and (2) the diversity of the organizational network,

under the constraint that all open positions must be filled. I compute diversity as homophily, which

measures the extent to which ‘like connect to like’. In some applications, there may be other diversity-

related goals (e.g., ensuring that minority individuals are not isolated): I treat these as constraints

and discuss some options later in this section. Once this matching is accomplished, the user can use

it to gauge the quality (in terms of fitness and diversity) of existing hiring/assignment decisions. An

overview of the problem is shown in Figure 5.1.

5.2.1 Input and Output

The input consists of the following:
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(1) An undirected networkG = (P,E) that represents the professional network of the organization.

The n nodes in P correspond to the positions in the organization (s filled positions andm open or

unfilled positions). Each edge (pi , pj) represents either a real or expected professional interaction

between the employees who currently fill or will fill positions pi and pj . At least one of the following

should hold: (a) pi and pj are filled, and current employees ci and cj have professional interactions

with one another. (b) At most one of pi and pj is filled, but due to the nature of the positions, it is

expected that once they are filled, the employees in those positions will interact (e.g., the head of

Sales will interact with the head of Marketing).

(2) A set of t candidates (t ≥ m). If equal, this problem represents the case where new employ-

ees have already been hired and need to be assigned – e.g., newly hired software engineers are

being assigned to teams. If greater, this problem can be viewed as a combination of the hiring and

assignment problems.

(3) The fitness of each candidate cj for each position oi (how well-qualified cj is for oi ). I assume that

it is possible to match candidates to open positions such that each open position is filled subject to

having at least one candidate with greater than zero fitness for each open position.

(4) An attribute of interest, such as gender, that divides employees/candidates into k classes of

attributes: classs , .., classk . I assume that this attribute is categorical and each node can be a member

of just one class (e.g., minority and majority).

The output is a matching of candidates to open positions. I refer to the input and output in the rest

of the paper as described in Table 5.1.

5.2.2 Objectives

FairEA attempts to solve a multi-objective optimization problem with fitness and diversity-related

objectives, described below.
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Table 5.1: Notation

Symbol Definition
G(P,E) Unweighted, undirected attributed graph

O = {o1, .., om} Set of open/unfilled positions
F = {f1, .., fs} Set of filled Positions
P = {p1, .., pn} Set of positions (nodes of networkG ) ,(F ∪O = P)
Q = {q1, .., qs} Set of current employees(q1, .., qs fill f1, .., fs )
C = {c1, .., ct} Set of candidates to fill open positions

Wm×t Fitness matrix,wij :fitness of candidate cj for position oi
An×n Adjacency matrix of networkG

A1s×s ,A2s×m,A3m×m Sub-matrices ofA, (F to F , F toO ,O toO edges)
Yn × k Membership matrix of current/future employees to k classes

YFs×k ,YOm×k Sub-matrices ofY, Membership of current and future employees
YCt×k Membership matrix of candidates to k classes
Zn × k ′ Membership matrix of current/future employees to k ′ teams

ZFs×k ′ ,ZOm×k ′ Sub-matrices ofZ, Membership of current and future employees
T threshold vector, ti : threshold for team i

Xm×t binary output matrix, xij = 1 if cj is assigned to oi
Uk×k uij : fraction of classi to classj edges

MAXIMIZING FITNESS: The first goal is to maximize the fitness of the assignment, subject to the

constraint that all positions are filled, and each candidate fills at most one position. This objective

corresponds to the organization’s primary goal of recruiting employees with the required skill sets [38].

The overall fitness of a matching is computed by summing the fitness of each pair of matched open

positions and candidates. Higher values indicate a matching of better qualified candidates for open

positions. This goal can be formulated as an optimization problem:max f1 =
∑
ij wij · xij , such that

for each 1 ≤ i ≤ m,
∑
1≤j≤t xij = 1 and for each 1 ≤ j ≤ t ,

∑
1≤i≤m xij ≤ 1.

MAXIMIZING DIVERSITY: I compute diversity as homophily, which measures the extent to which a

minority group is integrated into the larger network based on the number of inter- vs intra-group

connections [183]. I measure homophily using the attribute assortativity coefficient, which measures

the tendency of individuals to associate with like minded users (on a scale from -1 to 1). Consider

matrixU, where uij is the fraction of edges in the network that connect a node from class i to class j ,

the assortativity coefficient is equal to Trace(U)−||U2||
1−||U2|| where ||U2|| means sum over all elements in

U2 [125].

54



Positive values show more intra-group connections and negative values show more inter-group

connections in a network. Thus, the second goal is to maximize diversity by minimizing the absolute

value of the assortativity coefficient. Here the absolute value is used because values close to zero

have a balanced number of intra- vs inter-group connections: minorities are neither isolated nor

segregated. (Note that if the size of a minority group is extremely small, isolation may occur when

trying to reduce segregation. I address this by prioritizing isolation, as described later in this Section.)

Providing a properly balanced number of intra- vs inter-group connections is based on the goal of

providing access to social capital, which consists of bridging (inter-group) and bonding (intra-group)

connections [102]. LetA1,A2, andA3 be sub-matrices of adjacency matrixA, whereA1(s×s) shows

the existence of the edges between nodes in F , A2(s×m) shows the existence of the edges from

nodes in F to nodes inO , andA3(m×m) shows the existence of the edges between nodes inO . Let

YOm×k = X·YCbe the binary matrix of the membership of candidates that will fill the open position

to each attribute class. ThenU = YT ·A·Y= YFT ·(A1 ·YF+A2 ·YO)+YOT ·(AT2 ·YF+A3 ·YO)

and this goal can be formulated as an optimization problem as:min f2 = |Trace(U)−||U2||
1−||U2|| |.

OTHER DIVERSITY-RELATED CONSTRAINTS: In addition to reducing segregation by minimizing the

absolute value of assortativity, an organization may have other diversity-related goals, such as

ensuring the existence of mentor/mentee relationships, ensuring that members of the minority are

in positions with public visibility, providing access to communities of support, and so on. While this

problem formulation aims at minimizing the absolute value of assortativity, other factors can be

added as constraints. Here, I discuss one example, but users can add as many constraints as they

need.

Prioritizing Isolation: I consider a network to be diverse if it has near-0 homophily: i.e., members

of attributed groups have access to both intra- and inter- group connections. In such a network,

individuals are connected to others independent of their group membership. However, if a minority

group is very small, a low-homophily network would indicate that members of that group are isolated.

Organizations may want to avoid such an outcome [170] because such isolated individuals may
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be unable to find other members of a group and form a community of support, where peers share

their experiences and discuss their problems and provide social support for each other [177]. Such

communities have been shown to be a key component of individual success [53] and have impact

on both psychological and physical aspects of individuals’ lives [145].

Suppose a company has k ′ disjoint teams and wants to ensure that minorities from each team i

are teamed with at least ti other minorities. Given a binary matrixZn×k ′ denoting the membership

of positions in a team, where zi ,j = 1 if position pi is member of teamj . ZFs×k ′ and ZOm×k ′ are

sub-matrices ofZ denoting the membership of filled and open positions and a vectorT , indicating

that team i should have at least ti minorities. The non-isolation goal is treated as a constraint: for

each team i , zf T∗i · yf∗j + zoT∗i · yo∗j > ti where j ∈ {1, .., k}; |zf∗i + zo∗i | > 0. zf∗q , yf∗q , zo∗q

and yo∗q are the qth column vectors of matricesZF,YF,ZO, andYO respectively. Note that this

constraint does not prevent assignment of a fit minority to a team where satisfying this constraint is

not possible.

5.2.3 Challenges

First, the problem is NP-hard via a reduction from NP-Complete problem Unweighted Max Cut [63],

making it exceedingly unlikely that an optimal polynomial-time algorithm exists (See section 5.2.3).

Second, the problem of minimizing diversity is not convex. Moreover, as I demonstrate in section 5.2.3,

this problem is neither sub-modular nor super-modular. Third, although the problem can be formu-

lated as an integer program, this process is computationally slow. With n candidates andm open

positions, there are m · n binary variables with 2m·n solutions, and an Integer Program Solver is

unlikely to find a solution quickly.

These challenges make it impossible to find a polynomial-time exact solution and also suggest that a

fast approximation algorithm may not exist. As such, I present a heuristic and demonstrate its strong

performance experimentally.
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NP-HARDNESS: To demonstrate NP-Hardness, I consider a single-objective variant of the problem.

I assume that all candidates are equally fit for each open position; the problem then reduces to

assigning candidates to open positions so that homophily is as close as possible to 0. I refer to this

problem as SimpleAssign and show that it is NP-Hard. Claim: SimpleAssign is NP-Hard.

Proof: I will demonstrate that SimpleAssign is NP-Hard via a reduction from Unwei- ghted Max Cut

(UMC), which is known to be NP-Complete [63]. In theUMC problem, the input is an unweighted,

undirected graph, and the goal is to partition the nodes into two subsets so that the number of edges

crossing between the sets is maximized.

Suppose one is given an unweighted, undirected graphG = (V ,E)with n nodes andm edges as

input toUMC . Without loss of generality, assume thatG is connected. The goal is to partitionV into

two groupsV1 andV2 such that the number of inter-group connections is maximized. Assume that

we have an algorithm for SimpleAssign. I will show how to use the algorithm for SimpleAssign to

identify a max cut inG . In this proof, I will refer to the node attributes in terms of colors: ‘red’, ‘blue’,

and ‘green’. The goal ofUMC is to divide the node set into a ‘red’ group and a ‘blue’ group.

Initially, create a graph with three connected components. The first component is a clique of size 2n

in which all positions are filled by red nodes. The second component is identical but filled by blue

nodes. The third component is based onG , as follows:

First, the third component containsG . Next, let dmin, dmax denote, respectively, the minimum and

maximum degrees of nodes inG . Define k = dmax − dmin. Create k new nodes and connect each

node inG to the appropriate number of these new nodes so that all nodes inG have degree dmax .

(It doesn’t matter which specific new nodes a node inG is connected to.) These k new nodes are

positions filled by green nodes. The nodes inG are open positions.

Next, iterate over all pairs of non-negative integers (i , j) such that i + j = n. These i , j represent

the number of nodes that could belong to groupsV1,V2 (the partition forUMC ), respectively. For a

given pair (i , j), define a candidate pool consisting of i red nodes and j blue nodes. As described
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above, I assume that all candidates are equally fit for all open positions (recall that the open positions

are exactly the nodes inG ).

Because of the two large cliques, the homophily of the graph will be large regardless of how nodes

are assigned to positions in the third component. Thus, on this graph, SimpleAssign will attempt

to reduce, rather than increase, homophily. As in [124], the assortativity coefficient r is defined as2:

r =
Σieii−Σia2i
1−Σia2i

, where eii is defined as the fraction of edge endpoints that are entirely within partition

i , and ai is defined as the fraction of edge endpoints adjacent to partition i ( [124] refers to the term

bi as well; in an undirected graph, ai = bi ).

Note that because of the k extra nodes added to G , every node originally in G has degree dmax .

Thus, regardless of how the n candidates are assigned to positions, ared and ablue are fixed, and

so minimizing homophily is equivalent to maximizing the first term in the numerator. This term,

however, is simply the fraction of edges that are inter-group. The SimpleAssign algorithm will

thus assign the i red and j blue candidates to positions so that the number of inter-group edges is

maximized. By iterating over all pairs (i , j), the SimpleAssign algorithm can find the values of i , j

that lead to the greatest number of inter-group edges. This thus gives a solution toUMC .

MAXIMIZING DIVERSITY IS NOT SUPER/SUB MODULAR: Here, I demonstrate that the problem (and its

simpler single objective variant) is neither supermodular or submodular. This is demonstrated by

the following examples:

Suppose we have an undirected networkG with 10 nodes (node set S = 1, ..., 10), 12 edges ( edge

setE = [(1, 3), (2, 4), (3, 4), (3, 5), (4, 6), (5, 7), (5, 8), (6, 8), (6, 7), (7, 9), (8, 10), (8, 9)] ) with

the gender attribute (nodes 1-4 are female and nodes 2-10 are male). Let f (S) be the assortativity

coefficient of a network with nodes in set S . For any A ⊂ B ⊂ S and x ∈ S − B , function f is

sub-modular if f (A ∪ {x}) − f (A) ≥ f (B ∪ {x}) − f (B) and function f is super-modular if

f (A ∪ {x})− f (A) ≤ f (B ∪ {x})− f (B).
2This expression is equivalent to the definition of assortativity given earlier, which was in terms of the trace of the

mixing matrix.
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Figure 5.2: Example showing assortativity coefficient function is neither super-modular nor sub-
modular.

I consider two cases:

1. If A = {2, 3, 4, 5, 7, 8} and B = {2, ..., 10} and x = 1. then: F (A ∩ {x}) − F (A) <

F (B ∩ {x})− F (B) as (0.66− 0.60) < (0.63− 0.54) and f is not sub-modular.

2. IF A = {2, 3, 4, 5, 7, 8} and B = {1, ..., 9} and x = 10. F (A ∩ {x}) − F (A) > F (B ∩

{x})− F (B) as (0.66− 0.60) > (0.63− 0.60) and f is not super-modular.

Figure 5.2 depicts these examples.

5.3 Method

I propose FairEmployeeAssignment (FairEA), a method for assigning candidates to positions

with the goals of maximizing fitness and diversity. Assume that I am given input and desire output as

described in Section 5.2.1. In the initial discussions, I assume that candidates are divided into k = 2

classes, and in Section 5.3.4, I explain how FairEA can be generalized for k > 2.

FairEA consists of a sequence of iterations, where each iteration i consists of the following three

steps:
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1. Select two subsetsOi fromO andCi fromC using the FairEA selection process described later

in this section.

2. AssignCi toOi using the FairEA Matching Process, as described later in this section.

3. If |Oi | < |O| then increment i and return to (1). Otherwise, terminate.

The Pseudocode for FairEA is shown in Algorithm 1.

Algorithm 1 FairEA
Input:

Network G with two attributes (Team Membership & Class Membership), Fitness Matrix W, Threshold Vector T, Open
PositionsO , CandidatesC

1: M = [] // matching, i = 1 //iteration number
2: X ,O ′,C ′,LT : Cluster-Hiring (G ,O,C ,T ,W )
3: while |M| < |O ′| do
4: B,O ′,C ′ : Selection(O,C ,W , i)
5: M,G :Matching(B,G ,O ′,C ′,W )
6: Increment i
7: for each (oa, cb) inM do
8: xab = 1
9: return X ,LT =0

Algorithm 2 Update-Weights
Input:
O,C ,W

1: dt = []
2: for each oa ∈ O do
3: for each cb ∈ C do
4: if wab > 0 then
5: (sfab, sdab) = (wab, 0)// fitness and diversity scores
6: (ni , nj) : Number of filled positions adjacent to oa from classes i and j respectively.
7: if ni < nj & cb ∈ classi or ni > nj & cb ∈ classj then
8: sdab = 1
9: dt = dt + [((oa, cb), (sfab, sdab))]

10: st = [(oa, cb), 1l )] for all oa ∈ O and cb ∈ C (computed by fast non-dominated sorting of dt based on (sfab, sdab)
and l is the level that (oa, cb) appears in the Pareto-front level diagram.

11: return st =0
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5.3.1 FairEA Selection Process

For each pair of open positions oa ∈ O and candidates cb ∈ C , wherewab > 0, consider two scores:

the fitness score, given bywab, and the diversity score. The diversity score is defined as 1 if cb ∈ classj

(j ∈ {1, 2}), and the number of positions adjacent to oa filled by an employee from classj is less

than the number of positions adjacent to oa filled by an employee from the other class.

Using these two scores, I use the Pareto Optimality technique described in [27] to select subsets

fromO and C . At each iteration i that the selection process is called, the output contains all the

open positions and candidates that are present in the pairs appearing in the top i Pareto front sets.

A Pareto front set consists of all points that are not dominated by any other point (a point (x1, y1) is

dominated by (x2, y2) if x2 > x1, y2 > y1, or x2 ≥ x1, y2 > y1, or x2 > x1, y2 ≥ y1). To find the top i

Pareto front sets, one finds the first Pareto front set as just described, removes all selected points,

and repeats for i iterations. The Pseudocode for the selection process is shown in Algorithm 3.

Algorithm 3 Selection
Input:
O,C ,W , counter

1: st = update −weights(O,C ,W )// tuple of pair of candidates and positions and their corresponding weight(score)

2: O ′ : [oa|((oa,−),−) ∈ st].C ′ : [cb|((−, cb),−) ∈ st].
3: B = (O ′,C ′):bipartite graph with weighted edges equal to st
4: return B,O ′,C ′ =0

5.3.2 FairEA Matching Process

The FairEA matching process is based on the augmenting path approach from the Hungarian

algorithm for matching on weighted bipartite graphs [62] as follows:

1. Generate a bipartite graph B from Ci to Oi , where edges represent each pair of qualified

candidates oa ∈ O and open positions cb ∈ C &wab > 0. To set weights:

□ Sort the fitness score and diversity score computed, as described earlier.
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□ Set edge weights based on their position in the Pareto front sets levels, giving the lowest

value to all pairs of (oa, cb) that are present in the bottom level and the highest value

to all pairs of (oa, cb) that are present in the top level . If (oa, cb) is present in level l , its

score is equal to 1
l
.

