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A b strac t

Advances in imaging technologies have resulted in the availability of a large ar-
ray of medical scanners for clinical applications which produce images of differing 
modalities. As a consequence, the last decade has seen a dramatic increase in the 
volume of information generated by radiology and pathology departments. This 
has resulted in an increasing need for automated and semi-automated tools for 
analysis of medical data, in order to put this information into better use.

Modern medical imaging technologies are capable of producing high resolution 
3D or 4D (3D + time) images. This makes medical image processing tasks at least 
one dimension more compute-intensive than standard 2D image and video process-
ing applications. In this thesis, we look at methods for improving the performance 
and robustness of registration of medical images and real-time synthesis of ultra-
sound. We use two principal methods to improve the computational efficiently of 
medical image analysis tasks through (a) algorithmic and methodic enhancements 
and (b) use of high performance and massively parallel processing architectures.

We first look at improving the robustness and computational efficiency of rigid 
and similarity registration of multi-modal images through (a) systematic reduction 
of dimensionality of the data-sets and (b) decoupling estimation of registration 
parameters that leads to a reduction of the complexity of the search space. We 
then present methods suitable for collinear and deformable registration of images 
specifically designed for the massively parallel architecture of the modern graphics 
processing units (GPUs).

In the computing domain, a paradigm shift is happening as a result of the 
introduction of many-core processors and massively multi-processing platforms. 
Tera-flop performance is now available on single-chip commodity GPUs. Moreover, 
GPUs are no longer limited to graphics applications, but are emerging as usable 
general purpose computing devices. These systems, plus other accelerator technolo-
gies (such as the STI Cell Broadband Engine, upcoming Intel Larrabee processor, 
FPGAs and DSPs) are already making many computational problems that were 
previously reserved for super-computing systems, solvable on desktop computers,
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at a minute fraction of the price, and with significantly lower power requirements. 
The advent of this new generation of low-cost high performance computing plat-
forms presents both numerous opportunities and challenges. We hope to convince 
the reader, through our investigation of the registration of medical images on the 
GPU, that adaptation of existing algorithms for massively multiprocessing environ-
ments is a non-trivial task that often involves reinventing and rethinking existing 
methods from grounds up and specifically designing them for parallel computation 
on thousands of concurrent threads. We also demonstrate that, when properly 
executed, GPU adaptation of algorithms can result in significant savings in com-
putation times.

In the final chapter of the thesis we investigate real-time synthesis of ultrasound 
from tomographic modalities which can be used in registration of ultrasound with 
other modalities and in training simulators. The main idea is to reduce the com-
putational cost by devising a simple acoustic model that can sufficiently represent 
ultrasonic effects for the task at hand. We further improve the computation time 
by a GPU-based implementation of the model and demonstrate a simulation and 
visualization software that achieves interactive frame rates.
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Chapter 1 

Introduction

... In an operating room not so far into the future ...
A surgeon is performing a potentially life-saving pancreatectomy on a patient 

in early stages of pancreatic cancer. Two small incisions of no more than half an 
inch allow laparoscopic tools including a video camera and an ultrasound probe to 
be guided inside the abdominal cavity. A third, larger incision, is occupied by a 
hand-access device that facilitates the operation. The surgeon is able to locate the 
tumor in the ultrasound view with ease. This is largely possible due to a newly 
installed 3D navigation and visualization system that virtually renders the patient 
transparent.

The visualization system combines data from preoperative magnetic resonance 
(MR) and computed tomography (CT) scans with intraoperative laparoscopic ul-
trasound data to produce real-time high quality and dynamic 3D images of the 
patient, in a process better known as multi-modal registration and fusion. The 
high quality 3D images of the tumor and the surrounding tissue allow the surgeon 
to resect the malignant cells with little damage to healthy structures.

Such a minimally invasive approach avoids the trauma of open surgery, and a 
faster recovery time means that the patient will be released from the hospital in 
just two days.

1.1 M u ltip rocessin g  in an O perating  R oom

Image-guided therapy (IGT) systems play an increasingly important role in clinical 
treatment and interventions. By providing more accurate information about a 
patient during a procedure, these systems improve the quality and accuracy of 
procedures and make less invasive options for treatment available. They contribute 
to reduced morbidity rate, intervention time, post-intervention care, and procedure
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2 Introduction

costs. For practical reasons, however, imaging systems that can be deployed in an 
operating room produce images with lower resolutions and lower signal to noise 
ratios than can be achieved by the state-of-the-art imaging systems preoperatively. 
Therefore, it is desirable to be able to use preoperative images of a patient together 
with those acquired during a procedure for best results. In brain surgery, for 
example, the main challenge is to remove as much as the malignant tissue as possible 
without affecting critical structures and while minimizing damage to healthy tissue. 
The surgeon uses high quality CT and MR scans of the patient to carefully plan 
a procedure. During a procedure, however, the brain undergoes varying levels 
of deformations at different stages of the surgery known as the brain shift. This 
brain shift, a result of change in the intracranial pressure, leakage of cerebrospinal 
fluid and removal of tissue, affects the accuracy of earlier planning and needs to be 
compensated for. The surgeon may take a number of intraoperative scans to correct 
the plan based on patient’s current state and also to detect complications such as 
bleeding. To support the surgeon, the IGT system needs to register intraoperative 
scans with the patient and with preoperative images.

Modern medical imaging technologies are capable of producing high resolution 
3D or 4D (3D + time) images. This makes medical image processing tasks at 
least one dimension more compute-intensive than standard 2D image processing 
applications. The higher computational cost of medial image analysis together 
with the time constraints imposed by the medical procedure determine the range 
of tools that can be practically offered through an IGT platform. It also often 
means that an IGT platform has to rely on high performance computing (HPC) 
hardware and highly parallelized software. There are other practical considerations. 
For example, equipment used in an operating room should be designed to minimize 
footprint, power consumption, operating noise, and cost.

An IGT system needs to carry out its tasks in a surgically acceptable time to 
minimize their impact on the clinical procedure. Therefore, computational effi-
ciency is an important requirement for algorithms that are designed for use in a 
surgical setup. The efficiency of algorithms can be improved through methodical 
and computational enhancements. Methodical improvements involve designing al-
gorithms with inherently lower computational complexity, whereas computational 
improvements involve adaptation of methods for parallelization and optimal exe-
cution on a specific target platform. In this thesis, we look at both avenues for 
improving the efficiency of ultrasound simulation and certain image registration 
tasks.

The continued development of multi-core and massively multiprocessing archi-



1.2 Outline 3

tectures in recent years holds great promise for interventional setups. In particular, 
massively multiprocessing graphics units with general purpose programming capa-
bilities have emerged as front runners for low cost high performance processing. 
HPC, in the order of 1 TFLOPS, is available on commodity single-chip graphics 
processing units (GPUs) with power requirements not much greater than an office 
computer. Multi-GPU systems with up to 8 GPUs can be built in a single host 
and can provide a nominal processing capacity of 8 TFLOPS with less than 1500W 
power consumption under full load.

Hardware and architectural complexities in designing multi-core systems aside, 
perhaps as big a challenge is an overhaul of existing application design method-
ologies to allow efficient implementation on a range of massively multi-core archi-
tectures. As one quickly might find, direct adaptation of existing serial algorithms 
is more often than not neither possible due to hardware constraints nor computa-
tionally justified.

1.2 O utlin e

We discuss the registration problem in Chapter 2 where we define the basic concepts 
of image registration and its main components: (a) a transformation model, (b) a 
measure of distance or similarity, and (c) an optimization strategy.

In Chapter 3, we look at improving the robustness and computational efficiency 
of rigid and similarity registration of multi-modal images through (a) systematic 
reduction of dimensionality of the data-sets and (b) decoupling estimation of regis-
tration parameters that leads to a reduction of the complexity of the search space.

We discuss parallelization of registration methods in Chapter 4, where we give 
an overview of high performance computing platforms with an emphasis on as-
pects that are most relevant to image registration tasks. Then in Chapter 5, we 
apply these parallelization concepts to develop methods suitable for collinear and 
deformable registration of images specifically designed for the massively parallel 
architecture of the modern graphics processing units (GPUs).

In the final chapter of the thesis we investigate real-time synthesis of ultrasound 
from tomographic modalities which can be used in registration of ultrasound with 
other modalities and in training simulators. The main idea is to reduce the com-
putational cost by devising a simple acoustic model that can sufficiently represent 
ultrasonic effects for the task at hand. We further improve the computation time 
by a GPU-based implementation of the model and demonstrate a simulation and 
visualization software that achieves interactive frame rates.
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1.3 Sum m ary o f th e  C ontrib u tion s

A list of the main contributions of this thesis follows:

• Gradient Intensity, Section 3.1.2, Section 3.1.3
We introduce the concept of gradient intensity (GI), a measure of directional 
strength of an image based on its gradient content. We show that the mutual 
information (MI) of GI can be used as a measure for registration and that it 
reduces the dimensionality of similarity registration and allows for decoupled 
estimation of the registration parameters.

• Soblex Optim ization, Section 2.4.3, Section 3.5.2
We introduce a quasi-global optimization method based on simplex and sam-
pling of the parameter space with a Sobol quasi-random sequence. The 
method is called Soblex and allows for an easy trade-off between the robust-
ness and efficiency of the optimization. It is particularly suited to finding a 
global minimum in the presence of several local minima.

• Uniform Volume Histogram, Section 3.1.6
We propose a computationally efficient method for histogram computation 
which estimates the probability density of the underlying data with little 
dependency on the number of bins. We also demonstrate that the method 
is resistent to noise and results in smoother cost functions when used in 
conjunction with a Gl-based measure.

• Enhanced Powell Optim ization, Section 3.2.3
We improve the convergence rate of Powell’s optimization algorithm by in-
troducing a set of resolution parameters. The resolution parameters are ex-
pressed in units of each parameter being optimized and can be more naturally 
defined than standard parameters used in Powell’s convergence such as the 
fractional tolerance and absolute tolerance.

• Hough Transform Formulation of the R egistration Problem , Section 
3.1.5, Section 3.4
We give an alternative interpretation of the GI based on a Hough transform 
is given. We formulate the registration problem in the Hough domain and 
show that the transformation can be used for robust and efficient registration 
of images.

• Robust Estim ation of Translation Param eters Using an Inverse 
Radon Back-Projection, Section 3.4.1
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We propose a robust method for estimation of translation parameters in 
Hough space which is similar to an inverse Radon back projection. The 
method allows for estimation of parameters from as low as 8 projected lines 
in a 2D space.

• Classification and Comparison of Im age Registration M ethods for 
HPC Architectures, Chapter 4
We look at previous, recent, and state-of-the-art methods for registration of 
medical images on a range of HPC architectures including symmetric multi-
processing (SMP), massively multiprocessing (MMP) and architectures with 
distributed memory (DM) and non-uniform memory access (NUMA). We de-
fine and describe concepts of interest in the context of image registration 
and high performance computing. We highlight registration related issues as 
we explore the HPC problem domain. This approach presents a fresh angle 
on the subject than previously investigated by the more general and clas-
sic reviews of registration methods. We have also endeavored to provide a 
comprehensive summary of existing contributions from various groups and to 
normalize their results for comparison of different methods and technologies.

• Histogram  Com putation on the G PU , Section 5.3.1, Section 5.3.2, Sec-
tion 5.3.3, Section 5.3.4
We present several methods for efficient computation of histograms suitable 
for the streaming architecture of massively multiprocessing GPUs. The his-
togram computation methods play an important role in efficient computation 
of Mi-based registrations on the GPU.

• Sort and Count Algorithm , Section 5.3.4
We present a novel approach for parallelization of histograms that does not 
require synchronization or use of atomic operations. The method is based on 
sorting a sequence while computing the number of similarly-valued elements 
at the same time. We specify the appropriate class of sort algorithms that 
can be used for this purpose and provide a GPU-based implementation of the 
method.

• R eal-Tim e Registration of Images in the Vanderbilt Database, Sec-
tion 5.4.3
We demonstrate that using the sort and count method, the multi-modal im-
age pairs from the Vanderbilt database can be registered in less that one 
second on a commodity GPU.
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• Fast Deformable Registration on the GPU, Section 5.4.4
We present a fast deformable B-spline type registration for multi- and mono-
modality images using the histogram computation methods described in Chap-
ter 5 on a commodity GPU.

• Ray-Based Model of Ultrasound, Section 6.2
We develop an acoustic model that can be used in real-time for simulation of 
large-scale reflections, attenuation due to reflections, effect of a finite beam- 
width, and view-dependent shadow and occlusion effects in an ultrasound 
image.

• Real-Time Simulation of Ultrasound on the GPU1, Section 6.3
We present a fast GPU-based method for simulation of ultrasound images 
from volumetric CT scans and their visualization. We show that the ultra-
sound simulation problem can be formulated as a ray casting problem. We 
use the graphics API for our GPU-based ultrasound simulation. Use of the 
graphics API ensures that our implementation is relatively independent of 
the graphics hardware and can be run on a wider range of devices.

lrrhis is a joint work with Oliver Kutter (Technische Universität München) and was carried 
out during my visit to Munich.
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Im age R eg is tra tio n

Image registration is a problem commonly encountered in computer vision and 
particularly in medical image analysis. Registration is a process that aims to find 
the optimal transformation that best aligns two or more corresponding images. 
The main motivation for registration is the expectation that one can draw more 
useful conclusions by combining and comparing information from various sources, 
subjects, viewing angles, and at different times. To draw meaningful conclusions, 
one needs to express the information in a common framework. In the context of 
images, this common framework is provided by image registration. Registration is 
often a precursor to data fusion, segmentation, and labeling.

Like most practical problems, there is no single universal solution to the regis-
tration problem. As such, it is often helpful to further classify the problem based 
on the subject, imaging technique, and space of possible solutions. Registration 
is called intra-subject if the images belong to the same subject and inter-subject 
if the images are taken from different subjects. We call a registration problem 
mono-modal if the images are produced by the same imaging technique and multi-
modal if the images are taken by different imaging techniques. Registration is 
called multi-temporal if the images depict structural changes of the same subject 
over time. For example, erosions of the earth’s surface or tumor growth. Finally, 
we describe registration based on the class of transformations to which the solu-
tion belongs. In this context, a registration may be described as rigid, similarity, 
affine, projective, polynomial, or deformable. For example, when we call a registra-
tion, rigid, we imply that the solution is limited to the space of angle and distance 
preserving transformations. A formal description of different transformation types 
will be given in later sections.

Other classifications include feature-based and content-based registration, and 
parametric and non-parametric registration. In feature-based registration the so-

7
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lution is derived by finding a transformation that optimally maps a finite set of 
features which has been identified for each image. Features can be manually se-
lected or automatically detected, they can be derived from the subject such as 
corners and anatomical features or be artificially introduced by placing markers 
next to or on the subject.

In medical imaging, fiducial markers such as stereo-tactic frames can be at-
tached to the patient during the imaging process and used to determine the align-
ment to a high accuracy. Despite their high accuracy, feature-based methods typi-
cally require some human input or intervention, which makes them undesirable for 
fully automated processes. On the other hand, content-based methods can be fully 
automated and be used retrospectively. Recent advances (in the last decade or 
so) in similarity measures such as the introduction of mutual information (MI) and 
improved optimization methods, have made the accuracy of content-based methods 
comparable to feature-based methods (e.g. see [1]) and the dominant class of image 
registration research. Unless otherwise noted, any reference to image registration 
in the rest of this thesis deals with the content-based registration.

For a classical and general treatment of the registration techniques, we refer the 
reader to [2]. For a survey of medical image registration in general refer to [3] and 
for mutual information-based registration of medical images refer to [4]. A modern 
treatment of the numerical methods for registration of medical images is provided 
in [5]. A survey of high performance medical image registration on multi-core, 
graphics processors and distributed architectures is given by the author in [6].

2.1 P rob lem  S ta tem en t

We define an image I  as a mapping from Rd to R, X : Rd —> R. Without loss of 
generality, we assume that images are defined such that X : [0, l]d —► [0,1] and 
denote the space of all images by I. For two images T  and M  G I, the registration 
problem is to find a mapping T(-) that minimizes some distance measure V  or 
maximizes a similarity measure S  defined on I, or formally:

Topt = argmin V{fF, M( T) ) .  (2.1)
T

Image T  is known as the fixed or reference image and image M. as the moving or 
template image. The three main ingredients of the solution include:

• Choosing an appropriate class of transformations that can sufficiently de-
scribe the mapping between the images.
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• A suitable distance measure which attains its minimum at the correct align-
ment between the two images, is sufficiently smooth with a sufficiently large 
attraction range, and with not so many local minima.

• A suitable optimization strategy which can find the global minimum despite 
local minima and within a reasonable time.

In the interest of making a general statement , we deliberately stay clear of defining 
qualitative terms such as sufficiently smooth, large attraction range and a reason-
able time which need to be clarified in the context of each specific application.

initial
PO ilA-t

Figure 2.1: A general registration solver and its main components: F , M, and 
M{T)  are fixed, moving and transformed moving images, respectively.

Fig. 2.1 shows various components of a general registration solver, with the 
main components a transformer, a measure, and an optimizer, as described above. 
Registration as depicted here is an iterative process where the moving image is 
transformed within a predetermined parameter space and compared against the 
fixed image. A measure of similarity or distance is computed between the images 
at each step and used to determine if they are ‘sufficiently’ aligned. This process 
is controlled by the optimizer which starts from an initial guess and determines 
subsequent steps in order to reach an optimal alignment. We will discuss each 
component in more detail in the following sections.

2.2 Transform er

The transformer maps points in the moving image to new locations in the trans-
formed image. Depending on the registration problem, a transformation can be 
collinear or deformable. Collinear transformations are line-preserving i.e. map
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straight lines onto straight lines. Collinear transformations can be described by 
a 4 x 4 matrix acting on homogeneous vectors representing 3D points. Examples of 
collinear transformations include rigid, similarity, affine, and projective1. For this 
reason, these types of transformations have nearly identical complexity. Methods 
that implement rigid registration can be easily extended to affine, often without 
any change to the transformer.

Deformable transformation methods can be further categorized as parametric 
and non-parametric. Non-parametric methods are based on a variational formu-
lation of the registration problem, where the transformation is described by an 
arbitrary displacement field regularized by some smoothing criteria [5]. Paramet-
ric methods are based on some piecewise polynomial interpolation of a displace-
ment field using a set of control points placed in the image domain. B-splines are 
commonly used in this context as they induce local deformations that limit the 
computational complexity of a large grid of control points [7]. Other functions 
such as thin-plate splines [8] and Bezier functions [9] have also been used. There 
are efficient methods for non-parametric registration including multi-grid solvers. 
While parametric methods are more demanding, they yield themselves more easily 
to multi-modal registration applications.

The transformer determines the intensity of the points in the transformed image 
by interpolating intensity values of corresponding points in the moving image. The 
simplest and fastest interpolation method is the nearest neighbor interpolation. 
Nearest neighbor should never be used in practice, as it results in poorly shaped 
cost functions, but may be useful to establish the baseline performance of the 
transformer. The most commonly used interpolation method is linear interpolation. 
Other methods include quadratic, cubic, cubic B-spline, and Gaussian interpolation 

[10].

A transformer spends the majority of its time performing interpolations. As 
noted by Castro-Pareja et al. [11], interpolation of the transformed moving image 
does not benefit from standard memory caching mechanisms due to non-sequential 
pattern of access to memory with low locality. As a result , transformer performance 
can well become memory-bound.

Param etric vs Non-Param etric

If transformation T(-) in (2.1) can be expressed in terms of a finite set of parameters, 
we call the registration parametric and non-parametric otherwise. Common types 
of parametric registration are briefly described in the following subsections. For a

Projective transformations are rarely required in medical imaging applications.
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comprehensive and hierarchical treatment of transformations, the reader is referred 
to [12].

2.2.1 Rigid

A rigid transformation is used to recover the misalignment between the images when 
the mapping between the images is known to be angle and distance preserving. A 
rigid transformation consists of a translation and a proper rotation with 3 and 6 
parameters in two and three dimensions, respectively.

A rigid transformation T r(-) can be shown in homogenous block form as:

where R and t  are the rotation matrix and the translation vector, respectively.

A similarity transformation is used when the mapping between the images can be 
described by a rigid transformation plus an isotropic scaling. The transformation 
preserves angle, relative distance and relative area. A similarity transformation 
can be specified by 4 and 7 parameters in two and three dimensions, respectively.

A similarity transformation Ts(-) can be shown in homogenous block form as:

An affine transformation is used when the mapping between the images can be 
described by a rigid transformation plus anisotropic scaling and sheer parameters. 
Parallel lines remain parallel under the transformation, so does relative distance 
on parallel lines and relative area. An affine transformation can be specified by 6 
and 12 parameters in two and three dimensions, respectively.

An affine transformation Ta(-) can be shown in homogenous block form as:

( 2.2)

2.2.2 Sim ilarity

(2.3)

where s is the isotropic scaling.

2.2.3 Affine

X (2.4)
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where A is an arbitrary 2 x 2  and 3 x 3  matrix for two- and three-dimensional 
transformations, respectively.

2.2.4 P ro je c tiv e

■A projective transformation is used when the mapping between the images can be 
described by a linear transformation of homogenous coordinates. This is the most 
general type of a collinear transformation which preserves the cross ratio (ratio of 
ratios) of any four collinear points. A projective registration can be specified by 8 
and 15 parameters in two and three dimensions.

A projective transformation Tp(-) can be shown in homogenous block form as:

Tp(x)
A t

TV 1 v0
(2.5)

The transformation is defined up to a scale and as such, there are N  — 1 degrees 
of freedom for a projective transformation with N  elements.

2.2.5 B -Spline

Non-rigid deformation between images can be modeled by spline functions operat-
ing on a finite set of control points distributed across the image. In this section 
we look at a commonly used spline-based transformation which uses B-splines to 
model the deformation between the images [7].

Let <3> denote a mesh of nx x ny x nz control points =  [xijk, Hijk, 
distributed over an image and 6x:6y.6z be the distance between adjacent control 
points if they were uniformly distributed. The cubic B-spline deformation in 3D 
can then be defined as

3 3 3

r̂ -b{% 1 U ■> z )  ^   ̂ ^  ^ ^  ^ B m ( v )  B n ( w )  (f)j-

^=0 m = 0 n =0

( 2.6 )
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where Bg(-) is the £th basis function of the cubic B-spline defined as

( 1  — u ) 3
B0(u) = 

B\(u)  =  

B 2(u ) =

3ii3 — 6u2 + 4

—3u3 +  3 u2 + 3u +  1

B3(u ) =

and the i, j ,  k  and u, v, w are calculated using

öy  Ö2:

x  . x . y y z z
U = T ~  Lt -J’ v  = t ~  Lt -J. w = t ~  LrJ-0 X 0 X Oy dy  0 Z d z

(2.7)

( 2.8) 

(2.9)

( 2. 10)

(2 . 11)

( 2. 12)

One benefit of B-spline transformation is its computational efficiency compared 
to other spline-based transformations. The mapping of a given point is determined 
only by a mesh of 4 x 4 (for 2D transformations) or 4 x 4 x 4 (for 3D transformations) 
of control points that are closest to the point being transformed. This means 
that changes to the position of the control points only affects points in their local 
neighborhood which is particularly useful in computation of the gradient measures 
using finite differences.

2.3 S im ila r ity /D ista n ce  M easures

Just as different classes of transformations are suitable for modeling different ge-
ometric distortions between the images, different measures are used for different 
intensity distortions between the images. Measures are broadly categorized based 
on their suitability for single-modality and multi-modality problems. We discuss 
commonly used measures in this section a list of which is given in Table 2.1. We 
note that for certain measures it is more natural to talk about similarity rather than 
distance between the images. Since a similarity measure S(-) is trivially related to 
a distance measure V(-) = -S(-)  and in line with the optimization literature, we 
will refer to minimizing a cost function even when we actually mean maximizing 
the corresponding similarity measure.

Typically, single-modality measures can be calculated by independent compu-
tations at each spatial location. From a parallelization point of view, this makes 
them readily adaptable to single instruction multiple data (SIMD) instruction sets
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and architectures such as GPUs. Multi-modality measures determine statistical 
(mutual information) or functional (correlation ratio) dependance of images where 
each image is assumed to be a realization of an underlying discrete random variable. 
These methods require estimation of joint and marginal probability mass functions 
(pmfs) of the underlying discrete random variables from image data. Methods of 
pmf computation can be parallelized with varying degrees of difficulty and perfor-
mance improvement. We will discuss this issue in more detail in the context of MI 
computation on the GPU in Section 4.2.3.

2.3.1 Sum of Squared Differences (SSD)

Sum of squared differences (SSD) is a direct measure of distance between two 
images. For T , M. € I, SSD is defined as:

m ) =  -  x ( x ) ) 2, (2.13)

where i l c E '1 represents the overlapping area between the two images. SSD is a 
computationally efficient measure for mono-modal registration. The assumption is 
that image intensities are (more or less) unchanged under the transformation. SSD 
can be shown to be an optimal distance measure where the image intensities only 
differ by a stationery Gaussian noise [13].

The main drawbacks of SSD are the underlying assumption that there is identity 
correspondence between the image intensities and its sensitivity to outliers. One 
approach to reduce sensitivity to outliers is to use the closely related distance 
measure, sum of absolute differences (SAD), defined as:

P SAD (^,M ) =  y i l ^ ( x ) - X ( x ) | .  (2.14)

One problem with SAD is that its derivative can become singular, which makes 
it undesirable for optimization schemes that rely on the derivative of the distance 
measure, such as gradient descent-based methods.



2.3 Similarity/Distance Measures 15

2.3.2 Correlation Coefficient (CC)

Correlation coefficient2 is an affine measure of similarity between two images. For 
T, A4 G I, CC is defined as:

SCc ( ^ ,M )  = J 2
(^(x)-E[^(x)])(A<(x)-E[M(x)])

a(Jr)a(A4)
(2.15)

where E[-] and cr(-) are the expectation and standard deviation, respectively. CC 
can be viewed as the cosine of the angle between the two images which attains its 
maximum when image intensities are affinely dependent [5], i.e. if A4 = aT  +  6, 
then E[A4] = aEj^7] +  b and a (A4) = aa(X) and hence Sec — 1-

CC is suitable for mono-modal registration particularly where there are bright-
ness and contrast changes between the two images.

2.3.3 M utual Inform ation (MI)

Mutual information is a concept borrowed from the information theory and is based 
on the entropy of random variables. In this context, the image is assumed to be the 
realization of a discrete random process. Entropy of a random variable is a measure 
of the average or expected information content of an event, whose distribution is 
determined by the marginal probability of the random variable. One such measure 
was introduced by Shannon in 1948 [14], and is defined as

= ! > ( * )  l°g
xex ’

where p(.) is the pmf3 * * of the random variable X.  Shannon entropy measures the 
degree of uncertainty of a random variable by scoring less likely outcomes higher 
than the more likely ones. This is consistent with the notion that knowledge of an 
outcome that can be easily predicted is considered less valuable.

Mutual information of two random variables is the amount of information that 
each carries about the other and is defined as

I ( X- Y)  =  H ( X ) - H ( X \ Y )

=  H(X)  +  H(Y) — H(X,  Y),  (2.17)

2Some authors use normalized cross correlation (NCC) to refer to correlation coefficient. We 
prefer correlation coefficient which is the accepted term in statistics.

3We note that in the context of images we deal with discrete signals and discrete random
variables. It is therefore more appropriate to use pmf than its continuous equivalent probability
density function (pdf).
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where H( X\ Y)  is the information content of random variable X  if Y  is known, 
H( X , Y )  is the joint entropy of the two random variables and is a measure of 
combined information of the two random variables. I ( X ; Y)  can be thought of as 
the reduction in uncertainty of random variable X  as a result of knowing Y . The 
uncertainty is maximally reduced, when there is a one-to-one mapping between 
the two random variables and is not reduced at all if the two random variables are 
independent and do not provide any information about one another.

In the context of images, MI is a statistical measure of similarity between two 
images. For T , M  G I and using (2.17), MI can be written as:

S U\(A,A4) = log
/  m PAf)PM(™)'

(2.18)

where pjr(-), Pm {‘) i and Pf m {') are the marginal and joint probability mass func-
tions of discrete random variables T  and A4, respectively. MI as a similarity 
measure was first introduced by [15] and [16]. Mi-based registration has since been 
used in numerous applications, particularly for multi-modal registration of medical 
images (for a comprehensive list refer to [4]).

A commonly used alternative to MI is normalized mutual information (NMI) 
defined as:

‘Sn mK-T7, A4) —
2S^( A, M)

H( A)  + H{A4)'
(2.19)

There is anecdotal evidence that NMI is less sensitive to partial overlap between 
the images [17,18]

We also note that while, in theory, maximization of MI is equivalent to min-
imization of the joint entropy, the latter is hardly used in practice. This is due 
to the fact that joint entropy has a tendency to drive the optimization towards 
solutions where images have little or no overlap. This is where joint entropy itself 
is degenerate and close to zero. MI avoids this pitfall since as the overlap between 
the images gets smaller so does the information content of each image and con-
sequently the mutual information itself is reduced and gets farther from a local 
maximum.

2.3.4 Correlation R atio (CR)

Correlation ratio (CR) measures a functional correlation between the images with-
out making an explicit assumption regarding the nature of the function itself. De-
velopment of CR was apparently motivated by the observation that MI was too
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under-constrained for certain applications [19], as it does not explicitly take the 
spatial relationship between the image intensities into account.

Correlation ratio for two random variables X  and Y  is defined as

V{X;Y)  =
^ 2(E[P |X])

a2(Y)
( 2 .20)

CR is defined in the [0,1] range and measures the functional dependence between 
the two random variables. It assumes a value of 0 when there is no functional 
dependence and 1 when there is a purely deterministic dependence between the 
two random variables. We note that CR is in general non-symmetrical [19].

Both MI and CR require estimation of the joint pmf of the images and as such 
their complexity is 0 ( n 2) with n being the number of intensity levels or bins for 
each image. However if the pmfs are simply calculated by normalization of the 
joint histogram of the images, an 0( n)  implementation of CR is possible [20].

CR fills the gap between CC and MI, where it is not as constrained and as 
restricted as CC nor as unconstrained and spatially ignorant as MI. Hence, the 
measure is useful when images are known or expected to have some functional 
relationship.

2.3.5 Probability D istribution  Estim ation

One often overlooked aspect of image registration with MI or CR as the similarity 
measure is the need for a robust estimation of the joint and marginal probability 
mass functions (pmf) from image content. Most researchers (as surveyed by [4]) use 
a standard joint histogram of intensity co-occurrences as an estimation of the pmf. 
However, as we will demonstrate in Section 3.1.6, this method is not robust w.r.t. 
the number of histogram bins. The choice of number of bins affects the similarity 
measure and in turn the optimization and registration accuracy. A smaller than 
optimal number of bins typically results in an over-smoothed cost function and a 
less accurate registration while a larger than optimal number of bins results in a 
cost function with lots of ripples and can result in mis-registration.

An efficient method to solve this problem is to use the uniform volume histogram 
(UVH) [21] for estimating the pmfs. We will discuss UVH in Section 3.1.6.

2.3.6 Com parison of M easures

Table 2.1 shows a quick comparison of the measures discussed in this section. The 
measures are listed from the least general (SSD) to the most general (MI) but the
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computational complexity increases from top to bottom.

Table 2.1: Comparison of Similarity/Distance Measures

M e a su r e T y p e M a p p in g P r o s C o n s

SSD Distance One-to-one •  Suitable for mono-modal • Limited to mono-modal
registration registration

•  Suitable for non- • Sensitive to  outliers
parametric registration • Sensitive to  non-

•  C om putationally efficient overlapping areas

SAD Distance One-to-one
•  Easy to differentiate
•  Suitable for mono-modal • Limited to  mono-modal

registration registration
•  C om putationally efficient • Differentiation introduces
•  Less sensitivity to outliers singularity

CC Similarity Affine
compared to SSD  

•  Suitable for mono-modal • Limited to mono-modal
registration

•  N ot sensitive to brightness
registration

CR Similarity Functional
and contrast changes 

•  Suitable for multi-modal • Com putationally expen-
registration

•  Only requires an implicit
sive

functional relationship be-

MI Similarity Statistical
tween the images 

•  Suitable for multi-modal • Com putationally expen-
registration sive

•  Least sensitivity to outliers
•  Requires no explicit or im-

plicit relationship between 
the images

2.4 O ptim izer

Image registration typically involves an optimization step, where the transforma-
tion T(-) is iteratively refined from a initial guess Tq(-) until some convergence cri-
terion is met. The optimizer is responsible for an efficient and often non-exhaustive 
strategy to search the transformation parameter space for the best match be-
tween the images. In image registration, optimizers can be broadly categorized 
as gradient-based or gradient-free, global or local, and serial or parallelizable.

Gradient-based methods require computation of partial derivatives of a cost 
function in addition to frequent computation of the cost function itself. Therefore, 
from an implementation perspective, they are more involved than gradient-free 
methods. The gradient computation can be based on the numerical estimation of 
the derivatives using finite differences. Alternatively, direct computation of the 
gradient can be performed when closed-form equations for the partial derivatives 
can be derived.

Local methods find a local optimum in the vicinity of an initial point and within 
their capture range. They may converge to an incorrect alignment if not properly
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initialized. The problem can be alleviated by using an appropriate distance measure 
with a single dominant minima, limiting the dynamic range of the parameters and 
initializing the optimization sufficiently close to the global minimum and within the 
capture range of the distance measure to ensure the desired correct convergence. In 
practice, all the above strategies need to be employed to guarantee the success of a 
registration algorithm. Global methods, however, find the global optimum within a 
given range of parameters. They are robust with respect to selection of the initial 
point but at the cost of slower convergence. Global and local methods may be 
combined to improve robustness while maintaining a reasonable convergence rate. 
For parametric registration, it is often the case that a global optimization of the 
parameter space is computationally prohibitive and one needs to resort to a local 
optimization method.

Some optimization algorithms are only suited for serial execution, where each 
optimization step is dependent on the outcome of previous step(s). Others may 
be amenable to parallelization. For example, each step of the gradient descent 
optimization in TV-dimensional space requires computation of N  partial derivatives 
of the cost function. Here, there is limited opportunity to run up to N  tasks in 
parallel, and of course the additional line minimization step that may follow cannot 
be readily parallelized. We call such methods partially parallelizable. And finally, 
we refer to optimization methods that have been designed for parallel execution 
with minimal inter-step dependency as fully parallelizable.

Table 2.2 lists some optimization algorithms used for image registration and 
their respective classification.

The overall performance of a registration algorithm is dependent on the ef-
fectiveness of the optimization strategy. This in turn depends on the iterations 
needed for the algorithm to converge. For gradient-free optimization, we define an 
iteration as a step which involves a single computation of the cost function. For 
gradient-based optimization, an iteration is defined as a step that involves a single 
computation of the gradient. Depending on the type of gradient-based method this 
may involve several evaluations of the cost function.

Gradient-based optimizers do more in a single iteration and they also converge 
with a significantly lower number of iterations compared to gradient-free meth-
ods. The convergence rate of an optimizer depends on many factors including the 
size of the parameter space, optimizer settings (e.g. convergence criteria), and the 
misalignment between the images. It is also often data-dependent.

A sample breakdown of computations in one iteration of a gradient-free op-
timization algorithm is given in Table 2.3 for affine registrations using a single
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Table 2.2: Classification of commonly used optimization methods

M ethod Classification

Powell [22] gradient-free local serial

Simplex [23] gradient-free local partially parallelizable

Soblex1 [21] gradient-free combined partially parallelizable

MDS1’2 [24] gradient-free local partially parallelizable

Gradient descent [22] gradient-based local partially parallelizable
Quasi-Newton [22] gradient-based local partially parallelizable
Levenberg-Marquardt [22] gradient-based local partially parallelizable

Simulated annealing [22] gradient-free combined partially parallelizable
DIRECT3 [25] gradient-free global fully parallelizable
Genetic [26] gradient-free global fully parallelizable

: a simplex variant, 2 : multidirectional search, 3 : dividing rectangles

modality and a multi-modality measure. The measurements are based on a Quad 
core Intel Core i7 920 and an NVIDIA GTX 295. The time spent outside of the 
measure and transformation components is negligible compared to the measure and 
transformation. On the CPU the execution time is dominated by the transformer 
whereas on the GPU, the time spent in computing the measure, particularly for 
MI, exceeds the transformer time. This is expected as GPUs are designed to speed 
up geometric transformations. Obviously, for more complex transformation models 
such as the deformable B-splines more time will be spent in the transformer for 
both platforms.

Table 2.3: A sample breakdown of computations for affine registrations on a multi-
core CPU and a GPU

A ffine (S S D ) A ffine (M I)

Measure Transform Other Measure Transform Other

CPU 4.3% 95.7% < 0.1% 13.5% 86.5% < 0.1%

GPU 50.4% 49.2% 0.4% 86.9% 13.0% 0.1

As can be seen in Table 2.3, the computational bottleneck of registration is 
not the optimizer but the computation of the transformation and the measure. For 
this reason, most researchers focused reducing the computational cost of these com-
ponents such as their fine-grained parallelization. A few have considered coarse-
grained parallelization which involves parallelization of the optimizer itself [27,28].
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In the following subsections we will briefly describe common local optimization 
methods. The reader is referred to [29] for a more comprehensive treatment.

2.4.1 Powell

Powell’s multi-dimensional direction set algorithm finds the minimum of a function 
by iteratively minimizing the function along a set of N  directions, where N  is the 
number of independent parameters of the cost function. At its core, the method 
uses a line minimization method (typically Brent’s method [30]). In the absence 
of any direction, the parameter space’s origin is commonly used as the starting 
position for the optimization algorithm.

One problem with the Powell algorithm is that from an observer’s point of 
view who knows where the minimum is located, it appears to spend a lot of time, 
aimlessly iterating on and around the minimum. Obviously, the only way the 
optimization algorithm can satisfy itself that it has found the actual minimum is 
to spend enough time to check the perimeter [31].

If the algorithm can be initialized close to the minimum, one can use the knowl-
edge to speed up convergence by refraining from checking the perimeter excessively 
as we have described in [31]. The Powell algorithm can be modified to keep track 
of each point in the iV-dimensional space that it evaluates. A minimum distance 
or resolution is defined and the cost function is only evaluated when a new point 
falls outside all previously evaluated points by the specified minimum distance. 
The cost function quickly returns a previously calculated value for points inside 
the minimum distance of a previously evaluated point, which limits the resolution 
of the cost function. Obviously, this method is not suitable as a general purpose 
optimization tactic, and can only be used when the optimization algorithm can be 
properly initiated.

In our experience, Powell produces accurate results in registration applications 
when initialized close to the global minimum, however it has slower convergence 
rate and is more sensitive to local minima compared to Simplex optimization. 
Powell does not require derivatives of the cost function which makes it an attractive 
solution where the derivative of the cost function is difficult to calculate or may 
become singular.

2.4.2 Sim plex

A simplex is a geometrical object that consists of N  +  1 vertices in N  dimensions. 
2D and 3D Simplexes are known by the more familiar names of triangle and tetra-



22 Image Registration

hedron, respectively. The algorithm is named Simplex because at each iteration, 
it evaluates the cost function at ./V +  1 vertices of a simplex for an iV-parameter 
problem. The algorithm keeps track of the best (lowest cost), second best and the 
worst (highest cost) vertices and attempts to climb downhill through a number of 
basic moves as described below.

Reflection: the worst vertex is reflected through the opposite face. Reflection 
is the most common move in Simplex and allows for the algorithm to quickly climb 
downhill.

Expansion: if a reflection results in the best vertex to be replaced by the new 
point, an expansion is attempted to see if the cost can be further improved along 
the reflected direction.

Contraction: if the reflected vertex is not as good as the best or the second 
best vertices, the worst vertex is moved closer to the opposite face. A contraction 
typically occurs when the simplex is settling at the bottom of a valley and moving 
in the direction of a reflection may take the algorithm uphill.

Full Contraction: if none of the previous strategies work, all vertices except 
for the best vertex are moved closer to the best vertex along the simplex sides.

The algorithm is repeated until some convergence criterion is met.
Similar to the Powell method, Simplex only requires evaluation of the function 

itself and not the derivatives.

2 .4 .3  S o b lex

If a cost function contains several local minima and a single dominant minimum, 
local optimization method can be easily trapped by the local minima. While not 
desirable, this may be acceptable for certain applications, where one only needs to 
improve on an initial cost. However, in registration applications, being trapped by 
a local minimum results in mis-registration and complete failure of the algorithm. 
Soblex [21] is a quasi-global optimization method based on simplex and sampling 
of the parameter space with the Sobol quasi-random sequence [32].

The Soblex optimization is initially given a budget, in terms of time or number 
of cost function calls. Within the initial budget, Soblex evaluates the cost func-
tion using the Sobol sequence and initializes a simplex-shaped subspace, which is 
constructed from points with the lowest costs. The Sobol sequence ensures that 
we can progressively sample the parameter space in a virtually uniform fashion. 
Intuitively, if the budget is large enough, the simplex subspace can sufficiently 
close in on the global minimum to allow successful execution of the optimization 
algorithm [21].
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Unlike most optimization methods that start with a single point in space, the 
simplex algorithm allows us to start from a region of space that can arbitrarily be 
made close to the global minimum by increasing the Soblex budget. Quasi-random 
sampling of the parameter space is preferred over a uniform sampling, as it avoids 
sample-set’s bias as a result of a uniform distance between the samples which is 
also known as the grid-effect. A Sobol sequence is also preferred over a true random 
distribution as it guarantees that the each subspace is given a more-or-less equal 
weight regardless of the number of samples drawn.

Soblex optimization is one of the contributions of this thesis and has been used 
for optimization of rotational parameters in Gradient-intensity-based registration 
where Powell and Simplex would fail [21].

2.4.4 G rad ien t D escen t

Gradient descent is a popular gradient-based optimization algorithm, largely due 
to its simple structure and ease of implementation. Once the gradient is computed, 
the choices include taking a single step in a direction opposite to the gradient where 
the step size may be adjusted over time, or use of a line minimization algorithm 
such as Brent’s [22]. Line minimization usually involves several computations of 
the cost function alone without its derivatives.

When comparing results it is important to  identify which variation of the gra-
dient descent is used. We have come across four different implementations.

• Type A: Closed-form differentiation with a single step

• Type B: Closed-form differentiation with line minimization

• Type C: Numerical differentiation with a single step

• Type D: Numerical differentiation with line minimization.

Gradient descent is, however, known to be slow to converge compared to other 
gradient-based optimization methods such as conjugate gradient or quasi-Newton 
methods [22].

2.4.5 F u n ctio n a l O p tim iza tio n  U sing V aria tio n a l C alcu lus

For the sake of completeness, we discuss functional optimization which is used in 
non-parametric registrations. Consider the following minimization problem, where
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we would like to find a function uopt(-) which minimizes the following expression:

rx  2

uopt = argmin / F(x,u(x),u'(x))dx,  (2.21)
u  J  X \

v  y

subject to some boundary condition u(x i) =  a, u(x2) = ß. Here, F(-) is a function 
of the independent variable x, the unknown function u(-) and its derivative and is 
called a functional. It turns out that many practical problems including deformable 
registration can be formulated as (2.21) and the standard method to solve them is 
to solve the partial differential equation arising from the following Euler-Lagrange 
equation:

Fu -  ~ F tt/ =  0, (2.22)
ax

where Fu and Fu> are derivatives of F(-) w.r.t. u and u', respectively.

P roof

For function u(-) to be the solution to the minimization problem in (2.21), we 
expect the Gateaux derivative of if in the direction of an arbitrary function rj(-) be 
zero:

dip(u] rf) =  lim
ijj(u 4- £T]) — if(u)

=  0 , (2.23)

replacing u + erj in (2.21) and using the Taylor series expansion of F(-) we have

r ' 2[sr](x)Fu(x, u(x),u’(x)) +  er/(x)Fu'(x,u(x),u'(x))  +  e2Qdx 
lim —1-------------------------------------------------------------------------------
e —>0 £

- 0, (2.24)

where e2(  represents higher order terms in the Taylor expansion. Taking the limit 
with £ —> 0 we have

rx 2 rx 2

/ r](x)Fudx + / r)'(x)Futdx
J x  1 J  X \

=  0 . (2.25)

We now use integration by parts on the second term

0. (2.26)
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To satisfy the boundary condition we require r)(x\) = r)(x2 ) =  0

dFu/rx  2

/ ?7(z)
«/ X l

F,
dx

dx = 0. (2.27)

The previous equation needs to hold for an arbitrary function r](x), hence

Fu - d - F u, = 0. □  (2.28) 
ax

In a similar manner, one could extend the result to a function of multiple 
variables and a vector field. The Euler-Lagrange equation for a function u(-) of d 
variables can be written as:

Fu ~£  - ^  = 0, (2.29)
2 =  1

where uXi is the partial derivative of u(-) w.r.t. the zth variable Xj. The general 
form of Euler-Lagrange equations for a vector field u ( - )  = [ui(-) • • • « m( ' ) ] 1

of d variables can be written as:

(  d T \ T
Fu “  ( Fux J = ° ’ (2 30)

where
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- dxd . d x l
F

L r u '*d
F

U2Xd • umxd - d x m

(2.31)

For a discussion of constrained problems and some examples refer to [33].
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G rad ien t In tensity -B ased  
R eg is tra tio n

In this chapter, we introduce the concept of gradient intensity (GI), a measure of 
directional strength of an image based on its gradient content. We also discuss 
the applications of gradient intensity in rigid and similarity registration of images. 
Let us describe the concept informally by drawing a parallel with the intensity 
of a pixel in the image. Intensity of a pixel in an image represents strength of a 
signal measured at a given point in space. For images taken by a charge-coupled 
device (CCD) array camera, for instance, the pixel intensities are proportional to 
the amount of light collected by a CCD element in a given position of the array. 
For images taken by a CT scanner, the voxel intensities are proportional to the 
attenuation of an X-ray signal at a given position in space. Similarly, gradient 
intensity measures the number of significant gradient vectors in a gradient image 
that point to a given direction. In its simplest form, GI is a normalized histogram 
of gradient directions of the gradient field of an image.

Fig. 3.1 shows an image of a triangle and its main gradient directions. Excluding 
gradient vectors at (and close to) the vertices, there are three gradient directions 
each corresponding with one edge of the triangle. Fig. 3.1(b) shows the gradient 
intensity plot for different orientations. In theory, there should be only three gradi-
ent directions but in practice due to image quantization and numerical estimation 
of gradients other directions are present in addition to the main ones. We can also 
map gradient intensities to the circumference of a unit circle or on the surface of 
a unit disk as shown in Fig. 3.1(c), where brighter colors indicate higher gradient 
intensities in a given direction. For 2D images, GI is a mapping from a 2D vector 
field to a ID scalar field. Similarly for 3D images, GI is a mapping from a 3D vector 
field to a 2D scalar field. A detailed discussion of GI for 2D and 3D images is given

27
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(a) An image of a triangle: three (b) Histogram of gradient orientations 
main gradient directions shown

(c) Gradient intensity of the triangle mapped on 
a unit disk

Figure 3.1: Gradient intensity of a triangle. The positive direction on the disk is 
clockwise. This aligns gradient intensity on the disk with the direction of gradients 
in the image for a better visual comparison.

in Section 3.1.2 and Section 3.1.3, respectively. An alternative interpretation of the 
GI based on a Hough transform is given in Section 3.1.5.

G rad ien t In ten sity -B ased  R eg is tra tio n  - T he  G enera l Idea

There are two major limitations with automatic registration methods: (a) the ro-
bustness of the optimization is dependent on the shape of the cost function and 
can often lead to mis-registration due to presence of local minima, (b) the compu-
tation of the cost function involves image transformation and the computation of 
the similarity measure and needs to be performed several times which can be time 
consuming.

In Mi-based registration the local minima problem is further exacerbated due 
to weak spatial constraining in the computation of MI. There are two broad ap-



29

proaches to solving the local minima problem for Mi-based registration of images: 
(a) reducing local minima by improving the shape of the similarity function (b) 
skipping local minima by starting the optimization step closer to the actual align-
ment.

Pluim et al. [34] introduce spatial constrains to an Mi-based cost function us-
ing a correction factor based on co-occurrence of gradient vectors. Liu et al. [35] 
propose an adaptive combination of intensity MI and gradient field MI with a multi- 
resolution approach to improve the shape of the cost function. The improved per-
formance comes at the cost of increasing the computational complexity of the cost 
function calculation, which requires time consuming gradient image computation 
in addition to standard transformation and MI computation at each iteration of 
the optimization algorithm. Both methods have shown improved performance over 
NMI part icularly for lower-resolut ion and down-sampled images. Despite favor-
able results, it cannot be analytically established whether the combined measures 
will always improve the smoothness of the cost function and can sufficiently cancel 
one-another’s local minima and prevent formation of further ripples. Moreover, 
selection of coefficients, used in combined measures, is non-trivial and may well 
depend on the domain of the registration problem.

In this chapter, we look at improving the robustness and efficiency of image 
registration for the class of angle-preserving transformations (rigid and similarity) 
using the gradient intensity of images. We use the second approach in dealing with 
local minima by initializing the optimization close to the global minimum while 
reducing a computational complexity at the same time. The main idea is to break 
down a registration problem into simpler problems in multiple stages by decoupling 
the optimization for transformation parameters. To that end, we first obtain an 
initial estimate of the rotation parameter(s). With images rotationally aligned, 
we then look at efficient methods to estimate translation and scale parameters. 
Finally, the estimates of transformation parameters can then be used to initialize 
a suitable pixel intensity (Pl)-based optimization algorithm. Since, the Pi-based 
algorithm is initialized close to the actual optimum, it is guaranteed to converge 
to the correct alignment. As such, the overall algorithm has an extended capture 
range compared to a registration method that solely relies of pixel intensities and 
is quicker to converge due to being initialized closed to the optimum. The overall 
method’s accuracy is equivalent to the Pi-based method’s accuracy.

Table 3 lists and compares corresponding concepts in GI- and Pi-based regis-
tration methods.

We describe our method starting with simpler 2D registrations and registration
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Table 3.1: Comparison of corresponding pixel- and gradient-based concepts.

Pi-B ased M ethod GI-Based M ethod

Pixel Direction

Intensity of a pixel Number of gradient vectors in a direc-
tion

Intensity of a pixel assumed to be a 
random variable

Number of gradient vectors in each di-
rection assumed to be a random vari-
able

MI measures similarity of pixel inten-
sities

MI measures directional similarity of 
gradient vectors

MI computed the entire image data MI computed over a fixed-size his-
togram

Dimensionality of the problem is d Dimensionality of the problem is d — 1

in Hough space to demonstrate the main ideas in Section 3.2 and Section 3.4 and 
then generalize to registration of 3D multi-modal images in Section 3.5. But first, 
let us take a more in depth look at the concept of the gradient intensity.

3.1 G radient In ten sity  - T he C oncept

3.1.1 Gradient Field of an Image

The gradient field of a d-dimensional image such as X (x \ , x 2, ■■■,Xd) is given by

V 2 =
d l  d l  
dx\ dx2

d l
dxd

(3.1)

To compute the gradient for discrete images, the differentiation is replaced with 
a numerical estimation of the derivative such as finite differences. More generally, 
the differentiation is performed by a convolution with a suitable kernel in each 
direction:

V I = [ K i ® I  K2 ® I  ... Kd ® l f .  (3.2)

Common kernels include central differences, Sobel [36], and (truncated) Gaus-
sian kernels. 2D versions of these common kernels are given in Table 3.2 where
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Table 3.2: Examples of common 2D differentiating kernels

Kernel

Central differences [ 1 0

Sobel

Gaussian

" 1 0 - 1 ' '  1 to 1

2 0 1 to 1
8 0 0 0

1 0 - 1 - 1 - 2 - 1

0.1370 0 -0.1370 
0.2259 0 -0.2259 
0.1370 0 -0.1370

0.1370 0.2259 0.1370
0 0 0 
-0.1370 -0.2259 0.1370

1 : 3 x 3 truncated Gaussian a  =  1, f i  — 0

image coordinates with x-axis from left to right and y-axis from top to bottom is 
assumed.

The resulting vector field can be expressed in polar coordinates for 2D images 
and in spherical coordinates for 3D images. For 3D images the spherical represen-
tation at spatial location x is given by g(x) =  [pg(x) </>9(x) #9(x)]T, where
(f)g and 0g represent magnitude, zenith and azimuth angles, respectively.

A ? ( X )  =  J y ( X ) + 2 ? ( X ) > (3.3)

1  (x)
0g{x)  =  arctan y , — 7r  <  0g(x) < 7r

T r l , X J
(3.4)

/ / \ X 2  (x) 7T . . 7r

< M X )  =  a r c c o s  P 2 <  ^ ( x )  <  2  • (3.5)

The polar representation of 2D gradient vectors g(x) =  [pg(x) #5(x)]1 can be 
obtained by using (3.3) and (3.4) and setting X2(x) =  0.

Gradient angles are defined everywhere except where pg(x) =  0. In practice, 
gradients whose magnitude is close to zero are sensitive to noise, quantization and 
interpolation errors. GI matrices, as described in the next section, are based on
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gradient angles, so we would like to remove gradient vectors whose angles cannot 
be relied upon. For this purpose a binary gradient map function f m is define as

/m(x)
1, pg(x) > t 
0, pg{x) < t

X =  [x y z]T, (3.6)

where t is the gradient magnitude threshold.

Conventionally, an empirical or a statistical value such as the root mean square 
(RMS) is used as the threshold. However lack of a principled method for selecting 
t may either result in the removal of important gradient vectors or may leave too 
many sensitive vectors behind. To resolve this problem, we use a noise-resistant 
phase histogram method, described in 3.1.6, which removes sensitivity to the gra-
dient threshold and allows us to conveniently set t = 0.

3.1.2 Gradient Intensity for 2D Im ages

For 2D images, gradient intensity is defined as the number of significant gradient 
vectors which pass through a given segment on the circumference of the unit circle.

We define the gradient intensity at the center of the segment specified by the 
angular resolution 289

r(0) = j  j  he(x) fm(x)dxdy , (3.7)

where T is the gradient intensity at the center of the bin specified by 9 and ho(x) 
is defined as

he(x)
1, 0 — 69 < 9g(x) < 9  + 89
0, elsewhere

(3.8)

In order to be able to compare gradient intensity of different images, we use a 
normalized version of (3.7)

m m
max T(0)

(3.9)

Gradient intensity as defined above gives a measure of the directional strength 
or content of an image.

Fig. 3.2 shows a number of images and corresponding gradient intensities en-
coded on a unit disk. Brighter colors indicate higher gradient intensities in a given 
direction. As can be seen, the gradient intensity disks clearly identify the rota-
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tion between the images. However, a one-to-one relationship between the GI maps 
does not exist. For example a strong response is observed at ~  directions due 
to inherent bias of rectangular gradient kernels to these directions. In the case of 
Fig. 3.2(g) and Fig. 3.2(h), the effect of multi-modal nature of the images can be 
seen in GI maps, where the gradient intensities cannot be linearly related. These 
observations indicate that a statistical similarity measure such as MI that does not 
assume a linear relationship between gradient intensities will be more suitable for 
finding the correct mapping between the GI of the images.

3.1.3 Gradient Intensity for 3D Im ages

Gradient intensity is a measure of directional strength of an image. For 3D images, 
it is defined as the number of significant gradient vectors which pass through a 
given area on the surface of the unit sphere. Fig. 3.3 depicts gradient intensity 
mapped on the surface of the unit sphere with sample gradient vectors.

We define the gradient intensity at the center of the area specified by the angular 
resolution 26(j) and 269

r (0,ö) = h(t>(x)h0 (x.)frn(x)dxdydz , (3.10)

where T is the gradient intensity at the center of the bin specified by (0 ,6 ) and 
/^(x) and he(x.) are defined as

M x ) =  

M x ) =

1 , (j) —  6 (j) < 4>g{x) < (f) +  6(j)
(3.11)

0 , elsewhere

1 , 6 — 60 < 0q(x) < 6 +  56
0 , elsewhere

(3.12)

To compare gradient intensity of different volumes we use a normalized version of 
(3.10)

r(<M)
max T(0 ,6 )

Gradient intensity is different from a Gaussian sphere [37] representation of 
the orientation. A Gaussian sphere representation only captures the orientation 
of the surface normals, ignoring information inside the object (e.g. internal brain 
organs). It also assumes that there is an object to start with, hence implying that 
the object of interest is already segmented. The gradient intensity does not require
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Figure 3.2: (a,b) Satellite images of Sydney Opera House, misaligned by —26.3°. 
(c,d) MR-T1 and MR-T2 images of brain, misaligned by a transversal rotation of 
10° (e-h) Corresponding gradient intensities mapped on unit disks.
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Figure 3.3: Gradient intensity mapped on the surface of the unit sphere. Intensity 
of each cell is a function of the number of gradients that pass through the cell. 
Sample gradient vectors are displayed for three cells.

segmentation and utilizes all the information which is in a 3D medical image and 
as such, is more suitable for the registration problem.

3.1.4 Entropy and MI of Gradient Intensity

Entropy of gradient intensity is a measure of directional information content of 
an image. The more directionally versatile an image, the higher the entropy. For 
example, in polygons, the entropy of gradient intensity is higher for higher order 
polygons with the maximum entropy observed for a circle and the minimum for a 
line.

Mutual information of gradient intensity of two images is a measure of di-
rectional similarity of images regardless of their relative size (scale) and posi-
tion (translation) and is maximum, where images are rotationally aligned. The 
translation- and scale-invariancy are important features of a Gl-based measure that 
can be used to find the rotational misalignment between the images in a robust 
and efficient manner. We will get back to this point when we describe Gl-based 
registration methods in Section 3.

An example of the shape of MI functions computed using gradient intensities
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and pixel intensities of two image is given in Fig. 3.4. We used images shown in 
Fig. 3.2(c) and Fig. 3.2(d) which are misaligned by 10° for these graphs. The MI 
function in the PI domain is smooth and correctly identifies the misalignment only 
because the misalignment is limited to the rotation parameter. If we introduce 
translation or scale misalignments the Pi-based MI function will no longer identify 
the correct rotational misalignment since it is not translation and scale invariant. 
Pl-based MI function has to be optimized simultaneously w.r.t. all the misalign-
ment parameters. The MI function in the GI domain, also correctly identifies the 
rotational misalignment, but the shape of the function is not smooth. To find the 
optimal alignment, one has to perform an exhaustive search of the rotational pa-
rameter space. This is not a problem as the Gl-based function is translation and 
scale invariant and only needs to be optimized w.r.t. to a single rotational param-
eter. The fact that we are able to find the misalignment by an exhaustive search 
is an advantage. It means that the Gl-based method is inherently more robust as 
it is not subject to convergence to a local minimum which is a problem for local 
optimization methods such as Powell.

MI(MRI-T1 ,MRH2). Groml Truth R»10.Tir»0 MKMRI-T1.MRH2) G«x*d TiuRi R»10.Tx»0

T —  b»100, 00

(a) MI of gradient intensities (b) MI of pixel intensities

Figure 3.4: Sample MI functions for 2D images misaligned by 10°. The Gl-based 
function is not as smooth, but this does not affect a registration algorithm based on 
the GI, as the global optimum is found by an exhaustive search of a ID parameter 
space.

3.1.5 An A lternative Interpretation of 2D Gradient Inten-
sity Based on H ough Transform

Vectors in a 2D gradient field can be parameterized by their angle 6 and orthog-
onal distance from the origin p as shown in Fig. 3.5. Image gradients can be fully 
described by their spatial position (x,y),  magnitude and phase. We assume that
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each gradient represents a line L parallel to the direction of the gradient vector 
which also passes through the gradient’s spatial position as shown in Fig. 3.5. Each 
gradient vector is parameterized with its phase (angle of L ) and the distance of 
L from the origin. This parametrization of the gradient field, drops the gradient 
magnitude and relaxes the spatial dependency of gradient vectors (all parallel gra-
dient vectors on L are represented with the same parameters). We will see how this 
parametrization allows us to break down 2D rigid registration, which is normally 
a 3-parameter optimization problem, to three simpler 1-parameter optimizations.

Note that this method for gradient parametrization is slightly different from 
the standard Hough parametrization [38,39] for lines and takes the direction into 
account. In gradient parametrization, p is a signed real number whereas in stan-
dard Hough transform p is non-negative. Using a signed p prevents formation of 
unwanted local minima in the cost function, that would otherwise be created due 
to ambiguity of the standard Hough parametrization of the lines that ignores their 
direction. We also use the gradient angle 0 (e.g. ff\ for gj in Fig. 3.5) instead of the 
perpendicular line angle 91- which is conventionally used in the standard Hough 
transform.