2. Create a labeling l (l [j ] = 0 for each node vj in B), an empty matchingM , and an empty

bipartite graphBl .

3. If all elements inOi are matched and present inM , update matrixX based on matchingM

and stop. Otherwise, update labeling l and bipartite graphBl .

□ For each unmatched open position o in graph B , set l(o) to the maximum weight of

edges connected to node o inB .

□ For each matched open positiono inM (if any), ifo is matched toc , l(o) = weight(c , o)).

□ For each candidate c in graphB , set l(c)=0.

□ Graph Bl contains those edges (o, c) where oa ∈ Oi , c ∈ Ci and l [o] + l [c ] ≤

weight(o, c).

4. Pick an unmatched open position oa ∈ Oi . Let S = {oa} andT = {} and

5. LetN(S) be the set of neighbors of nodes from S inBl .

6. IfN(S) = T , update labels:

□ α = mino∈S,c /∈T l(o) + l(c)− w(o, c),

l(o) = l(o)− α, if o ∈ S , l(c) = l(c) + α, if c ∈ T .

7. IfN(S) ̸= T , pick c ∈ N(S)− T .

□ If c is not matched, find an augmenting path from oa to c . AugmentM and updateG

based on the new assignments. Update weights of edges inB using the same approach
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described in (1) and return to (2).

□ If c is matched to ob, extend the alternating tree. Add ob to S and add c toT and Go to

(4).

In each iteration, assigned positions in the previous step will be reassigned, and the new assignment

will be an improvement of the previous assignment based on the information being added to G .

The graphG will be updated after each augmentation at step 7. For newly assigned positions, the

attribute will be the attribute of matched candidate c (i.e., if the attribute is gender and c is a ‘female’

candidate, the gender of position o is updated to ‘female’). The Pseudocode for the selection process

is shown in Algorithm 4.

5.3.3 Handling Constraints

FairEA can handle other diversity-related goals in the form of constraints. As an example, I consider

the constraint that no minority individual should be the sole minority member of their group.

To address this (or any) constraint, add a step to FairEA. In this step, FairEA assigns a set of best

qualified candidates from each class j to open positions in the team i that has fewer than the

threshold ti employees from class i . (In practice, this can be accomplished via cluster hiring [149]. A

threshold of 0 indicates that avoiding isolation is not necessary. In this step, after each matching,

FairEA ensures that all the remaining open positions can be filled (i.e., there is at least one distinct

candidate with fitness function greater than zero for each remaining open position). It may sometimes

not be possible to reach the threshold for a specific team (e.g., there are not enough open positions

in the team). In such cases, so as to not prevent assignment of a qualified minority to such a team, the

algorithm will perform the assignment, but can be flagged to notify the organization. This information

can then be used by the organization: e.g., individuals who lack access to other minorities can be

enrolled in a mentor/mentee program; or that team be targeted for future cluster hiring.

Specifically, FairEA performs the following: For each team i , denote the number of individuals from
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classj , j ∈ {1, 2} as |cji |, where |cji | < ti . Sort all pairs of {(oa, cb), oa ∈ O and oa ∈ classj and

cb ∈ C} based on wab (fitness of c for o) in descending order. Next, iterate over all the elements

(oa, cb) in the sorted set. If both oa and cb are not already matched (i.e., all elements of row a and

column b in matrixX are zero) and there is at least one possible complete matching from remaining

candidates to remaining open positions, set xab = 1 and remove matched elements fromO and

C . Continue the iteration until ti − |cji | = 0 (enough new matching is established) or there are

no elements in the set. In the end, if |cji | is still less than ti , return the team ti for notifying the

organization. The Pseudocode for the selection process is shown in Algorithm 5.

Algorithm 4 Matching
Input:
B,G ,O ′,C ′,W

1: M = [] //matched pairs
2: while |M| < |O ′| do
3: l = zero vector of sizeB (l [p] = 0 for all nodes inB)
4: Bl : empty bipartite graph
5: for each unmatched position o in graphB do
6: l [o] =maximum weight of edges connected to node o inB .
7: for each matched position o in graphB do
8: l [o] =weight of edge (c , o) inB (o is matched to c )
9: for (o, c) in edges ofB : do

10: if l [o] + l [c ] ≤ weight(o, c) then
11: add (o, c) toBl
12: Pick an unmatched open position oa ∈ Oi
13: S = {oa},T = {},N(S) = neighbors of nodes in S inBl .
14: flag = True
15: while flag do
16: flag = False
17: if N(S) = T then
18: α = mino∈S,c /∈T l(o) + l(c)− w(o, c)
19: for o ∈ S do
20: l(o) = l(o)− α
21: for c ∈ T do
22: l(c) = l(c) + α
23: else
24: pick c ∈ N(S)− T
25: if c is not matched then
26: find an augmenting path from oa to c . AugmentM and update classes of matched positions inG based

on the new assignments.
27: st = update − weights(O ′,C ′,W )
28: set edges inB to be st
29: flag = True
30: else
31: Extend the alternating tree. Add ob to S and add c toT
32: return M,G =0
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Algorithm 5 Cluster-Hiring
Input:
G ,O,C ,T ,W

1: Initialize zero output matrixX|O|×|O|
2: LT = [] // list of teams that will need attention
3: for each team i inG do
4: for each class j inG do
5: cji : the number of individuals in team i from classj
6: if cji < T [i ] then
7: SP : {((oa, cb),wab)|oa ∈ O & oa ∈ classj & cb ∈ C} sorted based onwab ascending
8: while cji < T [i ]&|SP| > 0 do
9: Pop (oa, cb) from SP

10: if all elements of row a and column b in matrixX are zero and there is at least one possible complete
matching fromO − {oa} toC − {cb} then

11: O = O − {oa} &C = C − {cb}
12: xab = 1, increment cji , class of oa = class of cb
13: if cji < T [i ] then
14: add team i to LT
15: return X ,O,C ,LT =0

5.3.4 Variations on FairEA

It is easy to modify FairEA for other settings:

Non-binary attributes: If the protected attribute has more than two classes, the diversity score cal-

culation has to be changed. For each pair of qualified candidates oa ∈ O (ob ∈ classj ) and open

positions cb ∈ C , wherewab > 0, the diversity score is defined as ct−ca
ct

, where ct is the total number

of filled positions adjacent to cb and ca is the number of filled positions adjacent to cb that are filled

by an employee from classj .

Multiple attributes of interest: If there are multiple attributes of interest (e.g., race and gender), by

combining them into one new attribute, one can address the problem using FairEA for k classes.

For instance, suppose we have k1 classes for gender and k2 classes for race, we can generate a

new attribute called identity with at most k1 ∗ k2 classes. Because this may be a large number of

combinations, these intersectional classes may be merged as appropriate.
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Table 5.2: Dataset statistics.

Name #nodes #edges Assortativity Attributes
Coefficient (Majority, Minority)

CC(M) 46 552 -0.02 (77%, 23%)
CC(H) 46 552 0.37 (57%, 43%)
RT(M) 77 1341 0.02 (88%, 12%)
RT(H) 77 1341 0.43 (65%, 35%)
Nor(L) 1522 4143 -0.19 (61%, 39%)
Nor(M) 1091 3418 0.08 (90%, 10%)
Nor(H) 1421 3855 0.29 (64%, 36%)
FO(H) 288 2602 0.86 (70%, 30%)
DO(H) 265 921 0.92 (70%, 30%)
SF(L) 1000 4000 -0.30 (69%, 31%)
SF(M) 1000 4000 0.07 (69%, 31%)
SF(H) 1000 4000 0.39 (69%, 31%)

5.4 Experimental Setup

FairEA is intended to be used to measure an organization’s hiring/assignment policies and can only

work if it actually does well at identifying good assignments. As such, the first set of experiments

demonstrates that FairEA does well at matching employees to positions (with respect to fitness,

diversity, and any constraints). Second, I explore the effects of constraints and on performance

with respect to fitness and diversity, and finally, I provide a case study of FairEA on a real-world

organizational network.3

5.4.1 Datasets

Here, I discuss the network datasets considered. It is difficult to get real data for this problem-

in particular, on candidate pools and demographics. Thus, to test FairEA under a wide array of

conditions, I use both real and synthetic network topologies and attributes and simulate candidate

pools. Statistics of datasets are shown in Table 5.2. The (L, M, H) notations in dataset names indicate

low, medium, and high values of homophily (segregation) on the network.
3For replication, I have posted my code and data at https://tinyurl.com/y48asc8u.
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REAL NETWORK TOPOLOGIES: First, I use the Norwegian Interlocking Directorate network (Nor) [147],

which describes connections among directors of public companies in Norway4. This dataset includes

the ‘gender’ attribute. I selected two snapshots of this network, the first from February 2003 (Nor(M))

and the second from October 2009 (Nor(L)). These networks have, respectively, the highest and

lowest levels of gender assortativity among all snapshots. However, because none of these networks

have high assortativity, to evaluate the performance of FairEA on a segregated network, I select

the final snapshot (from August 2011) and add a synthetic attribute value to each node so that the

resulting network has high assortativity. I denote this network as Nor(H). The process of adding

synthetic attribute values is described later in this section.

Next, I consider a set of intra-organizational networks from a Consulting Company (CC) and a Re-

search Team (RT) [39]. CC(L) describes professional interactions from a Consulting Company and

includes the ‘gender’ attribute. RT(L) describes interactions among a Research Team in a manufac-

turing company, and includes the ‘tenure’ attribute. ‘Tenure’ divides the networks into 2 classes of

researchers: those that have worked in the team for less than 1 year, and those who have been there

for over a year. ‘Tenure’ is an interesting example of an attribute that is not legally protected; but a

company may still have an interest in ensuring that the network integrates both early-career and

more senior researchers, and that researchers at all stages have access to others at a similar stage for

support purposes. CC(H) and RT(H) have the same topology as CC(L) and RT(L) respectively, but

use the ‘location’ attribute. In CC(H), nodes are divided into ‘Europe’ vs ‘USA’, and in RT(H) nodes

are divided into ‘London’ vs ‘the rest of Europe’. These divisions were chosen to create networks

with the desired levels of assortativity, for purposes of testing FairEA. Although diversity in terms of

‘location’ is probably not of special concern, this attribute is used to evaluate the performance of

FairEA on segregated networks. Additionally, these two sets of networks contain the information

about the organizational level of employees.
4http://www.boardsandgender.com/data.php
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SYNTHETIC NETWORKS: To evaluate FairEA on additional network topologies, I construct synthetic

datasets corresponding to two common organizational structures: (1) the functional organization

(FO) structure, where the organization is divided into smaller groups, and individuals in each group

communicate with each other and group heads may interact outside of their own teams and (2) the

divisional organization (DO) structure, where the organization is divided into smaller divisions with

little collaboration between divisions [173].

In the synthetic networks, FO has 6 teams and 12 sub-teams with equal number of nodes in each

team, and follows the FedEx organizational chart pattern [106]. DO has 3 divisions and 40 teams with

an equal number of nodes in each team, and follows the Department of Energy organizational chart

pattern [106]. To simulate segregated networks, I add a synthetic binary attribute so that members

of each team are from one class.

To further evaluate the performance of FairEA on a broader array of network topologies, I consider

a second set of synthetic datasets, consisting of scale-free (SF) networks with a power-law degree

distribution [76] generated using the Python NetworkX library [69]. I generate three networks with the

same topology, and assign attributes to have low SF(L), medium SF(M), and high SF(H) assortativity

levels.

ASSIGNING SYNTHETIC ATTRIBUTES: Here, I describe the process for assigning synthetic attributes

to networks to achieve a desired level of assortativity. Suppose one is given a networkG and wish

to add a synthetic attribute to each node (for ease of discussion, I refer to this attribute as ‘gender,’

assumed to be binary for simplicity). One is additionally given values b1 and b2 that represent the

desired number of male and female nodes respectively.

I wish to assign attributes so that networks have (1) near-zero assortativity, (2) high (positive) assorta-

tivity, and (3) low (negative) assortativity. To achieve near-zero assortativity, attributes are assigned

randomly to nodes in the network. To achieve high assortativity, first, communities based on mod-

ularity maximization [33] are found. Next, for each attribute a, a set of groups that have total size
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Figure 5.3: Assigning attribute to network G , (b1 = b2 = 3): (1) G1: random assignment
(Assortativity(G1) = −0.02), (2)G2: assignment based on modular communities: {{1, 2, 3}, {4, 5, 6}},
(Assortativity(G2) = 0.65), (3) G3: assignment based on independent communities: {{1, 4, 6}, {2, 5},
{3}}, (Assortativity(G3) = −0.71).

as close as possible to the desired size for that attribute is selected, and the attributes for nodes in

those communities are assigned to a. To achieve low assortativity, first, independent sets of nodes

are found, where there is no connection between two nodes within the same community. Then, as

before, for each attribute a, a set of groups with total size as close as possible to the desired size are

found, and the attribute of the nodes in the selected groups are set to a. Figure 5.3 illustrates the

process of assigning synthetic attributes to networks.

5.4.2 Open Positions, Teams, and Candidate Pool

For each network, I run 100 trials, and in each trial, I sample 10%, 20%, and 30% of nodes randomly

as open positions. Naturally, obtaining real data on candidate pools is impossible. To simulate

the pool of candidates I consider two cases: (1) a pool of candidates equal to the number of open

positions, where the candidate attributes are defined by the attributes of the individuals who had

been in those positions before they were made open, and (2) a pool of candidates equal to twice

the number of open positions, where these candidates are obtained by duplicating the pool from

the first case. The first setting corresponds to the case where a ‘batch’ of new employees has been

hired, and now the employees need to be assigned to teams without considering the hiring process.5

The second setting corresponds to the case where both hiring, and assignment procedures are

considered. Moreover, the way attributes are assigned to nodes ensures that changes in homophily
5Note that this experiment is equivalent to finding the level of diversity that could be achieved with the current

employees.
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are actually due to employee assignment, rather than due to changes in attributes alone. To measure

communities of support, team structure in the networks (for those which do not have a built-in team

structure) needs to be simulated. To do this, teams in the network are detected using the Louvain

community detection method [14].

5.4.3 Fitness Functions

The fitness function governs which candidates are suitable for which positions. For the first and

second sets of experiments - the evaluation of FairEA and analysis of the effect of constraints on

performance -, two fitness functions F1 and F2 are considered. F1 corresponds to cases where

candidates are qualified for positions across the network, and F2 corresponds to cases where each

candidate is qualified for positions in a specific area. To ensure that a matching exists, a distinct

candidate cj is randomly selected for each open position oi (a random one-to-one matching) and

wij is set to be a random number between 0 and 1. Then, for fitness function F1, for each candidate

cj ,w∗j is set to be a random number between 0 and 1 (exclusive) for 4 random open positions o∗. For

fitness function F2, for each candidate cj ,w∗j is set to a random number between 0 and 1 (exclusive)

for 4 positions o∗ with the smallest path distance to oi , the position to which the node corresponding

to cj had been assigned before removal (as described in the previous section).

For the third set of experiments, – a case study on real networks – intra-organizational networks (CC

and RT) are used that contain position information. Based on this information, a fitness function is

provided where a candidate is fitted for the open positions that were previously filled by an employee

of the same level (wij = 1 if candidate cj is in the same level as the candidate that previously filled

position oi andwij = 0 otherwise.

5.4.4 Baseline Methods

I use three baseline methods: (1) Random, which randomly assigns qualified candidates to each

open position; (2) The weighted Hungarian algorithm, where the input is a bipartite graph whose
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two sides correspond to open positions and candidates. An edge (oa, cb) exists ifwab > 0, and the

weight of each edge (oa, cb) is the sum ofwab and the diversity score as described in section 5.3.1;

and (3) Optimization, which uses the IPOPT solver in the GEKKO optimization suite [7] for solving

the optimization problem with the two goals of maximizing fitness and diversity. This is the simplified

version of the problem where fitness is maximized, as described in section 5.2.2 and diversity is

optimized by decreasing the gap between number of neighbors from classi to number of neighbors

fromclassj for each newly assigned position. The problem can be formulated as:max f1 =
∑
ij wij ·xij ,

minf2k = |Ak∗ · (Y∗1 − Y∗2)|, k ∈ {1, ..., n}. such that for each 1 ≤ i ≤ m,
∑
1≤j≤t xij = 1 and for

each 1 ≤ j ≤ t ,
∑
1≤i≤m xij ≤ 1.

5.4.5 Metrics

I report results using the following metrics:

□ The overall fitness of candidates to open positions is measured by the overall fit score which

is the sum of the fitness scores for each matching. Let FSh and FSl be the overall fit score of

the best and worst possible matching in terms of fitness of employees for the open positions

respectively andFSa be the overall fit score of the networkG after assignment using the desired

method. Then I define Percentage Improvement in Fitness= FS−FSl
FSh−FSl

· 100. The best/worst

possible matching is determined by maximum/minimum bipartite matching where one side

is open position setO and the other side is candidate setC and weight of each edge (oi , cj)

corresponds towij .