The Hough transformation of the gradient vectors, obtained in this manner, 
provides a spatially relaxed function of the image shape that can be used for reg-
istration of images. As we will see this transformation separates estimation of the 
rotation parameter from translation and scale parameters. Rotation, in the image 
domain, transforms to a circular shift in the Hough domain, which is invariant to 
the translation and scale between the images. This allows us to obtain a robust 
estimate of the rotation parameter quickly by performing an exhaustive search on 
a 1-parameter cost function that operates on a ID data-set.

A similarity (rigid -I- isotropic scale) transformation of an image can be written 
as

x' =  sR x  +  t, or (3-14)

x '  '
= s

cos 7 — sin 7 X
+ tx

y ' . sin 7 cos 7 _ y t y

where tx and ty are translation parameters, 7 is the rotation angle, and s is scale.

Let a gradient vector at spatial coordinates (x , y) and with angle 0 (as shown 
in Fig. 3.5) be parameterized by (p, 6), where

p — y cos 0 — x  sin 6 (3.16)
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\

\

Figure 3.5: Gradient vectors in Cartesian coordinates and corresponding Hough 
space parameters. Each gradient vector is parameterized with its orthogonal dis-
tance p from the origin and its angle 6.

then the transformation results in the following change in Hough space

p' = y' cos O' — x' sin O', (3-17)

p = s[?/cos(ö/ — 7 ) — xsin(0' — 7 )] -t- ty cos 6' — txsmO'. (3.18)
V  V

Pt(O')

We now re-organize (3.18) so that it is comparable with the line equation in 
(3.16)

—---——- = ycos(6' — 7 ) — xsin {O' — 7 ), (3.19)
s

by comparing (3.19) with (3.16) we have

V sp + pt(0 + 7 )
0 + 7

(3.20)
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Equation (3.20) specifies a similarity transformation in Hough space. One im-
mediate benefit is the separation of the rotation parameter from the translation 
and scale. Additionally, transformation in Hough space is computationally efficient 
as it consists of a shift along the 0 axis and a multiplication and a constant shift 
for each value of 6 along the p axis.

We now define the Hough transform function Th {p , 6), as the number of gradient 
vectors at a particular direction 0 and at a distance p from the origin. In practice, 
we need a discrete version of We use the uniform volume histogram (Section
3.1.6), which has been shown to be robust w.r.t. gradient calculation errors and 
noise and results in smoother cost function for image registration purposes. We 
will discuss how T//(-) can be used for image registration in Section 3.4. We also 
note that the gradient intensity as defined in (3.7) can be written in terms of the 
Hough transform function T//(-) as

3.1.6 Uniform  Volume H istogram

For discrete images, (3.10) can be computed using a standard 2D histogram. The 
problem, however, is that a standard histogram representation is sensitive to the 
number of bins, gradient threshold selection, noise, quantization, and interpolation 
errors. This is further complicated by the fact that we are operating on a gradient 
field which has been numerically derived from a discrete image and is subject to 
a reduced SNR and and errors in computation of its derivative components. It is, 
therefore, desirable to minimize additional side-effects of the histogram computa-
tion phase.

In [40], the authors propose a probability density estimation for 2D image pixel- 
intensities based on a continuous representation of image intensities and report 
improved robustness of the probability distribution function against noise and se-
lection of the number of bins. The method in [40] assumes that the intensity in a 
triangle formed by three adjacent pixels can be estimated as a linear function of 
the intensity of the vertices. This in effect fits a plane to the vertices. This method 
could be adapted to improve gradient histograms as well, however, the extension 
to 3D volumes requires calculation of hyper-planes and simplex structures and is 
unnecessarily time consuming.

We introduce a histogram algorithm called uniform volume, which assumes 
a continuous representation for the gradient field g(x) =  [pg(x) 09(x ) 0g(x )]T
exists locally within each cubic volume C comprising 8 adjacent vertices of the

(3.21)
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gradient image. Let V = {x1? x2, X s }  represent the set of vertices. We assume 
that the gradient phase function within C is bounded by the values of the function 
at the vertices of C, i.e., for all x G C

Now consider a gradient intensity binning scheme with angular resolution of 26(f) 
and 259. Let (4>i,6j) be the center of a bin which falls within the extents of the 
cubic volume C, i.e.,

is the same for all 2D bin pairs represented by their center (<pu 6j), then the his-
togram contributions have to be uniformly distributed between bins that satisfy 
(3.23). Simply put, the condition in (3.24) allows us to uniformly distribute his-
togram contributions to the bins which fall within the extents of the cubic volume 
vertices.

One benefit of the uniform volume distribution as described above is that it 
is computationally inexpensive, since it does not explicitly require calculation of 
g(x) except at the bounding vertices. The histogram distribution favors areas of 
the image where the second derivative of the intensity is smaller or in other words 
the gradient function is smoother. This is in line with the findings in [40] for a 
robust histogram with less sensitivity to noise. We also designed the histogramming 
method to suppress the contributions of the areas of the image where there is a 
large discrepancy between the function values at adjacent vertices.

Compare the ID histograms of gradient vectors’ azimuth angle 0 for an MR-T1 
volume and its noisy version in Fig. 3.6, where white Gaussian noise with o — 0.1 
is added. Notice that uniform volume histograms are smoother and less affected 
by noise compared to standard histograms. These properties translate to smoother 
cost functions with fewer local minima, in the later stages of the algorithm (see 
Fig. 3.7), and allow our optimization method to converge more easily.

m in0o(x) < 0(x) < max</>9(x),

min#5(x) < 0(x) <  max09(x).
x £ V  xEV

(3.22)

min (x) < (fri < m ax05(x),

min#0(x) < Oj < max#0(x xev y J xev y (3.23)

We assume the gradient field has the property that

/^ ( x ) M x )f m(yi)dxdydz (3.24)
c
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(c) Standard histogram for a noisy image (d) Uniform volume histogram for a noisy image

Figure 3.6: Uniform volume histograms exhibit smoother curves and better resis-
tance to noise.
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(a)

Figure 3.7: Comparison of 2D MI functions based on (a) standard and (b) uni-
form volume histogram. Uniform volume histogram results in a better-shaped and 
smoother cost function.
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Standard Histogram Uniform Volume Histogram

(b)

Figure 3.8: Comparison of ID histograms with different number of bins based 
on (a) standard and (b) uniform volume histogram. Uniform volume histogram 
maintains a relatively consistent shape across a wide range of bins.

We implemented the uniform volume histogram method in a circular fashion to 
accommodate rollover of angles. The angular resolution used for both zenith and 
azimuth angles is 1.0°.

Another benefit of UVH is its robustness w.r.t. the number of bins. Compare 
the ID and 2D histograms computed with the standard histogram and the UVH 
in Fig. 3.8 and Fig. 3.9. The distribution of a standard histogram varies greatly 
with the number of bins, whereas the UVH maintains similar distribution for a 
wide range of bins. This is particularly evident from the 2D histograms which are 
shown separately in Fig. 3.9.

3.2 2D R eg istra tion

3.2.1 Estim ating the R otation  Param eter

The gradient phase matrix is converted into a histogram at a desired angular reso-
lution using (3.7). The histogram is then normalized by the most frequent sample 
to create the gradient intensity vector as in (3.9). Regardless of the size of an image 
or its dimensionality, we always calculate MI for two 1 x d vectors: a fixed vector 
and a moving vector, where d is the number of directions. We use the angular 
resolution of 1°, which limits the gradient intensity to a vector of size 1 x 360.

The MI function is computed by iterating over the rotational range. At each 
step, a circular shift is applied to the moving GI vector and the MI between the 
resulting vector and the fixed vector is calculated using (2.17). This has a significant 
computational advantage over the PI method, where at each step one would require
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I f — l im » * !

(a) 50 bins (b) 100 bins (c) 200 bins

(d) 50 bins (e) 100 bins (f) 200 bins

Figure 3.9: Comparison of 2D histograms with different number of bins based on 
(a-c) standard and (d-f) uniform volume histogram. Uniform volume histogram 
maintains a relatively consistent shape across a wide range of bins.

to rotate the moving image itself and calculate MI for the entire image. MI for 
the gradient intensity of the images can be computed under 1 ms  on a standard 
PC (using a single-core). This allows us to perform an exhaustive search of the 
rotation parameter’s dynamic range to find the optimal rotation where the cost 
function attains its global minimum.

0 =  argmax - S Mi (E f ; VM(e)) (3.25)
e

where VM{e){4>) =  ~ #), and Ur and Vm  are the GI vectors for fixed and
moving images, respectively.

GI vectors have only 360 elements. As such, the number of samples available 
for a GI histogram is indeed very small. This means that to get a meaningful 
histogram we have to use a small number of bins. In our experiments, we found 
using 10 bins for pmf estimations is a reasonable choice.

3.2.2 E stim ation  of Scale and Translation

2D rigid transformation of a vector x can be written as

x' =  sR x + t, (3.26)
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where x' is the transformed vector, s is the scale factor, t  is the translation vector, 
and R  is the rotation matrix. The distance between two points Xi and x 2 is defined 
as d (x i,x 2) =  || Xi — x2112, where ||.||2 is the Euclidean norm. The transformation 
is distance preserving up to a scale parameter

d (x 'i ,x '2) =  s ||R (xi -  x2) 112 =  sd (x !,x 2). (3.27)

An estimate of the scale parameters can be obtained using the centroid of image 
gradient maps and their distance from other gradients in the each image

~ =  S x-eG-d (x ' . x 'c)
E x e c d (x ’x c)

where s' is the estimated scale parameter and G and G' are the gradient maps of 
fixed and moving images, respectively.

Given the rotation and scale parameters, the translation can be found from 
(3.26) by replacing x and x' with the centroid of the fixed and moving images, 
respectively

t  =  x 'c — sR x c. (3.29)

The centroid-based estimation of scale and translation is noisy and deteriorates 
for images with less overlapping regions. We give a robust method for estimation 
of scale and translation using the Hough transform in Section 3.4. However, in the 
experiments of this section we demonstrate that a good estimation of the rotation 
parameter, even without a robust estimation of scale and translation, improves the 
capture range and the overall robustness of image registrations.

To obtain accurate registration results a final local optimization round using 
the pixel intensities needs to be performed. We use Powell’s multi-dimensional 
direction set algorithm to find the optimal alignment. The optimization method 
is initialized form the estimates of transformation parameters previously obtained 
using gradient intensity of the images.

One problem with the Powell algorithm is that from an observer’s point of 
view who knows where the minimum is located, it appears to spend a lot of time, 
iterating on and around the minimum. Obviously, the only way the optimization 
algorithm can satisfy itself that it has found the actual minimum is to spend enough 
time to check the surroundings. Since we already know that we are able to initialize 
the algorithm close to the optimal alignment we propose a modification to the 
algorithm to improve convergence rate as described in the following section.
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3.2.3 E n h an ced  Powell O p tim iza tio n

Powell’s multi-dimensional direction set algorithm finds the minimum of a cost 
function by iteratively minimizing the function along a set of N  directions, where N  
is the number of independent parameters of the cost function. A line minimization 
algorithm (typically Brent’s one dimensional line minimization algorithm [30]) is 
used to find the minimum in a given direction.

In a standard Powell implementation, such as given in [22], fractional and ab-
solute tolerance parameters are used to control convergence of line minimizations. 
Reducing the tolerance parameters, generally, results in better accuracy at the 
expense of a slower convergence rate (increased computational cost). In our ex-
perience with Powell for image registration, we observed that when the method 
converges to the correct alignment, it spends a considerable amount of time check-
ing the perimeter of the optimal solution before terminating the search. This 
naturally suggests that the tolerance can be increased to improve the convergence 
rate. However, we also observed that increasing the tolerance may reduce the cap-
ture range of the method and increase the chance of convergence to local minima 
resulting in incorrect alignment of images. Lack of a principled method for choos-
ing the tolerance parameters makes it difficult to strike a right balance between 
the convergence rate and accuracy/correctness of the registrations.

We introduce additional flexibility in controlling Powell's convergence through 
the use of a set of resolution parameters for each parameter of the cost function 
being optimized. Our modified Powell optimization maintains a list of previously 
evaluated points and will only evaluate the cost function at a new point in space 
if the absolute distance of the two points for each dimension exceeds the specified 
resolution in that dimension. This allows us to specify small tolerance values 
without necessarily increasing the computational cost. Let £ be the resolution 
vector whose elements correspond to the desired resolution for each dimension of 
the optimization parameter space, and V  the set of previously visited points. The 
cost function at a new point q is evaluated if

I Qi -  Pi\ > öi, 1 < i < N, Vp G V.  (3.30)

The method returns the cost associated with the closest evaluated point otherwise. 
We note that our method is equivalent to the standard Powell optimization for 
<5 = 0 and can be implemented with minimal modification to a standard imple-
mentation.

Resolution parameters allow us to independently control the accuracy for each
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parameter being optimized. Use of an appropriate resolution allows the method 
to converge much more quickly than a standard Powell implementation without 
affecting the accuracy of registrations as demonstrated by the experiments in Sec-
tion 3.3. The resolution parameters can be set based on the desired precision for a 
given parameter. This allows for an intuitive selection of the resolution parameters. 
As a rule of thumb a resolution parameter within 1-2 orders of magnitude smaller 
than the required precision results in a reasonable balance between the accuracy 
and the convergence rate.

3.3 E xp erim en ts

We tested our method on 2D aerial images and 3D simulated MR images of brain 
generated by Brain Web [41]. The experiments on MR images are to demonstrate 
the applicability of the method for multi-modal images and to motivate further ex-
tension of the method to support full 3D registration which is the subject of Section 
3.5. We calculated the registration error for 2D images by selecting 10,000 control 
points uniformly distributed across the image and calculating the average distance 
between the transformed control points under the calculated transformation and 
the actual transformation.

3.3.1 R egistration  of 2D Im ages

We compared GI method with the conventional PI method by conducting two sets 
of experiments on aerial images. For each run we randomly created 500 transfor-
mation matrices within the dynamic range of the parameter space. The reference 
image was transformed by each matrix and GI and PI registration was performed 
on the reference and the transformed images. A smaller dynamic range was used 
for the first set of experiments and the dynamic range was increased for the second 
round as shown in Table 3.3.1. The GI method was run with three Powell resolu-
tions high, medium and low (0.001, 0.01 and 0.1 pixels). The results are shown in 
Fig. 3.10 (darker colors are associated with the first experiment and lighter colors 
with the second experiment).

The robustness and performance of registration significantly improved under the 
GI method as shown in Fig. 3.10. We declared a registration failed if the average 
pixel alignment error was more than two pixels. As shown in Fig. 3.10(a), the PI 
method performance is reasonable in the first experiment but as we increase the 
dynamic range in the second experiment the performance drops below 20% since 
the chance of being trapped by local minima increases. The GI method, on the
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Table 3.3: Dynamic range of parameters used in the experiments

R ound  O ne Tests R ound  Two Tests

T ransla tions

R o ta tio n

Scale

[-25 25] 

[-25° 25°]

[0.75 1.25]

[-50 50] 

[-180° 180°] 

[0.5 1.30]

other hand, performs very well in both cases with performance levels more than 
99% and 95% for experiment one and two, respectively. Also notable is the success 
rate of GI method at medium resolution which successfully registered all images 
in the first experiment and 486 out 500 in the second experiment. This is due 
to the good initial estimates of transformation parameters under the GI method. 
Throughout our experiments estimation of rotation and scale parameters were very 
close to the actual alignment with a mean error of 0.54° and 0.1% for rotation and 
scale, respectively. However, the translation estimations which are mainly based 
on centroids are less accurate with an average error of 4.1 pixels and deteriorate 
under larger misalignment between the images (centroid calculation is sensitive to 
partial overlap). This explains the slight performance drop in GI method in the 
second experiment.

In addition to improved performance, Gl-method improves efficiency by al-
lowing the optimization step to converge more quickly as shown in Fig. 3.10(b). 
Obviously the efficiency can be improved by reducing the resolution of the algo-
rithm. Based on experiments a medium choice of resolution seems to provide a 
good balance between the accuracy and efficiency.

3.3.2 R egistration  of M ulti-M odal Im ages

We experimented with several combinations of multi-modal MR images of brain to 
determine the applicability of our method in the presence of non-linear intensity 
variations. Fig. 3.12 shows a sample of TI, T2 and PD modalities used in our 
experiments [41]. The transformation were applied to the entire volume, however 
the misalignment between the images were limited to in-plane transformations. We 
will look at full 3D-3D registrations in Section 3.5.

Fig. 3.11 demonstrates that our optimization method (referred in the image as 
‘guided optimization’) improves performance and efficiency of the registration task 
compared to an optimization algorithm initialized from the origin of the parameter 
space (referred in the image as ‘blind optimization’). The results in Fig. 3.11 are
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□ Experiment 2 ■ Experiment 1

99.20%Gl (low res) 95 .20%

1 100.00% 

97 20%Gl (med res)

1 100.00%  

97.20%Gl (hi res)

94 .40%
17.00%

20.00%0 .00% 40.00% 60.00% 80 00% 100.00%

Registration Success Rate

(a) Registration success rate for each method. Conventional PI method performance drops below 
20% for larger dynamic ranges, while GI method sustains more than 95% success rate.

PI GI (hi res) GI (med res) GI (low res)

(b) Iterations required for convergence of the optimization algorithm for each method. The GI 
methods converge much more quickly.

Figure 3.10: Improved performance and efficiency of the GI method.



50 Gradient Intensity-Based Registration

given for registration of T1 to T2 images of the brain. In this experiment, T2 was 
translated by (—20, 20) mm and scaled by 0.9, the rotation parameter was varied 
from —50° to 50° in 10° increments. The efficiency of the registration improved on 
average by a factor of 12. The GI method was able to achieve accuracy well below 
the voxel size of 1 mm with an average error of 0.18 mm.

3.3.3 D iscussion

A ccuracy o f E stim atin g  R otation

Average error in estimating the rotation parameter for 2D experiments was 0.54° 
and for 3D experiments was below 1° (refer to Fig. 3.13), which is within the an-
gular resolution of our experiments. This demonstrates that mutual information 
of gradient intensity is a good measure of directional similarity, irrespective of the 
translation and scaling between the images.

Invariance to  T ranslation  and Scaling

When fixed and moving images are scaled by a factor within a reasonable range 
or translated, their shape remains unchanged. As such, one would expect that the 
directional content of image gradients be relatively maintained.

Fig. 3.13 underlines the invariance of the GI method to scale and translation. 
Fig. 3.13(a) shows a number of experiments, where an MRI-T2 is scaled from 0.8 
to 1.25 while being rotated between 0° to 30°. The transformed image is then 
registered to a reference MRI-T1. The experiments show that GI method estimates 
the rotation parameter with an average error of 0.6°. Fig. 3.13(b) shows a number 
of experiments, where an MRI-T2 is translated from (—40,40) to (40,40) while 
being rotated between 0° to 30°. The transformed image is then registered to a 
reference MRI-T1. The experiments show that Gl-based method estimates the 
rotation parameter with an average error of 0.9°.

R obustness w ith  R esp ect to  P artia l O verlap

In some of our experiments clipping of the transformed images removed a significant 
number of important gradient vectors on the outer boundary of the image (e.g. 
Fig. 3.12(c)), however a close estimate of the rotation parameter could still be 
found, which demonstrates the robustness of the gradient intensity method for 
partially overlapping images.
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(a) More than an order of magnitude improvement in efficiency (execution times are proportional 
to iterations).

Guided Optimization 
Blind Optimization

UJ 2.00 -

Rotation

■ Guided Optimization

-50 -40 -30 -20 -10 0 10 20 30 40 50

Rotation

(b) The registration error for our method remains nearly constant and is well below the voxel 
size; the conventional method fails for rotations outside ±40°.

Figure 3.11: Superior robustness and improved efficiency of our method compared 
to the conventional method.
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(a) MRI-T1. (b) MRI-T2. (c) MRI-PD.

Figure 3.12: A sample set of synthetic MR images of brain used in our experiments 
with voxel size of 1 mm3.

G uided  O p tim iza tio n  vs B lind O p tim iza tio n

The guided optimization outperforms blind optimization both in terms of efficiency 
and accuracy. The registration error for the guided optimization remains almost 
constant (e.g. Fig. 3.11(b)). While the average registration error is lower for the 
guided optimization, the minimum registration error can be higher for guided opti-
mization at lower misalignments, unless a sufficiently high resolution is used. The 
choice of resolution for the guided optimization is determined by the minimum 
accuracy required by the application. For example for most medical application 
sub-voxel accuracy is required which in our experiments could be achieved by a 
medium choice of the resolution parameter.

3.4 2D  R eg istra tion  in H ough Space

3.4.1 E stim ation of Transform ation Param eters

Let r'(-) be the gradient function of the transformed image in the Hough domain 
as defined in Section 3.1.5. Using (3.20) we have

r'(p,</>) =  r ( s p  +  p U (j> +  7 ), (3.31)

Y  0 ) =  Y  r(sp+ a , 0 + 7 ) ,
p p

(3.32)

or r ( ( f > )  =  r(0 +  7 ), (3.33)

where T(-) and r'(-) are the average of gradient functions along the p  axis.
Equations (3.31) and (3.32) allow us to decouple the estimation of the trans-

formation parameters. It can be readily seen that the rotation parameter reduces 
to a shift along the (f) axis in the Hough domain and is independent of the scale
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<  25.00 -

20 00

£* 15.00 ■

2 10.00

5.00 -

Scale

(a) Estimated rotations for various misalignments vs. scale

0 =0 0 =  10 0 =20 0 =30

C 25 00 ■

15.00 -

"5 1 0  0 0  -

E  5 00 -

uu 0 00

Translation

(b) Estimated rotations for various misalignments vs. translation

Figure 3.13: Estimation of rotation parameter using GI method demonstrating 
invariance to scale and translation. The legend shows ground truth for each exper-
iment.
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and translation parameters. As such, finding the rotation parameter between the 
images reduces to a 1-parameter optimization problem over the rotational dynamic 
range of (—7r, 7t ]

7 =  argmin -<SMi(r'(</>); T(<£ +  7 )). (3.34)
7

In practice, due to the small overhead in calculating the ID cost function, we use 
an exhaustive optimization strategy by calculating the cost function at 1° intervals 
and choosing the rotation parameter which results in the minimum cost. Resolving 
7 is an important step, since multi-resolution methods perform much better if the 
images are rotationally aligned.

We can further exploit Hough space transformation to quickly and robustly 
estimate translation parameters. For rigid registration (s =  1), we pick a number 
of lines parallel to the p axis and calculate MI for all values of pt in the dynamic 
range at 1 pixel intervals. MI calculation is very efficient since we are computing the 
similarity for two ID data-sets (two lines in Hough space). Let us pick (J) = 7t /2 line 
for which pt — tx■ As shown in Fig. 3.14(b), the MI function attains its maximum 
at tx. Similarly, we could estimate ty by looking at (f) = 0 line. However, this may 
not always be robust as demonstrated in Fig. 3.15. We can improve the robustness 
of the estimation by looking at the similarity functions of other lines, which provide 
combined estimates of tx and ty (pt{(f)) =  ty cos</> — ty sm(j)).

Let us treat the MI function as the probability distribution of the random 
variable pt. For each line cf) = a  we have

Pr (pt(a)) oc SMi(r'(p, a ); T(p 4- pt{a),a  +  7 )). (3.35)

Equation (3.35) may be thought of as a projection of the probability distribution 
Pr(pi) in the direction determined by <f> — a. Our aim is to find the best (most 
probable) estimate of the translation parameters tx and ty given a number of pro-
jections of Pr(pf) in different directions. This can be achieved by a process of 
back-projection analogous to that used in computing the inverse Radon transform. 
We back-project Pr(p() for a number of lines, and find the estimate of translation 
parameters where the back-projected probability density function achieves its max-
imum, as shown in Fig. 3.15. In practice, no more than 10 lines were required for 
achieving robust results.
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Y = 1 4 0

(a) ID MI function (rotation)

= - 9 8

II  o  oe

(b) ID MI function (x-axis translation)

Figure 3.14: ID MI functions are shown for images of Fig. 3.16(a). The misalign-
ment between the images is [—98.03 — 97.00 140.52°]. Our method estimates the 
transformation parameters as [—98 — 97 140°]. Note that the shape of MI func-
tions are unimportant at this stage, since we are performing an exhaustive search 
to estimate the parameters.
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(b) Estimation with 4 lines

(c) Estimation with 8 lines

Figure 3.15: Robustness of estimating translation parameters improves by adding 
more lines, (a) With 2 lines, ty is estimated incorrectly, (b) With 4 lines both 
parameters are correctly estimated but there are other high peaks, (c) With 8 
lines, a single dominant peak is formed at the correct alignment.
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3.4.2 F inal O p tim iza tio n

As the hnal step, we switch back to the intensity domain to obtain more accurate 
results. We use a multi-resolution Gaussian pyramid which is optimized using 
the Simplex [42] method. The multi-resolution optimization is initialized with the 
estimated parameters. The A parameter which determines the volume of the initial 
simplex is set to a small value (10 pixels along the translation axis and 10° along 
the rotation axis) to allow the optimization to converge quickly.

3.4.3 E x p erim en ts

We tested our method on aerial images and 2D multi-modal medical images. For 
aerial images, we used 20 scenes in our experiments selected from four categories: 
landmark, urban, rural and natural. Landmark images include a prominent man-
made structure, urban images are taken from city centers and mostly contain rec-
tilinear structures, rural images contain few buildings and are otherwise occupied 
by natural scenery, and natural images contain no artificial structures or roads. 
One sample registration per category is shown in Fig. 3.16. For medical images, 
we experimented with CT and MR slices of the brain. The medical images were 
already registered w.r.t. out-of-plane parameters and the method was used to re-
cover in-plane misalignments in the transversal plane. A sample pair of images 
with their initial alinement and the checkerboard overlay of the images prior and 
after registration is shown in Fig. 3.17. The checkerboard image after registration 
clearly shows the skull boundary aligned.

In total, we performed 8000 registrations in two sets of experiments by gener-
ating random transformations for each image within the angular dynamic range of 
( — 7T, 7r]. The translational dynamic range was set to [—100,100] pixels for the first 
experiment and increased to [—150,150] for the second experiment. The minimum 
overlap between the images was 50% and the average overlap was 75% for the entire 
set.

We compared our method with the conventional multi-resolution method in the 
pixel intensity domain. We used MI as the similarity measure and optimized the 
cost function using the Simplex method.

The registration errors were calculated by selecting 10,000 control points uni-
formly distributed across the image and computing the average distance between 
the transformed control points under the calculated transformation and the actual 
transformation.
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(a) Landmark - Sydney Opera House (b) Urban - Los Angeles

(c) Rural - Farm (d) Natural - Coral Sea

(e) House by the Lake (f) Cafe

Figure 3.16: (a-d) Examples of registered images in each category, (e-f) Pictures 
taken with a hand-held camera. There are some affine and perspective distortions 
between the images, however our method can find a rigid approximation.
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(c) Overlayed images - Before registration (d) Overlayed images - After registration

Figure 3.17: Sample 2D multi-modal images registered using Hough transform of 
the gradients.
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■ Multi-resolution PI Method □  Our Hough Method

100%  -

80% -

60% -

40% -

20%  -

Landmark Urban Natural

(a) Experiment 1

(b) Experiment 2

Figure 3.18: Superior performance of our registration method compared to the 
conventional multi-resolution approach.
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3.4.4 D iscussion

A ccuracy and Perform ance o f th e  R eg istra tion s

The success rate of our method was 99% for the first experiment and 95% for the 
second experiment. Whereas the performance of the conventional multi-resolution 
method was 24% and 15%, respectively. The performance of our method decreases 
as we increase the translation dynamic range, this is due to the reduction in overlap 
between the images and deterioration of the rotation estimate. The poor perfor-
mance of the conventional method is due to its inability to cope with the large 
capture range of the experiments. Our method performed very well for overlaps 
as low as 50%, for all groups of images. We also tested our method with images 
taken with a hand-held camera and without a tripod. The images taken in this 
way contain perspective deformations, however our method is able to find a close 
rigid approximation as shown in Fig. 3.16(e) and Fig. 3.16(f).

Both Hough-based and intensity-based methods registered images very accu-
rately, whenever they were initialized within the capture range of their respective 
cost functions. The average registration error was 0.42 pixels for our method. This 
was expected, since Mi-based cost functions are known to be accurate [43].

C apture R ange o f th e  H ough M eth od

Cost functions based on Hough gradient functions exhibit larger translational cap-
ture range compared to intensity-based cost functions. The capture range is typi-
cally more than twice, as shown schematically in Fig. 3.19.

0 9

0 8

Hough-based cost function - 
Intensity-based cost function-

al
N  0 6

ca Hough capture range
E  0 5

o
7

200

Translation

Figure 3.19: Hough method has a larger translational capture range, due to the 
spatially relaxed formulation of the cost function.
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The larger capture range can be attributed to the spatially relaxed formulation 
of the gradient function T. The gradients can be freely displaced along the line 
that passes through them without affecting the gradient function. For example, in 
Fig. 3.5, placing g\ anywhere on L\ does not change T.

Sim ilarity  R egistration

It is possible to use our Hough registration method for similarity registration. The 
translation and scale can be estimated using a method similar to that described in 
Section 3.4.1. However this time an exhaustive 2D search needs to be performed.

K,, s\ = argmin -«SMi(r'(p , 0); T(sp + ty, 7)), (3.36)
t y , S

[G,s] =  argmin - S m (r'(p: ^ ) ; T ( t p -  G, 77 + 7)). (3.37)
tx,8 1 1

Alternatively, one can optimize for two translations and the scale parameter, once 
the rotation is resolved, using a local optimization algorithm such as Simplex:

[G,b/,s] =  a rg m in -5 Mi ( r /( p » ; r ( p /, </>')), (3.38)
tx

p — sp +■ t y cos(0 7 ) — tx sin(0 -V- 7 ), (3.39)

0 ' =  0 + 7. (3.40)

We performed some preliminary experiments with both methods. In our expe-
rience, the second method which uses local optimization is less computationally 
expensive and performs better.

F eature-based  R egistration

Most of the single modality images shown in this section can be efficiently and 
robustly registered using automatic feature matching methods such as those based 
on scale-invariant feature transform (SIFT) [44]. The real value of the method 
presented in this section is its ability to deal equally well with single and multi- 
modality registrations based on the content of the images. The method works well 
for images such as Fig. 3.16(d) where a small number of matching features can be 
found or Fig. 3.17 where due to the multi-modal nature of the images automatic 
feature-based matching, using SIFT for example, is not possible.