□ The diversity of the network is measured by the assortativity coefficient [124]. Let ACb be

the assortativity coefficient of G ′, the subgraph of initial network G consisting only of filled

positions, and ACb be the (assortativity coefficient of the network G after assignments are

made. Then the Percentage Improvement in Assortativity= |ACb|−|ACa|
|ACb|

· 100.

□ The fraction of minorities in team i is FMi = min(|c1i |,..,|cki |)
|c1i |+...|cki |

where |cji | is the number of in-

dividuals from classj in team i . Isolation Score is the average fraction of minorities. Isolation
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Figure 5.4: Comparison results of percentage improvement in fitness and assortativity for FairEA and
baseline methods. The ideal solution lies in the top right corner. Hungarian is good at increasing
diversity and IPOPT is good at increasing fitness, but FairEA is good at increasing both. Hungarian
performs well when assortativity is low (network is diverse).

Score= 1
k
·
∑
1≤i≤k FMi and Percentage Isolation Score= Isolation Score ·100.

5.5 Results and Analysis

My analysis is divided into three parts. First, I compare FairEA to the baseline algorithms in order to

evaluate its performance algorithmically. Second, I evaluate the effect of the isolation constraint.

Finally, I assess the assignment in intra-organizational networks using FairEA.

5.5.1 FairEA Evaluation

Here, I compare FairEA and baseline algorithms with respect to diversity and fitness, without a

constraint related to isolation. Figure 5.4 shows results for ‘percentage improvement in fitness’ and

‘percentage improvement in assortativity’, where the number of candidates is equal to the number of

open positions, with fitness function F1 (candidates are qualified for positions across the network)

and 10% open positions. Results for fitness functions F2 (candidates are qualified for positions in a
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Table 5.3: Aggregated results of ‘Percentage Improvement in Assortativity (PIA) and ‘Percentage Im-
provement in Fitness’ (PIF), for networks with ‘High’ (H), ‘Medium’ (M) and ‘Low’ (L) assortativity coeffi-
cient levels and fitness functions F1 and F2. FairEA achieves at least 97% of the maximum IFS while
improving AC by 39%, 56% and 67% for 10%, 20% and 30% of open positions respectively.

P=0.1 P=0.2 P=0.3
Method PIF PIA PIF PIA PIF PIA

F1 FairEA 97 28 97 49 97 63
H Random 53 18 53 36 53 51

Hungarian 88 33 84 53 83 66
IPOPT 99 18 99 35 98 50

F1 FairEA 98 68 97 74 98 80
M RND 51 52 53 30 53 62

Hungarian 97 71 96 65 94 68
IPOPT 99 52 98 55 99 25

F1 FairEA 97 27 97 44 97 61
L Random 53 21 54 37 54 52

Hungarian 85 33 84 50 82 65
IPOPT 98 21 98 37 - -

F2 FairEA 96 28 97 48 97 63
H Random 54 18 54 35 53 50

Hungarian 88 33 86 53 83 66
IPOPT 99 18 99 35 98 50

F2 FairEA 97 55 97 74 97 77
M Random 51 36 53 30 53 50

Hungarian 97 71 96 65 94 68
IPOPT 99 36 98 30 99 42

F2 FairEA 97 27 97 47 97 59
L Random 54 21 54 34 54 48

Hungarian 85 33 83 50 82 65
IPOPT 98 21 98 37 - -
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Figure 5.5: Comparison results of percentage improvement in fitness and diversity for FairEA and
baseline methods. The ideal solution lies in the top right corner (‘Desired’). While Hungarian is good
at increasing diversity and optimization is good at increasing fitness, FairEA is good at increasing
both.

specific area) are similar and shown in Figure 5.5. The ideal solution (high fitness and diversity) is in

the top right depicted as a star. The aggregated results of percentage improvement in fitness and

diversity for FairEA and baseline methods where the size of the candidates set is equal the size of

open positions set with fitness functions F1 and F2 and 10%, 20%where 30% of positions to be

open on Table 5.3.

In most cases, results for FairEA, IPOPT and Hungarian are in a non-dominated set, with results of

FairEA having the lowest crowding distance. More simply, we see that Hungarian does very well

with respect to diversity (especially when the network was already diverse), IPOPT does very well with

respect to increasing fitness, and FairEA does moderately well at increasing both. To summarize

results, I computed the average percentage improvement in fitness and average percentage improve-

ment in assortativity over all datasets with high, medium and low levels of assortativity for each

method. Overall, as shown in Table 5.3, for cases where the size of the candidates set is equal the

size of open positions set, FairEA achieves at least 97% of maximum fitness score while improving
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Figure 5.6: Comparison results of percentage improvement in assortativity, fitness and isolation avoid-
ance on different datasets with different isolation thresholds ti ∈ {0, 2, 0.05 · |ki |, 0.1 · |ki |, 0.2 · |ki |}
where |ki | is the size of the team teami . Although avoiding isolation increases or doesn’t change
diversity, there is a tradeoff between increasing threshold and fitness.

the assortativity coefficient value by 39%, 56% and 67% for 10%, 20% and 30% of open positions.

The performance of methods are similar for different fitness functions, but varies as the number of

open positions increases.

Results show that while IPOPT increases fitness, it performs poorly on diversity. This demonstrates

that simply considering the number of neighbors of a node from each class for newly assigned

candidates is not sufficient. Hungarian performs well when the number of open positions is small,

but performance decreases as the number of open positions increases. In contrast, FairEA does

well even for large numbers of open positions.

5.5.2 Effects of Reducing Isolation

Recall that in addition to optimizing for diversity and fitness, FairEA can accommodate constraints

related to diversity, which may affect results. Here, I evaluate the tradeoff between minimizing isola-
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Figure 5.7: Results of assortativity coefficient and fitness score over original network (Org) and networks
after assignment with different isolation thresholds ti ∈ {0, 2, 0.05 · |ki |, 0.1 · |ki |, 0.2 · |ki |} where
|ki | is the size of the team teami . Both networks have the potential to become fair by at least 50%.

Table 5.4: Results of overall fit score, assortativity coefficient and isolation score of FairEA and Brute-
forth.

(Assortativity Coefficient, Overall Fit Score, Isolation Score)
Dataset Brute-forth FairEA
CC(L) (-0.02, 2.87, 0.24) (-0.02, 2.92, 0.23)
CC(H) (0.30, 2.78, 0.11) (0.26, 2.67, 0.12)
RT(L) (0.01, 4.93, 0.11) (0.00, 4.85, 0.11)
RT(H) (0.33, 4.63, 0.08) (0.30, 4.34, 0.08)

tion vs. increasing diversity and fitness. I compare the Percentage Improvement in Fitness, Percentage

Improvement in Assortativity and Percentage Isolation Score) of FairEA’s results with minority group

thresholds equal to {0, 2, 0.05 · |ki |, 0.1 · |ki |, 0.2 · |ki |} where |ki | is the size of the team teami .

Setting a threshold to 2 ensures that no individual is the sole minority on a team, which is known to

reduce the probability of certain negative experiences [165]. As described earlier, when necessary, I

detect teams in the network using the Louvain method [14].

Figure 5.6 shows results where the size of the candidate set is equal to the size of the open positions

set, with fitness function F1 and 20% open positions. As the results show, by including the isolation

constraint, diversity (assortativity coefficient) is actually improved overall. However, avoiding isolation

might seem to conflict with the goal of increasing fitness. Indeed, the results show that as the

threshold increases, fitness decreases by up to 25% .

I note that a major goal of organizations is to increase their performance, which depends on the

overall effectiveness of its employees, and diversity in teams has a positive influence on decision-
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making and creativity [68]. Moreover, reducing isolation can affect whether members of such groups

have access to information, chances for promotion, and access to mentors, role models, and other

opportunities, which improves the team’s effectiveness [34]. This can also help minorities to form

support groups, which has shown to positively impact both the psychological and physical aspects of

individuals [145]. Thus, this step might ultimately increase the performance of a company in the long

run even if it sacrifices fitness at the level of individual matchings. On the small intra-organizational

networks, I used brute force to find all possible matchings, and identify the non-dominated set of

results. For each trial, the results are sorted using non-dominated sorting based on three objectives

(fitness, diversity and isolation), and using the Pareto optimality technique, a matching is selected

with lowest crowding distance in the front level. Table 5.4 shows results and demonstrates that

FairEA is close to optimal.

5.5.3 Case Study on Intra-Organizational Network

To illustrate howFairEA can be used in practice – i.e., to evaluate an organization’s hiring/assignment

practices – I use the intra-organizational networks CC and RT, which contain position-related annota-

tions. In such an application, the organization would identify the set of all positions that have been

open in the recent past (whatever timespan is desired), and would use the actual applicants to those

positions to form the candidate pool. Because I do not have access to this data, I mark a random p%

of the positions as open and consider the employees that fill those positions as the candidates for

hiring, using the process described in Section 5.4.2. I say that individuals are fit for positions at their

level.

For CC(M) and RT(M) where the attributes of interest are ‘gender’ and ‘tenure’, the original networks

have (Assortativity Coefficient and Isolation Score) of (−0.02 & 0.24) and (0.02 & 0.11) respectively.

In other words, both these networks have very little segregation and have more than 10%minorities

in each group. In this case,FairEAhas nothing to improve on. For CC(H) and RT(H), when considering

the ‘location’ attribute, the original networks have (Assortativity Coefficient & Isolation Score) (0.38
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& 0.07) and (0.43 & 0.02) respectively. Both these networks are extremely segregated and have

less than 10%minorities in each team.6 Figure 5.7 shows the results of Assortativity Coefficient and

Isolation Score when 20% and 30% of the positions are open without and with different threshold

levels for isolation. Results show that both networks have great potential to become more fair.

5.6 Discussion and Limitations

This work is intended as a step towards remedying segregation and isolation in organizational net-

works by providing a simple approach of assessing the quality of hiring/assignment practices. I ac-

knowledge that there are substantially more considerations that go into evaluating hiring/assignment

procedures than those described here, and hope that future work will build on what I have presented.

This topic is complicated, and any algorithmic approach will miss important factors. For example, an

important consideration is the screening process used to generate the candidate pool [23, 49]. It is

also important to consider factors related to the prominence and power associated with positions

that individuals are associated with- for example, one should be careful to avoid the glass ceiling

effect [49]- and the presence of mentors and sponsors for individuals in the network [73].

There are also algorithmic limitations. First, FairEA does not consider weighted graphs; and yet

it is known that the strength of connections has a direct impact on access to information and

opportunities [60]. It would be simple to add weighted edges to FairEA; but in practice, one must

be careful in assigning these weights. Moreover, the impact of employees on their connections can

be different depending on the organization level [164]. Additionally, dealing with multiple protected

attributes is an important challenge. Finally, as discussed earlier, the datasets and the settings used

for evaluation of FairEA and assessing hiring/assignment practices are not ideal, because I was

limited by what was available. Real data describing fitness functions, candidate pools, etc. would

make the analysis more comprehensive.
6‘Location’ refers to the office location, so segregation is natural. But if one interpreted ‘location’ to mean, for instance,

nationality, then segregation becomes hugely problematic. That is not what it means in this network, but this is only
intended as an illustration, as I am limited by the data that is publicly available.
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5.7 Conclusion

In this chapter, I proposed FairEA, a novel algorithm that can be used to gauge discrimination with

respect to a protected attribute by measuring the extent to which a less-segregated assignment

is possible. I performed experiments on both real and synthetic attributed network datasets and

showed that while baseline methods are either good at finding either higher-diversity or higher-

fitness assignments, FairEA does both. I then showed how FairEA can be used to assess the quality

of hiring/assignment procedures. WhileFairEA addresses an abstracted problem, it is a step towards

a computational approach to create a diverse workplace in terms of social connections.
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Chapter 6

MEASURING SOCIAL STRATIFICATION IN

NETWORKS

6.1 Introduction

In previous chapters, I showed how to compute network fairness from group perspective and pro-

vided algorithms to increase group fairness in different settings. In this chapter, I consider the problem

of fairness from an individual perspective.

Real networks are dynamic systems, and the structure of a network changes based on individuals’

decision to enter or leave the network, make new connections, and reinforce or remove old connec-

tions. A highly desirable property of a fair dynamic network is that it should allow for individuals to

rise and fall on the basis of their own merits, rather than their inherited positional inequalities [171].

Ideally, the trajectory of an individual through the network – their changing connections and access

to desirable parts of the network – will depend on their own merits, as opposed to their initial network

properties. Thus, the success of a person should ultimately depend on their abilities, hard work,

sacrifices, and willingness to take risks. In other words, in a desirable network, social stratification

(division of the network based on attributes of individuals) doesn’t exist and upward mobility is

possible.
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This is similar to non-network settings, where a common belief is that the environment should be in a

way that all children regardless of their socioeconomic background, race, gender, and physical ability

can thrive [72, 103]. This belief system is the basis of the validation theory that was introduced to help

minorities to succeed in their education [138]. Another example is the so-called ‘open society’ notion

or ‘American dream’ belief, which indicates that upward mobility should be possible for anyone,

independent of their class and where they are born [168]. In other words, an individual should be

able to achieve as much as their talent allows regardless of their social background without being

stopped by their inherited positional inequalities [171]. These beliefs are the basis of a fair society in

which upward social mobility is attainable by all individuals [133]. However, in real settings, societies

are socially stratified which prevent upward mobility [64].

In this chapter, in order to study fairness in dynamic networks, I first study network social stratification.

The definition of network social stratification is based on the social stratification of humans in

society along economic or class-based lines [90]. The stratification of human networks is a well-

known phenomenon and, accordingly, has been one of the most important topics of study in the

modern social sciences [90]. Social stratification, as well as its counterpart social mobility, govern the

trajectories of people’s lives, including the extent of prejudice that they face [74], their careers and

occupations [176], and the likelihood that they will experience violence [95].

Then, I introduce the stratification assortativity metric, which measures the extent of the

network’s stratification into ordered components with respect to an attribute of interest (in my case, a

‘merit’ score). Stratification assortativity differs from existing assortativity metrics in that it

is based on scalar characteristics that give rise to a set of ordered classes, whereas other assortativity

metrics are either based on categorical characteristics that divides network into non-ordered groups

(discrete assortativity coefficient, modularity) or scalar characteristics that do not consider group

memberships (scalar assortativity coefficient) [125].

Finally, I perform a case study on several co-authorship networks. I examine the evolution of these

networks over time and demonstrate that networks evolve into a highly-stratified state; and that

81



once the network stratifies, the success of newcomers is increasingly determined by their starting

point in the network. I demonstrate that the stratification assortativity metric captures

fairness in the evolution of networks. This metric captures important insights that other metrics do

not; and uses the metric to explore properties of those networks.

My key contributions are as follows:

1. I propose the novel stratification assortativity metric, which measures the extent

to which a network is stratified into different ordered tiers (Section 6.4).

2. I introduce a heuristic to identify hierarchical tiers in the network (Section 6.5.3).

3. I perform a case study on co-authorship networks and evaluate fairness in evolution of these

networks. I demonstrate that the stratification assortativity metric captures impor-

tant insights that other metrics do not; and use the metric to explore properties of those

networks (Section 6.6).

6.2 Network Social Stratification

The definition of network social stratification is based on the definition of social stratification in

social science literature. A stratified system is defined as one in which resources are distributed

unequally, and social processes designate certain resources as more valuable, control the allocation

of resources across various social roles and the assignment of individuals to those roles, and govern

mobility between roles [64]. In general, social stratification is defined as division of individuals in a

society into a hierarchical arrangement based on different attributes such as importance, wealth,

knowledge and power [67].

Here, I consider similar definition for network social stratification and define it as division of nodes in

the network into a hierarchical arrangement (stratas, tiers or social classes) based on factors (scalar

attribute of interest) like success, education, power, wealth, importance or, in my case, a ‘merit’

score. In a highly stratified network, main connections are between individuals in the same tier with
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similar attributes of interest and there are few or no connections between individuals with different

attributes of interest.

6.3 Importance of Studying Network Social Stratification

In social science, the study of social stratification has been one of the most important topics in

modern sociology [90]. Social stratification is intrinsically connected to social mobility [64] and social

mobility (or the lack thereof) is a driving process behind social stratification [48]. It is known that

social stratification can influence prejudice [74], social capital [92], probability of victimization [95],

occupation [176], and other crucial factors in the lives of individuals. Social inequalities entailed in

social stratification such as class, lifestyle, status, power and money are of great importance [13]

and have a huge role in the well-being of humanity [13]. It is also believed that the emergence of

social inequalities leads to stratification and segregation [99]. Broadly speaking, the study of social

stratification is related to the study of inequality [11] and, in particular, how that inequality comes to

be through predictable rules [90]. Thus, it is important to study social stratification.

In network settings, the structure of a network – from using distance in terms of relationships as social

distance in discussions of social stratification [15, 128], to measuring the ability of individuals for

upward mobility by considering their connections to higher status individuals in social networks [154],

– can be used for studying social stratification on a large scale [67]. In other words, networks provide

an opportunity to study the emergence of social stratification [67] and studying network social

stratification can help to understand how decisions of individuals can lead to a socially stratified

network.

6.4 Measuring Social Stratification

Measuring social stratification started based on occupation [37] and continued with measuring

class structure (how social class is defined) using Cambridge scale. The Cambridge scale analyzes

survey information to map out social structures [155]. The Cambridge scale was expanded into a

83



set of measures known as Cambridge Social Stratification and Interaction Scale [135] dedicated to

occupations. For cases that occupation is not an indicator of social class, Bourdieusian class was used

to measure social class [146]. These metrics are based on socio-economic status or occupational

prestige and sometimes social distance [114] from the survey data or other information available

to researchers. Much of the existing sociological work on social stratification assumes pre-defined

tiers (social classes), and then examines social mobility between these classes [172, 84]. Social class

refers to hierarchical social categories arising from different relationships in the society [94]. The

most common social classes are the upper, middle and lower classes [24].

Although stratification has been extensively documented in non-network settings, to my knowledge,

there is no single metric to quantify the level of stratification using the structure of social networks.

With the rise in human interaction data driven by the social networks, the need has emerged for an

interpretable, quantitative metric to summarize network stratification in a single number. There are

several reasons for this. (1) In many cases, one may not know the classes ahead of time. Economic

classes are well-established; but when studying online interactions, there is little domain knowledge

from which to draw. Social interactions online can be fundamentally different from offline interactions:

for instance, there is evidence that online processes contribute to increased political polarization [77].

Just as metrics for homophily are useful in understanding how complex network-based systems

evolve [104], so too would be a metric for stratification. (2) When comparing different ecosystems

(e.g., Facebook vs. Twitter), it is useful to have a single number in order to perform a quantitative

comparison. In the long run, this may lead to discovery of universal laws about stratification. (3) In

online settings, individuals have more freedom in who they choose to interact with, which may lead

to increased stratification as compared to in offline settings. Stratification, thus, may be a topic of

special interest in Web-based systems as well.

Existing empirical analysis on social networks tends to either study social mobility as a proxy for

stratification or, if network connections are known, individually examine inter-connections between

predefined classes [172]. In network settings, social stratification is obviously very closely related
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to existing measures of homophily/assortativity: the tendency of people to connect to others sim-

ilar to them (see Section 6.5.3). There are other related metrics, for instance, an inter/intra-class

measurement similar to modularity to examine social stratification in communications networks

(but as I discuss later, this sort of metric is not entirely ideal for the task) [99]. An index that uses

ethnicity as a proxy for social distance and examines connections between individuals in the context

of wealth [74]. This index, effectively, measures the probability that for any random pair of individuals,

the poorer individual feels deprived of opportunities associated with ethnic class boundaries [74]. It

is common to use the Gini index to measure inequality [44]; but although social inequality causes

social stratification inequality in a society [99], inequality is not identical to social stratification. Social

stratification is somewhat related to the Matthew effect (the rich-get-richer/preferential attachment

phenomenon) [115], and numerous works have explored quantifying the strength of such a phe-

nomenon [132, 139, 166]. However, none of the existing metrics can measure the extent to which the

network is divided into ordered classes.

6.5 Stratification Assortativity

Here, I propose an assortativity metric for measuring network social stratification. The proposed

metric is intended for networks in which nodes have a numeric characteristic attribute of interest.

The characteristic attribute should represent a node’s status, with higher values indicating a higher

status: depending on domain, this attribute might represent wealth or other ownership of resources,

prestige, success in an area, etc. This attribute is used to find social class hierarchy in the networks

that causes social stratification.

At a high-level, a network is socially stratified if nodes can be partitioned into social classes (tiers

corresponding to intervals of the characteristic attribute value), such that (a) those tiers are separated

in the graph topology and (b) individuals tend to connect to others with similar attribute values. For

instance, later in this study I will consider co-authorship networks, where nodes represent authors

and edges represent collaborations. In such networks, a reasonable attribute of interest is the h-index
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of authors.1 Such a network may be considered stratified if nodes separate into, e.g., classes (groups)

of high, medium, and low h-indices, and both inter- and intra-class connections tend to be with

nodes of similar scores.

Notation: In this section,G(V ,E) is an undirected, unweighted graph with vertex setV and edge

set E ,A is the binary adjacency matrix ofG , and u and v represent nodes. deg(u) represents the

degree of node u, and the indicator function σ(u, v) is 1 if u and v are in the same class and 0

otherwise.

6.5.1 Desired Properties

An appropriate network social stratification metric should measure the division of a network into

tiers (social classes) based on the attribute of interest. It should have the following properties:

Property 1: The characteristic attribute should be a scalar characteristic and the actual values of

the characteristic attribute should be taken into account. The metric should more greatly reward

connections between nodes with very similar attribute scores, and more greatly penalize connections

with very different attribute scores. This property ensures that inter-class connections between nodes

in very different tiers are penalized more greatly than those in adjacent tiers. A real-world example of

this can be seen in societal wealth distributions: a society in which the upper class has an average of

double the wealth of the lower class is less stratified than one in which it has ten times the wealth of

the lower class, assuming all else being equal. This is an important property of the metric: values

and distances matter 2.

Property 2: The scalar characteristic should be tied to a status feature that allows for grouping into

multiple, ordered tiers (social classes). Categorical properties are not appropriate, unless they are

associated with a numerical status-related property. Separation with respect to such properties is
1The h-index of an author is the maximum value h such that the author has at least h papers with at least h citations

each.
2Here I assume that the attribute has linear characteristics. If not, depending on the application under study, the

scores can be normalized.
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better measured using other assortativity metrics.

Property 3: The metric should use specified classes; these classes can be known or unknown

ahead of time. Like other measures of assortativity, the metric should be based on connections

within and between classes, where more connections within the same class and fewer connections

between different classes tend to increase the metric value.

Property 4: Class size should be taken into account. As social classes can be of different sizes,

classes with larger size should not have the power to define the stratification of the network. Thus,

defining a metric just based on inter- vs intra-class connections will fail to address that. For instance,

in a network with two classes with different sizes (class 1: large and class 2: small). Suppose there are

n1 intra-class connections inside class 1, n2 intra-class connections inside class 2 and n3 inter-class

connections. If n1 >> n3, the fraction of intra-class connections is very high. Then, this high fraction

does not necessarily correspond to a high level of stratification. Because, while n3 >= n2, members

of class 2 are connected to members class 1 as much as they are connected to each other, and this

network is not highly stratified. A real world example of this can be seen in socioeconomic classes

where the size of the upper class is much smaller than the middle class and lower class. Whether

the upper class is segregated or not segregated from other classes has a huge impact on the social

stratification of the society.

6.5.2 Existing Metrics

As mentioned in Section 6.4, there are a number of existing network metrics that, at first glance,

seem appropriate for measuring social stratification.

The famous modularity metric measures the quality of a partitioning of the nodes in a network. A

network partitioning has high modularity if there are many intra-class edges and few inter-class

edges, compared to what one would expect in a random network with the same degree distribution.

If σ(u, v) = 1 if nodes u and v are from the same class and 0 otherwise, the modularity of graph
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G(V ,E)with adjacency matrixA is computed as follows [126]:

modularity(G) = Sdiscrete(G)− E(Sdiscrete(G ′)),

where Sdiscrete is the ‘discrete assortativity score’ of graph G and E(Sdiscrete(G ′)) is the expected

‘discrete assortativity score’ of a random networkG ′ with the same degree distribution asG :

Sdiscrete(G) =
Σu,v∈V (auv )·σ(u,v)

2m
, E(Sdiscrete(G

′)) = Σu,v∈V (deg(u)·deg(v))·σ(u,v)
4m2

.

The next related metric is discrete assortativity coefficient which measures the similarity of con-

nections in the network. The discrete assortativity coefficient of graph G(V ,E) is a normalized

version of modularity. IfMax(Sdiscrete(G) = 1, then discrete assortativity coefficient is computed as

follows [125, 56]:

discrete − assortativity(G) = Sdiscrete(G)− E(Sdiscrete(G ′))

Max(Sdiscrete(G))− E(Sdiscrete(G ′))
.

Modularity and the discrete assortativity coefficient are based on an unordered categorical attribute

such as race and gender.

The scalar assortativity coefficient, measures the similarity of connections in the network with respect

to a numeric attribute, but does not allow for specification of groups. If scalar attributes of node

u is s(u), then the scalar assortativity coefficient of graphG(V ,E) is the covariance of the scalar

attributes of nodes over all edges of the graph. Scalar assortativity is computed as follows [125]:

scalar − assortativity(G) = Sscalar(G)− E(Sscalar(G ′))

Max(Sscalar(G))− E(Sscalar(G ′))
.

whereSscalar is the ‘scalar assortativity score’ of graphG andE(Sscalar(G ′)) is the expected ‘scalar as-

sortativity score’ of a random networkG ′ with the same degree distribution asG andMax(Sscalar(G)

is the maximum ‘scalar assortativity score’ possible:
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Table 6.1: Summary of desired properties and whether different metrics satisfy them.

Metrics Scalar Ordered Specific Class
Values Tiers Classes Size

Modularity No No Yes No
Discrete No No Yes No
Assortativity
Scalar Yes No No No
Assortativity
Stratification Yes Yes Yes Yes
Assortativity

Sscalar(G) =
Σu,v∈V (auv )·s(u)s(v)

2m
, E(Sscalar(G

′)) = Σu,v∈V (deg(u)·deg(v))·s(u)s(v)
4m2

Max(Sscalar(G) =
Σu,v∈V (auv )·s(u)2

2m
.

However, none of these metrics satisfy all the desired properties for a social stratification metric.

Table 6.1 shows a summary of desired properties and whether these metrics satisfy them.

6.5.3 Stratification Assortativity

Here, I propose a novel assortativity metric for measuring the social stratification of an undirected,

unweighted, attributed networkG with n nodes (Definitions can be easily modified for a weighted

graph). This metric is based on the discrete/ scalar assortativity formula and is reformulated in a way

that captures the desired properties as explained in the previous section.

Depending on the application under study, the social class hierarchy might be known or unknown.

In many real applications, these classes are known ahead of time. For example, it is conventional in

economic analysis of Western societies to define a lower, middle, and upper class [24]. However, in

other applications like meetings or conferences between individuals [67], it is possible that neither

the class boundaries nor even the number of classes is known ahead of time. In this section, I first find

stratification assortativity for known classes and then show how to find it for unknown

cases.

Input:
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1. An undirected, unweighted graph G = (V ,E), where each node u has a characteristic

attribute value, denoted by s(u).

2. Social similarity function w(s1, s2) which measures the distance between characteristic at-

tribute scores s1 and s2. In this work, I definew(s(u), s(v)) = 1− |s(u)−s(v)|
max(S)−min(S) , where S is

the score distribution for all nodes in the networkG and u, v ∈ V . Depending on the domain,

other functions may be more appropriate. These weights are intended to capture the effect of

the actual values of node scores (Property 1).

3. If classes are known: k classesC = {c1, c2, ..., ck}, where each ci represents the nodes with

scores within a contiguous portion of the range of possible score values (Property 2). Let

c(u) represent the class membership of u (i.e., if s(u) is in the range represented by ci , then

c(u) = i ) (Property 3).

Computation Idea: As explained, the existing assortativity metrics find the assortativity score in

the given network and compare it to the expected assortativity score of a random graph to find the

statistically surprising arrangement of edges [126]. This is based on the idea that if the number of inter-

class connections is significantly more or significantly less than what we expect in a random network,

then something interesting is happening in the network [126]. Finding the statistical significance

of a property by comparing it with a random structure is common in different network science

studies [178, 130].

As explained, assortativity metric is defined as: S(G)−E(S(G ′))
Max(S(G))−E(S(G ′))

. Where S(G) is the assortativity

score of networkG , E(S(G ′)) is the expected score of random networkG ′ with the same degree

distribution as networkG andMax(S(G)) is the maximum assortativity score of networkG . The

differences between discrete and scalar assortativity coefficient is on the way that assortativity

score is computed. For stratification assortativity computation, I use assortativity metric

formula and define stratification assortativity score in a way that captures the desired properties.
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KNOWN CLASSES: Computation Process: First, I convert GraphG to a weighted version where weight

of each edge (u, v) ∈ E is computed by input social similarity function and define Stratification

Assortativity (SA) of the weighted networkG as:

stratification − assortativity(G) = Sstrat(G)− E(Sstrat(G ′))

Max(Sstrat(G))− E(Sstrat(G ′))
.

Where Sstrat(G) is the ‘stratification score’ of the weighted networkG ,E(Sstrat(G ′)) is the expected

‘stratification score’ of a random networkG ′ with the same weighted degree distribution as networkG

andMax(Sstrat(G)) is the maximum ‘stratification score’ of networkG . These values are computed

as:

□ Sstrat :

Sstrat(G) =
∑
ci∈C

∑
(u,v)∈E

w(u, v) · α(u, v ,Ci)
w(u, v) · α(u, v ,Ci) + (1− w(u, v)) · (1− α(u, v ,Ci))

.

w(u, v) is the weight of edge (u, v) and is computed based on similarity and α(u, v ,Ci) = 1

if c(u) = c(v) = ci and 0 otherwise.

– Sstrat is computed as the sum of scores of each class. In computing the score of each

class, the numerator represents the sum of similarity weights of intra-class connections

and the denominator represents the sum of similarity weights of intra-class connections

plus the sum of dis-similarity weights (1-similarity) of inter-class connections.

– This score is based on both scalar characteristics (actual value) and specified classes

(Properties one, two).

– Using similarity weights of intra-class connections ensures that connections within the

same class are rewarded (the higher the similarity, the higher the reward) and using dis-

similarity weights of inter-class connections ensures that connections within different

classes are penalized (the higher the dis-similarity, the higher the penalty) (Property
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three).

– Using the sum of scores of each class considers the impact of each class separately and

prevents the impact of large classes to be more than smaller classes (Property four).

□ E(Sstrat(G)) :

E(Sstrat(G)) =
∑
ci∈C

∑
(u,v)∈E

w ′(u, v) · α(u, v ,Ci)
w(u, v) · α(u, v ,Ci) + (1− w ′(u, v)) · (1− α(u, v ,Ci))

.

E(Sstrat(G)) is computed similar to Sstrat(G) except that the weight of edges are consid-

ered as the expected weight of edges in a random network with the same weighted degree

distribution as G as follows: If swu is sum of the weights of all edges connected to u, then

w ′(u, v) = swu ·swv
(Σx∈V swx )2

.

□ Max(Sstrat(G)) :Maximum social stratification happens when there is no inter-class connec-

tion and all edges are intra-class connections. In this case for each ci ∈ C the score of each

class is one (numerator and denominator in Sstrat formula are the same per each class). Then,

as there are k classes in the network,Max(Sstrat(G)) = k .

Interpretation: Stratification assortativity is a real number between -1 and 1, with 1 rep-

resenting a network that is fully stratified and -1 corresponding to a dis-stratified network (more

normalized weighted inter-class connections than normalized weighted intra-class connections)

and 0 corresponding to a network with balanced inter- vs intra- class connections.

UNKNOWN CLASSES: If classes are not known ahead of time, one must first find the social class

boundaries and then use stratification assortativity metric for known classes. Here, I am

interested in social classes that result in the greatest stratification assortativity. As ex-

plained before, stratification has consequences, and if there is a setting for classes that has high

levels of stratification, then that setting is of great importance. For instance, in a society that is divided

into lower, middle and upper class, there might be many ways of partitioning the network into
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non-stratified classes, but the existence of a stratified partition is of great importance.

The problem is similar to the problem of community detection in the network that requires partition

of the network into components of densely connected nodes [14]. Here, I am interested in finding

components of ordered nodes with more intra-component interaction and less inter-component

interactions normalized by weight and class sizes.

In this section, I introduce MaxStrat, a heuristic to find the class boundaries that result in the

greateststratification assortativity.MaxStrat requires that the user specify k , the number

of classes; but if this is not known, one can consider all possible values of k within whatever range is

desired.

Finding classes that maximize stratification assortativity can also be used to find the

hierarchy in a social network. The hierarchy underlying a social network can be used in different

applications including link recommendation (friendship recommendation) [67].

Algorithm 6 MaxStrat
Input:

Network G with n nodes and attribute (Score), Desired number of classes k
1: i = min score of nodes
2: j = max score of nodes
3: T0: empty matrix
4: for l in range (i , j) do
5: for r in range (l , j) do
6: T0[i , j ] = Σ(u,v)∈E

w(u,v)·α(u,v ,C[i ,j ])
w(u,v)·α(u,v ,Ci )+(1−w(u,v))·(1−α(u,v ,C[i ,j ]))

−
w′(u,v)·α(u,v ,C[i ,j ])

w(u,v)·α(u,v ,C[i ,j ])+(1−w
′(u,v))·(1−α(u,v ,C[i ,j ]))

.