3.5 3D Registration 63

3.5 3D  R e g is tra t io n

3.5.1 Estim ating R otation  Param eters

The gradient intensity (3.13) is a 2D function of azimuth and zenith angles for 
3D images which is invariant to translation and scale. Hence, we can find the 
rotational misalignment between the images by calculating MI over a 2D data-set 
for 3D images. This improves the efficiency in two ways, hrstly the registration 
has to be solved for a smaller 3-parameter space and secondly the dimensionality 
of the problem is reduced as MI is being computed over a 2D data-set rather than 
directly on 3D images.

We start by computing a discrete version of T (0 ,9) according to (3.13) for the 
fixed and moving images. We use an angular resolution of 2öß = 2SO = 1.0°, which 
results in GI matrices of 180 x 360 size regardless of the size of the original 3D 
volumes. To find the optimal rotation parameters, we apply the transformation 
directly to the GI matrix of the moving image. As illustrated by Fig. 3.20, the 
GI matrix is transformed from spherical coordinates to Cartesian coordinates, the 
Euler transformation T( a, ß ,  7) is applied and the result is transformed back to 
spherical coordinates. Note that, based on the definition of the gradient intensity, 
p = 1 for spherical/Cartesian conversions.

r  a To Cartesian f  T ( a .ß j ) r N To .Spherical r \
r T ( M

1 o=.) ' v''s,y ,"A' ® *
V )

r-r(x,y,z)<
V  J ß p = i ß

Figure 3.20: The process of transforming the GI matrix of a moving image by the 
three Euler angles a , ß  and 7.

The rotation parameters are then located by finding the maximum of the MI 
between the fixed GI matrix Tjr, and the transformed GI matrix VM(t )

{a, ß, 7] =  argmin -<SMi(IV; TM(Tß.  (3.41)
o t , ß ,  7

The use of MI as a non-linear and statistical similarity measure is justified due 
to the multi-modal nature of the images which will result in non-linearly related 
GI matrices. Equation (3.41) can be solved as a 3-parameter optimization problem 
over a 2D data-set which is much easier to solve than the original 7-parameter (for 
isotropic similarity registration) or 6-parameter problem (for rigid registration) 
over the much larger 3D data-set. However, even though the parameter space is 
reduced, an exhaustive search strategy for 3 parameters is inefficient and we need
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to use an optimization algorithm.

3.5.2 Soblex O ptim ization

The cost function in (3.41) is expected to have a global minimum where images 
are rotationally aligned. The cost function is smoother than ID cost functions we 
have seen in Section 3.2. This is partly thanks to an increased number of samples 
used for MI computation. However, it may not be sufficiently smooth for a local 
optimization algorithm such as Powell or simplex that can be easily trapped by local 
minima and fail to converge to the global minimum. We propose a robust semi- 
global optimization method based on simplex and sampling of the parameter space 
with the Sobol quasi-random sequence [42], which we call the Soblex optimization.

The Soblex optimization is initially given a budget, in terms of time or the 
number of cost function calls. Within the initial budget, Soblex evaluates the 
cost function at points generated from a Sobol sequence. Once the given budget 
is exhausted, the algorithm initializes a standard simplex optimization using a 
simplex-shaped subspace, which is constructed from points with the lowest costs.

We say this method is a semi-global optimization as it comprises a global sam-
pling phase and a subsequent local optimization phase. This combination improves 
the ability of the optimization method to locate the global minimum in the pres-
ence of local minima at a lower computational cost compared to global optimization 
methods such as DIRECT [25] or genetic optimization [26].

Using the Sobol sequence ensures that we can progressively sample the param-
eter space in a virtually uniform fashion. Intuitively, if the budget is large enough, 
the simplex subspace can sufficiently close in onto the global minimum to allow 
successful execution of the local optimization algorithm. The choice of simplex for 
the local optimization step is due to the fact that unlike most optimization methods 
that start from a single point in space, the simplex algorithm starts from a region 
of space that can be made arbitrarily close to the global minimum by increasing 
the Soblex budget. As can be appreciated using a single point for initialization 
increases the chance of a false start far from the global minimum. Whereas using 
multiple points for initialization, which is the case with simplex, makes a less biased 
start to the local optimization phase possible.

3.5.3 Estim ating Translation Param eters

In general, we need to perform an optimization for the remaining set of parameters 
to complete the registration. However, rotationally aligned images are easier to
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register. For example, multi-resolution methods are most useful for robust and 
quick recovery of translation misalignment between the images (in principle they 
offer no advantage for rotational misalignment or may even increase sensitivity to 
local minima [45]). Certain class of images may be amenable to faster registration 
methods when already rotationally aligned. For example, images of the head in 
brain imaging display a clear solid boundary for the skull. For this type of images, 
we can estimate translation and scale parameters by optimizing a 2D data-set as 
described below.

Let jF(x) be the intensity of the fixed image at voxel x, we call J-X{y,z) the 
reduced fixed image in direction of x. It is defined as a 2D image whose pixel 
intensities are calculated as the average of .F(x) in the ^-direction

roo

J7x( y , z ) =  /  ^'(x)dx. (3.42)
J — OO

If we reduce the fixed (A") and transformed moving (A4') images along the three 
basis directions, we can estimate translation and scale parameters by optimizing a 
set of cost functions based on pairs of 2D images at considerably improved speed

[y,  z , s \  = argmin - S U \ ( F X\ M ' x ),
y ,z

(3.43)

[z, x, s\ = argmin - S m iC-Tv  M'y),
Z , X

(3.44)

[x,  y ,  s] =  argmin - S Mi { T z ; M ’z). (3.45)
X ,y

For brain images, we use estimated rotation parameters to bring the images 
into rotational alignment, then reduce the volumes along principal axes and use 
Soblex to find the translation parameters. Note that the translation estimation 
shows some resistance to noise due to the averaging of the image layers. One 
could also include the isotropic scale parameter at this stage for similarity (rigid 
4- scale) registration. While two out of the three possible optimizations would be 
sufficient to estimate all the parameters, in practice we run all three optimizations 
and average the results for improved robustness.

3.5.4 Final O ptim ization

We use estimations of rotation, translation and scale parameters in order to initial-
ize an optimization algorithm based on Powell's multi-dimensional direction set. 
The final optimization round is performed using the standard Pi-based MI cost 
function on the full 3D volumetric data to achieve sub-voxel accuracy. We take
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(a) Reduced MR-T1 (b) Reduced CT

Figure 3.21: (a) MR-T1 and (b) CT images, rotationally aligned and averaged 
along the z axis. The 2D images are used to determine the x  and y translation 
between the images. Note that the silhouettes are similar, which allows the MI- 
based optimization to quickly converge and return the translation parameters.

advantage of the fact that our optimization is initialized close to the final alinement 
by refraining from checking the perimeter excessively using the enhanced Powell 
implementation described in Section 3.2.3.

The choice of the final optimization method is somewhat arbitrary. We chose 
Powell, primarily because it does not require calculation of the cost function gra-
dient, only needs one point for initialization, and could be more easily adapted to 
our finite resolution method.

3.5.5 R esults

We evaluated the performance and efficiency of our method using various images 
from the Retrospective Image Registration Evaluation project (RIRE) database [46], 
where a gold standard for registration using fiducial markers was known. We 
considered CT to MR-T1, T2, PD and PET to MR-T1, T2, PD and MR-T2 to T1 
registration. The images were rather low quality and low resolution (refer to Table 
3.4), which made the registration more challenging and allowed us to experiment 
with our method under a more difficult condition.

The images in the RIRE database were brought into alignment using the gold 
transformation, then 100 random rigid transformations were applied to one of the 
images for each pair and our method was used for registration. The dynamic range 
of transformations were [—25°,25°] for rotation parameters and [—32mm, 32 mm] 
for translation parameters. The conventional Pi-based method was used as the 
baseline for comparison. We used the standard implementation of Powell for the
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Table 3.4: Resolution and size of images used in the experiments.

Im age D im ensions V oxel Size (m m )

MR 256 x 256 x 26 1.25 x 1.25 x 4.00

CT 512 x 512 x 29 0.65 x 0.65 x 4.00

PET 128 x 128 x 15 2.59 x 2.59 x 8.00

Figure 3.22: Superior performance of the Gl-based method for various combinations 
of modalities.

conventional Pi-based method, which was initialized from the origin of the param-
eter space. The registration errors were calculated by averaging the registration er-
rors of 10,000 equally spaced points within the brain volume. Soblex optimizations 
were given an initial budget of 1000 cost function calls for rotation estimation and 
converged with an average of 1100 calls (including the initial budget). For trans-
lation estimation Soblex with an initial budget of 100 function calls was used and 
converged with an average of 150 iterations. For translations a much smaller initial 
budget can be used as the cost function is much smoother for the pixel intensities 
compared to the gradient intensities.

Perform ance

We declared a registration failed if the average error exceeded the diagonal voxel 
size of the moving image, which was approximately 8.80 mm for PET images and 
4.40 mm for CT and MR images. Fig. 3.22 compares the success rate of our method
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■  Mean (PI) □  Mean (Gl) □  Median (PI) □  Median (Gl)
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Figure 3.23: Improved accuracy of the GI-based method with a lower mean and 
median error is demonstrated. PI mean, Gl mean, PI median and Gl median errors 
are shown for each combination of modalities from left to right.

with the conventional method for various registration pairs and shows the supe-
rior performance of our method. Note that our method outperforms the Pi-based 
method by a large margin, even if a lower threshold is chosen for registration errors. 
This can be better demonstrated by looking at the mean and median error graphs 
presented in the next section.

A c c u r a c y

Fig. 3.23 shows average and median registration errors for each method. Registra-
tion errors are significantly reduced using the Gl-method, due to the ability of the 
method to by-pass local minima. Also note that, median and mean errors are close 
for the Gl method, which indicates the superior robustness of the method.

The improved statistical accuracy of our method compared to the standard PI- 
based method, as demonstrated in Fig. 3.23, is the result of improved robustness 
and success rate of our method, whereas the PI method fails to converge for large 
misalignments. However, we emphasize that where both methods converge, the 
accuracy of the standard method is similar to our method. This is because both 
methods use the same Mi-based registration as the final stage.

Interpretation of errors should be treated with care. A common approach is to 
identify a number of volumes of interests (VOIs) and average the distance between 
centroids of VOIs, in registered images [1]. Obviously, error calculations will depend 
on the selection of VOIs and their distance from the center of transformation, as
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Figure 3.24: Superior efficiency of the GI-based method for various combination 
of modalities. The number of iterations are significantly reduced using the GI 
method. Computation times are proportional to the number of iterations.

well as accuracy of segmentation of VOI pairs. The advantage of this method 
is that the error is meaningful for anatomical or pathological details of interest. 
The statistical-based method, on the other hand, does not require segmentation 
and definition of VOIs. However, it may overestimate the errors by inclusion of 
points that may not be of interest. Hence, one should not directly compare error 
calculations obtained by different methods1.

E f f i c i e n c y

Both the GI and Pi-based methods finally register the images using a Powell based 
optimization over pixel intensities. The computational cost of the methods are 
directly comparable at this stage. We included the computational cost of pre-
processing required by the GI method by increasing the number of Powell iterations. 
The Soblex optimization stage of the GI method was approximately l/100</! of 
the cost of each iteration for the final Powell-based optimization or on average 
equal to 11 Powell optimizations. This has been factored in the end-results to 
allow a fair comparison. Another 15 iterations were added to account for gradient 
intensity calculations. Fig. 3.24 compares registration efficiency of the GI and PI- 
based methods, and shows around 500% improvement as a result of using the GI

*At the time of performing this set of experiments, we did not have access to VOI data for 
error measurements. In later experiments, such as those in Chapter 5, we used VOI-based error 
measurements.
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method.

Powell Resolution

So far, we presented the results using a high resolution of O.OOlmm/O.OOl0 for 
the modified Powell method. The computational efficiency of our method can be 
easily balanced against the required accuracy by selecting an appropriate resolution. 
To demonstrate this point, we now consider a medium and a low resolution of 
0.01mm/0.01o and 0.1mm/0.1°, respectively. The results in Fig. 3.25 for PET to T1 
registration show that the computational efficiency can be considerably improved 
at the cost of moderate reduction in accuracy, if needed.

R obustness w .r.t. N oise

Gradient based methods are often more sensitive to noise. To demonstrate the ro-
bustness of the method w.r.t to noise, we added white Gaussian noise with a  =  0.1 
to a PET image as shown in Fig. 3.26 and registered the image to MR-T1 100 
times with random transformations applied to the PET image. The mean and 
median errors were 4.99 mm and 4.57 mm, up almost by only 1.00 mm compared to 
registration results without noise. The good results are to some extent due to the 
noise reduction feature of the uniform volume histogram (other noise resistant ele-
ments of our algorithm include the translation estimation process and the Gaussian 
gradient kernel itself).

3.5.6 D iscussion

Gradient intensity is useful in determining the spatial orientation of 3D images and 
can be used to rotationally align the images, irrespective of their relative size and 
position. We experimented with various modalities of brain images and showed 
that our method is robust and performs well for all combinations, including the 
low resolution and conventionally challenging PET images.

We used an Mi-based registration method in the final registration stage. How-
ever, the GI-based registration can be combined with other registration techniques 
and similarity measures. The registration performance using our method was on 
average 92%, up almost by 30% compared to the conventional Pi-based method. 
The computational efficiency improved on average by 510% and median error was 
down from an average 4.13 mm to 2.14 mm across the whole range of our experi-
ments comprised of 700 registrations for a relatively large range of misalignments.
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Figure 3.25: Reducing the resolution improves the computational efficiency, how-
ever it comes at the cost of a slight reduction in accuracy and success rate.
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(a) PET (b) Noisy PET (c) MR-T1

Figure 3.26: A PET volume (a) and its noisy version (b) registered to MR-T1 (c) 
in our experiments. The original PET volume itself has a low resolution and SNR.

In our experiments, we encountered a few cases where the final optimization 
algorithm had to recover from a completely incorrect initial estimate. This is not 
necessarily worse than starting from any other arbitrary position within the param-
eter space, such as the origin. However, the algorithm converges with performance 
and efficiency levels comparable to the Pi-based method. Such cases can be further 
avoided and the performance can be improved by using a method that can estimate 
translation and scale independent of the rotation. Another avenue for getting bet-
ter performance is to improve the Gl-based cost function to obtain more accurate 
and more robust initial estimates. One such improvement is to consider a weight 
function for GI calculation to compensate for the non-linear size of the GI bins on 
the unit sphere. Another potential extension is to add a multi-resolution scheme 
for Gl-based registration.

The idea of maximizing gradient intensity for alignment of images can be used 
for non-rigid registration. However, the method will no longer provide a computa-
tional advantage as the dimensionality of the problem cannot be reduced nor the 
optimization parameters can be estimated independently. In this capacity, mutual 
information of GI may be used to complement a Pi-based cost function and to 
add spatial constraints to improve the robustness of registrations. The approach is 
along the line of combining gradient and intensity information as proposed in [34], 
except that our gradient cost function will be based on the GI.



C h ap te r 4

R eg is tra tio n  on H igh P erfo rm ance 
C om puting  A rch itec tu res

The advancements in development of multi-core and massively multiprocessing ar-
chitectures in recent years holds great promise for interventional setups. In partic-
ular, massively multiprocessing graphics units with general purpose programming 
capabilities have emerged as front runners for low cost high performance process-
ing. HPC, in the order of 1 TFLOPS, is available on commodity single-chip GPUs 
with power requirements not much greater than an office computer. Multi-GPU 
systems with up to 8 GPUs can be built in a single host and can provide a nominal 
processing capacity of 8 TFLOPS with less than 1500W power consumption under 
full load.

Hardware and architectural complexities in designing multi-core systems aside, 
perhaps as big a challenge is an overhaul of existing application design method-
ologies to allow efficient implementation on a range of massively multi-core archi-
tectures. As one quickly might find, direct adaptation of existing serial algorithms 
is more often than not neither possible due to hardware constraints nor computa-
tionally justified.

In this chapter, we look at early, recent, and state-of-the-art methods for reg-
istration of medical images on a range of HPC architectures including symmetric 
multiprocessing (SMP), massively multiprocessing (MMP) and architectures with 
distributed memory (DM) and non-uniform memory access (NUMA). We will de-
fine and describe concepts of interest in the context of image registration and high 
performance computing. Our main focus will be HPC-related aspects and we will 
highlight relevant issues as we explore the problem domain. This approach presents 
a fresh angle on the subject than previously investigated by the more general and 
classic reviews such as [2-4] in the literature. Section 4.1 and Section 4.2 are or-

73
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ganized from the perspective of high performance and parallel computing with the 
registration problem embodied. This is meant to equip the reader with the knowl-
edge to map a registration problem to a given computing architecture. Finally, 
we have endeavored to provide a comprehensive summary of existing contributions 
from various groups in Section 4.4.

4.1 M ulti-C PU  Implem entations

4.1.1 Sym m etric M ultiprocessing

In symmetric multiprocessing (SMP) architectures multiple CPUs/cores have ac-
cess to a single shared main memory. This makes parallelization of serial code 
relatively straightforward. The main methods for parallelization on SMP architec-
tures are POSIX threads (pthreads) and OpenMP [47,48]. The pthreads standard 
defines an application programming interface (API) for explicit instantiation, man-
agement and synchronization of multiple threads, whereas OpenMP mainly con-
sists of a set of compiler directives (and a supporting API) that allows for implicit 
parallelization.

Most serial programs can be parallelized on SMP architectures with minimal 
modification. The ease with which parallelization can be achieved, especially with 
OpenMP, can be deceiving. We emphasize that one has to be prepared to reevaluate 
the approach to solving a problem on parallel systems and avoid the temptation of 
simply mapping a serial code to multiple threads. Use of synchronization primitives 
1 should be limited to a minimum and alternative methods to achieve an outcome 
without synchronization should be investigated.

A good example of SMP parallelization of a registration algorithm is given by 
Rohlfing et al. [49]. They use pthreads to parallelize B-spline deformable regis-
tration on 64 CPUs. They exploit a combination of procedural (pre-computation, 
multi-resolution, adaptive activation of control points) and architectural elements 
(e.g. data partitioning) to optimize their method. While the hardware has been 
long superseded, their approach is still relevant today. We would not change much 
about their method except that they use synchronized reduction of partial joint 
histograms in MI computation phase by using the mutex lock. One can avoid the 
need for synchronization by dividing partial histograms and the resulting global 
histogram among the available threads. For N  threads, this divides each partial

Synchronization refers to any mechanism for coordinating multiple threads or processes to 
complete a task. Examples of synchronization primitives include mutual exclusion (mutex), 
thread-join, and barrier. Atomic operations also involve implicit synchronization.
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histogram into N  equally sized non-overlapping regions. Each thread, then, com-
putes part of the global histogram by summing values across corresponding regions 
of partial histograms. Since the regions are non-overlapping, the computations are 
guaranteed to be free of write-conflicts and no synchronization is required. We 
discuss this approach in more detail in Section 5.2.2.

4.1.2 M ultiprocessing w ith  N on-U niform  M em ory A ccess

Efficient memory access is an important design consideration in multiprocessor 
systems with many cores where maintaining an efficient cache coherency on a 
single-shared-bus becomes less practical as the number of processors increases. 
Non-uniform memory access (NUMA) architectures try to alleviate the problem 
by dividing memory into multiple banks; each assigned to one processor. Proces-
sors have faster access to their local bank than remote banks attached to other 
processors.

Access to memory on remote banks can be several times slower than access 
to local memory. This is due to data traveling through a longer path and also 
transient access requests by other processors that may require the memory bus to 
be shared. Fig. 4.1 shows the schematic of a multiprocessor system with a NUMA 
architecture. An algorithm which is optimally designed for NUMA makes only 
infrequent attempts to access data on remote banks. A parallel application can 
theoretically achieve linear scalability with respect to memory throughput when-
ever proper distribution of memory to local banks is possible.

Figure 4.1: SunFire X4600 M2 schematic with 8 NUMA nodes. A CPU can access 
remote memory through a maximum of 3 hops.

Image registration can be efficiently implemented on NUMA architectures as 
shown in Fig. 4.2. Both the transform and measure computation can work on a 
spatial subset of the images. To achieve optimal performance, the fixed image F  is
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divided among the memory banks and the corresponding portion of the transformed 
moving image M(T)  will also be stored on the same memory bank. However, the 
path taken by the optimization algorithm cannot be determined a priori and the 
transformer will use different areas of M  to create the local portion of M ( T ) at 
each iteration. As such, each memory bank will need to receive a local copy of 
the moving image M  during the initialization step. Given that the optimization 
algorithm will take several iterations to converge, this initial overhead is justified.

Figure 4.2: Partitioning of the data-set among multiple memory banks for improved 
access. The original data is loaded from a shared storage medium.

The distribution of resources to specific memory banks requires setting an ap-
propriate memory and processor affinity2. This is operating system dependent 
and will make the code less portable. The alternative is, of course, to be com-
pletely oblivious to the memory architecture and hope that the compiler and the 
operating system will make the right decisions. This may not be an entirely unrea-
sonable strategy depending on the number of processors and whether a program 
is memory-bound or CPU-bound. However, as the number of available CPUs in-
creases or for programs that are memory-intensive, it becomes more important to 
design an optimal memory access strategy.

4.1.3 M ultiprocessing w ith  D istributed  M em ory

Distributed memory (DM) architectures are characterized by lack of access to a 
global shared memory available to all processors. DM systems are typically built

2Processor affinity refers to explicit binding of a thread to a specific processor. Memory affinity 
is explicit allocation of data on a specific memory bank.
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by clustering SMP or NUMA nodes. As such, in distributed architectures, sub-
groups of processors have access to shared memory.

From a programming standpoint, these systems are characterized by the need 
for explicit data distribution and interprocess communication. The former has 
to be built into the application design and the latter is most commonly achieved 
through the message passing interface (MPI) [50].

The model given for data distribution in NUMA Fig. 4.2 can be equally ap-
plied here. An early implementation is given by Butz and Thiran [27], where a 
Linux cluster was used to speed up Mi-based registration for a global genetic op-
timizer. In [51], Ino et al. further partition the moving image in order to reduce 
the memory usage. This is motivated by the need to process large images in the 
order of 1024 x 1024 x 590 voxels. Partitioning both images also reduces traffic on 
the network during initialization. This can be an important consideration as the 
number of nodes increases and the overhead of the initialization phase compared 
to the optimization phase can no longer be ignored. Partitioning the moving image 
requires a prior estimate of the range of transformation parameters to ensure that 
a large enough portion of the image is loaded for the transformer.

A variation is given by distributed shared memory (DSM) architectures, where 
a large virtual address space is made available to all processes across all nodes. 
DSM can only hide the mechanism of communication between processes and not 
the associated latency. We argue that if the end goal is to achieve the highest per-
formance, little benefit can be drawn from the convenience of a DSM architecture 
and the program should be designed to be aware of the locality of data.

Wachowiak and Peters [28] develop Mi-based registration for a DSM archi-
tecture. Their implementation does not take memory locality into account but 
they use DIRECT and MDS parallel optimization methods to their advantage. 
This coarse-grained parallelization results in lower communication-to-computation 
overhead.

As some authors have pointed out [52], a major benefit of DM clusters is their 
lower cost compared to many-core SMPs or DSM systems.

4.2 A ccelerator Im p lem en tation s

4.2.1 Cell Broadband Engine

Cell/BE is an asymmetric heterogeneous multi-core processor with a distributed 
memory architecture. It comprises a general purpose PowerPC core known as a 
PPE and eight specialized vector processing cores known as SPEs. Each SPE is
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equipped with a 4-way SIMD engine and has its own small (un-cached) memory 
known as the local storage3.

Optimal implementation of registration algorithms on Cell/BE architectures 
involves task-level parallelization, data partitioning, and vectorization of the code 
for the SPEs’ SIMD engine. It also involves handling the transfer of data between 
the system memory and SPEs’ local storage. The results by Ohara et al. [53, 
54] and Rohrer and Gong [55] provide good insight into challenges involved in 
designing registration on this architecture for collinear and deformable registration, 
respectively.

4.2.2 Field Program m able G ate Array (FP G A )

A custom FPGA accelerator prototype for Mi-based rigid registration is given by 
Castro-Pareja et al. in [11]. They argue that a major bottleneck in MI computation 
using Collignon’s method [15] is partial volume (PV) interpolation and that it is 
memory-bound. They improve performance by parallelizing access to memory and 
assigning independent memory controllers and types of memory for storage and 
access to the fixed image, the moving image, and the joint histogram. A cubic 
addressing scheme is used for the moving image to speed up the interpolation. 
This is similar to caching available in GPUs for access to texture memory. An 
enhanced version of [11] is presented in [56] and a multi-rigid version with volume 
subdivisions is given by Dandekar [57].

FPGAs allow one to design customized hardware for specific registration tasks. 
However, they provide less flexibility compared to software-based implementations. 
With flexible general purpose programming capabilities of modern GPUs, it is 
doubtful if FPGA-based implementations present any real benefit in this area.

4.2.3 Graphics Processing U nit (G P U )

The majority of recent research in multi-core adaptation of registration algorithms 
has been focused on GPUs [58-64]. The interest in GPUs stems from continued 
improvement in computational power and increase in memory bandwidth that has 
consistently outperformed Moore’s prediction [65] in recent years (Fig. 4.3). At the 
same time, a competitive gaming market has driven the GPU prices down to the 
point that GPUs provide the highest computational performance per dollar of any 
HPC architecture.

3Local storage is only 256KB in current generation of hardware and is shared between data 
and kernel instructions.
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Processing Power Comparison: GPU vs. CPU
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(a) Processing power of GPU vs. CPU.
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(b) Memory bandwidth of GPU vs. CPU.

Figure 4.3: Rapid increase in GPU’s processing power and memory bandwidth in 
recent years (source of data: NVIDIA [66]).

Earlier work in this area (mainly prior to 2007) [9, 67-73] involved devising 
methods to map the registration problem onto a graphics pipeline which was not 
specifically designed for general purpose computing. The GPU landscape has since 
gone through a seismic change with the introduction of native general purpose 
computing capabilities in late 2006. The GPU registration literature prior to 2007 
has been superseded from both hardware and software perspectives.

Despite improvements in programming model and available tool-sets, GPU 
implementations remain more challenging than multi-core CPU implementations. 
However, the lower cost and achievable performance gains make GPUs an impor-
tant platform for HPC in many scientific applications. In the remaining of this 
chapter we will focus on the latest technology and algorithm design for general 
purpose computing on GPUs. This will serve as a precursor to Chapter 5 where
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we discuss a number of histogram computation, MI computation, and registration 
methods designed for the massively multiprocessing architecture of the GPU.

4.3 M assively M ultip rocessing  on G P U s

The modern software platforms for general purpose programming on the GPU 
are currently NVIDIA’s CUDA [66] and AMD/ATI’s Brook+ [74]. These plat-
forms are vendor-specific, however OpenCL compliant implementations that pro-
vide hardware-independence are being gradually released by the vendors. None of 
the papers we considered developed methods for ATI Brook-h It appears that the 
research community has almost exclusively adopted CUDA as their preferred GPU 
platform. This is likely to change with wider support for OpenCL in non-GPU 
architectures such as IBM’s Cell/BE and Intel's Larrabee.

Modern GPUs extend the single instruction multiple data (SIMD) paradigm 
to a single instruction multiple threads architecture (SIMT). SIMT provides more 
flexibility by parallelism for (almost) independent threads as well as data-parallel 
code. GPUs achieve their computational performance by dedicating more transis-
tors to their arithmetic logic units (ALUs) for data processing, at the expense of 
reduced flow control and data caching. They extend the conventional thread-level 
parallelism by introducing two additional layers of parallelism in the form of closely 
knit groups of threads known as warps or wavefronts, and groups of warps/wave-
fronts known as thread blocks or simply blocks. Warps are significant since they 
define the unit of flow control in a GPU. Threads in a warp are bound to execute 
the same instruction (on different data). Diverging paths of execution for threads 
in a warp result in serial execution of all paths. Hence, an important consideration 
in adapting parallel code to GPU architecture is minimizing diversion in warps. 
This can be achieved by designing warp-aware algorithms and reorganizing data 
to optimize flow control. An example of such an approach is given in [63].

Limited data caching is another important consideration in designing programs 
for the GPU. To achieve the best performance one needs to understand the hard-
ware architecture and its various memory and caching models. Optimum use of 
memory such as coalesced transfers may speed up an application by an order of 
magnitude. This level of flexibility is typically available with lower level APIs and 
runtime SDKs such as CUDA (NVIDIA) [66] and CAL (ATI/AMD) [74]. Programs 
developed with a lower level API lack portability and need to be maintained as the 
hardware evolves. Abstraction layers such as OpenCL and Brook-1- avoid these 
issues by hiding memory management details from the developer. However, better
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portability may come at the cost of sub-optimal performance.

Different MI computation methods on the GPU have been reported in the lit-
erature. Shams et al. compute MI by computing joint histograms on the GPU 
in [59,63,75]. A main finding is that for different sized histograms (number of bins 
used for MI computation), the optimal algorithm differs. For bin ranges typical in 
MI computation (100 x 100 and above) an efficient histogram computation algo-
rithm specifically designed for massively multiprocessing architectures is presented 
in [63]. The paper describes a new method for histogram computation (sort and 
count) that removes the need for synchronization or atomic operations, based on 
sorting chunks of data with a parallel sort algorithm such as bitonic sort. Lin and 
Medioni [60] report an adaption of Viola’s MI computation approach [16]. Their 
method approximates the joint pmf by stochastic sampling of the image intensi-
ties and using Parzen windowing. This method lends itself well to parallelization 
on the GPU, reduces the computational burden of transformations by only using 
a subset of image data, and provides analytic equations for computation of MI 
derivatives. However, sparse sampling of the data-set may compromise accuracy 
of the registration [68]. A sampling method specifically designed for the GPU is 
given by Shams and Barnes [59]. This method samples the bin space for comput-
ing histograms rather than the intensity space. The method improves performance 
of computations and is subject to the same trade off between performance and 
accuracy. We note that a majority of researchers use direct computation of the his-
togram [4]. Finally, feature-based registration of large 2D data-sets (in the order of 
16K  x 16K  — 23K  x 62K) using a polynomial transformation and the computation 
of CC similarity measure on the GPU is reported by Ruiz et al. [64].

4.3.1 An Overview of C U D A

CUDA is a parallel computing architecture by NVIDIA that can be used to offload 
data-parallel and compute-intensive tasks to NVDIA GPUs beginning with the 
8 series since late 2006. It consists of an entire platform for development and 
execution of general purpose programs on the GPU comprising the device driver, 
programming APIs, C for CUDA compiler, and a profiler. In this section, we 
provide an overview of the terminology, main features, and limitations of CUDA. 
We have summarized the main concepts in Table 4.1 for quick reference. More 
information can be found in [66]. A reader who is familiar with CUDA may skip 
this section.
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Execution M odel

In CUDA, the computation is distributed in a grid of thread blocks. All blocks 
contain the same number of threads that execute a program on the device4, known 
as the kernel. Each block is identified by a two-dimensional block ID and each 
thread within a block can be identified by an up to three-dimensional ID for easy 
indexing of the data being processed. The block and grid dimensions, which are 
collectively known as the execution configuration, can be set at run-time and are 
typically based on the size and dimensions of the data to be processed.

It is useful to think of a grid as a logical representation of the GPU itself, 
a block as a logical representation of a multi-core processor of the GPU and a 
thread as a logical representation of a processor core in a multiprocessor. Blocks 
are time-sliced onto multiprocessors. Each block is always executed by the same 
multiprocessor. Threads within a block are grouped into warps. At any one time 
a multiprocessor executes a single warp. All threads of a warp execute the same 
instruction but operate on different data. As such, a warp represents the atomic 
unit of program flow on the device. This means that if threads of a warp take 
diverging path of execution within a kernel, they will have to be serialized. This 
may happen when a data-dependent branch is executed by a warp. The warp will 
execute all visited branches and for every visited branch disables those threads that 
are not supposed to be executed. From a programming perspective, warps are a 
significant improvement over vector processing architectures where data has to be 
explicitly loaded into a vector and any potential divergence to be handled manually 
by the programmer. Full efficiency can be achieved only when all threads within 
a warp can remain active. An important consideration in designing code for the 
GPU is to organize the code and data access patterns such that diverging branches 
for the threads of a warp are minimized.

Another important consideration in GPU-based applications is designing an 
optimal memory mapping scheme. A GPU has several memory spaces, each with 
differing levels of functionality in terms of size, latency, throughput, and caching 
mechanism. The various types of memory include global, texture, constant, shared, 
and local memory.

M emory M odel

The device’s DRAM, the global memory, is un-cached. Access to global memory 
has a high latency (in the order of 400-600 clock cycles) [66], which makes reading

4We use the terms device and the GPU, and host and the CPU interchangeably.
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from and writing to the global memory particularly expensive. Fortunately, much 
of the latency can be hidden by the thread scheduler providing that there are other 
threads that can be placed for execution while waiting for the data transfer to 
complete. To fully hide the latency, one typically needs to ensure that the kernel 
has a high ratio of arithmetic operations for every memory access operation and 
should run the kernel with an execution configuration that allows for hundreds of 
blocks and several hundred threads per block.

The throughput of global memory access is also dependent on the access pat-
tern. When certain requirements are met by threads in a warp, access to global 
memory by multiple threads can be combined into a single transaction for con-
tiguous memory locations. This is known as memory coalescing. Non-coalesced 
memory access can severely affect the performance of an application and should 
be avoided where possible. Coalescing global memory access is perhaps the sin-
gle most important consideration in optimizing CUDA code [76]. It may even be 
worthwhile to reorganize data prior to execution of a kernel in order to ensure 
coalesced access. The exact requirements for memory coalescing differ for different 
generations of GPUs and we refer the reader to [76] for a detailed discussion.

The data is transferred between the host and the device via the direct memory 
access (DMA), however, transfers within the device memory are much faster. To 
give the reader an idea, device to device transfers on GTX 8800 and GTX 280 are 
around 80GB/s and 140GB/s, respectively, whereas, host to device transfers can 
be around 2—3GB/s. As a general rule, host to device memory transfers should 
be minimized whenever possible. In a complex application with several processing 
phases, data should be initially loaded onto the GPU and kept there for as long 
as possible. With a GTX 8800, for example, there is a latency of around 20//s 
for memory transfers [77]. The transfer rate is lower for smaller data-sets, for 
example the transfer rate for a 1 KB data-set is only 0.04 GB/s, whereas for 1 MB 
and 100 MB the transfer rate increases to 2.70 GB/s and 3.10 GB/s respectively. 
Therefore, several smaller data transfers should be combined into a single transfer, 
where possible.

Areas of the global memory can be mapped as read-only texture memory. The 
texture memory is cached and also optimized for 2D and 3D indexing. This is 
particularly useful for image processing applications that frequently access adja-
cent data elements in a rectangular or cubic grid. Textures also provide hardware 
accelerated support for linear interpolation of adjacent data elements in a grid.

Shared memory is a small (16 KB) on-chip memory located within each pro-
cessing core. It is visible to all threads within a block and acts as the primary
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mechanism for inter-thread data cooperation. It is also meant to compensate for 
the lack of transparent caching. It is divided into a number of banks that can be ac-
cessed simultaneously (given a suitable access pattern that avoids bank conflicts). 
Shared memory latency can be up to 100 times lower than global memory la-
tency [76]. It is typically used to pre-load small chunks of data, frequently accessed 
by several threads, from global memory and to store intermediate computation 
results. The efficiency of a kernel can be improved by taking advantage of parallel 
access to shared memory and by avoiding bank conflicts. In practice, the size of 
shared memory is too small for many applications. This is a limitation that has to 
be overcome by the programmer and at the expense of a more complicated kernel 
code and reduced performance.

Constant memory is a small 64 KB of read-only cached memory. It is visible 
to all threads and as the name suggests is used to store numeric constants used by 
all threads such as filter coefficients, transformation matrices or parameter values 
in parameterized equations.

The last type of memory that we briefly mention is confusingly named local 
memory. Local memory is in fact off-chip with an access latency similar to global 
memory. The ‘local’ designation is apparently related to its scope which is local 
to a thread. It is used by the compiler for allocation and storage of automatic 
variables such as large structures and arrays that would otherwise occupy too many 
registers. Local memory makes execution of complex kernels possible. However, 
performance-wise it is almost always bad news if the compiler is forced to resort to 
using the local memory.

We conclude the discussion on memory by highlighting an important limitation 
of the current GPU memory architecture: lack of support for error correcting code 
(ECC). This is not an issue for graphics applications for which a GPU is primarily 
designed. An infrequent flipping of a single memory bit (known as a soft error) 
may affect the color of a pixel or cause a transient glitch. In a computer game 
this will largely go unnoticed. The same cannot be said for general computation 
on the GPU. Today, ECC is not optional for serious scientific research and in 
computationally sensitive applications such as computational finance. [78] reports 
a failure rate of 1% during the initial launch of Stanford’s distributed protein folding 
application, Folding@Home. If this figure is to be believed5, the problem is indeed 
serious and one has to consider redundant computation options such as discussed

5The high failure rate of Folding@Home has been attributed to often over-clocked and non-
standard configurations employed by users who donate their computational resources to the 
project. Even so, we find it hard to accept that this high rate of failure can be entirely blamed 
on soft errors.
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in [78] for mission-critical GPU-based applications.

Synchronization  Support

The higher processing power of the GPU compared to the standard CPU, comes 
at the cost of reduced data caching and flow control logic as more transistors have 
to be devoted to data processing. This imposes certain limitations in terms of how 
an application may access memory and implement flow control. As a result, im-
plementation of certain algorithms (even trivial ones) on the GPU may be difficult 
or may not be computationally justified. In particular, CUDA devices with com-
pute capability 1.0 (such as GTX 8800) do not support atomic operations. GPUs 
with compute capability 1.1 support some atomic operations on the global mem-
ory. Newer GPUs with compute capability 1.3 (such as GTX 280) support some 
atomic operations in the shared memory. However, existing GPUs still lack other 
synchronization primitives such as critical section and mutual exclusion (mutex). 
The only universally supported synchronization primitive is the thread join which 
only works among the threads of the same thread block.

In designing an algorithm for a massively multiprocessing architecture, regard-
less of the availability of synchronization and atomic features, one should minimize 
dependence on synchronization among threads, as it essentially causes parallel pro-
cesses to become serialized and reduces performance.

A T ypical C U D A  Program

A typical CUDA implementation consists of the following stages:

1. Allocate memory on the device.

2. Initialize device memory if required.

3. Transfer data from the host to the device.

4. Determine the execution configuration.

5. Execute kernel(s). The result is stored in the device memory.

6. Transfer data from the device to the host.

With the exception of step 5, everything is an overhead. Naturally, a GPU 
implementation is justified only when the computational benefit of step 5 outweighs 
the overhead. In complex, iterative or multi-phase algorithms the efficiency can 
be greatly improved if all the computation can be performed on the GPU, so that
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T able 4.1: A quick reference of C U D A  re la ted  term ino logy

Term inology D escrip tion

Device a  generic nam e for an  aux ilia ry  co m p u ta tio n a l u n it (e.g. a 
G P U ) ac ting  as a  coprocessor in a  heterogeneous system .

H ost th e  p rim ary  co m p u ta tio n a l u n it of a  heterogeneous system .

K ernel an  ex tension  to  a s ta n d a rd  C function  th a t  defines th e  com -
p u ta tio n a l w ork-load perfo rm ed  by a  single th read .

T h re ad th e  a tom ic  u n it of p rog ram  execu tion  w ith  its  own se t of 
reg iste rs  and  local m em ory.

W arp th e  a to m ic  u n it of p ro g ram  flow com prising  a  n u m b er of 
tig h tly  coupled th re a d s  th a t  are  b o u n d  to  ex ecu te  th e  sam e 
set of in stru c tio n s  a t  any  one tim e.

Block a g roup  of th re a d s  w ith  access to  a  sh a red  m em ory  space 
ru n  on a  single m ultip rocessor.

G rid th e  co llection of all th re a d  blocks w hich rep resen ts  th e  en-
tire  execu tion  co n tex t on a  single G P U  core.

C o n s tan t M em ory a sm all read-on ly  cached m em ory  accessible by all th re a d s  
in a  grid , typ ica lly  used to  s to re  p ro g ram  and  c o m p u ta -
tio n a l co n stan ts .

G lobal M em ory th e  p rim ary  device m em ory  accessible by all th re a d s  in  a 
g rid  w ith  no caching  su p p o rt.

Local M em ory a un-cached  m em ory  space p riv a te  to  each th re a d  used  to  
offload variab les deem ed to  use to o  m uch reg iste r space by 
th e  com piler.

S hared  M em ory a sm all u ltra -fa s t m em ory  accessible by  each m u ltip ro ces-
sor an d  th e  th re a d s  w ith in  a  block, ty p ica lly  used to  s to re  
variab les frequen tly  accessed by m u ltip le  th read s .

T ex tu re  M em ory a large read-on ly  m em ory  w ith  lim ited  caching  accessible 
by all th re a d s  in a  grid , ty p ica lly  used for locally  coheren t 
access p a tte rn s  w ith  ID , 2D an d  3D indexing.



4.4 Summary of the Literature 87

step 5 can be run several times without the need for unnecessary data transfers 
between the device and the host.

4.4  Sum m ary o f th e  L iterature

We have summarized existing contributions in high performance computation of 
registration methods in Table 4.2, Table 4.3, and Table 4.4. The tables serve 
as quick references to an array of methods on various platforms and by different 
groups.

Researchers have used various methods to present their performance results. 
All groups report at least the speedup results compared to a single-core CPU 
implementation. When inter-architecture comparisons are drawn, it is not always 
clear how well the CPU implementation has been optimized, if the streaming SIMD 
extensions (SSE) instruction set has been used, whether the code has been compiled 
as 64- or 32-bit, or if 64- or 32-bit floating point operations have been used. For 
these reasons, speedup results should be interpreted with caution, more so when 
the reported speedups are in the order of a hundred times or more.

Most groups report their speedups for the entire registration algorithm and for 
specific data-sets. Comparison of different results is further complicated as authors 
may have implemented a multi-resolution scheme to further speed up the process 
and used different convergence criteria. We have reported/estimated the results 
for the finest resolution, whenever possible. The execution time is an almost linear 
function of the number of iterations of the optimization algorithm. Convergence 
criteria are most commonly based on the value of the measure and its relative im-
provement in a given step of the optimization. A less common approach is to set a 
fixed number of iterations as the convergence criterion. We call the former strategy 
dynamic convergence and the latter static convergence. Lack of associativity for 
floating point operations have the inevitable consequence that the same optimiza-
tion algorithm operating on the same data-set converges with different number of 
iterations on different architectures when dynamic convergence is employed. Even 
on the same architecture, compiler optimization of floating point operations results 
in variations. Unless experiments are performed on a large set of images, this skews 
the performance results one way or the other.

We have given normalized performance6 results where possible. The purpose of

6The word ‘performance’ is ambiguous in the context of registration. It is sometimes used to 
refer to the degree of success for a registration algorithm based on accuracy of the registration 
results. In this section, we use ‘performance’ in its computational capacity refereing to execution 
efficiency of the registration algorithm.
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normalizing the reported results is to give the reader an indication of the speedups 
expected from a method without dependence on the size of images involved, con-
vergence criteria, use of a multi-resolution scheme, and to some extent the type of 
optimization algorithm. Normalized results are given in terms of average execution 
time in milliseconds for a single iteration of the optimization algorithm and for 
processing 1,000,000 voxel pairs (ms/MVoxel/itr).

Many authors have used gradient descent as their optimization algorithm, largely 
due to its simple structure and ease of implementation. Once the gradient is com-
puted, the choices include taking a single step in a direction opposite to the gradient 
where the step size may be adjusted over time, or use of a line minimization algo-
rithm such as Brent’s [22], Line minimization usually involves several computations 
of the cost function alone without its derivatives.

When comparing results it is important to identify which variation of the gra-
dient descent is used. We have come across four different implementations.

• Type A: Closed-form differentiation with a single step

• Type B: Closed-form differentiation with line minimization

• Type C: Numerical differentiation with a single step

• Type D: Numerical differentiation with line minimization.

Most authors exclude initialization time, including disk IO and loading data 
from host memory to GPU memory. This is a reasonable practice since initialization 
time is typically a small fraction of the registration task. Initialization occurs at the 
beginning of the registration algorithm whereas the optimization loop is executed 
several times.

Some of the information presented in the following tables were not immedi-
ately available in the original manuscripts and were provided by the authors of the 
respective papers.
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Table 4.2: Summary of high performance image registration methods in the liter-
ature on CPU-based architectures

Transform M eas. O ptim izer H ardw are P er f .1 G roup

Simil. NML Powell 2 x Sun Ent. 5000 (2 x 
8 UltraSparc I 167MHz)

- Warfield 98 [79] 1

Affine MI Genetic PC Cluster (10 x 2 Pen-
tium  III 550MHz)

- Butz 01 [27] 2

Rigid LLC3 ? PC Cluster (10 x 2 Pen-
tium  III 933MHz)

- Ourselin 02 [52] 3

1 Rigid MI,
NMI

DIRECT, MDS SGI Altix 3000 (20 Ita -
nium II 1.3 GHz)

- Wachowiak 06 [28] 4

cS Rigid MI Powell Sun SPARC T5120 
(8 x UltraSPARC T2 
1.2GHz)

47.7 Shams2 09 5

Rigid MI Powell Intel Q6600 (Pentuim  
Core 2 Quad 2.4GHz, 4 
cores)

15.8 Shams2 09 6

Rigid MI Powell Intel Core i7 920 (Quad 
2.66GHz, 8 threads)

13.2 Shams2 09 7

Rigid MI Powell SunFire X4600 M2 (8 x 
2 Opteron 2.6GHz)

10.5 Shams2 09 8

B-spline NMI Grad. desc. (D) SGI Origin 3800 (128 
MPIS 12K)

- Rohlfing 03 [49] 9

Q B-spline NMI Grad. desc. (D) PC Cluster (64 x 2 Pen-
tium  III 1GHz)

- Ino 05 [51] 10

1 : Normalized performance in milliseconds per mega voxel per iteration (m s/M Voxel/itr). 2 : Previously unpub-
lished result. 3 : The m ethod is based on block matching with local linear correlation measure (LLC).

Table 4.3: Summary of high performance image registration methods in the liter-
ature on accelerator technologies

Transform M eas. O ptim izer H ardw are P erf . 1 G roup

C
ol

lin
ea

r Rigid MI N/A FPGA (2 x A ltera 1K100 
80MHz)

101 Pareja 03 [11] 11

Rigid MI N/A FPGA (1 x A ltera 
EP1S40 200MHz)

20.0 Pareja 04 [56] 12

Affine MI Grad. desc. QS20 (2 x Cell/BE.: 2 
x 1 PP E  & 8 SPEs)

98.8 O hara2 07 [54] 13

D
ef

. Multi-rigid MI Simplex FPGA (1 x A ltera 
EP2S180 200MHz)

13.4 Dandekar2 07 [57] 14

B-spline MI Grad. desc. QS20 (2 x C ell/BE.: 2 
x 1 PPE  & 8 SPEs)

66.9 Rohrer 08 [55] 15

1 : Normalized performance in milliseconds per mega voxel per iteration (m s/M Voxel/itr). 2 : Additional infor-
mation provided by the authors used to  complete the table or to  com pute normalized performance results.
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Table 4.4: Summary of high performance image registration methods in the liter-
ature on GPU-based architectures

T ra n s fo rm M eas. O p tim iz e r H a rd w a re P e r f .1 G ro u p

C
ol

lin
ea

r

Rigid SSD Simplex GeForce 6800 98.0 Köhn 06 [80] 16
Rigid SSD Grad. desc. (B) GeForce 6800 858 Köhn3 06 [80] 17
Rigid GC ? Quadro FX 1400, FX 

3400, GTX 7800
- Ino 06 [69] 18

Rigid Various4 Custom GeForce 6800 GT - Kham ene3 06 [68] 19
Rigid Various4 ARS +  BN GeForce 7800 GS - Kubias 08 [73] 20
Rigid MI Simplex GTX 8800 (16 M P / 128 

cores)
6.17 Shams 07 [59] 21

Rigid SSD Simplex GTX 8800 (16 M P / 128 
cores)

6.05 Plishker3 08 [61] 22

Affine MI Grad. desc. (A) GTX 8800 (16 M P / 128 
cores)

- Lin 08 [60] 23

Rigid MI Powell GTX 280 (30 M P / 240 
cores)

4.06 Shams 09 [63] 24

D
ef

or
m

ab
le

Bezier MI Powell GeForce3 64MB - Soza 02 [9] 25
Non-par. SSD Grad. desc. GeForce FX 5800 U ltra - Strzodka 04 [67] 26
Non-par. SSD Grad. desc. (B) GeForce 6800 465 Köhn3 06 [80] 27
Non-par. MI

+
KL

Grad. desc. (C) GTX 7800 2860 V etter3 07 [70] 28

Non-par. MI
+
KL

Grad. desc. (C) GTX 8800 U ltra (16 
M P/128 cores)

324 Fan3 08 [71] 29

Demons SSD Iterative Quadro FX 1400 1050 Courty 07 [72] 30
Demons SSD Iterative GTS 8800 (12 M P/96 

cores)
11.7 Sharp3 07 [58] 31

Demons CC Iterative Quadro FX 5600 (16 
M P/128 cores)

9.25 Öz^elik 08 [62] 32

B-spline SSD Grad. desc. (C) GTX 8800 (16 M P / 128 
cores)

3710 Plishker3 08 [61] 33

B-spline SSD Grad. desc. (D) GTX 295 (30 M P / 128 
cores)

573 Sham s2 09 34

B-spline NMI Grad. desc. (D) GTX 295 (30 M P / 128 
cores)

1699 Shams2 09 35

Polynom. MI Exhaustive Quadro FX 5600 (16 
M P/128 cores)

- Ruiz 09 [64] 36

1 : Normalized performance in milliseconds per mega voxel per iteration (m s/M Voxel/itr). 2 : Previously un-
published result. 3 : Additional information provided by the authors used to  complete the table or to compute
normalized performance results. 4 : Various measures were considered including SSD, CC, and GC.
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R eg is tra tio n  on th e  G P U

As discussed in Chapter 2, image-based registration typically consists of several 
iterations of some optimization algorithm with the aim to minimize a suitable cost 
function subject to an optional smoothness criteria

Topt = argmin - S ( F ;  M ( T )) +  £(T), (5.1)
T

where S  is the similarity function to be maximized, C is the smoothness term, T  is 
a transformation operator, and F and M (T) are the fixed and transformed moving 
images, respectively. Each iteration of the optimization involves transformation of 
the moving image and computation of the cost function against the fixed image. 
For ease of reference, we include Fig. 2.1 here again, where the major components 
of a general registration solver are depicted.

Figure 5.1: A general registration solver and its main components where F, M, 
and M (T) are fixed, moving and transformed moving images, respectively.

In this chapter, we are concerned with development of efficient algorithms for 
the transformer and measure components on the GPU. These components represent

91
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the main bottlenecks for an iterative registration, as depicted above. We would 
like to clarify, early on, that there is no computational benefit in implementing 
the optimizer on the GPU as the time spent in an optimizer outside of the cost 
function is typically less than 1%.

In the course of this chapter, we will demonstrate that GPU implementation 
of a serial algorithm is much more than a mere port of an existing code to a 
new platform. We argue that to maximize the benefits of moving to a massively 
multiprocessing architecture, one should be prepared to re-examine and redesign 
existing algorithms. This should become evident as we examine various methods 
for computation of histograms on the GPU (a seemingly simple task that proves 
to be far from trivial on a massively multiprocessing architecture).

5.1 P arallel H istogram  C om p u tation

A histogram is a non-parametric density estimator which provides a consistent 
estimate of the pmf/pdf of the data being analyzed [81,82]. Histogram is a funda-
mental statistical tool for data analysis which is used as an integral part of many 
scientific computational algorithms. Our interest in efficient computation of his-
tograms is for computation of the MI similarity measure which is commonly used 
in multi-modal image registration.

Histogram computation is straightforward on a sequential processor as shown 
in Listing 5.1.

1 f o r  ( i  =  0; i <  d a t a . l e n  ; i + + )
2 {
3 / /  d a t a f ]  ’ i s  n o r m a l i z e d  b e t w e e n  0 . 0  a n d  1 . 0 .
4 b i n  =  d a t a  [ i ] * ( b i n s  — 1) ;
5 / / ’ h i s t o g r a m  []  ’ i s  a l r e a d y  i n i t i a l i z e d  t o  z e r o .
6 h i s t o g r a m  [ b i n ] +  +  ;
7 }

Listing 5.1: A simple histogram code snippet for a sequential processor. The data 
is assumed to be normalized between 0 and 1.

Parallelizing a histogram with B  bins over N  threads is schematically shown in 
Fig. 5.2. The input data is distributed among threads. Each thread reads a data 
element from a separate stream, determines the appropriate bin associated with 
the data element and increments the value of the relevant histogram bin memory. 
Since, updates to histogram memory are data dependent, it cannot be guaranteed 
that threads will not attempt to increment the same memory location at the same 
time. If not properly handled, this results in read/write conflicts and will lead
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Figure 5.2: Parallel calculation of a histogram with B  bins distributed to N  threads, 
where each thread processes a vector of size M  + 1. Histogram updates conflict and 
require synchronization of the threads or atomic updates to the histogram memory.

to incorrect accumulation of histogram votes. For example, consider two threads 
attempting to increment a histogram bin. Both threads read the current bin count 
c, they both increment the bin count to c -P 1 and update the memory location to 
c +  1. Whereas the correct outcome is for the bin count to be c +  2.

To overcome this issue histogram updates need to be regularized across threads 
to ensure exclusive access by a single thread at any one time. The easiest way to 
achieve this is by thread synchronization, if supported by an architecture. Synchro-
nization involves using appropriate primitives such as a mutex, a critical section, 
or atomic operations to serialize threads when more than one attempts to access 
a shared resource. The other option is to design an algorithm such that either 
threads do not have to share resources or the access pattern to a shared resource 
can be guaranteed to be conflict-free. We call this approach synchronization-free 
parallelization. Synchronization-free parallelization may not be always possible for 
an entire application. However, as we will demonstrate in the following section, it 
is good practice to try to minimize or remove synchronization where possible.

5.2 P arallel H istogram  C om p u tation  on th e  C P U

Before delving into histogram implementation on the GPU, let us start by the 
easier task of histogram parallelization on the CPU. We compare two methods
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of parallelization, with and without use of synchronization. This will allow us to 
demonstrate certain points regarding efficient parallelization of histograms without 
the clutter associated with a GPU-based method.

5.2.1 Parallelization w ith A tom ic O perations

A naive parallelization of Listing 5.1 uses atomic operations to synchronize access 
to histogram memory as shown in Listing 5.2. The OpenMP directive in line 5 
sets up the subsequent line as an atomic operation. This ensures that reading from 
histogram memory, incrementing the memory location and writing the result back 
is uninterrupted by other threads until completion.

1 # p r a g m a  omp p a r a l l e l  f o r
2 f o r  ( i  =  0; i <  d a t a . l e n  ; i+-1-)
3 {
4 b i n  =  d a t a  [ i ] * ( b i n s  — 1) ;
5 # p r a g m a  omp a t o m i c
6 h i s t o g r a m  [ b i n]  +  +  ;
7 }

Listing 5.2: A naive histogram parallelization with excessive use of atomic opera-
tions.

Histogram Parallelization

•Atomic Parallelization (Uniform) 
Atomic Parallelization (Degenerate) 
Sync Free Parallelization

Serial Computation

In 1000

Z  800

O) 600

Number of CPUs

Figure 5.3: Comparison of two histogram parallelization approaches with and with-
out synchronization. The synchronization-free approach scales almost linearly, 
whereas a naive parallelization by excessive use of synchronization performs worse 
than the baseline serial algorithm.
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There are several problems with this implementation, though. Firstly, there is 
an overhead associated with issuing atomic operations which are being executed 
for every histogram update in the main loop. This slows down the computation 
even when there are no update conflicts and threads do not have to be serialized. 
In fact, the performance of Listing 5.2, for any number of CPUs, is worse than the 
serial implementation in Listing 5.1. We have shown the throughput of this method 
for 1-4 CPUs in Fig. 5.3. There is a significant performance reduction for 2 CPUs 
due to combined overhead of atomic operations and synchronization of threads. 
The performance improves slightly for 3 and 4 CPUs but would eventually fall if 
we could increase the number of CPUs further. As this would result in more and 
more threads to be serialized due to increasing rate of conflicts.

Secondly, the histogram implementation in Listing 5.2 is affected by the dis-
tribution of the data and the number of bins. In fact, the blue curve is based 
on a random data-set with uniform distribution which on average results in the 
least number of conflicts of any random distribution. The worst case scenario is 
given by the green line for a degenerate distribution where all the elements of the 
data-set are set to the same value. This clearly demonstrates that the method’s 
performance is distribution dependent and is adversely affected as the number of 
conflicts increases. Reducing the number of bins has a similar effect as it increases 
the number of update conflicts.

5.2.2 Synchronization-Free Parallelization

The alternative is to devise a method that guarantees conflict-free access to his-
togram memory. Ideally, we would like the performance of a parallel histogram 
implementation to scale linearly, and be independent of the underlying data and 
the number of bins. We will refer to these requirements again when we discuss his-
togram computation methods on the GPU. A parallel implementation that meets 
these requirements is given in Listing 5.3. The method allocates and maintains a 
separate histogram per thread which is used to store a partial histogram for the 
portion of the data assigned to one thread. In the end, the method performs a 
reduction of partial histograms into the final histogram and requires no thread 
synchronization. The method’s memory requirement is Ö(L  +  N B )  as opposed to 
Ö(L + B) for the method in Listing 5.2, where L is the data-set length, N  is the 
number of threads, and B  is the number of bins. Effectively, only lines 20 and 21 
are being parallelized and the rest can be virtually considered serial1. The parallel

lrfo be accurate the entire code is being run by N threads in parallel. However, since N partial 
histograms have been created, parts of the program that involve initialization and reduction of
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1 # p r a g m a  omp p a r a l l e l
2 {
3 / /  A l l o c a t e  a n  a r r a y  o f  p a r t i a l  h i s t o g r a m s
4 # p r a g m a  omp s i n g l e
5 {
6 N =  o m p . g e t . n u m . t h r e a d s  ( ) ;
7 a r r H i s t  =  n ew  u n s i g n e d  i n t  * [ N] ;
8
9

}

10 / /  I n i t i a l i z e  e a c h  p a r t i a l  h i s t o g r a m
11 i n t  t i d  =  o m p _ g e t _ t h r e a d _ n u m  ( ) ;
12 i f  ( t i d  =  0)
13 a r r H i s t  [ t i d ]  =  h i s t o g r a m ;
14 e l s e
15 a r r H i s t  [ t i d ]  =  new u n s i g n e d  i n t  [ b i n s ] ;
16 u n s i g n e d  i n t  * l o c a l H i s t  =  a r r H i s t  [ t i d  ] ;
17 m e m s e t (  l o c a l H i s t  , 0 ,  s i z e o f  ( u n s i g n e d  i n t )  * b i n s ) ;
18
19 # p r a g m a  omp f o r
20 f o r  ( i n t  i =  0 ; i <  d a t a . l e n  ; i+-1)
21 l o c  a l  H i s  t [( u n s i g n e d  i n t ) ( d a t a [ i ]  * ( b i n s  — 1) ) ]  +  +  ;
22 }
23
24 / / R e d u c t i o n  o f  l o c a l  h i s t o g r a m s
25 f o r ( i n t  j =  1; j <  N; j + + j
26 {
27 u n s i g n e d  i n t  * l o c a l H i s t  =  a r r H i s t  [ j ] ;
28 # p r a g m a  omp p a r a l l e l  f o r
29 f o r  ( i n t  i =  0; i <  b i n s ;  i + + )
30 h i s t o g r a m  [ i ]  + =  l o c a l H i s t  [ i ] ;
31
32 d e l e t e  [] l o c a l H i s t  ;
33 }
34 d e l e t e  a r r H i s t  ;

Listing 5.3: Historgram parallelization by reduction of partial histogram.

and serial portions of the program have a complexity of 0{L/N) and 0(B), re-
spectively. As long as L >  NB, efficient parallelization can be achieved. This is 
demonstrated in Fig. 5.3 where the synchronization-free method exhibits close to 
linear scalability when we increase the number of CPUs.