7: intervals, sum = Step1(G , k , [i , j ],T0)
8: intervals = Step2(G , intervals, k)
9: return intervals =0

MaxStrat: MaxStrat assumes as input an undirected, unweighted networkG with n nodes, where

each node u has score s(u). The user also specifies a desired number of classes k (if no k is specified,

one can run MaxStrat 1 for different values of k to find the one that results in the highest social

stratification).

The MaxStrat heuristic is based on maximizing the non-normalized version of the SA. The non-
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normalized version of SA – SA′ = Sstrat(G)− E(Sstrat(G ′)) – is similar to the modularity metric.

MaxStrat consists of two steps. First, finding ordered classes that maximize SA′ and second, in an

iteration, scanning the classes and moving nodes with the upper-bound or lower-bound scores to

adjacent classes if it improves SA. Pseudo-code for MaxStrat is shown in Algorithm 6.

Step 1: Step 1: Let h represent the number of distinct scores. Without loss of generality, assume

that the set of distinct scores is {1, 2, ..., h}. Step 1 maximizes SA′(G):

SA
′
(G) = Σci∈CΣ(u,v)∈E

w(u, v) · α(u, v ,Ci )
w(u, v) · α(u, v ,Ci ) + (1− w(u, v)) · (1− α(u, v ,Ci ))

−
w ′(u, v) · α(u, v ,Ci )

w(u, v) · α(u, v ,Ci ) + (1− w ′(u, v)) · (1− α(u, v ,Ci ))
.

The algorithm computes matrices Tb, for b ∈ {0, 1, ..., k} which will keep track of intermediate

solutions.T0[i , j ] denotes the amount that this interval would contribute to the network’s SA score

if i and j were the boundaries of a class:

T0[i , j ] = Σ(u,v)∈E
w(u, v) · α(u, v ,C[i ,j ])

w(u, v) · α(u, v ,Ci ) + (1− w(u, v)) · (1− α(u, v ,C[i ,j ]))
−

w ′(u, v) · α(u, v ,C[i ,j ])

w(u, v) · α(u, v ,C[i ,j ]) + (1− w ′(u, v)) · (1− α(u, v ,C[i ,j ]))
.

For b > 0, defineTb[i , j ] to be the maximum SA′ contribution that can be obtained by splitting the

interval [i , j ] intom sub-intervals.Tb[i , j ] is clearly undefined if j − i +1 < b andT1[i , j ] = T0[i , j ].

For larger values ofm,Tb[i , j ] can be found by considering all indices r between i and j , computing

the sumT0[i , r ]+Tb−1[r+1, j ], and taking the maximum of these values. These values are computed

up to b = k , and finally,Tk [i , j ] is returned.

Pseudo-code for this step is shown in Algorithm 7. As described above, the algorithm computes

T0 to Tk . However, this can be sped up further by only computing those elements of matrices

that are actually needed (using Algorithm 7) to compute only necessary elements, using recursion

with memoization. (Note thatT0 is passed to the recursive implementation as input to avoid extra

computation).

Step2: The output of step 1 is a set of ordered tiered intervals. Step 1 is based on SA′ and the final

result maximizes SA′. As SA is the normalized version of SA′, there might be few cases that the
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Algorithm 7 Step1
Input:

NetworkG with n nodes and attribute (Score), Desired number of classes k’ at current step, interval [i,j],T0
1: score = distinct scores of nodes
2: if k = 1 or i = j then
3: return [(i , j)],T0[i , j ]
4: else
5: interval = [],maxSum = 0
6: for c in range (j − i) do
7: leftInterval = [i , i + c ], leftSum = T0[i , i + c ]
8: rightIntervals, rightSum = Step1(G , k ′ − 1, [i + c + 1, j ],T0)
9: if leftSum + rightSum > maxSum then

10: maxSum = leftSum + rightSum
11: Intervals = rightInterval .append(leftInterval)
12: return Intervals, sum =0

classes found in step 1 are not the optimal solutions for SA. To address this problem, MaxStrat

contains a scanning step to make sure that the final results are close to optimal.

The process consists of several iterations. Suppose that the intervals are {[i1, j1], ..., [ik , jk ]}. In

each iteration, for each two consecutive intervals [ia, ja], [ia+1, ja+1] (ia+1 = ja + 1), check whether

substituting intervals a and a+1with either [ia, ja− 1], [ia+1− 1, ja+1] or [ia, ja+1], [ia+1+1, ja+1]

will give a higher SA. And if it does, substitute the current intervals with the one where intervals a

and a + 1 are updated to the maximum one possible. Continue the process until no substitution

will give a better result in an iteration. Pseudo-code for this step is shown in Algorithm 8.

6.6 Case study on Co-Authorship Networks

Here, I study the social stratification of four co-authorship networks from the fields of Computational

Linguistics, Natural Language Processing, Computational Biology, and Biomedical Engineering.

Among other results, I find that (a) existing assortativity metrics do not capture social stratification,

while the proposed stratific- ation assortativity metric does, (b) these fields demonstrate

high levels of stratification, and (c) this social stratification increases over time.

Graph Data: To generate these networks, I extracted papers published in these four fields from the

Microsoft Academic Graph (MAG) [152] over the time period from 1966 to 2015.3 Each node represents
3I used MAG because it outperforms Google Scholar in terms of structure, functionality, and richness of data [78].
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Algorithm 8 Step2
Input:

Network G with n nodes and attribute (Score), intervals, k
1: score = SA(G, intervals), flag = True, checked = [intervals]
2: while flag do
3: flag = False
4: for a in range k − 1 do
5: [ia, ja] = intervals[a], [ia+1, ja+1] = intervals[a + 1]
6: intervals1, intervals2 = intervals.copy()
7: intervals1[a] = [ia, ja + 1], intervals1[a + 1] = [ia+1 + 1, ja+1]
8: if intervals1 not in checked & ia ≤ ja + 1 & ia+1 + 1 ≤ ja+1 then
9: checked .append(intervals1), Score1 = SA(G , intervals1)

10: if Score1 > Score then
11: intervals = intervals1, flag = True
12: intervals2[a] = [ia, ja − 1], intervals2[a + 1] = [ia+1 − 1, ja+1]
13: if intervals2 not in checked & ia ≤ ja − 1 & ia+1 − 1 ≤ ja+1 then
14: checked .append(intervals2), Score2 = SA(G , intervals2)
15: if Score2 > Score then
16: intervals = intervals2, flag = True
17: return Intervals =0
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Figure 6.1: Size of Networks (# of Nodes).

a researcher (author on a paper), and a link between two nodes indicates that they have published a

paper together at least once. I treat these networks as undirected and unweighted.

These fields have been active for approximately 50 years and were chosen because they are young

enough that full data is available (in contrast to very old fields like general physics, where much of

the early co-authorship information may not be accessible) but old enough for meaningful evolution

to have occurred. This 50-year period covers the bulk of the active period for these fields: before

1966, there were very few papers in these fields, and the dataset is incomplete for papers published

after 2015. For each field, I generated 5-year rolling network snapshots spanning 1966-2015 (each
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Table 6.2: Dataset Statistics.

Networks # authors # connections # connections
(distinct) (all)

Computational 11k 22k 23k
Linguistics
NLP 137k 398k 476k
Computational 174k 1.6M 1.7M
Biology
Biomedical 410k 1.3M 1.4M
Engineering
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Figure 6.2: Percentage of nodes from each class

snapshot begins one year later than the previous). Each field contains at least 11k authors. Statistics

of datasets are provided in Table 6.2 and the size of the snapshots is provided in Figure 6.1.

Node Scores: Node scores are defined by author h-indices,4 computed using citation data within

the field up to that year. I identify classes using MaxStrat, and while the results vary across snap-

shots and fields, in general I find that it works well to partition nodes into four classes of low score

nodes (h-index=0), medium low score nodes (h-index ∈ {1, 2}), medium high score nodes (h-index

∈ {3, 4, 5, 6}) and high score nodes (h-index > 6). (Discussion of varying class numbers and bound-

aries is provided later.)

These classes were selected by examining the distribution of h-indices. In almost all snapshots, over

half of the nodes had an h-index of 0, and only a tiny minority had an h-index greater than two;

however, because the h-indices are integer valued, finer granularity is impossible. Figure 6.2 shows
4The h-index of an author is defined as the largest value h such that the author has at least h papers with at least h

citations each.
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the percentage of authors in each class per field (The highest stratification assortativity

for these networks is typically achieved with 2 classes; but considering only 2 classes makes the

other assortativity metrics less meaningful, and so I present results with 4 classes for finer granularity

of analysis. This does not affect the overall conclusions of my analysis.)

6.6.1 Results

My first goal is to determine whether the stratification assortativity (a) provides insight

that is not obtained from the other related assortativity metrics (shown in Table 6.1) and (b) accurately

captures stratification in the network. For this analysis, I use the four fixed classes described above.

First, Figure 6.3a shows the stratification assortativity of the 5-year snapshots from all

four fields. This figure demonstrates that (a) all networks have a fairly high level of stratification

(0.45 - 0.75+); and moreover, overall stratification assortativity increases over time. For

the second half of the evolution process, with the exception of Computational Biology, this increase

is smoother than the first half. This is because as the networks age, datasets become larger and there

are nodes in all four classes whereas for the first half, not all classes have enough nodes. Moreover,

the score distribution of nodes in the Computational Biology field is less consistent over the years

compared to the other fields which causes spikes in the evolution process.

Next, I demonstrate that this behavior is not captured by the other assortativity metrics. Figure 6.3

provides a comparison between stratification assortativ- ity and other metrics. (Discrete

assortativity is computed using the same set of classes; scalar assortativity is computed using the h-

index scores directly.) For all these competitor metrics, assortativity decreases over time, in contrast

to stratifica- tion assortativity, which increases over time. From these plots, it is clear

that stratification assortativity is measuring something very different from what the other

assortativity metrics capture. In the next two sections, I validate the results of stratification

assortativity and explore reasons for these differences.
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Figure 6.3: Metric Comparison

VALIDATION: Here, I perform a deeper investigation into a variety of class-related properties from

this network. Naturally, there is no ground-truth for network social stratification (at least on these

datasets); thus, I perform an indirect evaluation in which I identify several properties that do not follow

directly from the stratification assortativity metric, and yet which one would expect to be

associated with network social stratification. I demonstrate that these properties tend to increase

over time, suggesting that the stratification assortativitymetric (which also increases over

time) better captures network social stratification than do the other assortativity metrics (which

decrease over time).

From a social distance perspective, social stratification is theorized as a social space where inequal-

ity and hierarchy are produced through social interactions [16]. Informally, a network should be

considered highly stratified when (a) people tend to connect to others with similar scores and (b)

the network is divided into tiers corresponding to intervals of those scores. In an extreme case, a

stratified network might be divided into separate connected components corresponding to the

various score intervals (tiers). Another way of looking at this is in terms of access. In a highly stratified

network, low score nodes will lack access (whether direct or through a small number of hops) to

those from higher classes. This, naturally, has consequences for social mobility.

Accordingly, I validate the results of this metric in two ways: first, I separate each network snapshot

into its various connected components (as a proxy for social distance [16] and examine the collabo-

99



YearSt
d.

 D
ev

 o
f C

om
p.

 C
ol

la
b.

 S
co

re
.

1970      1980 1990 2000     2010

0.8

0.6

1.0

1.2

Comp. Ling.
NLP
Comp. Bio.
Bio. Eng.

(a) Standard Deviation

Year

# 
Co

nn
ec

te
d 

Co
m

po
ne

nt
s 

1970      1980 1990 2000     2010

20k

0

15k

10k

5k

Comp. Ling.
NLP
Comp. Bio.
Bio. Eng.

(b) Number of components

Figure 6.4: Standard deviation of average component collaboration scores over all components, and
number of connected components. As the networks get older, standard deviation increases.

ration/score properties of each separate component; and second, I examine the frequency of collab-

orations between classes. For both sets of experiments, I see that the results confirm the result that

social stratification is indeed increasing over time and is thus better captured by stratification

assortativity rather than the other assortativity metrics.

Social Distance and Access. As described in Section 6.2, social stratification is known to be closely

associated with social distance [16]. In the literature, social distance is defined very broadly, and

can encompass characteristics like ethnicity, socio-economic status, occupation, etc. In all cases,

though, a high social distance between classes suggests that individuals lack access- both directly

and indirectly- to those in other classes. In a network setting, the simplest way to determine ‘access’ is

by the existence of paths: if there is no path between two nodes, then by standard network evolution

processes (e.g., triadic closure and the like), it is virtually impossible for them to connect in the future

(this is not to say that they cannot connect; but if they do, it is likely because of processes external to

the network topology). Accordingly, I study the properties of connected components in the network.

If connected components exhibit very different score-related characteristics, this is indicative of

social stratification.

To begin, for each node u in the network, a collaboration score, defined as the average h-index

of the four highest-scoring collaborators of u is computed. (The top neighbors are considered
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Figure 6.5: Collaborations from different h-index classes for NLP, normalized by degree (see description
in text).

because access to higher-class individuals is more important than access to lower-class individuals

for upwards social mobility.) Next, all the connected components in each network are identified.

For each component, the average over the collaboration scores of all nodes in that component

is computed. This gives a component score for each component. A higher value indicates that on

average, nodes in the connected component have collaborations with high scoring nodes, while a

lower average indicates that on average, nodes in the component lack connections to high scoring

nodes.

Next, the standard deviation of these component scores over all components are computed. A

low standard deviation indicates that nodes have similar collaboration patterns across different

components of the network, and a high standard deviation indicates that the network has some

components in which nodes tend to have higher collaboration scores and some components in

which nodes tend to have lower collaboration scores. The former suggests that the network is not

stratified; the latter suggests that it is. Figure 6.4 shows these results. In all cases, as the network

gets older, the number of components increases and the standard deviation across components

increases. In other words, over time, the components show increasingly different behaviors from

one another: in some, nodes have access to high-scoring nodes, and in others, nodes do not. This

suggests that social stratification increases over time.

Collaborations Between Classes. Next, I examined the frequency of collaborations between the var-

ious classes/tiers of authors over time. (This, of course, is what stratification assortativity

measures, but here I break it down by class.) Figure 6.5 shows a heatmap describing results in
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the Natural Language Processing field (results for other fields were similar). This plot shows the

frequency of collaborations between classes of authors. Here, each cell (ci , cj) is the number of

connections from class ci to class cj , (|(ci , cj)|), normalized by the number of connections of the

two classes (cell(ci , cj) =
|(ci ,cj )|
|ci |·|cj |

, where |ci | is the number of connections where at least one side is

in class ci ). The x -axis and y -axis show the class of h-indices (like before, I divided the h-index scores

into 4 classes). These results show that as the network ages, people display a higher tendency to

collaborate with members of their same class or nearby classes. In particular, as the field evolves,

high score nodes have a very strong tendency to collaborate with other high score nodes.

STRATIfiCATION ASSORTATIVITY VS OTHER METRICS.: Here, I comparestratification assortativity

to the other assortativity metrics, and further explore the data to understand why they give opposite

results. To compute stratification assortativity, one counts (normalized) inter- and intra-

class connections separately for each class, and then combines these values. To understand the rise

in network social stratification, I examined these values over time.

The results show that the rise in network social stratification is driven primarily by increased stratifi-

cation in the upper-tier of researchers. As in the computation process, the sum of the score of each

class is used, at the very beginning of the timeline, this upper-tier was empty, and so pulled the sum

of stratification down. As time went on, this class became larger and larger, and increases in its class

stratification brought the overall score up (Later, I examine stratification when class boundaries are

not fixed ahead of time. The increase in stratification for more than 2 classes still exists.).

The discrete assortativity coefficient do not account for this: the growth of a class does not sub-

stantially affect their values. The scalar assortativity coefficient, of course, does not even take class

structure into account, and so naturally gives different values.
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Figure 6.6: Stratification assortativity over time for 2-year, 6-year and 10-year intervals.
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Figure 6.7: Maximum stratification assortativity for varying number of classes.

6.6.2 Analysis of Stratification

In this section, I use the stratification assortativity to explore interesting properties of the

four co-authorship networks over time. I examine (1) network social stratification with different

numbers of classes/tiers, (2) sensitivity of basic patterns in stratification assortativity to

different interval snapshot lengths, and (3) the effect of the increase in network social stratification

on individual researchers’ trajectories.

Stratification Assortativity and Interval Length. First, to explore whether results are sensitive to

the interval snapshot (5 years) used earlier, I generate networks showing patterns on 2-year, 6-year

and 10-year interval snapshots. For these intervals, the general trends are identical, though values are

lower for the 2-year intervals than other intervals. This may be because 2 years is insufficiently long

to capture many active collaborations, and so patterns are simply weaker overall in these snapshots.

Figure 6.6 shows the stratification assortativity of these networks.
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Figure 6.8: Optimal class boundaries and sizes for 2 classes on Computational Linguistics networks.

1970 1980 1990 2000 2010
Year

0

10

20

30

40

50

60

Cl
as

s B
ou

nd
rie

s

Class 1
Class 2
Class 3
Class 4
Class 5

(a) Optimal class boundaries.