5.3 H istogram  C om p u tation  on th e  G P U

Many image processing applications require histogram computation as part of a 
more complex task and will benefit from efficient methods for its computation on 
the GPU. Our motivation, however, is to allow efficient computation of mutual 
information (MI) for real-time registration of multi-modal images. Without an 
efficient histogram method on the GPU, the data needs to be moved back from the 
device (GPU) memory to the host (CPU), resulting in costly data transfers and 
reduced efficiency.

partial histograms are computationally equivalent to a single thread acting on only a single 
histogram.
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Histograms are not a natural fit to the stream processing model for which 
GPUs are primarily designed. GPUs are designed to process large amounts of data 
efficiently where data access patterns fit within a predetermined structure and 
remain largely independent of each other. In histogram computation, however, 
the access pattern to the histogram memory cannot be determined apriori and is 
dependent on the value of each data element. As such, efficient computation of 
histograms has been traditionally difficult on the GPU [83].

The difficulty of developing efficient histogram algorithms on the GPU is evident 
from some of the earlier efforts to perform this task through the graphics API on 
the previous generation of GPUs [84,85]. Limitations with gather and particularly 
scatter operations (i.e. random memory reads and writes respectively) made it 
difficult to develop efficient histogram algorithms. In [84], Fluck et al. use a gather 
approach that requires B / 4 texture fetches per data element and hence has a 
complexity of O(LB).  The work by Scheuermann et al. [85] is based on a scatter 
approach through the use of the vertex shader and accumulates histogram counts 
using GPU’s hardware support for color blending. Scheuermann’s method has a 
linear complexity 0 ( L ) and demonstrates improved performance. Nevertheless, the 
performance gain is limited compared to a serial implementation (the performance 
is up to 3.5 better than a single core CPU of comparable technology). They also 
discuss a number of limitations based on the capabilities of the hardware including 
the accuracy of histogram computations. Fortunately, the new generation of GPUs 
with native support for general purpose programming offer much better flexility 
and no limitations for random memory access (albeit at the expense of more costly 
non-coalesced memory access).

In the following sections, we present a number of methods for histogram compu-
tation on CUDA enabled GPUs. A common element of all the proposed algorithms 
is the need to compute several partial histograms and a subsequent reduction stage 
to combine them into the final result. As we showed in Section 5.2.2, this is an 
effective strategy in histogram parallelization and also in dealing with unnecessary 
synchronization as long as the total size of partial histograms remains much less 
than the data size. This may become an issue on the GPU where we need hundreds 
of blocks and thousands of threads to keep the device fully utilized. Therefore, in 
order to achieve the highest performance, we take the number of bins in optimizing 
the kernel execution configuration into account. As we will see, the choice of opti-
mal solution for a particular problem depends on the distribution of the underlying 
data and the number of histogram bins required.

Another common feature of the proposed algorithms is that none depend on
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availability of atomic operations and synchronization primitives with the exception 
of the thread join. Hence, the algorithms can be run on any CUDA-enabled device 
irrespective of the compute capability of the hardware. The first three algorithms, 
in particular, were designed and published in 2007 [59,75], when the GPUs did 
not support atomic operations. Atomic operations in the global and shared mem-
ory have since been introduced with devices of compute capability 1.1 and 1.3, 
respectively. This may simplify certain aspects of code development. However, 
we emphasize that indiscriminate use of synchronization primitives will result in 
poorly parallelized programs. In the following sections, unless otherwise noted, we 
use GTX 8800 (see Table C.2 for hardware specifications), which does not support 
atomic operations, for reporting the results.

5.3.1 M ethod 1: Sim ulating A tom ic U pdates in Software

As mentioned before, all the threads of a warp execute the same instruction at 
any one time. Normally, the threads should operate on independent data elements. 
However, if multiple threads within a warp attempt to update the same memory 
location, the outcome cannot be readily predicted. We deliberately avoided la-
beling the outcome ‘unpredictable’ because one of the threads, and only one, will 
successfully update the destination [66]. So, if two threads in a warp attempt to 
update the same memory location at the same time with values a, and b, we at least 
know that the memory location in question will hold either a or b after executing 
the instruction. We cannot predict beforehand which one will be successful but 
the value can be read back to determine the outcome. This behavior allows us to 
mimic the functionality of an atomic update as shown in Listing 5.4.

1 / / ’ b i n  ' i s  d e f i n e d  a s  ’ v o l a t i l e  ’ t o  p r e v e n t  t h e  c o m p —

2 / / H e r  f r o m  o p t i m i z i n g  a w a y  t h e  c o m p a r i s o n  i n  l i n e  1 2 .

3 v o l a t i l e  u n s i g n e d  i n t  b i n ;

4 u n s i g n e d  i n t  t a g g e d ;

5 b i n  =  ( u n s i g n e d  i n t )  ( d a t a [ i ]  * ( b i n s  — 1 ) ) ;

6 d o

7 {
8 / / T h e  l o w e r  5 h i t s  o f  t h e  t h r e a d  i d  ( t i d ) a r e

9 / / u s e d  t o  t a g  t h e  m e m o r y  l o c a t i o n  .

10 t a g g e d  =  ( t i d  «  2 7 )  +  ( h i s t o g r a m  [ b i n  ] +  1 ) ;

11 h i s t o g r a m  [ b i n  ] =  t a g g e d ;

12 } w h i l e  ( h i s t o g r a m  [ b i n  ] ! =  t a g g e d ) ;

Listing 5.4: Simulating atomic updates to the shared memory for threads that 
belong to the same warp.

In line 5 of the above listing, a histogram bin is determined from input data. 
The corresponding memory location in the ‘ histogram []’ array is then atomically
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incremented by one in lines 6-12. Each thread in a warp with w threads can be 
represented by a [log2rc]-bit identifier where [•] is the ceiling operator. When 
a thread attempts to write into the histogram it also tags the memory location 
by combining the histogram value with its identifier into a 32-bit word2. The 
code assumes that there are 32 threads in a warp and hence, the identifer and the 
histogram values are allocated 5, and 27 bits, respectively. In line 10, the current 
value of the histogram bin is incremented by all participating threads in the warp 
and tagged with the lower 5 bits of the thread ID. The result is then stored in a 
variable named ‘tagged’. The result is written back into the histogram array in 
line 11. This is where the update conflicts may occur if the value of ‘bin’ is the 
same for more than one thread. In case of an update conflict, one of the threads 
will succeed in updating the histogram and will leave its thread ID behind. In line 
12 each thread will determine whether it has successfully updated the histogram 
or not. Threads that have been successful will no longer execute the update loop 
and will allow the remaining threads to try their chance in the next iteration.

The update loop will be executed up to c times, where c is the maximum 
number of threads that are attempting to update a single bin. The upper bound 
for c equals the number of threads in a warp. If supported by the hardware, the 
entire update loop can be replaced by a hardware-based atomic addition. Either 
way, the efficiency of the algorithm is dependent on the number of update conflicts 
which in turn is dependent on the distribution of the underlying data and the 
number of bins. The worst case scenario occurs when all data elements belong to 
the same bin (e.g. when data has a degenerate distribution i.e. all the data elements 
are the same).

For this method to work one needs to ensure that the ‘histogram[]’ array is 
only updated by one warp at a time. Hence, we need to maintain separate partial 
histograms per warp. Partial histograms have to be allocated on the GPU’s shared 
memory for this method to be efficient. However, given the 16 KB limit for the 
shared memory, the maximum number of 32-bit bins that can be supported is 
40963. Allocating ‘histogram[]’ in the global memory to overcome this limit is not 
advisable as repeated updates to the high latency global memory will significantly 
reduce the execution speed.

We also note that using a single warp under-utilizes the GPU resources. For 
optimal performance the GPU needs around 4-8 warps. As such, we need to allocate

2As a result of tagging the histogram, the frequency of data samples may not exceed 
2 3 2 — |"log2 u>]

3The actual number is slightly lower, since CUDA uses shared memory to pass arguments and 
execution information to the kernel.
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Method 1: Performance for Different Number of Warps
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Figure 5.4: The maximum performance of the method is higher with more warps 
but drops more quickly with the number of bins. Lower number of warps perform 
better for larger bins.

a separate histogram array for each warp. The sub-histogram arrays are then 
combined to produce the final result. Obviously, increasing the number of warps 
will further limit the number of bins that can be processed per execution of the 
algorithm.

To allow histogram computation with an arbitrary number of bins, we divide 
the bin ranges into a number of sub-ranges that fit in the shared memory. For a 
given execution configuration, the algorithm is then run as many times as required 
to cover the entire bin range. At each iteration the kernel will only process those 
data elements which fall in the specified bin range. For example, with 4 warps and 
a limit of 1024 bins per execution, a 10,000 bin histogram requires 10 iterations of 
the algorithm.

Fig. 5.4 shows histogram computation throughput in gigabytes per second for 
a data-set with a uniform distribution and for different number of warps. The 
number of bins is varied from 1 to 10,000. Higher number of warps results in 
improved performance per iteration of the algorithm. This can be seen in Fig. 5.4 
for smaller bins, where the computation can be completed in a single iteration. 
The sharp drops in throughput in each curve correspond to points where the total 
number of bins for a given number of warps exceeds the shared memory size and 
the algorithm has to perform an additional iteration to complete. Hence, as the
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Method 1: Performance for Different Input Distributions
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Figure 5.5: The performance of method 1 is dependent on the distribution of the 
input data. Data with a uniform distribution performs best. The worst perfor-
mance is observed for a degenerate distribution. The performance for practical 
applications is somewhere between these upper and lower bounds. The GPU gives 
up to 42 times improved performance compared to a single core CPU

number of bins increases, the number of warps has to be reduced to delay reaching 
such a breakpoint at the expense of under-utilizing the GPU.

To achieve an optimal throughput, we choose the number of warps wopt depend-
ing on the number of bins such that

wopt =  argmaxwB, w B < smax, 3 < w < wmax, (5.2)
W

where w is the number of warps, B  is the number of bins, smax is the maximum 
number of double words that can be allocated in the shared memory, and wmax is 
the maximum number of warps supported by the hardware. We also found that 
the best utilization of the GPU can be achieved by setting the number of blocks to 
three times the number of available multiprocessors.

As can be seen in Fig. 5.4, the performance of the method decreases with in-
creasing number of bins with the exception of the very beginning of the bin range 
where the performance decreases as we reduce the number of bins. This anomaly 
is due to an increased rate of update conflicts when the data elements are being 
mapped to fewer bins.
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In Fig. 5.5, we have shown the throughput of the method for a random input 
with a uniform distribution, a sample MR image, and a degenerate distribution. 
The random input with uniform distribution is close to the best case scenario4, as 
for large inputs the histogram is going to be uniform and the histogram update 
collisions are close to minimal. A degenerate distribution results in maximum 
histogram update collisions, as all the threads try to update the same histogram 
bin and as such represents the worst case scenario. The performance for a real 
application is somewhere in between these lower and upper bounds. We have 
represented this using data from an MR image. For comparison, we have also 
shown the throughput of histogram calculation on a single core CPU (refer to 
Appendix C for specifications). The performance of the histogram on the CPU is 
almost constant w.r.t. the number of bins and is not affected by the distribution of 
the input data.

Fig. 5.5 shows that the GPU implementation of method 1 has a clear advantage, 
especially for smaller bins. However, for a sufficiently large number of bins the 
method will inevitably lose its performance benefit over a single core CPU. Another, 
disadvantage is that as with any other atomic-based method, the performance is 
dependent on the underlying data-distribution. We address the latter problem in 
the next section.

5.3.2 M ethod 2: Synchronization-Free Parallelization

The second method that we discuss is functionally equivalent to the synchronization- 
free parallelization method on the CPU given in Section 5.2.2. Similar to the CPU 
version, a partial histogram is maintained for every thread. The partial histograms 
are combined at the end to obtain the final result. The partial histograms have 
to be created in the global memory because the shared memory is simply not 
large enough to hold a partial histogram for every thread for a reasonably sized 
histogram.

The benefit is that, given the size of the global memory, for any practical number 
of bins the algorithm only requires a single iteration to complete. In addition, there 
will be no concurrent updates of the same memory location by multiple threads 
and as such no update synchronization is required, which in turn means that the 
performance of the method is not data dependent5.

However, there are two drawbacks to this method; firstly, a much larger memory

4The best performance is achieved by a data-set ‘engineered’ to map into different bins for 
every chunk of data processed by a warp.

5To be more precise, the method is not completely data-independent. Bin-packing (explained 
later) introduces some dependence on the data distribution.
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Method 2: Performance
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Figure 5.6: The performance of method 2 is above the first method’s worst case and 
the CPU-based histogram implementation. The maximum throughput is achieved 
for very small bins with an improvement of up to 60 times compared to the CPU 
implementation.

for partial histograms needs to be allocated and initialized to zero at the beginning; 
secondly, histogram updates need to be done on the global memory, this entails 
non-coalesced read/writes per input element and is inefficient.

The standard memory initialization method, ‘cudaMemseV , proved to be in-
efficient. We implemented a method for initializing an array in the kernel with a 
throughput of around 60 GB/s, which to some extent addressed the first problem.

To address the second problem and avoid excessive non-coalesced updates of the 
global memory, a delayed-write technique is employed. We pack multiple bins in a 
32-word in the shared memory and only update the corresponding bin in the global 
memory when the packed bin overflows. This reduces the updates to the global 
memory by a factor of 2 \  where i is the number of bits available for storage of a 
bin in the shared memory. The number of available bits depends on the number of 
threads per block and the number of bins and is calculated as

i
x 32

B x  Nb
(5.3)

where smax is the maximum number of double words that can be allocated in the 
shared memory, B  is the number of bins and Nb is the number of threads per block.
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There is a trade-off between the number of threads and the number of bits 
per bin. Increasing the number of threads, decreases i, resulting in more global 
memory updates, while reducing the number of threads can under-utilize GPU 
resources and affect the performance. We optimized these parameters for the best 
performance, the result is shown in Fig. 5.6. As can be seen method 2 performs 
consistently better than the method l ’s worst case. The performance of method 2 
for smaller bins is better or comparable with method l ’s best case. However, this 
method under-performs method l ’s best case for the mid and high bin ranges.

5.3.3 M e th o d  3: A p p ro x im ate  H is to g ram

The third method that we discuss is not a histogram computation method per 
se, rather it obtains an approximation of the input’s distribution function. As we 
indicated earlier, our primary application for histogram computation is to obtain 
an estimate of the marginal and joint pmf of multi-modal images for Mi-based 
registration. Hence, it is not necessary to limit ourselves to an exact computation 
of histograms as long as we can reasonability estimate the probability distribution 
of the images.

Starting with the assumption that a histogram is a reasonable approximation 
of the pmf of a discrete random signal, one would expect to estimate a more or 
less similar pmf from a sufficiently large subset of observations. As long as the 
observations are independent, it should not matter what subset of the signal is 
being used for the estimation. We use this intuition to our advantage in order to 
improve the performance of pmf computation on the GPU by designing a sampling 
strategy that guarantees conflict-free updates of partial histograms by the threads 
of a block.

The pmf calculation is to be distributed to K  thread blocks each with Nb 
threads. Each block will maintain a partial histogram of its own in the global 
memory for the portion of input data assigned to the block. The entire bin range 
is divided into Nb non-overlapping regions. Each thread in a block is responsible 
for computing the histogram count for one of these non-overlapping regions. The 
bin range assigned to each thread ID Ud (zero-indexed) is given by

x x (Ud +  1)J, (5-4)

where, B  is the number of bins, Nb is number of threads per block, [a\ denotes 
the largest integer value that does not exceed a. Based on (5.4), each thread will 
handle either |_ŷ J or |_ y |J  + 1 bins.
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Fig. 5.7 shows data access and execution configuration for each block. Input 
data allocated to each block is further divided among the threads. Each thread will 
process data only if the histogram bin b for a data element falls within the subset 
of bins assigned to that particular thread. Therefore, a single partial histogram per 
block is required. The algorithm guarantees that histogram updates by different 
threads are non-coincident. We also note that the method samples the input data 
at a rate approximately equal to

d a ta [M N + 2 l dfltfl[MN +  N]

m m  m m

V uaT l]  "BX/u f.2.1

Figure 5.7: Data access and execution configuration for threads within a block 
in method 3. Schematically, we have displayed allocation of two bins per thread. 
Dotted lines indicate that the data is outside the bin range assigned to the thread 
and as a result is discarded.

To further improve the performance, we adopt the delayed-write technique used 
in method 2. Depending on the number of bins several bins may be packed in a 
single 32-bit word to hold a partial count of the histogram. Whenever, a packed bin 
overflows, we increment the corresponding partial histogram in the global memory. 
This method delays global memory updates to the extent possible. For example, for 
10, 000 bins we can allocate 8-bits per bin in the shared memory. This means that 
the block’s partial histogram has to be updated once 256 samples are accumulated 
in a given bin.

Typically, 128-256 threads per block are required to ensure that the GPU’s 
computing resources are fully utilized. Fig. 5.8 depicts the throughput of method 
3 for different number of threads and shows that the method is scalable and the 
performance increases as we increase the load on the GPU. However, increasing the
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Method 3: Performance for Different Number of Warps
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Figure 5.8: Method 3 scales well as the number of warps is increased.

number of threads results in a lower sampling rate and may result in a less accurate 
estimation of the histogram. A right balance between the required accuracy and 
the computational efficiency must be struck. As a rule of thumb, the larger the 
data-set and the less dependent the observations, the lower the sampling rate can 
be set.

The main benefit of this approximate method is that it maintains its perfor-
mance for a wide range of histogram bins. The performance is also virtually unaf-
fected by the distribution of the underlying data stream.

5.3.4 M ethod 4: Sort and Count

The final method that we discuss maintains the desirable properties of the approxi-
mate histogram algorithm (i.e. its performance is largely unaffected by the number 
of bins and distribution of data) with the added benefit that it computes an exact 
histogram. The main idea here is to reorganize input data in a way that facilitates 
histogram computation and removes the need for atomic operations or synchro-
nization at the same time. The method is based on the sort and count algorithm 
that we first presented in [63].

The previous methods that we discussed were specihcally designed for CUDA- 
enabled GPUs. One can argue that hardware-specific algorithms will inevitably 
be superseded due to improved capabilities of future generations of hardware. The
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argument was certainly stronger for previous generations of GPUs with limited gen-
eral purpose programming capabilities. This is less of an issue for modern GPUs 
where the programming environment is C/C-like and there is an upgrade path to 
future generations of hardware. Nevertheless, there is more intrinsic value in de-
vising algorithms designed for massively parallel architectures with no dependence 
on the specifics of a particular hardware. This is the approach taken with sort and 
count method, where the proposed algorithm is general and hardware-independent 
and can be applied to an arbitrary platform. For comparison with previous meth-
ods, we still develop and test the algorithm on NVIDIA hardware. However, we 
start by introducing the concept of the algorithm first, and leave the details of a 
CUDA specific implementation to later subsections.

Sort and Count Algorithm

The purpose of a sort and count algorithm is to determine the number of equally 
valued elements of a data-set while the data-set is being sorted by a suitable algo-
rithm. We begin by defining a number of concepts.

Let /  =  {1,2, ...,n} be an index set and A be a set with the same cardinality 
as /  (|A| =  n) and with a total order6 defined in terms of a comparison operator 
<. A sequence s is defined as a one-to-one mapping s : /  —► A. A sort algorithm 
arranges an arbitrary sequence

s : {öi, a-2,..., on}, ai £ A

to a new sequence

S  • { ö ( / ) ( l ) ?  •••■> ^ ( n ) }

such that

o<()(i) ^  for all i j ,

where 0 is a permutation of the index set I .
A binary comparison-only sort algorithm, is one that reorganizes a sequence 

using knowledge gained solely by application of a comparison operator on pairs of 
records. A sort algorithm is stable if it maintains the relative order of elements with 
equal keys (e.g. values) [86]. An arbitrary sort algorithm with a given comparison

6 A total order is a binary relation that is transitive (x < y, y < z —> x < z), antisymmetric 
( x < y , y < x —+x = y), and total (either x < y or y < x). A partial order, such as the subset 
operator (c), does not possess the last property.
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operator < can be stabilized by introducing a new comparison operator -< such 
that

ai -< aj <=> (üi < aj) V (ßj =  üj A i < j) . (5.5)

Note that no two keys are equal under the new comparison operator.

Consider a stabilized binary comparison-only sort algorithm such as S. We 
introduce a modification to S  so that it counts the number of elements that are 
equal under the original comparison operator while sorting. We assign a counter 
to each element and initialize the counters to 1 at the beginning

s ■

where s is the initial sequence and the superscripts denote the counters. The 
counters are updated every time a comparison is performed if a[n̂ = a!'-'3  ̂ with 
i < j  such that

rij rij +  rii, (5.6)

r i i  <—  0 .

In other words, every time a comparison of equal elements is performed, the element 
with a higher position in the sequence accumulates the counter of the lower element. 
We call this a sort and count algorithm.

For example, performing a sort and count on a sequence such as {1,3,1,1,2,3} 
results in the following sequence: {R°\ R °\ R3), 2d), 3(°), 3(2)}. The sort and count 
steps for this example are given in Table 5.1 using a simple bubble sort algorithm 
(in practice, we will use a parallel sort algorithm but it is easier to demonstrate the 
concept using a simpler sort algorithm such as the bubble sort). The sequence is 
sorted after 8 iterations, however bubble sort will take another iteration to realize 
this. As can be seen in row 8 of Table 5.1, at the end of the sort and count 
algorithm, numbers with the highest position in their groups have their counters 
set to the number of group elements.

Theorem: At the completion of a sort and count algorithm, all elements within 
a subset with equal values have their counters set to zero except for the element 
with the highest position in the sequence whose counter contains the cardinality of 
the subset.

Proof: Let us denote an arbitrary subset of equally valued elements (if one 
exists) within the sorted sequence by { b ^ ^ \ ••••> ^k+nT^}- For an element
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Table 5.1: An example of a bubble sort and count for a simple sequence

Itr. Sequence Compare R esult

1 {1(1),3 (1),1 (1),1 (1),2 (1),3 (1)} (1.3) 1 < 3, no order change

2 {1(1),3 (1),1 (1),1(1),2(1),3(1)} (3,1) 3 > 1, swap

3 {1(1), 1(1),3 (1),1 (1),2^),3 (1)} (3,1) 3 > 1, swap

4 { 1 ^ ,1 ^ ,1 (1\ 3 (1),2 (1),3 (1)} (3,2) 3 > 2, swap

5 {lC1), l(x), lC1), 2(1), 3(—), 3(—)} (3,3) 3 =  3, no order change, 
higher index 3 accumulates 
the counter

6 { l(i), l (i), l (1),2 (1),3 (0),3 (2)} (1,1) 1 =  1, no order change,
higher index 1 accumulates 
the counter

7 {1<0),1 (2),1 (1),2 (1>,3<°>,3<2>} (1,1) 1 =  1, no order change,
higher index 1 accumulates 
the counter

8 {1<°>, 1<°), 1<S>, , 3<°), 3<2>} (1,2) 1 < 2, no order change

9 {l(°C 1<°), l(3>, 2('), 3<°>, 3<2)} (2,3) 2 < 3, no order change

such as 6-n^ with i ^  k T m  to have a non-zero count, it must have never been 
compared with 6^\+1\ ...., otherwise the count would have been accumu-
lated by the higher position element. Now let us update in the original sequence 
with 6; +  e such that e > 0 and bt + e < 6fc+m+i. If we run the stabilized sort algo-
rithm again, this change will not affect the outcome, because the updated element 
is still less than bk+m+i , ...,6n, it is greater than 6j_i,...,6i and since it is never 
compared against fej+i,..., 6fc+m, the algorithm makes the exact same decisions at 
each step and hence 6* must occupy the exact same position. However, this also 
means that the algorithm has failed to sort the sequence (6; +  e > bi+1) and the 
proof is complete.

Sort and Count for Parallel Histogram  Com putation

For an arbitrary data-set, one can perform the sort and count algorithm on the 
data-set using the bin values corresponding to each element as the sort key. At 
the completion of this process, the non-zero counters associated with the sorted 
sequence contain the value of corresponding histogram bins.

With a sort algorithm that can be efficiently parallelized (such as the bitonic 
sort described later), sort and count can be used to efficiently parallelize histogram
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computation for massively multiprocessing architectures. Since the outcome of 
sort contains a single non-zero counter for each unique histogram bin, a number 
of threads can process the non-zero counters in parallel and update histogram 
locations corresponding to these bin values. The algorithm is guaranteed to be 
free of update conflicts and has no reliance on synchronization primitives. Of 
course, in practice, we do not sort the entire input data, the data is read in blocks, 
sorted and the histogram is updated with the counters in each iteration. Fig. 5.9 
demonstrates the concept of updating the histogram for the simple example of the 
previous section, where each thread reads a bin from the sorted sequence and only 
writes to the histogram memory if the bin contains a non-zero count. As can be 
seen, some threads may not perform an update and remain idle, however this is a 
big improvement over having to serialize them.

1 (0) 1 (0) 1 (3 ) 3(1) 3(0) 3(1)

1 f  ' f 1 ' ' ’ ’’ '

Th read (1)
r  y

Thread (2)
V y

f \

Thread (3)
V y

r  's

Thread (4)
v  y

c \

Thread (5)
\  y

( \

T h read ed
v  y

h ist D0 r a hlstD0rRvwl3l

Figure 5.9: Conflict-free update of the histogram with sort and count.

B itonic Sort A lgo rithm

We used ‘bitonic sort and count’ to test the performance of the proposed method. 
In this section, we provide a brief overview of the bitonic sort algorithm itself [87].

A sequence of non-decreasing or non-increasing numbers is called monotonic. A 
bitonic sequence is one that consists of an ascending and a descending monotonic 
sequence. A bitonic sorter converts a bitonic sequence into a monotonic sequence. 
If a bitonic sequence of 2n numbers, {0 1 , 0 2 , • ••a2n}, is reorganized into

{min(ai, an+1), min(a2, an+2) , ..., min(an, a2n), 

m ax(ai,an+i),max(fl2, an+2) , ..., max(an,a 2n)},

the new sequence is also bitonic and none of the elements in the first half of the 
sequence can be greater than any elements in the second half [87]. This is known
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as the bitonic merge theorem. So given a bitonic sequence of size 2n one can 
sort the sequence by merging the sequence first and using 2 bitonic sorters of 
size n. This provides an iterative algorithm for sorting a sequence of L = 2m 
elements using a bitonic sorter. Fig. 5.10 shows a bitonic sort network for an 
input sequence of 8 elements which completes after 6 iterations regardless of the 
input sequence. The order of comparisons at each iteration is pre-determined as 
shown in Fig. 5.10. Bitonic sort is not an optimal sort7 and requires 0 (L (logL )2) 
comparisons. However, since the sequence of comparisons is predetermined and 
data-independent, the algorithm can be efficiently parallelized.
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Figure 5.10: Ascending bitonic sort for a sequence of 8 elements. Each connector 
represents a comparison in the direction denoted by the arrow. Elements involved 
in each comparison are swapped if they are not in the desired order, k and j  
represent block size and comparison offset at each level, respectively.

C U D A  Im plem en ta t ion

In our CUDA implementation, the data is distributed among k blocks each with 
Nb threads which process input data in chunks of 2iV& size in each iteration. Each 
block maintains a partial histogram in the global memory. The partial histograms 
are combined using a parallel reduction algorithm at the end. Input values are 
stored as 32-bit unsigned integer values, and counters are packed into the higher 
bits of the same memory location, for most efficient handling.

Listing 5.5 shows the kernel function executed by each thread to perform a 
bitonic sort and count algorithm. Bins and their associated counters are packed into

7An optimal sort algorithm executes in O(LlogL) time.
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Method 4: Performance for Different Input Distributions
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Figure 5.11: Sort and count exhibits a consistent performance for the entire bin 
range and is largely unaffected by the distribution of the input data.

32-bit unsigned integer variables, where the lower 16-bit word is used to store the 
bin number and the higher 16-bin word contains the counter value. The complete 
source code can be found online at h ttp ://cecs .anu .edu .au /~ ram tin /cuda /.

We have shown the performance of the CUDA implementation on a GTX 8800 
in Fig. 5.11. The performance of the method is the same for a uniform distribution 
and a sample MR image. The performance is slightly higher for a degenerate data-
set which actually represents the method’s upper-bound throughput. This is due 
to the fact that for a degenerate data-set, the underlying sort method does not have 
to swap the sequence elements which results in a slightly improved performance.

Counting a Sorted Sequence in Parallel

The sort and count method limits the class of sort algorithms that can be used as 
discussed in Section 5.3.4. This excludes some popular parallel sort methods such 
as the radix sort. Here, we present an algorithm that counts an already sorted 
sequence in linear time. This allows an arbitrary sort algorithm to be used for 
histogram computation. However, we note that the sort and count algorithm is 
the preferred method for counting a sequence where the sort algorithm meets the 
requirements of Section 5.3.4.