1970 1980 1990 2000 2010
Year

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f A
ut

ho
rs

 in
 e

ac
h 

Cl
as

s

Class 1
Class 2
Class 3
Class 4
Class 5

(b) Fraction of nodes per class.

Figure 6.9: Optimal class boundaries and sizes for 5 classes on Computational Linguistics networks.

Ideal Number of Classes and Class Boundaries. Using MaxStrat, one can compute the ideal

class boundaries for each snapshot, for varying numbers of classes. Then, using the maximum

stratification achievable for each number of classes, one can compute the ideal number of classes.

Figure 6.7 shows the maximum stratific- ation assortativity achievable for varying numbers of

classes using MaxStrat. The results using the brute force algorithm are identical to these results for

all cases. The maximum stratification assortativity here is obtained at 2 classes (though

this is not necessarily true for arbitrary networks).

Figures 6.8 and 6.9 show optimal boundaries and class sizes for 2 and 5 classes. In both plots, the

optimal lower class always consists of nodes with h-index 0, and the size of this class shrinks over

time.

Stratification and Social Mobility. A major real-world consequence of social stratification is its

effect on social mobility. Here, I demonstrate that worsening stratification has an impact on the
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Figure 6.10: Relationship between entrance collaboration score of nodes and their h-index after 10
years for Biomedical Engineering

careers of researchers: as networks age, the entrance point of new nodes has a larger effect on

their trajectories through the field. Figure 6.10, corresponding to Biomedical Engineering (results in

other fields were similar) shows the relationship between collaboration score of nodes (the average

h-index of their top-4 highest-scoring collaborators) when they enter the network compared to their

own h-index after 10 years (For authors in years 2012-2015 I examined their current h-index (2021)).

Cell (ci , cj) is the normalized number of authors with starting collaboration score from class ci and

h-index of class cj after 10 years, (cell(ci , cj) =
|(ci ,cj )|
|ci |·|cj |

, where |ci | is the number of authors in class

ci ). The x -axis shows the class of collaboration scores and the y -axis the class of h-indices (as before,

each is divided into 4 tiers).

From Figure 6.10, it is observed that as the network ages, entrance point increasingly matters; and

those who start their career by collaborating with high score nodes become much more likely to

achieve a high h-index themselves. A relationship between entry point and trajectory has been

observed before [101]); but I demonstrate that this tendency tends to increase over time.

6.7 Conclusion

In this chapter, I proposed stratification assortativity, a novel algorithm that measures

network social stratification by evaluating the tendency of the network to be divided into ordered

classes. I then proposed a heuristic for identifying the classes that maximize stratification

assortativity. Then, I performed a case study on several co-authorship networks and examined

the evolution of these networks over time and showed that networks evolved into highly stratified
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states.
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Chapter 7

AN AGENT BASED MODEL FOR NETWORK

EVOLUTION

7.1 Introduction

In the previous chapter, I studied social stratification in networks and showed how to measure it.

Then, I did a case study on computer science co-authorship networks and demonstrated that the

scientific fields grow increasingly stratified over time.

In the social science literature, many possible causes of social stratification have been suggested.

This was done by using a theoretical model in which individuals seek to balance social influence

regarding status with a desire for reciprocity [59] or using an inequality maintenance model of social

class to find the causes behind social stratification and income inequality [133].

In this chapter, I propose an agent-based model to simulate the evolution of networks and study

how social stratification and unfairness rise in networks.

My key contributions are as follows:

1. I propose an agent-based model for network evolution and show under specific settings,

networks evolve into ordered tiers (Section 7.2).
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2. I study different factors that have influence on the evolution process and can delay or prevent

stratification (Section 7.4).

3. I discuss different social science phenomena that can be predicted by the model (Section 7.5).

7.2 An Agent-Based Model for Network Evolution

In this section, I introduce an agent-based model for network evolution. This model is inspired by

research collaboration networks but can be applied to other domains.

The model simulates the evolution process of a historical network HN with n nodes over several

steps. At each step i , these n agents collaborate with each other and form a current network CNi .

This model begins with an initial current networkCN0.HN is set toCN0 at the beginning. Each agent

has a distinct score that determines ‘merit’ of that agent. The historical networkHN is updated at the

end of each step based on the collaborations that occurred during that step (connections inCNi )

using exponential decay.

The current network describes all the collaboration at the current state. The historical networkHN

describes current and (recent) past connections and can be used for purposes of forming new

connections (e.g., to a friend of a friend). The reason to have two distinct networks is to distinguish

between current connections and past connections (as a connection can be important even if it is

not part of an active collaboration). For instance, in a co-authorship network, the current network

contains all the collaboration at the current academic year and the historical network contains all

the collaboration in the pastm years.

At each collaboration step, each agent has a budgetm for collaborations and can use it to collaborate

with other agents that are at most h hops away. Each agent can allocate at most k ′ units of her

budget to a collaboration with any single agent. This constraint represents the agent’s desire to

diversify her collaborations. If desired, k ′ can be set tom. All collaborations must be accepted by

both parties. The process consists of t steps. Each step i of the process is as follows:

108



1. At the beginning of each step i , each of the n agents forms a list of preferences for how to

allocate her budget. This list contains all agents that are at most h hops away sorted based on

their score (Here I assume that the primary goal for agents is to collaborate with successful

agents. Later, I discuss what happens under other preference patterns.).

2. Match up agents according to their preferences.

□ Run the maximum stable roommate matching algorithm [159] and allocate 1 unit of

budget to matched agents.

□ Update the preference lists of each agent u based on current allocation:

– If u reached her budgetm, set her list to empty.

– If agent u is already matched to agent v with k ′ units of budget, remove v from u’s

preference list.

□ Run until agents’ preference lists are not empty and matching is possible.

3. Create a current network CNi , where the nodes represent the agents in the model. There is

a weighted edge between each pair of matched agents, where the weight of each edge is

the amount of budget allocated to that match. This network represents each agent’s active

collaborations.

4. Update historical networkHN based on current collaboration. This can be done by updating

the weights of edges based onCN0 + 1
2
CN1 +

1
4
CN2 + ... and removing those edges that

weren’t reinforced in the past steps using an input threshold t (edges with weights less than t

are removed). This network represents each agent’s currently or recently active connections

to other agents.

7.2.1 Examples

In this section, the evolution model is described using three examples with different structures.
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Figure 7.1: Example 1: evolution process of a dense network with h = 2. The network is divided into 4
ordered cliques after 3 steps.

EXAMPLE 1: EVOLUTION OF A DENSE NETWORK: Suppose there is an initial historical network that has

16 sorted agents (agent 1 has the highest score). Suppose agents’ goal is to collaborate with high

score agents. Each agent has a collaboration budget of 3, and can spend at most 1 unit of her budget

collaborating with any single agent. Suppose agents can collaborate with those who are at most

h = 2 hops away and the threshold for keeping an edge is t = 0.3 (edges with weight less than

threshold will be removed fromHN).

Figure 7.2: InitialCN1.

The evolution process consists of several steps. At each step i , cur-

rent networkCNi is formed and historical networkHN is updated

based on CNi . Figure 7.1 shows network HN at the beginning of

each step.

Step 1:

CN1 generation:

First, an empty network CN1 with 16 agents is made (Figure 7.2).

Then the process consists of 3 rounds (as agents’ budget is 3). At

each round, agents generate their preference lists and maximum stable roommate matching algo-

rithm is used to form one connection per agent (if possible) (each connection between two agents
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corresponds to one unit of their budget).

Round 1: First, each agent generates her Preference List (PL) as follow (note that the maximum

length of all shortest paths inHN is 2 and thus, agents have access to all other agents):

□ PL1 = {2, 3, 4, ..., 15, 16}

□ PL2 = {1, 3, 4, ..., 15, 16}

□ PL3 = {1, 2, 4, ..., 15, 16}

□ ...

□ PL15 = {1, 2, 3, ..., 14, 16}

□ PL16 = {1, 2, 3, ..., 14, 15}

Figure 7.3:CN1 in round 1.

Then the maximum stable matching algorithm matches each agent

to another agent-based on their preference lists. The maximum sta-

ble matching algorithm is based on mutual consent. Thus, as all

nodes want to be matched with agent 1, agent 1 gets matched to its

first preference (agent 2). The second priority of all agents is agent

2, but agent 2 is already matched and agent 3 is the next priority for

everyone. Thus, agent 3 gets matched to its first unmatched prefer-

ence (agent 4). The process continues and agent 5 gets matched to

agnet 6 and so on as shown in Figure 7.3.

Round 2: As every agent can allocate one unit of their budget to collaborating with another agent,

the preference lists of agents will be updated and the matched agents will be removed from each

other’s lists as follow:

□ PL1 = {3, 4, 5, ..., 15, 16}

□ PL2 = {3, 4, 5, ..., 15, 16}
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□ PL3 = {1, 2, 5, ..., 15, 16}

□ ...

□ PL15 = {1, 2, 3, ..., 13, 14}

□ PL16 = {1, 2, 3, ..., 13, 14}

Figure 7.4:CN1 in round 2.

Similar to the previous round, the maximum stable matching algo-

rithm starts with matching agent 1 (the most popular agent) to her

first priority (agent 3). Then matches agent 2 to agent 4, and agent

5 to agent 7 and so on as shown in Figure 7.4.

Round 3: Similar to the previous round, first, the preference lists of

agents will be updated and the matched agents in round 2 will be

removed as follow:

□ PL1 = {4, 5, 6, ..., 15, 16}

□ PL2 = {3, 5, 6, ..., 15, 16}

□ PL3 = {2, 5, 6, ..., 15, 16}

□ ...

□ PL15 = {1, 2, 3, ..., 12, 14}

□ PL16 = {1, 2, 3, ..., 12, 13}

Similar to the process explained in the previous rounds, the maximum stable matching matches

agent 1 to agent 4, and agent 2 to agent 3 and so on as shown in Figure 7.5.

In the end of round 3, agents have used all their budget and the process of CN1 generation is

complete. Each agent has 3 connections in CN1 that are generated by mutual consent. As agents

allocate 1 budget to each connection, weights of all edges inCN1 are equal to 1.
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Figure 7.5:CN1 in round 3.

HN update: AfterCN1 generation,HN gets updated based onCN1.

Suppose the weight of all edges in the initial HN is equal to 1. At

the end of step 1, the weight of all edges in HN are halved. Then,

the edges inCN1 that are not present inHN are added toHN with

weights equal to 1 and the weight of edges inHN that are present in

CN1 are increased by 1. This aligns with the weight update formula

CN0 +
1
2
CN1 +

1
4
CN2 + ... described in the model.

In this example, as the edges inCN1 are already present in the initialHN , their weights are increased.

This newHN will be passed as input to the second step of the model. Figure 7.1 (step 2) shows the

updatedHN after step 1. Weights of old gray edges are equal to 0.5 and weights of black edges are

equal to 1.5. As there are no edges with weight less than threshold (0.3), then all edges are kept.

Step 2:

In step 2, the updated HS from step1 is used as the input for generating CN2. As no edges are

removed in Step 1, theCN2 generation process is exactly the same asCN1 generation process and

CN2 is the same asCN1. Then,HN gets updated based onCN2. At the end of step 2, the weight of

all edges inHN are halved and then the weight of edges inHN that are present inCN2 are increased

by one. Thus, the weight of old gray edges are equal to 0.25 and the weight of black edges are equal

to 1.75. As the weight of old edges are less than threshold, then they are removed from the network.

Figure 7.1 (step 3) shows the updatedHN after step 2.

Step 3:

In step 3, the updatedHS from step 2 is used as the input for generatingCN3. As the structure of the

network has changed, the process ofCN3 generation is a bit different from previous steps.

In round 1 of the process, each agent generates her preference list as follow:

□ PL1 = {2, 3, 4}
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□ PL2 = {1, 3, 4}

□ PL3 = {1, 2, 4, }

□ ...

□ PL15 = {13, 14, 16}

□ PL16 = {13, 14, 15}

Then maximum stable matching matches agent 1 to agent 2, and agent 3 to agent 5 and so on as

shown in Figure 7.3. Note that although the preference lists of agents are different from the previous

steps, the final result is the same. Because those agents that were matched are part of each other’s

preference lists. The preference lists on round 2 and round 3 will be an updated version of round 1

where the matched agents are removed. Finally, the finalCN3 will be the same asCN1 andCN2.

Then,HN gets updated based onCN3. As the edges inHN andCN3 are exactly the same, just the

weights of edges inHN will be updated. In other words, the structure ofHN after step 3 is the same

asHN at the beginning of step 3 and the weights of edges are updated to 1.88.

If the process were to continue for more steps, the structure of the networkHN does not change, but

the weight of the edges increases. In this example, a dense networkHN is evolved into a network with

four disjoint connected components where components are ordered based on their scores (agents

1-4: high score component, agents 5-8: medium-high score component, agents 9-12: medium-low

score component, and agents 13-16: low score component).

EXAMPLE 2: EVOLUTION OF A SPARSE NETWORK: Suppose there is a setting similar to the example 1 (an

initial historical network with 16 sorted agents with the goal of collaborating with high score agents.

Budgetm = 3 (1 unit per collaboration), h = 2 and t = 0.3). Figure 7.6 shows networkHN at the

beginning of each step, black edges in networkHN at each step i , correspond to the edges inCNi−1.

In this example, for the first 3 steps, the structures ofCNi , i ∈ {1, 2, 3} are different from each other.
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Figure 7.6: Example 2: evolution process of a sparse network with h = 2. The network is divided into 4
ordered cliques after 3 steps.

Because, at each step, new edges are added to theHN which changes PL for different agents. For

instance, the ultimate goal of agent 1 is to collaborate with other high score agents (2, 3, 4). However,

agents 3 and 4 are not within 2 hops away from agent 1. In step 1, PL1 = {2, 10, 11, 12} and agent

1 gets matched to {2, 10, 11}. At step 2, PL1 gets updated based on agent 1’s new connections to

PL1 = {2, 3, 9, 10, 11, 12, 13} and agent 1 gets matched to {2, 3, 9}. At step 3, PL1 gets updated

to PL1 = {2, 3, 4, 5, 9, 10, 11, 12, 13} and agent 1 gets matched to {2, 3, 4}. As agents 2, 3 and

4 are the highest score agents, agent 1 will reinforce these connections at upcoming steps. Thus,

although agent 1 didn’t have access to agents 3 and 4 at the beginning, she gets closer to them at

each step and ultimately makes the desirable connections.

The structure ofHN at step five is similar to the finalHN of the previous example (weights of edges

are different). If the process were to continue for more steps, the structure of the networkHN does

not change, and the weight of the edges increases. In this example, a sparse networkHN is evolved

into a network with four disjoint connected components where components are ordered based on

their scores (agents 1-4: high score component, agents 5-8: medium-high score component, agents

9-12: medium-low score component, and agents 13-16: low score component.
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Figure 7.7: The evolution process of a tree network. The network is divided into 5 cliques after 3 steps.

EXAMPLE 3: EVOLUTION OF A TREE NETWORK: Suppose there is an initial historical network with 20

sorted agents with the goal of collaborating with high score agents. Budget m = 3 (1 unit per

collaboration), h = 8 and t = 0.3. Figure 7.7 shows network HN at the beginning of each step,

black edges in networkHN at each step i correspond to the edges inCNi−1.

In this example, similar to the example 1, the structures ofCNi , for any i are the same. However, as

similar high score agents are far from each other, they can never form connections. For instance,

agents 1 and 2 are 19 hops away from each other. In step 1, PL1 = {3, 5, 7, 9, 10, 12} and agent

1 gets matched to (3, 5, 7). These agents are the best options for agent 1 in her region. At step 2,

PL1 = {3, 5, 7, 9, 10, 12, 17, 18, 19, 20}. Although PL1 got updated, agents (3, 5, 7) are still the

best options for agent 1. At step 3, theHN reaches its final structure. If the process were to continue

for more steps, the structure of the networkHN does not change and the weight of edges increases.

In this example,HN is evolved into a network with five disjoint connected components. As high score

agents are very far from each other, the final network consists of two components with high score

agents (agents 1-8: high score component, agents 9-12: medium-high score component, agents

13-16: medium-low score component, and agents 17-20: low score component).

7.2.2 Network Evolution

Using the evolution process described with unlimited steps for evolution, after several steps,HN

will be divided into k disjoint cliques of size s = 2⌊log2m⌋+1 wherem is the budget for collaboration
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(the size of one clique consisting lower score nodes might be smaller depending on n). Then, k =

⌈n
s
⌉. These components are either ordered tiers globally with respect to the ‘merit’ score of the

components (i.e., (agents a1 to am+1: highest score class, agents am+2 to a2m+2: second highest

score class component, etc) (Case1) or are ordered tiers locally (each region of the network consists

of ordered tiers.) (Case 2). In both cases, as the network is divided into disjoint components and

there is no inter-class connection between agents of different social classes, stratification

assortativity of the finalHN network can be equal to one (max value).

Depending on the structure of the initialHN and h, one can define the two cases. Suppose l1 is the

maximum length among shortest paths of all pairs of agents in the initialHN network and l2 is the

maximum length of all shortest paths between two consecutive agents in terms of score (i.e a1 and

a2 from the sorted agents) and s = 2⌊log2m⌋+1 wherem is budget for collaboration. Case 1 and case

2 happen under these settings:

Case1:

1. l1 ≤ h in the initialHN .