Consider a sorted sequence s : {a jni\ <4^, •••> where each element has
been assigned a counter as before. We call the sequence counted if for an aribitrary
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1 _ .  
2 (
3

d e v i c e . ,  i n l i n e  v o i d  b i t o n i c S o r t

u i n t  * s h a r e d  , P o i n t '  r  t o  d a t a  i n  t h e  s h a r e d  m e m o r y
4 c o n s t  u i n t  t i d  , I D  o f  th< c u r r e n t  t i n  c a d
5
6 )n

c o n s t  u i n t  t h r e a d s

8 / /  P a r a l l e l  b i t o n i c  s o r t
9 / /  k i s  t h e  b i t o  n i e  b l o c k  l e n g t h

10 / /  S a v e  l o g ‘2 ( k )  t o  s p e e d  u p  t h e  c o m p u t a t i o n s
11 u i n t  l o g 2 k  =  1;
12 f o r  ( u i n t  k  =  2 ;  k  < =  t h r e a d s  «  1;  k « =  1 ,  l o g 2 k + + )
13 (
14 / /  B i t o n i c  m e r g e
15 / /  B i t o n i c  b l o c k  I d
16 u i n t  b . i d  =  t i d  »  ( l o g 2 k  — 1 ) ;
17 / /  j  i s  t h e  b i t o n i c  o f f s e t
18 / /  S a v e  l o g ‘2 ( j )  t o  s p e e d  u p  t h e  c o m p u t a t i o n s
19 u i n t  l o g 2 j  =  l o g 2 k  — 1;
20 f o r  ( u i n t  j  =  k  »  1;  j  >  0 ;  j » =  1 ,  l o g 2 j ---- )
21 {
22 u i n t  i l  =  ( ( t i d  »  l o g 2 j )  «  (1 o g 2 j  +  1 ) )
23 +  ( t i d  & ( j  -  1 ) ) ;
24 u i n t  i 2  =  i 1 4- j  ;
25 u i n t  L I  =  s h a r e d [ i l ]  &; 0 x 0 0 0 0 f f f f ;
26 u i n t  L2 =  s h a r e d [ i 2 ]  & 0 x 0 0 0 0 f f f f ;
27 / /  E v e n  b l o c k s  a r e  s o r t e d  i n  d e s c e n d i n g  o r d e r
28 i f  ( ( b . i d  & 1)  =  0 )
29 {
30 i f  ( L I  >  L 2 )
31 s w a p ( s h a r e d  [ i 1 ] , s h a r e d [ i 2 ] ) ;
32 e l s e  i f  ( L I  =  L 2 )
33 {
34 / /  A c c u m u l a t e  c o u n t e r s  i n  i 2
35 s h a r e d [ i 2 ]  =  ( s h a r e d [ i l ]  & O x f f f f O O O O )
36 +  ( s h a r e d [ i 2 ]  & O x f f f f O O O O )  4- L I ;
37 s h a r e d  [ i l ]  =  L I ;  R e s i t  i l  ' s  c o u n t '  r
38 1
39 }
40 / /  O d d  b l o c k s  a r e  s o r t e d  i n  a s c e n d i n g  o r d e r
41 e l s e
42 {
43 i f  ( L I  <  L 2 )
44 s w a p  ( s h a r e d  [ i 1 ] , s h a r e d [ i 2 ] ) ;
45 e l s e  i f  ( L I  =  L 2 )
46 {
47 / /  A c c u m u l a t e  c o u n t e r s  i n  i l
48 s h a r e d [ i l ]  =  ( s h a r e d [ i l ]  Sc O x f f f f O O O O )
49 +  ( s h a r e d [ i 2 ]  & O x f f f f O O O O )  +  L I ;
50 s h a r e d  [ i 2 ] =  L I ;  R e s e t  >2 ' s  c o u n t e r
51 }
52 }
53 / /  A l l  t h r e a d s  j o i n  here .
54 __s y n c t h r e a d s  ( ) ;
55 }
56
57 }

}

Listing 5.5: Parallel bitonic sort and count.
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subsequence of equally valued elements sk : {a .̂lk\  a ^ 1+1\  there exists
one and only one nonzero counter k < j  < m whose value equals the number of 
elements in the subset (rij =  m,rii =  0, k < i < m , i  j).  We say a subsequence is 
counted to the left if j  =  k: or in other words the sequence’s length is accumulated 
by the leftmost element. Similarly the sequence is said to be counted to the right if 
j  — m — 1. We say a sequence is bitonically counted if the leftmost subsequence of 
identical values in the sequence is counted to the left and the rightmost sequence 
is counted to right. By convention, a sequence which is entirely composed of 
identically valued elements is counted to the left.

Two bitonically counted sequences si : {a™1, . . . ,a"'} and s2 : {a”+Y, •••,a™"} 
where ag < ag+1 can be merged in to a new bitonically counted sequence by the 
following updates to the sequence counters:

1. if ag =  ag.|_i, ag =  cl\ then n\ ri\ + rig +  ng+i,ng •*— 0, rig+\ 0.

2. if ag =  ag+ u ag ±  ax,ag =  an then nn <- nn +  ng +  ng+x,ng <— 0,n^+i 0.

3. if ag =  ag+i, ag ^  aj, ag ^  an then ng <— ng +  ng+1 , ng+\ 0.

4. if dg ^  Ö-r+l ? ^n * T ?l£+l ■> np+i * 0"

The method can be used to recursively count an arbitrary sequence in parallel 
starting with subsequences of length two and merging until the entire sequence is 
counted. Counting a sequence of length 2P can be efficiently parallelized by up to 
2P_1 threads where the first iteration requires 2P_1 sequence merges, the second 
iterations requires 2P-2 sequence merges, etc. The algorithm completes in p — 1 
iterations and has a linear time complexity.

5.3.5 C o m p ariso n  of H is to g ram  C o m p u ta tio n  M e th o d s

The properties of different histogram computation methods that we have discussed 
in this chapter have been summarized in Table 5.2 for quick reference. The choice of 
the most suitable method for a particular application depends on several factors in-
cluding the number of bins required, type of data, and whether an exact histogram 
computation is desired. The information in Table 5.2 together with throughput 
graphs of earlier sections should help with choosing the right algorithm for a par-
ticular problem.
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Table 5.2: Comparison of histogram computation methods on the GPU

M ethod Pros Cons
1 - S im ulating  atom ic

u p d a te s  in softw are
•  E xact co m p u ta tio n  of his- •  Perform ance is d is trib u tio n

tog ram s d ependen t
•  Fast for low and  m id b in  •  Perform ance reduces w ith  in-

ranges for uniform  an d  norm al creasing  num ber o f bins
d istrib u tio n s a P oor perform ance for im ages

•  W orks reasonably  well w ith  w ith  locally uniform  intensi-
typ ical m edical im ages ties

2 - Synchronization- 
free paralle lization

•  E xact co m p u ta tio n  of his- •  Perform ance reduces w ith  in-
tog ram s creasing  num ber of bins

•  No need for synchron ization  or •  Perform s worse th a n  m ethod
atom ic o pera tions 1 for m ost d is trib u tio n s

•  P erform ance is v irtu a lly  inde-
penden t of th e  d is tr ib u tio n

•  S u itab le  for degenera te  or close 
to  degenerate  d is tr ib u tio n s  for 
low to  m id b in ranges

3 - A pprox im ate
h istog ram

•  No need for synchron ization  or •  C om putes only an  approxi-
atom ic o pera tions m atio n  of th e  h istog ram

•  Perform ance is v irtu a lly  inde- •  A ccuracy of app rox im ations
penden t of th e  d is tr ib u tio n  is inversely re la ted  to  th e

a P erform ance is m odera te ly  af- num ber of w arps
fected by increasing  n um ber of 
bins

4 - B itonic so rt and
count

•  E xact co m p u ta tio n  of his- •  Lower perform ance for low
togram s an d  m id b in ranges

a No need for synchron ization  or 
a tom ic o pera tions

•  Perform ance is v irtu a lly  inde-
penden t of th e  d is tr ib u tio n

•  Perform ance is alm ost unaf-
fected w ith  increasing  num ber 
of b ins

•  B est perform ance for 10,000 
and  m ore bins
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5.3.6 C om putation of Joint H istogram s

So far we have focused on computation of ID histograms. We note that 2D or joint 
histogram computation can be cast as a ID histogram computation problem, as 
follows.

Consider two real-valued sequences of equal size s i : {ai, a2, ..., an} and s2 : 
{61 , 62, ..., bn}. Without loss of generality, we assume that sequence values are 
between 0 and 1. We would like to determine a joint histogram with B\ x B2 bins, 
where B\ and B2 are the number of bins for si and s2, respectively. The joint 
histogram computation can be reformulated as a marginal histogram computation 
with B = B\ x B2 bins for a new sequence s given by

This simply allows us to reuse ID histogram code for joint histogram computations.

5.4 P a ra lle l R e g is tra t io n

In this section, we discuss fine-grained parallelization of Mi-based registration on 
the GPU by incorporating various parallel histogram computation methods and 
parallelizing transformations in our registration framework.

On a CPU, registration method’s execution time is typically dominated by 
the transformation function. GPUs, however, are specifically designed to perform 
geometric transformations. Transformations for individual elements are indepen-
dent and can be efficiently parallelized. Geometric transformations (regardless of 
their type) require some sort of interpolation that involves adjacent voxels in a 
cubic region of memory. Standard computer architectures are designed to opti-
mize sequential memory access through their caching mechanism. This does not 
fully benefit 3D interpolations over a cubic mesh. Modern GPUs, on the other 
hand, support a 3D texture addressing mode that takes the geometric locality into 
account for caching purposes. This greatly improves the efficiently of transforma-
tions on GPUs. Fig. 5.12 depicts the throughput of affine transformations given 
in 1 million voxels per second for CPU- and GPU-based implementations where 
linear interpolation is used. The figure demonstrates the superior performance of 
GPUs for geometric transformations.

s :

B xB 2 > 1 . (5.7)
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Figure 5.12: Performance of affine transformations on the CPU and on the GPU 
with and without use of textures. GPU implementation with textures performs 
significantly better.

5.4.1 MI C om putation

As noted in Chapter 2, mutual information of two random variables is given by

where p(x, y ) is the joint pmf of the two random variables. This is all we need for 
MI computation (marginal pmfs can be derived from the joint pmf).

There are various methods for estimating the joint pmf of image intensities. 
We divide them into two broad categories of histogram-based and histogram-free 
methods. Histogram-based methods are by far the more common and include direct 
estimation of the joint probability from a normalized histogram, partial volume 
histogram [18,88], uniform volume histogram [21], and various Parzen window 
histogram computation methods [89,90].

The most straightforward histogram-based method is to transform the mov-
ing image and interpolate image intensities in the transformed image from the 
original using linear interpolation or similar methods and then compute the joint

(5.8)



118 Registration on the GPU

histogram of intensities from corresponding pairs of points in the fixed and moving 
images. However, MI computed in this manner, does not smoothly vary with the 
registration parameters and may not be suitable for gradient-descent based opti-
mization methods. Other histogram-based methods such as [88] and [90] result in 
MI functions that smoothly vary with the change in registration parameters. These 
methods also provide closed-form solutions for MI derivatives which allows the use 
of gradient-based optimization methods (type A or B).

The basic sort and count algorithm can be used for direct computation of a 
standard joint histogram as discussed in the previous section. Our main aim is 
to demonstrate the computational advantage of our method and we have demon-
strated that using direct histogram computation in our experiments in Section 5.4.3. 
However, we note that the presented methods can also be used for other histogram- 
based MI computation methods. These method typically require multiple non-
integer histogram updates per joint sample of fixed and moving images. These 
histogram computation algorithms can be accommodated with minor changes to 
the basic algorithm.

As an example, we briefly discuss PV histogram method and the changes to the 
sort and count method needed for its computation.

Under a transformation T, a point such as y in the fixed image F will corre-
spond to x = Ty in the moving image M . However, since the coordinates of x 
are generally non-integral, the intensity of the transformed point has to be inter-
polated from the neighboring points with integer coordinates. In a standard joint 
histogram, once the intensity of x is computed, the histogram bin corresponding 
to (A/(x),F(y)) is incremented by 1. In a partial volume histogram, however, x 
contributes to multiple histogram bins associated with its neighboring grid points. 
The contributions depend on the distance of x from its neighbors given by

d
Pv(x, z) = 1 ~  \xi ~ Zi\), (5.9)

1=1

where z is a neighboring point of x, and d is the number of dimensions. The 
partial volume histogram updates the histogram bin corresponding to (M(z), F(y)) 
by Pv(x, z). For 3D images, partial volume histogram involves 8, generally non-
integral, updates to the histogram.

The following minor changes allow the basic sort and count algorithm to be 
used for partial volume histogram computation:

1. Bin counters and the histogram data types are defined as floating point types.
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2. The program adds multiple bins for each pair of points to the sort and count 
queue.

3. Bin counters are initialized to corresponding partial volume contributions.

Computation of MI derivatives using the partial volume histogram method also 
translates into computation of an appropriate histogram for each derivative [88], 
where the above method can be used again.

5.4.2 Experim ents: A pproxim ate H istogram

We integrated the histogram approximation method in our registration framework. 
In this section, we demonstrate that the method is useful and reasonably accurate 
for practical registration problems. We show that the MI functions derived using 
the approximate method are well-behaved and can be used to correctly determine 
the misalignment between the images.

Fig. 5.13 shows several Ml functions based on the approximate histogram and 
the exact histogram for two MR images of the brain (MR-T1 and MR-T2). MI 
functions based on the approximate histogram are well-behaved, smooth and cor-
rectly identify the alignment. We are not concerned with the absolute difference 
between MI values computed by different methods. As it is the shape of the Ml 
function which is important in registration applications.

We note that in Fig. 5.13, the MI functions with higher number of threads 
(more down-sampling) are slightly less smooth, however, they are smooth enough 
for optimization purposes. The smoothness of the MI function is related to the size 
of the input data. Larger data-sets tend to remain smoother for larger number of 
threads. However, we emphasize that a lower number of threads is recommended 
for smaller data-sets.

We finally show results of using this method for registration of 3D images (MR 
TI, T2 and PD). The images have approximately 7 x 106 voxels with a voxel 
size of 1 mm3. The misalignment between the images (gold) and the resulting 
registration parameters for standard MI calculation (single core CPU) and the 
approximate method (GPU: GTX 8800) are shown in Table 5.3. tx, ty and tz are 
translation parameters along the x, y and z-axis,respectively. Rotations around x, 
y and 2-axis are shown by a, ß, and 7, respectively. We used 256 threads for the 
approximate histogram method on the GPU. The simplex method was used for the 
optimizations.

The registration results of the GPU method are comparable with the CPU 
implementation. Both methods converged with around 200 iterations but the GPU-
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Figure 5.13: Comparison of MI functions for various misalignments. The dotted 
graph shows the standard MI function for two multi-modal images of the brain. 
The solid graphs show the results for the approximate MI method. The graphs 
show that the MI function is well-behaved and suitable for registration.

based registration on a GTX 8800 is around 45-65 times more efficient. We also 
ran the registrations on a single core of GTX 295 which performed the registrations 
in 2.25, 2.49, and 2.29 seconds for T1-T2, T l-PD  and T2-PD, respectively. This is 
around 80-110 times faster than the standard CPU implementation. The standard 
registration on the CPU was reasonably optimized, albeit without the use of SSE 
instruction set8.

8For this reason, there is quite a bit of room for further optimization of the CPU-based 
implementation. Hence, GPU’s performance gain compared to a single core CPU should be 
taken as indicative only.
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Table 5.3: Registration results for approximate histogram computation

Modalities T1-T2 Tl-PD T2-PD

Gold CPU GPU CPU GPU CPU GPU

tx (mm) 5.00 5.00 5.00 5.01 4.97 5.01 5.00
ty (mm) -10.00 -10.00 -9.98 -10.01 -10.00 -10.01 -10.00
tz (mm) -5.00 -5.03 -4.98 -5.01 -5.11 -4.98 -4.99

a 15.00° 15.01° 15.00° 15.01° 15.00° 15.00° 15.02°

0 -10.00° -9.99° -10.01° -10.00° -10.06° -9.99° -10.00°

7 10.00° 10.03° 10.03° 10.02° 10.01° 10.00° 9.97°

Iterations 224 274 177 305 217 286

Time (sec) 251 3.89 198 4.34 243 4.07
Normalized 
Execution Time 
(ms/MVoxel/itr)

158 2.00 158 2.01 158 2.01

5.4.3 Experim ents: B itonic Sort and Count

We start by integrating different histogram computation methods in our registra-
tion framework. Fig. 5.14 displays the throughput of MI computation methods 
based on different histogram algorithms for a wide range of bins. Note that the 
x-axis is given in terms of the number of bins used per image in MI computation. 
The equivalent number of ID bins needed for corresponding histogram algorithms 
is squared. The y-axis gives the throughput in mega voxels per second for MI com-
putation between two images. Anywhere between 64-256 bins per image are used 
for MI computation with bins in excess of 100 being more common. As the images 
demonstrate the sort and count method gives the best performance for most of 
this range. For this reason, we use this method for registration experiments in the 
remaining of this section.

We used Vanderbilt database of brain images (patients 1-9) for this set of exper-
iments. The database contains MR-T1, MR-T2, MR-PD, CT and PET images of 
real patients. In total, we performed 47 CT to MR registrations and 41 PET to MR 
registrations for each experiment. Fig. 5.15 shows a sample MR-T1 and CT image 
from the Vanderbilt database. Even though our focus is to demonstrate efficiency 
of our method, we also provide target registration errors (TRE) for completeness. 
Accuracy is measured at multiple volumes of interests (VOIs) in the brain that 
are of neurological significance. The TREs are computed against VOIs registered
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Comparison of Different Ml Computation Methods on the GPU
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(a) M I for two random variables with a uniform distribution

Comparison of Different Ml Computation Methods on the GPU

Method 1: Simulating Atomic Updates in Software 
Method 2: Synchronization-Free Parallelization 
Method 4: Bitonic Sort and Count
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(b) M I for two 3D medical images from the Vanderbilt database

Figure 5.14: Performance of different M I computation methods on the GPU. For 
a range of bins that is of most interest for M I applications, bitonic sort and count 
performs best. Also note this method’s independence from the data’s underlying 
distribution.
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Table 5.4: Accuracy comparison (median errors in mm)
Modality MIRIT Our Method (enh. Powell) Our Method (std. Powell)

CT to T1 4.73 1.48 1.35
CT to T2 5.30 1.44 1.50
CT to PD 3.50 1.48 1.42

PET to T1 6.33 3.99 4.08
PET to T2 7.33 3.38 3.20
PET to PD 3.19 3.78 3.77

using the gold standard transformation which were obtained in the original study 
by using fiducial markers [1].

The Vanderbilt database is used for evaluation of rigid 3D registrations. While 
we limit our experiments to rigid registrations, we note that our GPU-based im-
plementation is readily capable of performing affine registrations. In addition, the 
MI computation algorithm can be adapted for non-rigid registrations.

We compared performance and accuracy of our method against MIRIT9, a CPU 
implementation of Mi-based registration by Maes et al. [18]. We ran MIRIT with 
recommended options except for the partial volume option [18]. We found the ac-
curacy of the registrations for this particular data-set were actually better without 
this option. Both methods use Powell optimization algorithm. Our registrations 
were performed using the enhanced Powell method (refer to Section 3.2.3) with a 
resolution of 0.02 mm for translation parameters and 0.05° for rotation parameters. 
The results with standard Powell (no resolution parameters) are also included to 
demonstrate that the accuracy of registrations is not noticeably affected as a result 
of introducing the resolution parameters, while the performance is considerably 
improved.

Fig. 5.16 shows the performance of bitonic sort and count method for 3D-3D 
registrations. On average, we were able to register each image pair in less than one 
second which represents more than 50 times speedup compared to MIRIT running 
on a CPU. We also note that by using the enhanced Powell method the performance 
of the GPU-based method can be improved by around 300%.

Table 5.4 shows the median TRE for MIRIT, our method with enhanced Powell, 
and our method with standard Powell optimization. Our method with or without 
resolution parameters, achieves sub-voxel accuracy and even outperforms MIRIT. 
MIRIT failed to converge for a few registrations. MIRIT would be able to reach

9Multi-modality Image Registration using Information Theory
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Figure 5.15: Sample images from the Vanderbilt database displayed in a graphical 
user interface (GUI) developed under MATLAB® as part of this thesis.
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Figure 5.16: Average execution speed for pairs of images from the Vanderbilt data-
set. Our method on GTX 280 is more than 50 times faster than MIRIT.

convergence with a different set of parameters for these cases, however, this would 
result in failed registrat ion of other successful cases. We set to compare the methods 
in a fully automatic setting and it was only fair to run both with a single set of 
parameters. We note that, where convergence was achieved by both methods the 
TREs were more or less comparable.

5.4.4 Fast Deform able R egistration

In this section, we look at improving the performance of B-spline deformable reg-
istration using the methods described earlier. The implementation is based on [7] 
and we implement both Mi-based and SSD-based cost functions. We also devel-
oped a type D gradient descent algorithm using the conjugate gradient optimization 
method [22] with Brent’s line minimization. The gradient of the cost function is 
computed numerically using forward finite differences.

An important benefit of B-splines as the basis for deformable registration is their 
computational efficiency. This stems from the property that when a single control 
point in a B-spline control grid is moved, this only affects the position of points in 
the local vicinity of that control point. The size of the affected region is at most
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equivalent to a volume covered by a mesh of 5 neighboring control points. For a 
control point this is the volume enclosed between Ci-2j - 2,k- 2  and Ci+2,j+2,k+2 - 
This is particularly important in computation of the gradient of a measure using 
finite differences. Each partial derivative of the measure w.r.t. a coordinate of a 
control point affects a sub-volume in the image. Assuming a uniformly distributed 
control mesh of size nx x ny x nz, and noting that the image volume is covered by 
(nx — 2) x (ny — 2) x (nz — 2) control points (there are 2 control points outside 
the image volume in each dimension); the control points divide the image into 
{nx — 3) x (ny — 3) x (nz — 3) blocks, hence the computation of a single partial 
derivative is approximately 4 x 4 x 4 / (nx—3) x (ny—3) x (nz—3) times that of the cost 
function itself. The gradient consists of 3 x nx x ny x nz partial derivatives, therefore 
the computational complexity of the gradient is only 192 x n x x ny x nz/  (nx —3)(ny — 
3)(nz — 3) times more expensive than computation of the cost function itself, if 
properly implemented. This involves storing partial transformation and measure 
computation results for each block enclosed by adjacent control grids. During the 
computation of the gradient, we only need to evaluate blocks that are affected by the 
movement of a single control point and update the cost function accordingly. Also 
note that the complexity of the gradient computation in this manner is independent 
of the size of the control grid for a dense mesh. For certain types of images, such as 
brain images, that are fully enclosed within the volume, we can further improve the 
computational efficiency of the method by not evaluating the partial derivatives of 
control points that fall outside the boundaries of the image. This further improves 
the computation time of the gradient to approximately 192(nx — 2)(ny — 2)(nz — 
2)/(nx — 3)(ny — 3){nz — 3) times of a single cost function evaluation.

The B-spline transformation can be efficiently implemented on the GPU by 
mapping the moving image to a 3D texture and storing the coordinates of the con-
trol grid in the GPU’s constant memory. We use a multi-resolution multi-grid strat-
egy for registrations. Table 5.5 shows the performance of our implementation for 
sample images of a given size and the normalized performance in ms/MVoxels/itr 
of the gradient descent algorithm, where, each iterations involves the computation 
of the cost function’s gradient together with several cost function calls during the 
line minimization stage. The performance results are given for the finest level of a 
multi-resolution pyramid and a grid size of 7 x 7 x 7 run on a single core of a GTX 
295.

The outcome of a sample registration is shown in Fig. 5.17. The moving image 
is a distorted version of the fixed image obtained by applying a rather large (and
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Table 5.5: Performance of B-spline registrations

Size of Images Measure Cost Gradient Normalized Perf.

181 x 217 x 180 SSD 27 ms 3,652 ms 573 ms/MVoxels/itr

MI 70 ms 11,113ms 1,699 ms/MVoxels/itr

deliberately exaggerated) sinusoid deformation field given by 

d(x, y, z )  =

We use a 3 level multi-resolution combined with a multi-grid control mesh to 
register the images and recover the transformation field. The size of the control 
mesh is varied from coarse to fine ( 5 x 5 x 5  to l l x l l x l l )  at each resolution level. 
Fig. 5.17(c) shows the resulting transformed image after the recovered deformation 
field is applied to the moving image. Note that the transformed image and the 
fixed image are visually very close. This can also be seen from the difference im-
ages. Fig. 5.17(d) shows the difference between the moving and fixed images prior 
to registration where large mismatches between the two images can be observed. 
Fig. 5.17(e) shows the difference between the fixed image and the transformed mov-
ing image after the completion of the registration where the mismatch between the 
images is minimal and hardly visible. A typical multi-resolution multi-grid regis-
tration takes anywhere from 3-8 minutes to complete on a single core of a GTX 
295.

X7r y  Tr Z7T
10cos( ——) 10sin(J— ) 10cos(---- )

\360' v360; \3fi0' (5.10)

5.5 D iscussion

The methods presented in this chapter, highlight some of the challenges, trade-
offs and benefits in rethinking existing algorithms for a massively multi-threaded 
architecture, such as CUDA. We demonstrated that adaptation of existing applica-
tions to massively multi-threaded architectures involves re-inventing the algorithms 
rather than a simple port of existing ones. The sheer number of parallel threads 
involved, challenges traditional algorithm and software design practices. Some 
standard tools such as synchronization primitives become even undesirable. We 
argue that for massively multiprocessing architectures, the best synchronization, 
may be no synchronization at all.

A properly designed application on the GPU can achieve significant performance 
gains compared to a standard CPU implementation while offering a lower cost per
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(b) Fixed image

(c) Transformed image
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Figure 5.17: B-spline registration on the GPU: The deformation between (a) mov-
ing and (b) fixed images is recovered and applied to the moving image. The final 
result is shown as (c), the transformed image. The difference between moving and 
fixed images is shown in (d). The difference after registration is shown in (e), where 
almost no misalignment between the images can be seen.
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TFLOP of computing capacity, a lower footprint and a higher performance per 
Watt. The advent of this new generation of low-cost high performance computing 
platforms presents both numerous opportunities and challenges.

Medical image analysis is one of many computationally-intensive disciplines that 
stands to benefit greatly from this evolution of high performance computing. The 
capacity is now here to tackle larger-sized problems, that may have been considered 
intractable only a few years ago, on clusters of GPUs. The extra computational 
capacity can also be spent towards development of more robust tools which require 
less supervision to complete tasks or to adapt preoperative tools for intraoperative 
applications or invent new ones. These require a more coordinated effort by the 
medical imaging community to redesign a large set of existing and fundamental 
algorithms in areas such as registration, segmentation and modeling. A feat which 
many not be possible without a more enthusiastic embracement of high performance 
computing within the field. We hope that existing efforts pave the way for the 
conception of a computational medical imaging community in much the same way 
that computational physics, chemistry and astronomy have grown out of their 
respective disciplines.



C h ap te r 6

R eal-tim e S im ulation  and  
V isualization  of U ltraso u n d

6.1 In trodu ction

Ultrasound as an imaging modality is desirable from many perspectives: (a) it is 
real-time with a high temporal resolution, (b) it is risk-free (radiation-free and non- 
hazardous), (c) the ultrasound devices are relatively cheap, (d) ultrasound devices 
are portable and relatively small, and (e) ultrasound probes can be used to target 
small tissue interfaces in endoscopic, laparoscopic and intravascular applications. 
The main drawback, however, is the quality of the acquired images and a low signal 
to noise ratio (SNR), which makes navigation and interpretation of the acquired 
images, particularly challenging. Ultrasound simulation systems have been shown 
to improve the performance and skills of users, significantly (e.g. see [91]). This 
is due to the fact that the trainees can practice localization and acquisition of 
ultrasound without the time-constraints imposed by such practice on the patients 
and can also access a variety of cases which have been collected and stored in the 
simulation system’s database over time.

A number of systems including commercial products are available for ultra-
sound training of medical students and staff (e.g. [92-100]). These systems allow 
navigation with a virtual probe within the space of pre-recorded ultrasound images. 
The acquisition protocol is typically 3D freehand ultrasound with a compounding 
stage wThere 2D ultrasound images are combined to create a 3D volume or straight 
3D ultrasound. At run-time, during training sessions, the position and orienta-
tion of the virtual probe is tracked and the relevant ultrasound planes are re-sliced 
from the previously computed volumes. Technically, these systems simulate the 
ultrasound acquisition rather than the ultrasound phenomenon itself.

131
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One common problem with traditional ultrasound simulation systems (e.g. 
[92-100]) is that the simulation is realistic as long as the operator remains within 
close vicinity of originally acquired positions and orientations. As the probe is nav-
igated further away from the acquisition positions, the images become less realistic, 
since view-dependent ultrasound effects are no longer accurately represented. The 
acquisition protocol is also complicated and requires the volume of interest to be 
imaged from various positions and not to contain view-dependent artifacts such as 
shadowing, and the effect of a fixed gain and focus. Then there is, of course, the 
issue of compounding the images and accumulated errors due to mis-registration 
and accumulation of intensity values with varying intensities due to view-dependent 
artifacts.

More recently, simulation of ultrasound from CT volumes has attracted interest. 
Authors in [101] briefly discuss simulation of ultrasound from CT volumes without 
providing much detail on their ultrasound modeling. In [102], the authors discuss a 
system for ultrasound guided needle insertion and use CT images for patient specific 
training. Ultrasound simulation using a simple ray-based modeling of ultrasound 
is used in [103] for registration of ultrasound images to CT volumes. In [104], 
we proposed an enhanced modeling of ultrasound, which results in more realistic 
ultrasound simulations from CT images suitable for ultrasound training.

Use of CT images as the basis for simulations not only avoids the aforementioned 
drawbacks but also has the advantage of allowing for patient specific simulations, 
ease of navigation for novice users as they can practice ultrasound navigation with 
the help of corresponding CT information (this extra assistance is obviously turned 
off at later stages of training). It also provides easier access to raw data for sim-
ulation, as CT images are routinely acquired for diagnostic and planning and the 
acquisition protocol is not complicated and is streamlined.

In this chapter, we use the term ultrasound simulation exclusively in the context 
of creating fully synthetic ultrasound images. We synthesize the ultrasound image 
from a fixed-view scattering image and a view-dependent reflection image. The 
scattering image is generated off-line using Field II [105,106] and the reflection 
image is based on a simple model for acoustic wave propagation in a piecewise 
homogenous medium and is generated in real-time. Both images are derived from 
a 3D CT scan of the region of interest.

Fully synthetic simulation of ultrasound has been previously investigated by 
Jensen et al. [105-107] based on an acoustic wave-propagation model and using the 
concept of spatial impulse response [108,109] which is implemented in a program 
called Field II [105]. The program can be used to simulate any linear ultrasound
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system with single or multi-element transducers, any given apodization, focusing, 
pulse excitation scheme and aperture geometry [110]. The program requires lo-

designed and synthetically generated scattering patterns. As such, the program is 
mostly used to determine the effects of various parameters on transducer design. 
Additionally, the simulations for even a single B-mode image take an extremely 
long time and need to be parallelized (the execution time for a B-mode image with 
128 RF scan lines and 1,000,000 point scatterers is in the order of 2 days on a 
single CPU), which makes it impractical for real-time simulation and in training 
applications.

In this chapter, we present a framework for ray-based simulation of ultrasound 
including an efficient modeling of ultrasound and its implementation on the GPU 
in a simulation and visualization software. The framework accommodates ultra-
sound simulations with varying degrees of complexity and is fast enough to produce 
interactive simulation and visualization for training and registration purposes.