In this setting, all nodes have access to each other in the initialHN . In this case, the structures of

CNi generated at any step i are the same and after several steps (depending on the threshold),

the old connections will be removed and the structure of the finalHN will be the same asCNi

(for any i).

Figure 7.1 is an example of this setting. All agents have access to each other. The preference list

at step 1 consists of all other agents sorted based on their scores. The structure ofCN1,CN2

andCN3 are the same and the structure ofHN will be the same asCNi and consists of k = 4

ordered tiers of size s = 2⌊log2 3⌋+1 = 4. The dense initialHS is stratified into four classes of

low score (agents 13-16), medium low score (agents 9-12), medium high score (agents 5-8) and

high score (agents 1-4).

2. l2 ≤ 2n
s
− 1 or h ≥ 2n

s
− 1.
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In this setting, all nodes don’t have access to each other in the initial HN , but after several

steps, high score agents can reach each other and low score agents can reach each other and

form collaborations. If the process continues for infinite steps, the structure ofCNi will be the

same asCNi in the previous setting (k disjoint connected components). After that step, the old

connections will be removed and the structure of the finalHN will consist of ordered disjoint

tiers.

Figure 7.6 is an example of this setting. In this example, after several steps, theHN network

consists of four ordered components (low score agents, medium score agents and high score

agents), each a clique of size 4 (as (l2 = 4) < 2n=32
s=4

− 1).

Case2:

□ l2 >
2n
s
− 1 and h < 2n

s
− 1

In this setting, all nodes don’t have access to each other in the initial HN , and after several

steps, similar score agents will not necessarily reach each other. If the process continues for

infinite steps, the structure ofCNi will consist of k disjoint connected components with orders

different from the previous case (these components are ordered in each region).

Figure 7.7 is an example of this setting. In this example, after several iterations the network

is divided into 5 components. If classes are set in a way that agents 1-8 are member of high

score class, agents 9-12 are member of medium-high score class, agents 13-16 are mem-

ber of medium-low score class, and agents 18-20 are members of low score class, then

the stratification assortativity of this network is one (maximum). In this example

(l = 19) > 2n=40
s=4

− 1 and (h = 8) < 2n=40
s=4

− 1. In this example, if h is changed to 9 then

the process will be aligned with the setting 2 of case 1 and the network will be divided into 5

ordered components.
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7.2.3 Network Stratification Process

Under the evolution model, after several steps, the network gets divided into k disjoint components.

In each region of the network, the components are ordered with respect to the ‘merit’ score. In

the evolution process, as the network gets older, it becomes more stratified until it reaches the

maximum stratification possible. Because at each step, agents get closer to other similar agents

and make new connections or reinforce connections to similar agents and remove old connections

with dissimilar agents. The speed of stratification depends on the longest shortest paths between

nodes in the network and access value h. With a network where different regions of the network have

different structure, in denser regions where the lengths of shortest paths between nodes are small,

stratification happens much faster than regions with sparser structure where the lengths of shortest

paths between nodes are large (Note that with h constraint (h ̸=∞), all collaboration happen within

one connected component. If the initial network consists of several disjoint connected components,

stratification happens inside each component independently.).

7.3 Agents’ Goals and Evolution Process

In the model explained, the preference list generation was based on connecting to high score agents

(rank-based evolution). This was based on the idea that in co-authorship or professional social

networks, collaborating with different experts seems a reasonable goal (collaboration with skilled

people can help individuals enhance their career). However, in practice, agents may have other

priorities. For instance, in social networks and society, people tend to form connections with similar

others (homophily- based) [99].

In the social science literature, the existence of social classes and homophily in a society is considered

as one of the main reasons behind social stratification [99]. Because, in the real world, individuals

from the same socioeconomic class live closer to people from their class compared to individuals

from other classes which lead to social stratification in different aspects [99]. For instance, college

segregation exists in the US based on parental income neighborhoods which leads to income
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segregation of those who attend different tier colleges [30].

In this section, I first compare the rank-based evolution with homophily-based evolution and show

under both settings the finalHN network will be highly stratified. Then, I determine how to distinguish

between homophily-based versus rank-based evolution by looking at the structure of theHN .

7.3.1 Homophily-Based Evolution vs Rank-Based Evolution

Here I consider the impact of homophily-based preference lists on the evolution process. As we will

see, in a homophily-based evolution, the network will not be divided into disjoint components, but

the stratification assortativity of the network will be very high. Because, although there

are inter-class connections in the historical network at final iteration, the inter-class connections are

just between adjacent classes in terms of score and there are no inter-class connections between

non-adjacent classes. Moreover, the number of intra-class connections is much more than the

number of inter-class connections.

In homophily-based setting, at each step i , each agent prioritizes connection to other similar agents

(with lower scores as well as higher scores) for generating current network CNi in contrast to

rank-based setting where agents prioritize connection to higher score agents. For instance, if list

{a1, a2, ..., an} represents sorted agents on the network, the preference list forai isPLai : {ai+1, ai−1, ai+2, ai−2, ....}.

Thus, each agent gets connected to similar agents from both sides (lower and higher score) and the

historical network will have a belt-like structure after several steps.

EXAMPLE: Figure 7.8 shows the evolution process of two dense historical networks using rank-based

and homophily-based preference lists. Similar to the example provided in the previous sections,

the initial network has 16 sorted agents with budgetm = 3 (1 per agent), h = 2, and t = 0.3. The

rank-based example is the same as the example in Figure 7.1. In the rank-based process, after several

steps the network will consist of four components, each a clique of size 4 and the final network has a

block-like topology. Whereas, in a homophily-based process, as each agent prefers to collaborate
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(a) Rank Based (b) Homophily Based

(c) Adjacency matrix (Block-
like Topology)

(d) Adjacency matrix (Belt-
like Topology)

Figure 7.8: Evolution process of a network based on both rank-based evolution and homophily-based
evolution with the adjacency matrices of the final network. The rank-based final network has block-like
topology while the homophily-based final network has belt-like topology.

with neighboring nodes in terms of score, after several steps the network has a belt-like structure

where similar agents are connected to each other.

In this example, if the network has four classes of high score agents (agents 1-4), medium-high

score agents (agents 5-8), medium-low score agents (agents 9-12), and low score agents (13-16),

stratification assortativity of the final network in rank-based evolution is one (maximum

level) as there are no inter-class connections. Stratification assortativity of the final net-

work in homophily-based evolution is high (lower than the rank-based network), because there

are few inter-class connections between similar nodes from adjacent classes. Note that inter-class

connections are penalized based on their similarity.
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7.3.2 Differences on Network Structures of Rank-Based vs Score-Based

Evaluations

Although it is not easy to know the intentions of individuals in the evolution process after the network

is evolved, there is one structural property that can help understand what caused the stratification.

This property is the topology of the historical network after several iterations. Rank-based preference

lists lead to a block-like structure with disjoint ordered connected components. In contrast, the

homophily-based preference list leads to a belt-like structure where agents are connected to similar

others. The belt- vs block-like topology can be recognized from the adjacency matrix (see Figure 7.8 -

assume there is an edge from a node to itself).

This can be used to distinguish between homophily-based stratification and rank-based stratification

in different systems. In contexts with smooth distribution of people in different classes, homophily

based method is a main factor and in contexts with blocks, it is mainly based on rank.

For instance, over the years, studies showed that society is divided into lower, middle and upper

class [24]. However, recent studies show that the gap between the middle class individuals is increas-

ing as middle class jobs are disappearing [96], which leads to the disappearance of the middle class

in the US [10, 96]. With the disappearance of the middle class, the structure of society is block-like

topology which is an indicator of rank-based evolution. Whereas, in a homophily-based evolution,

smooth distribution of people into different classes is expected.

CASE STUDY ANALYSIS: In the previous chapter, I did a case study on computer science co-authorship

networks and showed that stratification assortativity of all networks increases over time.

Figure 6.4 shows the number of components in the co-authorship networks under study and the

number of components increases dramatically as the network increases. In other words, there is

a correlation between increases in the number of components and increases in stratification

assortativity. As the standard deviation figure shows, the standard deviation increases as the

network ages, which indicates that networks are divided into ordered components which aligns with
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Table 7.1: Average degree of nodes in each score class per 10 year period of time.

Networks Scores 1966- 1976- 1986- 1996- 2006-
1975 1985 1995 2005 2015

Computational Low 2.3 1.8 2 2.8 3.3
Linguistics Med Low 3 1.8 2.2 3.1 3.5

Med High - 1 1.5 2.7 3.7
High - 1 3.5 4.22 4.6

NLP Low 1.5 2.1 2.9 3.3 3.5
Med Low 1.7 2.3 3.4 3.8 4.1
Med High 1.7 2.7 3.7 4.6 5.4
High - 1.8 4.7 6.7 8.3

Computational Low 2.2 4.2 10.8 9.8 16
Biology Med Low 4 16 4.2 16 13

Med High - 32 7.6 16 13
High - - 1 30 20

Biomedical Low 2.5 3 4 4.4 5.4
Engineering Med Low 2.9 3.4 4.4 5.1 6.4
4.4 Med High 4 4.7 5.5 6 7.4

High - - 6 7.8 10.2

the rank-based score model.

In addition to structure of the network, there are other evidence that supports the rank-based

evolution hypothesis (the networks are stratified due to connection with high score nodes):

First, in a co-authorship or professional social network, collaborating with different experts seems

a reasonable goal. This is based on the idea that exposure to innovative people can increase the

probability of invention [9] and collaboration with skilled researchers can help individuals enhance

their career.

Second, Table 7.1 shows the degree of researchers active over the 50 years in the four co-authorship

networks studied in the case study section. The results show that, degree of nodes increases as their

score increases which can be an indicator that other researchers are more willing to collaborate with

high score nodes and high score nodes have more options for collaboration.

Third, if homophily is the main factor behind stratification, it is expected for researchers to collab-

orate with other researchers from their institute more as the networks gets older. However, there

is a negative correlation between collaboration with the same affiliation and stratification
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Table 7.2: Percentage of collaborations between nodes with the same affiliation.

Networks Scores 1966- 1976- 1986- 1996- 2006-
1975 1985 1995 2005 2015

Comp. Low 64 70 65 63 51
Linguistics Med Low 62 60 58 53 42

Med High 100 23 48 55 37
High - 100 33 60 35

NLP Low 74 82 81 77 70
Med Low 78 74 77 69 62
Med High 63 60 77 61 55
High - 59 81 60 48

Comp. Low 72 80 76 41 39
Biology Med Low 66 63 68 22 26

Med High - - 60 18 22
High - - 75 11 17

Biomedical Low 89 87 84 77 69
Engineering Med Low 86 82 81 74 63

Med High 71 78 75 69 60
High - - 71 60 55

assortativity. Table 7.2 shows the percentage of affiliation between nodes with the same affilia-

tion from each class score and 10 year interval. As the network gets older, collaboration with the

same affiliate nodes reduces.

7.4 Factors in Stratification Process

In this section, I try to understand the impact of different factors on the stratification process and

whether these factors can prevent or delay the stratification. These factors include preference list

generation, access, score distribution, and changes in score, size and budget.

7.4.1 Impact of Preference list

In the model described, I considered rank-based evolution where agents’ goal is to collaborate with

high score agents. Then, in the previous section, I discussed homophily-based evolution where

agents’ goal is to collaborate with similar agents and showed that under both settings, as networks

get older, they become stratified.

However, in practice, agents may have other priorities in addition to the simple goal of collaborating
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with high rank agents or similar agents. For example, some agents may prioritize collaborating with

junior people in whom they see potential, with less-successful people for purposes of mentoring,

or with others who are ‘like them’ in some way. This is plain to see in co-authorship networks:

for example, senior researchers often collaborate with junior researchers, or advisors with their

students. To capture such behavior, it is important to add some levels of randomness to the process

of generating the preference list. As such, the list generation process can include a probability prand

(possibly 0) to add randomness.

To compare the evolution process using rank-based vs homophily-based preference list with different

randomness levels, I generate a set of synthetic networks with different structural properties, includ-

ing complete networks, tree networks, and random Erdos-Renyi [58] networks using the NetworkX

Library [69] to be used as the initial historical networkHN and simulate the evolution processing of

random networks. For list generation:

□ For each agent u, generate an empty preference list and a candidate list containing all accessi-

ble agents.

□ While the candidate list is not empty, with probability prand , select an agent randomly from

the candidate list. Otherwise, with probability ph, select the closest agents in terms of score to

agent u and with probability prank = 1− ph select the agent with highest score.

□ Add the selected agent to the preference list and remove it from the candidate list.

Figure 7.9 shows the average stratification assortativity over 10 historical networks with

distinct scores at iteration 15 wherePh ∈ {0, 0.25, 0.50, 0.75, 1}andPrand ∈ {0, 0.05, 0.10, 0.15, 0.25, 0.50, 0.75, 1}.

As the results show, the maximum stratification assortativity happens when the pref-

erence list is purely based on scores (close to 1). As randomness increases, stratification

assortativity decreases. If the preference list is purely based on homophily, stratification

assortativity is high (close to 0.9) and slightly lower than purely based on rank. However, ho-

mophily based lists are more robust over randomness.

125



Ra
nd

om
ne

ss
 P

ro
ba

bi
lit

y 0
.05
.10
.15
.25
.50
.75
1

Homophily 
Rank

0 .25 .50 .75 1

1 .75 .50 .25 0
Probability

0.8

0.6

0.4

1

(a) Complete Network

Ra
nd

om
ne

ss
 P

ro
ba

bi
lit

y 0
.05
.10
.15
.25
.50
.75
1

Homophily 
Rank

0 .25 .50 .75 1

1 .75 .50 .25 0
Probability

0.8

0.6

0.4

1

(b) Tree Network

Ra
nd

om
ne

ss
 P

ro
ba

bi
lit

y 0
.05
.10
.15
.25
.50
.75
1

Homophily 
Rank

0 .25 .50 .75 1

1 .75 .50 .25 0
Probability

0.8

0.6

0.4

1

(c) Erdos-Renyi Network

Figure 7.9: Stratification assortativity after 15 iterations for different prand and ph. The lower the ph, the
higher the stratification assortativity without randomness. As randomness increases, evolution based
on homophily is more robust.

The results in this section show that decision of individuals to connect to either high score nodes or

similar nodes with some levels of randomness will lead to social stratification in the network and

depending on the network under study, the main factors behind stratification need to be found.

7.4.2 Impact of Access

In the evolution model explained, I considered agents to have access to all other agents that are h

hops away. This assumption is based on the idea that people don’t have access to those who are far

from them in the network. As explained in the model, depending on the structure of the network,

agents might need to get closer to each other to form a component. In this case, h determines the

speed of stratification

To better understand the impact of access, I generate a set of synthetic networks with different

structural properties, including complete networks, tree networks, and random Erdos-Renyi networks

using the NetworkX Library. These networks will be used as the initial historical networkHN . The

reason behind using these networks are: 1) a complete network to consider an extreme case where

the initial network is completely fair and all nodes have access to each other and 2) a tree network

where nodes have least amount of access to each other and 3) an Erdos-Renyi network to be similar

to real world networks.

Figure 7.10 shows the average assortativity of networks at different iterations for 10 networks when

126



Ac
ce

ss
 (k

 h
op

s)

Iterations
0 1 2 4 8 16

2

3

5

10

∞

(a) Complete Network

Ac
ce

ss
 (k

 h
op

s)

Iterations
0 1 2 4 8 16

2

3

5

10

∞

(b) Tree Network

Ac
ce

ss
 (k

 h
op

s)

Iterations
0 1 2 4 8 16

2

3

5

10

∞

(c) Erdos-Renyi Network

Figure 7.10: Stratification assortativity after different iterations where agents have access to other
agents that are at most h hops away. The stratification takes longer to happen for smaller h in tree
networks where maximum length of the shortest path is larger.

nodes have access to all other agents (k =∞) and when they have access to nodes that are h hops

away and k ∈ {2, 3, 5, 10}. In these simulations score distributions are power-law, prand = 0.1 and

ph = 0.5.

As the results show, when the longest shortest paths between nodes in a network is large, then it

takes longer for the network to be highly stratified. In a tree network with the largest shortest paths

in networks of the same structure, when h is small, it takes longer for stratification.

7.4.3 Impact of Score Distribution

In the model explained in Section 7.2, agents have distinct scores. However, in real world networks,

scores of agents might not be distinct. Usually power-law distributions with lots of low score nodes

are observed in social networks. In a power-law distribution, agents have repeated scores, unlike

the described model where all agents have distinct scores. In this section, I consider the impact of

different score distributions on the evolution process.

Note that in order for high levels of stratification to happen in the network, there should be agents

from different social classes. In a network where all nodes have low scores, the network will not

stratify.

The process is similar to the distinct score setting, except that when agents have repeated scores,
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(a) Example 1 (b) Example 2

Figure 7.11: Evolution process of networks with power-law score distributions. Red numbers correspond
to the score of each node.

there are more than one option for the preference list of each agent. For instance, if agents a2 and a3

have the same score. The preference list for a1 can be either {a2, a3, ...} or {a3, a2, ...}. This makes

the evolution process non-deterministic. However, high score agents will collaborate with high score

agents and low score agents will collaborate with low score agents.

Depending on score distribution and social class setting, two cases can be considered. First, division

of the network into disjoint components where stratification assortativity is one. The size

of components is not necessarily the same and are at least s = 2⌊log2m⌋+1 (except for the last one).

The size might be larger, when repeated score agents are part of one component. Second, the

existence of few inter-class connections between two consecutive classes in the network (i. e. lower

score agents from the high score class might be connected to higher score agents from the medium

score class). Thus, the stratification assortativity will be very high (close to 1) as there are

lots of intra-class connections and few inter-class connections between similar nodes.

Figure 7.11 shows the evolution process of two dense networks with different power-law score

distributions. Similar to the example provided in the previous section, the initial network has 16

agents withm = 3 (1 per agent), h = 2 and t = 0.3. The final network will consist of four and three
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(c) Erdos-Renyi Network

Figure 7.12: Stratification assortativity after different iterations for different score distributions. In all
cases, networks become highly stratified after several steps.

disjoint components for example 1 and example 2 respectively. The division into components for

example 1 is the same as the setting with distinct scores. However, in example 2, the size of one

component is larger than the other. As scores of nodes 12-16 are the same, agent 14 gets connected

to two of them randomly which prevents division into components of size 4. Depending on how

class setting is defined, this network will havedifferent assortativity values: Case 1: 3 classes where

the first class contains agents with scores 1 to 2, the second class contains agents with scores 3 to 4,

and the last class contains agents with agents 5 to 8. The stratification assortativity of this

case, is equal to 1 (maximum possible). Case 2: three classes where class one contains agents with

scores 1, second class contains agents with scores 2-4, and the third class contains agents with scores

5-8. The stratification assortativity in this case is close to 1, as there are many inter-class

connections and just three inter-class connections between similar nodes.

To better understand the impact of score distribution, I generate a set of synthetic networks with

different structural properties, including complete networks, tree networks, and random Erdos-Renyi

networks using the NetworkX Library with 100 nodes. These networks will be used as the initial

historical networkHN .

Figure 7.12 shows the average stratification assortativity over 10 networks after several it-

erations (step 0 shows thestratification assortativityof the initial network). The score distri-

bution for these networks is either distinct or power-law distributions with exponent in{1.1, 1.5, 1.9, 2.3}.
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As the results show, if the scores of agents are not distinct, the network will still be highly stratified and

the stratification assortativity for power-law cases are very close to the distinct case. As

exponent increases, stratification assortativity is very high but doesn’t reach a maximum

level.

7.4.4 Other factors

There are other factors that have impact on the stratification of the networks that I will briefly explain

here,

Changes in Scores: Up until now, I considered the case that the score of agents doesn’t change over

time. This happens when the score corresponds to a static property, like the height of basketball

players. However, there might be cases where the score of agents changes over time. This happens

when the score corresponds to dynamic properties, the likeh-index of researchers that might increase

after each year. If the score of agents increases monotonically, where high score nodes remain high

score nodes and low score nodes remain low score nodes, the process of evolution will not change. If

the score of agents increases randomly where the order of agents (high to low score nodes) changes

dramatically at each step, the network will not be stratified. Because the preference list of agents and

high score nodes who determine the connections that will be formed changes at each step and new

connections will be made instead of reinforcing connections between high score nodes or low score

nodes. Although some levels of randomness seem realistic, totally random changes in scores does

not happen in the real world. The lower the randomness the higher the final result will be similar to

the setting where scores are fixed.

Note that, changes in score may lead to re-stratification in a network. Suppose a network is stratified

into high score class and low score class. Then in each class, the score of agents changes at a different

rate. Then high score agents’ class changes to elite class, upper class and middle class agents and

low score agents’ class changes to middle and lower class agents.

Impact of Size In real networks, agents leave or enter the network at different steps. For instance,
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in co-authorship networks, new researchers enter the network, and researchers leave academia or

retire, etc. The rate to which network changes has a direct impact on how evolution will take place.

In the simple case, the leave and entrance rate are the same and the score distribution of those who

enter the network is also the same as those who leave the network. In this case, if those who enter

the networks are within h hops of those who left the network with similar scores, then the evolution

process will be the same as the case if the number of nodes is fixed.

In another case, if staying active in the network is a factor of scores (i.e., h-index in co-authorship

networks), then most new agents have scores equal to zero. Then, depending on the step and where

new agents land in the network, they will collaborate with the lowest score nodes in their region. That

causes re-stratification in the network. As collaboration usually happens between those who are h

hops away, stratification happens within one component. Thus, when new nodes enter a network

that is already stratified, each region will eventually re-stratify.

Moreover, as new nodes enter the network at different steps, the entrance point becomes important.

For instance, if a new agent starts her career in a dense, non-stratified network, it has easier time

accessing any other agent in the network but as the network becomes stratified, those who enter in

a low score component will not have access to nodes in the higher score regions of the network and

their career is impacted by their start point.

Impact of Budget: The degree of each node in the network (number of collaboration with other

agents) can be considered as the budget for collaboration. In the previous settings, I considered the

case that the budget is the same for all agents and doesn’t change over time. However, in real world

networks, different nodes might have different budgets for collaboration and the budget might also

change over time. If the budget is not the same, the network stratification can happen the same as

previous cases, however, it might take shorter or longer time for maximum network stratification to

happen. Moreover, the size of components might differ depending on the budget of agents in each

component in the network.
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7.4.5 Summary of the Model

The model starts with a historical network HN . At each step, each agent forms a preference list

based on rank or homophily with some levels of randomness. Then the maximum stable matching

algorithm is used to find matching between agents. At the end of each iteration, the historical network

is updated by adding an edge between matched agents, reinforcing old connections and removing

non-reinforced old connections.

If randomness in the preference list generation is lower than a threshold and score of agents doesn’t

change randomly and structure of the network doesn’t change dramatically after each iteration, as

the network gets older, it becomes more stratified and after several iterations, the network will stratify

into ordered components. As new agents join the network and old agents leave the network and the

score of agents changes throughout the process, components will re-stratify. Speed of stratification in

different regions is different. In denser regions where lengths of shortest paths between nodes are

small, stratification will happen much faster than regions with sparser structure where the shortest

distance is large.

Moreover, the entrance point of a node is an important factor in the long run success. When a new

agent enters a non-stratified network, it has easier time collaborating with other highs score agents

any, whereas in a stratified network, those who enter in a low score component will not have access

to nodes in the higher score regions of the network and their career is impacted by their start point.

In other words, the main consequence of social stratification is preventing upward mobility. In an

stratified network, upward mobility is hard and low score nodes will remain in their low class.

7.5 Predictions of the Model

In this section, I present various results from the social science literature that are explained by the

proposed model.
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7.5.1 Network Age and Stratification

Model Prediction: In my agent-based model, I showed that, as the network gets older, it becomes

more stratified. Because, at each step agents get closer to similar agents and the decision of individ-

uals to make or reinforce connections with members of their own class rather than other classes

and the decision not to reinforce connections with dissimilar agents from other class at each step,

increases stratification at each step and makes the network closer to a network with maximum

stratification assortativity.

Case Study Results: The results on all the co-authorship networks in the case study presented in the

previous chapter show that as the network in each field gets older, it becomes more stratified. The

results on Figure 6.3a and Figure 6.6 show the stratification assortativity of co-authorship

networks over 50 years of collaboration for 2, 5, 6 and 10 years interval with 4 classes of low, medium

low, medium high and high score nodes. In all cases as the networks get older, the stratification

assortativity increases.

Moreover, maximum possible stratification assortativity of these networks for more than

2 classes increases over time. Figure 6.7 shows this result.

There are other factors that can explain why stratification increases over time in our case study. First,

when the system is small/young, there is not enough information available to make inferences about

an individual on the basis of their connections. Thus, there is more social mobility. When a network

is small, it is easier to learn things about individuals and judge them as individuals. When it grows,

there are too many people to get to know, and so one must make judgments about them on the

basis of their connections. Second, as the network gets older, the field becomes more advanced and

depending on the field special equipment is needed that are just available to special institutes or

universities, so the gap between people based on their location in the network increases.

Social Science Phenomena: In social science literature, different studies show that social stratifica-

tion increases over time. For instance, in a study on income mobility on children born in 1940 to 1984,
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it was reported that the upward social mobility rate has fallen from 90% to 50% for children born

in the 1940s compared to those who were born in the 1980s which amplifies the socioeconomic

stratification [31]. Note that, as social mobility refers to movement from one class to another [113],

decreases in social mobility and increases in social stratification are correlated (social mobility (or

the lack thereof) is a driving process behind social stratification [48]). Thus, the social stratification

of networks is intrinsically connected to social mobility [64].

In another study on changes in stratification and income equality in the US starting from 1970 to 2016,

it is shown that income inequality has dramatically increased during this period. Although income

inequality is not the same as stratification, It is believed that the emergence of social inequalities

leads to stratification and segregation [99].

The results of these studies on decreases in mobility and stratification aligns with the prediction of

the model on increases in stratification as a network ages. In other words, when a system is new, it is

egalitarian: individuals are free to connect (with consent) to others. Social mobility is frequent and

easy. However, as the system evolves, it rapidly and inevitably reaches a point of rigid stratification;

and at that point, social mobility sharply decreases or even stops.

7.5.2 Entrance Point and Upward Mobility

Model Prediction: As I explained in section 7.4.2, the entrance position of individuals has an impact

on their upward mobility. As the network becomes more stratified, the initial position of individuals

can have an important factor in their career in the long run. If a new agent enters the system once the

network has stratified, the trajectory of that agent through the network is dependent almost entirely

on its starting point.

Case Study Results: The results of the case study presented in the previous chapter (Section 6.6)

show that in a stratified network the entrance point of individuals has an impact on their success. As

the networks get older, they get more stratified and as they get more stratified, the entrance point

has more impact on the success of individuals. The results on Figure 6.11 show that those who start
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their career by collaborating with high score nodes will achieve higher h-index than those who start

their career by collaborating with low score nodes after 10 years.

Social Science Phenomena: In social science literature, there are different studies that show the

relationship between initial social class of individuals and their social class as they grow up. The stud-

ies show that the position of people in society is an important factor in their upward mobility [101].

For instance, where children grow up has an impact on their educational achievements [184]. Educa-

tional achievements contribute to social stratification and social mobility [158]. In another study on

long-term data analysis, researchers found that there is a huge growing achievement gap between

rich and poor students. This growing gap exists in college completion, better or lesser education and

income that leads to social stratification and lower social mobility [161]. Thus, like my model, the

success of individuals can be predicted using their entrance point in the society, field, etc.

7.5.3 Access and Speed of Stratification

Model Prediction: As explained in the Section 7.4.2, speed of stratification depends on the access of

nodes with different score levels. In the denser parts of the network where nodes have more access

to each other, stratification happens sooner than the sparser regions of the network where nodes

don’t have access to each other very well.

Case Study Results: The results of the case study presented in the previous chapter (Section 6.6)

show that when networks are young, they are smaller and sparser and as they get older, the networks

get older and denser. Thus, as the number of edges increases, density increases in the network. So, I

expect the speed of stratification increases as the network ages. As Figure 6.3a shows, the speed of

stratification increases as networks age.

Social Science Phenomena: One real world example of this phenomenon is what happens in

stratification in rural vs urban areas in a country. I expect urban areas to be stratified faster than rural

areas due to access. In a study on social stratification and income inequality in urban vs rural localities

in the US [163], it is shown that income inequality dramatically increases in urban areas, while it does
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not increase significantly in rural areas. While there was a huge gap between inequality between

urban vs rural areas in 1970 (rural areas had higher inequality), in 2016, the inequality converges. The

least changes happen in Least urbanized non-metropolitan areas and the most changes happen in

large metropolitan, central areas [163].

First, note that these results are not network results. Second, inequality is not identical to social

stratification. However, as they studied inequality over 6 stratas starting from least urbanized non

metropolitan regions all the way to Large metropolitan, central regions, social stratification can be

interpreted using the data.

7.5.4 The Process of Re-Stratification

Model Prediction: As explained in section 7.4.3, stratification happens when agents from different

score levels are present. Then, high score agents find each other and form a class and low score

agents find each other and form a class. As the difference between scores of agents inside one

component increases, that component re-stratifies. Differences between scores of agents inside one

component can happen as part of changes in score of agents or entrance of new nodes into the

component.

Case Study Results: The results of the case study presented in the previous chapter (Section 6.6) in

Figure 6.2 shows that, when the networks are young, the networks consist of mainly low and medium

low score nodes. But as the networks get older, networks are re-stratified and medium high and

high score classes are formed. Some nodes from low score classes remained in their class while the

others moved to upper classes. Figure 6.5 depicts the process of evolution of the NLP network over

50 years. In the first 10 years, the network is mainly divided into low and medium score nodes. Then

as the network gets older, new classes emerge.

Social Science Phenomena: As explained, the main factor behind re-stratification is the increase

between distance scores of nodes in one class. In social science studies, there are works that show

the gap between wealth distribution or income distributions has increased dramatically over the
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past years [157]. In a study between 1960 and 2007, it was shown that the income gap had grown by

40% [161, 45]. The increase in income gap corresponds to increases in the gap between high score

and low score individuals in each region of the society which leads to re-stratification.

7.6 Conclusion

In this chapter, I introduced an agent-based model for network evolution to see why social stratifica-

tion emerges. I showed under specific settings, as the network gets older, it stratifies into ordered

tiers. Speed of stratification in different regions is different and depends on the lengths of shortest

paths between nodes. Moreover, in a stratified network, the entrance point of a node is an important

factor in the long run success. I studied different factors on the evolution process and discussed

different social science phenomena that can be predicted by the evolution model.
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Chapter 8

CONCLUSION and Future work

Social and professional networks are critically important parts of people’s lives, and the information

flowing through these networks guides people’s decisions. In many contexts, it is thus important

to know whether the network structure is ‘fair’, both from the perspective of protected groups (e.g.,

based on race or gender) or from individuals.

In this work, I first studied fairness in social and professional networks from a group-based perspec-

tive. I proposed a metric called information unfairness, which measures the extent to which

individuals in social networks have access to the information that is flowing in the network. Using

this metric, I performed a case study on DBLP computer science co-authorship networks and investi-

gated gender inequality. I showed that unfairness exists in these networks and did several statistical

significance tests to see the impact of topological properties of the network and investigated the

reasons behind unfairness in each network and looked at the group that has an advantage over the

other group in accessing information in each network.

After showing that unfairness exists in real networks, I considered two applications and showed

how to increase fairness with respect to a fairness metric. The first application is increasing fairness

by adding a set of edges. The second application is increasing fairness on organizational networks

through assignment.

For the first application, I introduced the problem of adding a set of edges to the network to reduce
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unfairness. I proposed two novel algorithms MaxFair and MinIUF which are based on identifying

those pairs of nodes for which a connection would increase flow to a disadvantaged group. Experi-

mental results show that MaxFair and MinIUF can obtain large decreases in information unfairness

when adding only a small number of edges.

For the second application, I considered fairness in organizational networks, and introduced the

problem of increasing fairness in hiring and assignment practices with respect to the diversity of the

organizational network. I proposed Fair Employee Assignment (FairEA), a novel algorithm

for identifying assignments of candidates to open positions with the multiple goals of maximizing

fitness, minimizing segregation, and other fairness-related objectives to ensure that the most suitable

candidates are matched to open positions, and individuals from different groups have access to

each other. Through experiments on both real and synthetic network datasets, I demonstrated that

FairEA outperforms the baseline strategies at finding a complete matching while satisfying the

goals above.

In the second part of my work, I studied fairness in social and professional networks from an individual-

based perspective and discussed fairness in network evolution. I considered the evolution of a

network fair, if the trajectory of an individual through the network will depend on their own merits,

as opposed to their initial network properties. However, as individuals in real networks are known to

be socially stratified into a hierarchical arrangement based on different attributes. To measure strati-

fication in the network which causes unfairness, I proposed stratification assortativity, a

novel algorithm that measures social stratification in the network by evaluating the tendency of the

network to be divided into ordered classes for when classes are known or not known ahead of time.

Then, I performed a case study on several co-authorship networks and examined the evolution of

these networks over time and showed that networks evolved into highly stratified states. Finally, I

introduced an agent-based model for network evolution to explain why stratification emerges and

discussed different social science phenomena that can be predicted by the evolution model.

For future work, I would like to extend my research on multiplex networks. In a multiplex network,
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the network consists of several layers, where each layer contains the same set of nodes and different

edges. Each layer defines specific types of edges (family relationship, friendships, professional

relationships, etc). Multiplex networks model real work networks more accurately than complex

networks [86]. I would like to generalize my fairness related metrics (information unfairness and

stratification assortativity) to be applied to multiplex networks and introduce algorithms on reducing

unfairness in multiplex networks.
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