We develop a simple acoustic model that can be used in real-time for simulation of 
large-scale reflections, attenuation due to reflections, effect of a finite beam-width, 
and view-dependent shadow and occlusion effects in an ultrasound image.

Reflection: A sound beam traveling through a piecewise homogenous medium is
partially reflected at the interface of two media with differing acoustic impedances. 
This impedance mismatch is the primary mechanism that allows visualization with 
ultrasound. The acoustic impedance is defined by Z — pc: where p is the density of 
the medium and c is the speed of sound. The ratio of reflected energy to incident 
energy is called the reflection coefficient, a# , and is given by

cation and strength of scatterers as input and gives best results with carefully

6.2 M eth od

6.2.1 A Sim ple A coustic M odel for U ltrasound

( 6. 1)

at the interface of the two media with acoustic impedances Z\ and Z2 [111]- The 
remaining energy that passes through the interface is characterized by the trans-
mission coefficient ctr  = 1 — o l r .
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Refraction: The transmitted beam, is often refracted due to a change in the
speed of sound from one medium to the other. Refraction of sound beams obeys 
Snell’s law: sin#*/sin0r =  C1 /C2 , where and 9r are the angle of incidence and 
refraction and C\ and C2 are the speed of sound in the two media. For most soft 
tissue interfaces, the effect of refraction particularly close to the direction of the 
surface normal is small. This is due to little variation in the speed of sound among 
most soft tissue types with the exception of fat, where deviations up to 20° due to 
refraction can be experienced. In our model, we ignore the effect of refraction and 
assume that 9r = 0*. A more comprehensive model based on ray-tracing and tissue 
labeling is required in order to take refraction into account.

Lambertian Scattering: Reflection of sound beams at an interface is the main
interaction of interest to us. The reflection is typically non-specular and subject 
to scattering. The intensity of the scattered signal (from a receiver’s point of 
view) depends on the angle of incidence and is maximal for a beam normal to the 
interface and approaches zero as the incident angle approaches 90°. This effect can 
be described by Lambertian scattering1. The intensity of the reflected signal at a 
point x on the interface of the media depends on the angle of incidence and can be 
written as

R(x) =  a Ä(x) Jj(x) |r(x) • n(x)|, (6.2)

where /*(•) is the intensity of the incident beam at the interface, r is the unit 
vector in the direction of the beam, n is the surface normal, | - | is the absolute 
value operator, and R(-) is the intensity of the reflected signal. According to the 
Lambertian scattering model, the intensity of the reflected signal, perceived by an 
arbitrary viewer, is independent of the view angle and only depends on the angle 
of incidence. This is of course provided that no attenuation occurs in the return 
path between the point of reflection and the observer. If the initial intensity of the 
transmitted signal is shown by 70, the attenuation coefficient at point x is given 
by / j (x ) / /0. Since the reflected signal travels back through the same attenuating 
medium (ignoring any refraction), the intensity of the signal as sensed by the 
receiver, / r(x), is attenuated by the same coefficient as in the forward path and

1We use a Lambertian model for its simplicity. A more appropriate model for ultrasound 
scattering is Rayleigh scattering, since the interface dimensions are much smaller than a wave-
length [111]. This is the subject of further investigation.
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can be written as

/ r(x) a  a fi(x) L M  |r(x) • n(x)|. (6.3)

Effect of Beam  W idth: The aperture of an ultrasound transducer consists of a
number of acoustic elements. Typically a group of adjacent elements are actively 
sending and receiving acoustic signals while others are turned off (see Fig. 6.1a). 
Using a group of active elements produces a deeper near field and a less diverging 
far field compared to a single element acting alone [111]. The active aperture is 
electronically shifted along the aperture to cover the entire field of view. This 
results in the transmitted signal from a single element to be partially received by 
adjacent elements. One novel aspect of the present work is modeling this effect. 
The reflected signal is integrated along the active wavefront at a specified depth 
using a suitable window function which results in a more realistic reflection image 
(see Fig. 6.2). For a linear array transducer we can write

where c j (-) is the window function, and £ is length of the active aperture, given by 
£ = na(we T se), where na is the number of active elements, we is the width of each 
element, and se is the spacing between adjacent elements. If the active aperture is 
moved at a constant frequency, / a, each element will be active for a period of time 
equal to (2na — 1 ) / / a. Let us consider the mth element in the transducer: during 
its operating interval, it will receive reflections due to operation of elements in the 
range m  — na +  1 to m  +  na — 1. The amount of reflected signal due to an element 
i G [m — na + 1, m  +  na — 1] is proportional to the amount of time when i and m  
are both turned on, which is given by

though, we used a Hann window to further suppress the contributions from elements 
that are farthest away.

Note that thanks to modeling the beam width effect, one can infer the direction 
of ultrasound beams by looking at the content of Fig. 6.2b and Fig. 6.2c.

(6.5)

This results in a triangular window function cc(-) in (6.4). In our simulations,
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Figure 6.1: From left: (a) A convex array transducer with a multi-element active 
aperture, (b) Ultrasound field of view superimposed on the liver of a human subject.

Figure 6.2: From left: (a) Reflection image with one active element, (b) Reflection 
image with multiple active elements, (c) Our simulated ultrasound (combined re-
flection and scattering images.), Note: images depict the region of interest shown 
in Fig. 6.1b and are log-compressed. Also notice shadowing on the right-hand side 
due to an air-tissue interface and in the middle-bottom of the image due to a 
bone-tissue interface.

6.2.2 Creating the R eflection Im age

The reflection image simulates view-dependent ultrasonic effects due to reflection 
and attenuation of the signal. Tissue boundaries are emphasized in the image and 
shadows due to large impedance mismatches between tissue-bone and tissue-air 
interfaces are simulated (refer to Fig. 6.2).

We use a CT volume for real-time simulation of the reflection image. An edge 
volume, based on the method proposed in [112] with a Deriche filter, is computed 
from the CT image. Edge detection needs to be performed once, when the CT image 
is first loaded. Given a set of acquisition parameters and position information, a 
corresponding plane from the CT and edge volumes is extracted. The 3D edge 
volume removes the need for 2D edge detection at run-time and also provides 
better continuity as the probe is navigated.

The implementation of the algorithm for a linear transducer is straightforward.
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Figure 6.3: From left: (a) CT scan of the kidney of an animal subject, (b) Contrast- 
adjusted and edge-enhanced CT image used as a scattering map, (c) The scattering 
image generated by Field II.

Transmission and reflection coefficients and angles of incidence are calculated at 
the interface between every two media along an axial scan line. The interfaces are 
detected from the edge map. The acoustic impedances of the media, divided by 
each interface, are determined from the average intensity of the CT image along 
the scan line between the interface boundaries. The CT intensities for tissues are 
approximately proportional to the acoustic impedance for tissues [103] and can 
be used directly for calculation of the reflection coefficients in (6.1). This is not 
true for bone and air, so we also label the media as bone, air and tissue based on 
their CT Hounsfield intensities. On average bone-tissue interfaces reflect 43% and 
air-tissue interfaces reflect 99% of the incident beam [111].

The process of simulating linear array and convex array transducers are similar 
with the exception that for convex array transducers, the extracted CT slice has a 
fan-shaped field of view. We first warp the fan-shaped area to a rectangle using a 
Cartesian to polar transformation. This, in turn, transforms the convex transducer 
to a linear one and allows us to use (6.4) for both geometries.

6.2.3 Creating the Scattering Im age

Realistic speckle patterns can be simulated using software packages such as Field 
II [105]. Simulations are based on the principles of linear acoustics and computation 
of the spatial impulse response [109]. Speckle is simulated by randomly placed 
scatterers with strength randomly chosen by Field II from a normal distribution. 
The mean of this distribution is location-dependent, and is provided as input to 
the simulator in the form of a scattering map, which gives the mean scatterer 
strength at all points within the volume of interest. A typical B-mode image 
requires anywhere from 200,000 to 1,000,000 point scatterers in order to create
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a realistic speckle pattern. Scattering simulation in this way is computationally 
expensive. On a standard PC, with 1,000,000 point scatterers, simulation of a 
single ultrasound beam takes almost 20 minutes. This is nearly 2 days for a B-mode 
image with 128 RF scan lines. For this reason the scattering image is preprocessed 
from a single view and stored along with the CT image.

Direct use of a CT image as a scattering map results in a repetitive scattering 
pattern where hardly any structures are recognizable. We overcome this by using 
a contrast- and edge-enhanced image (shown in Fig. 6.3) as our scattering map. 
First the CT image undergoes affine contrast-stretching to maximize contrast while 
allowing no more than 5% of voxels to under- or overflow (saturate) the intensity 
range. The resulting scattering map is then further enhanced by emphasizing tissue 
or organ boundaries, which represent highly scattering areas. This is done using 
the previously calculated edge-map; detected edge points are set to maximum value 
in the scattering map. Fig. 6.3 shows 3-view images of the original CT image, the 
edge- and contrast-enhanced scattering map, and the resulting scattering image 
which exhibits speckle.

The 3D scattering volume is simulated slice-by-slice in the axial plane. A virtual 
linear array transducer operating at 7.5 MHz, is positioned along the left-right 
(LR)-axis of the slice. The speed of sound is assumed to be c =  1540 m/s  resulting 
in a wavelength of A =  205.3 fim. Width of each transducer element is set to A. 
Kerf (spacing between elements) is set to 0.1 A. The aperture length is slightly 
longer than the image width. In our experiments, this results in an aperture with 
504 elements. There are 64 active elements in the aperture. 128 RF scan lines 
were simulated per slice. The virtual transducer was designed to provide a realistic 
scattering image while requiring the least computation time possible. We refer the 
reader to [113] for more information on the meaning and effect of these parameters 
on the resulting simulation. Fig. 6.4 shows a volume rendered CT image of the 
abdomen with the corresponding scattering image.

We used a 20 CPU cluster to parallelize the computations for a 180 x 120 x 180 
pixels volume of interest, depicting the kidney of an animal subject, cropped from 
a larger CT image with a spacing of 0.55 x 0.55 x 0.60mm. Four scatterers were 
introduced per voxel resulting in a total of 15,552,000 scatterers for the entire 
volume and a total simulation time of nearly 32 hours.
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(a) (b)

Figure 6.4: (a) Volume rendering of the CT image, (b) Volume rendering of the 
corresponding scattering image.

Figure 6.5: From left: (a) CT scan of an oblique plane within the CT volume, (b) 
Scattering image generated by Field II, (c) Our simulated ultrasound image: note 
the speckle pattern and strong reflection from kidney boundaries. The tumor on 
the top-left corner of the kidney can be easily identified.

6.2.4 Creating the U ltrasound Im age

The final simulation is the result of combining the reflection and scattering images 
the following formula:

4i«(x) =  (Gai(x) * Ir(x) +  aGa2{x) * a r (x ))/a(x), (6.6)

where / us(•) is the ultrasound image, / r (-) is the reflection image, /<,(•) is the scat-
tering image, a  is a blending coefficient, and G is a Gaussian filter with 0 mean and 
adjustable standard deviation (oq and <r2) used to smooth the output of the image 
fusion process. Increasing a , results in a stronger speckle texture, while reducing 
it makes reflections more dominant. The blending parameters, a, <Ji and a2 are 
adjusted by the operator for best viewing results.
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The resulting image has a large dynamic range which far exceeds the dynamic 
range of the display and range of intensities that can be identified by the human 
eye. To reduce the dynamic range, we compress the signal using the following 
log-compression method

where ß  is the dynamic range of the compressed signal.

Fig. 6.5 shows an oblique plane within the CT volume and corresponding scat-
tering and simulated ultrasound images. Note the highly reflective areas in the 
ultrasound around the kidney boundaries and vasculature and the realistic speckle 
pattern. The tumor can be easily located in the simulated ultrasound.

A C + +  implementation of our algorithm (without any particular attention to 
optimization of the code e.g. use of SIMD instruction set) can generate images 
similar to Fig. 6.2c at 10-15 frames/sec. In the following section, we present a fast 
GPU-based method for simulation of ultrasound images and their visualization for 
interactive results.

6.3 V isu a liza tion  and G P U -A cce lera ted  S im ula-

tion  o f U ltrasou nd

In this section, we present a fast GPU-based method for simulation of ultrasound 
images from volumetric CT scans and their visualization. We show that the ultra-
sound simulation problem can be formulated as a ray casting problem. Ray casting 
has been extensively researched in the graphics community. Thus, we can benefit 
from the availability of an established framework for direct volume rendering and 
GPU-based image processing which has been up to recently largely developed us-
ing the graphics API. For this reason, despite the benefits offered by native general 
purpose programming platforms such as CUDA, we chose the graphics API for our 
GPU-based ultrasound simulation. Use of the graphics API also ensures that our 
implementation is relatively independent of the graphics hardware and can be run 
on a wider range of devices. The only requirement is a graphics card that supports 
Shader Model 3.0 and OpenGL 2.1.

General purpose programming on the GPU (GPGPU) through the graphics 
API has been around for more than a decade. The programs can be implemented

otherwise

(6.7)
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(a) Direct volume rendering (b) Ultrasound simulation

Figure 6.6: Difference of ray casting algorithms for direct volume rendering and 
ultrasound simulation (a) for DVR, multiple samples along a ray require a single 
storage (red dot in the image plane), (b) for ultrasound simulation, every sample 
along a ray requires a corresponding storage.

in programmable vertex and fragment shaders of the graphics pipeline mostly in 
an OpenGL or Direct3D environment using computer graphics shading languages, 
e.g. OpenGL’s built-in Shading Language (GLSL), Microsofts High Level Shading 
Language (HLSL), or NVIDIA's C for Graphics (Cg). The implementation of a 
non-graphics algorithm is therefore not straightforward as it has to be reformulated 
to be executed by the graphics pipeline. Additionally one has to circumvent the 
limitations imposed by the computer graphics environment, e.g. no random access 
writes (scatter writes) to the global GPU memory.

6.3.1 G PU -A ccelerated  U ltrasound Sim ulation

We formulate the ultrasound simulation problem on the GPU as a ray casting 
problem. The (virtual) ultrasound transducer is positioned within the space of the 
CT volume. For every transducer element, and depending on the geometry of the 
probe (i.e. linear or curvilinear), an ultrasound beam is cast and multiple rays are 
processed in parallel by the GPU. For each sample along a ray, equation (6.3) is 
computed inside a fragment shader. The results are stored as a measure of the 
acoustic intensity received by a transducer element from a point at a given depth 
in the anatomy along an ultrasound beam and displayed as an image.

The algorithm is implemented in C + + , OpenGL, and GLSL. The OpenGL 
FramebufferObject (FBO) Extension2 is employed to efficiently render to off-screen 
render targets (i.e. 2D and 3D textures in GPU memory).

2http://www.opengl.org/registry/specs/EXT/framebufFer_object.txt
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A key difference of our ray casting algorithm for ultrasound simulation com-
pared to traditional ray casting algorithms (e.g. for direct volume rendering (DVR) 
[114]) is the need to store sample values along each ray. In a standard ray cast-
ing algorithm, based on the light propagation model, the output for each ray is a 
single value which is the result of combining the color and intensity contribution 
of each sampled element along a ray (see Fig. 6.6(a)). As shown in Fig. 6.6(b), for 
ultrasound, an acoustic echo is returned from each sample along a ray and needs to 
be stored separately. For a high quality simulation, we need 256 or more samples 
along each ray. This largely exceeds the number of output channels per fragment. 
As such, we use a multi-pass algorithm for efficient implementation of ultrasound 
ray casting on the GPU.

Various data structures are allocated and loaded during the initialization stage 
and an optimal memory layout is determined. CT data, ultrasound ray start and 
end vectors are stored in textures. Ray start and end vectors are used to compute 
position of samples within the CT volume at each pass of the algorithm. Ray start 
and end vectors have to be re-initialized, every time that the user changes the 
orientation or position of the probe.

The ray casting algorithm is designed to be independent of the probe geometry 
and ultrasound dimensions. Scan line information is stored in 2D textures for 
both 2D and 3D ultrasound images. This is a major benefit and allows us to 
use the same algorithm for simulation of 2D, 3D, linear, curvilinear and freehand 
ultrasound. The original dimension and shape of the ultrasound image are restored 
in the scan conversion stage.

We need three render targets for storage of intermediate results and acoustic 
intensities. This is to store A(x) and / r (x) (refer to Section 6.2.1). /*(•) is calculated 
recursively

/i(x) =  A(x -  A d)(l -  a R(x  -  Ad)), (6.8)

where Ad is the incremental sampling vector along a given ray. Storage of /*(•) scan 
line data requires two textures to avoid read/write conflicts and synchronization 
issues. The algorithms interleaves data read/writes for even/odd rows of the scan 
lines (ping-pong rendering). This is to ensure that all fragment shaders finish 
writing into row /c, before starting row k + 1 which requires values of the previous 
row.

A practical consideration in allocating textures is the memory layout. GPUs 
typically have an upper-bound for the width and height of the textures. Regardless 
of the available memory, one cannot allocate a texture that exceeds the limit in
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Figure 6.7: Various stages of the simulation pipeline on the GPU. The scan line 
and scan conversion stages are always executed. Other stages (orange boxes) are 
optional and only executed if required by the simulation model.

one or multiple dimensions. Performance-wise, GPUs typically perform better with 
square textures whose dimensions are a power of 2. We need a texture of size n x d 
for simulating an ultrasound with n transducer elements and d samples along each 
ray. This is not a problem for 2D ultrasound as the number of scan lines hardly 
exceeds 256. However, for 3D ultrasound the number of elements and as a result 
scan lines can easily exceed the limit. Therefore, the memory layout is optimized 
to be close to square and several tiles of scan lines are arranged within the texture, 
as needed.

6.3.2 The Sim ulation P ipeline

Our simulation pipeline as shown in Fig. 6.7 consists of five stages: the scan line 
traversal, pre-scan conversion, scan conversion, post-scan conversion and composit-
ing stages.

The pre-scan conversion, post-scan conversion and compositing stages are op-
tional and are executed if required by the underlying ultrasound model (e.g. the 
model in [103] utilizes the scan line and scan conversion stages only, while the more 
complex in [104] invokes all stages of the pipeline).

• Scan Line Traversal Stage: As the first stage of the pipeline, the 3D data-set 
is sampled along each scan line and the values are stored in a 2D texture. 
Each time probe-related parameters are varied by the user, scan line data 
has to be recomputed. For simulation of an ultrasound image with d samples 
(pixels) along each beam, the algorithm requires exactly d render passes. For 
simulation of 2D ultrasound, typically a single line primitive is executed at 
each pass. However, for 3D ultrasound or simulation of multiple 2D ultra-
sound images, where scan lines are tiled within the texture memory, we run m  
parallel line primitives, where m  is the number of tiles. Running multiple line 
primitives typically provides a better utilization of the GPU resources. This 
means that our algorithm reaches its full capacity (throughput) for larger 
simulations (i.e. multiple 2D and 3D ultrasound).
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(a) Transmission texture (b) Reflection texture (c) Scattering texture

Figure 6.8: Intermediate results from pre-scan conversion stage (a) Transmission 
scan line image, no filtering applied, (b) reflection scan line image, Hann window 
applied, (c) Scattering scan line image, Hann window applied.

The ultrasound simulation may require a re-mapping of the CT values so 
that they can be directly used in equation (6.1). A transfer function lookup 
texture is used for efficient re-mapping of CT values.

• Pre-Scan Conversion Stage: For efficient computation, equation (6.4) can be 
reformulated as the convolution of the scan line data with an appropriate ID 
window function. This computation is performed in the pre-scan conversion 
stage. Fig. 6.8 shows the content of various textures resulting from pre-scan 
conversion stage for a sample ultrasound simulation of the liver.

• Scan Conversion Stage: This stage is used to convert scan line data into a 2D 
or 3D Cartesian representation. Scan conversion is implemented by backward 
warping on the GPU using a specialized fragment shader for each probe 
geometry and dimension. We use the GPUs built-in bilinear interpolation for 
maximum performance.

• Post-Scan Conversion Stage: 2D and 3D simulated images may have to be 
filtered for improved visual quality according to (6.6). This requires con-
volution with the appropriate 2D or 3D filter which is implemented by a 
fragment shader on the GPU. Separable kernels are used in conjunction with 
two/three render passes for 2D/3D filtering, where possible, to improve the 
performance. Fig. 6.9 shows the content of various textures following the 
post-scan conversion stage for a sample ultrasound simulation of the liver.

• Compositing Stage: In the compositing stage, intermediate results from var-
ious sources are combined in a fragment shader according to (6.6) and (6.7),
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(a) Transmission texture (b) Reflection texture (c) Scattering texture

Figure 6.9: Resulting Cartesian images after scan conversion and post-scan con-
version stages, (a) Smoothed transmission image (b) Smoothed reflection image 
(c) Scattering image.

which computes the final value for each pixel and prepares the data for visu-
alization.

6.3.3 R eal-T im e V isualization

A key component of our real-time visualization is the concurrent display of the 
simulated ultrasound images within the CT data-set using GPU-accelerated direct 
volume rendering (see Fig. 6.10). We use the emission-absorption model of light 
propagation through a translucent volume [115], which is based on the assumption 
that the volume is filled with light emitting particles and ignores scattering of light. 
For a ray of light traveling along a direction, parameterized by a variable such as 
s, the volume rendering integral can be written as

/(«) =  /(«o)e-T(s“'s) +  f  q(s)e~T(s-s>ds, (6.9)
J So

with

r ( s i ,s 2) =  f  K(s)ds, (6.10)
J  S i

where, /(•) is the intensity of light at a given point along the ray, s0 denotes the 
point where the beam enters the volume, and q and r  are emission and absorption 
coefficients, respectively. The first term in (6.9) describes the background light 
attenuation by the volume and the second term accounts for the contribution of 
emitting particles along the ray while taking the distance dependent attenuation 
of light into account.

In practice, a numerical approximation of the analytical volume rendering inte-
gral is used to compute the integral iteratively while traversing the volume, either
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Figure 6.10: Real-time direct visualization of a CT volume and simulated 2D ul-
trasound. (a,b) Simulation with a wide angle curvilinear transducer scanning the 
liver - lung boundary, (c,d) Simulation with a narrow angle curvilinear transducer 
scanning the left kidney. Note the occlusion artifacts due rays intersecting the ribs.

in a front-to-back or back-to-front fashion along the viewing direction using alpha 
blending. For a detailed treatment of the subject the reader is referred to [114].

In recent years, GPU-accelerated ray casting has emerged as the de facto stan-
dard for high quality real-time direct volume rendering [114,116-118]. The algo-
rithm owes its popularity to its easy and straightforward implementation on modern 
GPUs compared to other volume rendering techniques such as texture slicing [114]. 
Furthermore, the algorithm lends itself to optimization well and is highly adaptable 
for various visualization tasks.

Despite an exponential improvement in computing capability of GPUs in recent 
years, volume rendering of 3D medical images remains a computationally expensive 
task. Various techniques need to be employed in order to achieve real-time high 
quality rendering. We briefly describe the methods, we employed for achieving 
interactive frame rates.

• Deferred rendering: Our renderer is implemented by a multistage rendering 
pipeline. To improve the overall performance, each stage of the pipeline 
is updated only if parameters affecting the stage itself are changed or any
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previous stage is updated. Costly operations in the shaders are deferred 
to the latest possible phase or avoided completely if their contribution is 
negligible for the final image.

• Early termination: We use front-to-back compositing along the viewing ray 
when computing the volume rendering integral which allows us to terminate 
the computations if the accumulated opacity is saturated.

• Volume culling: With a typical transfer function, a large number of voxels 
in a volume are fully transparent, and thus do not contribute to the finally 
rendered image. To improve the performance, no computations should be 
performed for these voxels. We employ an octree3 to partition the voxels 
of the volume into cells. Each cell is initialized with the intensity range 
of the enclosed voxels. For a given transfer function non-contributing cells 
are culled when computing the ray entry and exit positions. Thus, the ray 
casting algorithm only renders the volume enclosed by the active octree cells 
and skips the invisible areas in front and behind the visible volume.

• Sampling frequency: The sampling frequency along a ray, is the basic pa-
rameter that provides a trade-off between the computational performance 
versus quality. The quality cannot be improved arbitrarily by increasing the 
sampling frequency. As such, we use the lowest sampling frequency, beyond 
which quality improvement is not noticeable. One way to achieve a higher 
quality at a lower sampling rate is to avoid using a regular sampling grid. 
A low sampling rate with equidistance samples exhibits visually displeasing 
grid artifacts also known as rings. Using a random offset, on an otherwise 
equidistance sampling, removes this artifact and allows the sampling rate to 
be reduced, without loss of quality, in the interest of improved performance.

• Classification: The appearance and visibility of voxels is computed in the 
classification stage of the volume rendering algorithm. Classification is im-
plemented by texture lookups in transfer function lookup textures. Tradi-
tional ID transfer function tables require a high sampling frequency of the 
volume data due to high frequencies introduced by the transfer function, e.g. 
in semi-transparent rendering of tissue interfaces. To deal with this problem 
and to reduce the volume sampling frequency pre-integrated [119] and post-
color attenuated [120] classification techniques have been introduced. Both

3 An octree is a tree data structure commonly arising from partitioning a 3D space by a 
recursive subdivision into eight octants. Hence, each node in an octree has up to eight children.
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Figure 6.11: Visualization pipeline

approaches pre-compute the volume integral between each two sample values 
and thus allow a reduction of the sampling frequency while maintaining a 
high quality. Pre-integrated transfer functions give the best visual results, 
however the lookup table update is computationally expensive, thus for in-
teractive classification we use post-color attenuated transfer functions.

6.3.4 V isual C onsistency  of U ltra so u n d  R en d erin g

The simulated ultrasound is rendered as an opaque plane/volume within the CT 
DVR space. Missing or incorrect interaction of an opaque geometry, e.g. ultrasound 
image plane, with a 3D volume disturbs the visual perception of the anatomy and 
its depth. To correctly integrate the simulated ultrasound within the volume, we 
adjust the ray start and stop positions in the corresponding textures prior to the ray 
casting pass. For every valid ray start position a fragment shader checks whether it 
is occluded by the ultrasound plane by comparing the ray start and the ultrasound 
plane depth values. If the ultrasound plane is closer to the viewer than the ray 
start position then it is cleared with zero, so that no ray is cast. For the ray stop 
positions a similar test is performed. If the ultrasound plane depth value is smaller 
than the ray stop position, the depth value is back-projected to the normalized 
volume coordinates and replaces the ray stop position. Thereby, rays are correctly 
stopped at the first opaque geometry surface in the viewing direction. This is 
demonstrated in Fig. 6.12(b).

6.3.5 V isu a liza tio n  P ip e lin e

The described techniques are utilized in the rendering pipeline for displaying the 
simulated ultrasound images and the volume rendered CT image. Fig. 6.11 and 
Fig. 6.12 depict various stages of the rendering pipeline and a sample visualization 
of the pipeline, respectively. In the ray entry and ray exit passes (Fig. 6.12(a), 
Fig. 6.12(b)), the front and back faces of the volume’s bounding geometry are ren-
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dered into two textures that store the ray start and stop positions in the normal-
ized volume coordinates at each texel. In the next pass, the ultrasound field of 
view is rendered in the same 3D space as the volume. The ultrasound field of 
view is texture mapped with the result of the ultrasound simulation (Fig. 6.12(c), 
Fig. 6.12(d)). The depth image from this pass is used to update the ray start and 
stop positions stored in the corresponding textures prior to the ray casting pass 
(Fig. 6.12(e)). The rendering results of the ray casting pass and the ultrasound 
plane are composited in the final rendering pass using alpha blending to yield the 
final image (see Fig. 6.12(f)).

6.3.6 User Interface

We have developed an application for the GPU-accelerated ultrasound simulation 
to display the simulated ultrasound images in 2D and 3D using different visual-
ization techniques in real-time. A screen-shot of the application’s user interface is 
shown in Fig. 6.13. The user interface consists of four main views and two widgets 
for adjusting the simulation parameters and the direct volume rendering transfer 
function:

• 3D View: The 3D view displays 3D CT volume and the ultrasound plane 
within the 3D volume. The 3D image is rendered using standard volume 
rendering techniques and the ultrasound image is texture-mapped onto the 
corresponding plane within the 3D volume. The user can change the details 
of the volume rendering (e.g. display internal organs, vasculature, bones or 
skin surface) in real-time by changing transfer function parameters.

• Ultrasound View: displays the simulated 2D/3D ultrasound image. For 3D 
ultrasound, the user can choose between the 2D display of coronal, sagittal or 
axial multi-planar reconstructions (MPRs) or a 3D direct volume rendering 
of the simulated ultrasound volume (see Fig. 6.20, 6.21 and 6.22).

• CT View: The CT view displays an MPR of a CT plane that corresponds 
with the current position, orientation and field of view of the ultrasound 
image.

• Combined View: shows the fusion of the ultrasound and CT images and 
allows the user to easily compare ultrasound and CT features.

Ultrasound simulation and visualization parameters can be adjusted interac-
tively (see Fig. 6.13 (a), the depicted simulation parameters are for the model by
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Figure 6.12: Different stages of the visualization pipeline, (a) Ray Start and (b) 
Ray end coordinates stored in RGB textures. Note ray stop positions for pixels 
on the ultrasound image plane, (c) Simulated 2D ultrasound image (d) Rendering 
of the texture-mapped ultrasound image in 3D. (e) Direct volume rendering of the 
CT image, (f) Composition of CT DVR and simulated ultrasound.
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Figure 6.13: Screen-shot of the application: a) application options, b) transfer 
function widget, c) 3D view, depicting shaded DVR of the CT data and the 2D ul-
trasound image, d) blending of the simulated 2D ultrasound image and correspond-
ing CT MPR, e) simulated 2D ultrasound image, and f) CT MPR corresponding 
to the ultrasound image plane.
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Shams et al. [104]). The parameters are organized in groups. Certain groups are 
shared among all simulation models, others are specific to a particular ultrasound 
simulation model.

• Transducer Geometry and Pose: allows for the selection of the probe geom-
etry (i.e. linear or curvilinear), setting the probe position and orientation, 
field-of-view, and minimum and maximum penetration depth.

• Scan Line Traversal: parameters in this group affect the scan line traver-
sal stage. For instance, for the model in [104] these are the air and bone 
segmentation thresholds.

• Pre/Post-Scan Conversion: the options include type of filters, window sizes, 
standard deviation of the filters, etc.

• Compositing: the options include log compression, blending factors and Boolean 
flags denoting whether certain operations should be executed in the composit-
ing shaders.

• Visualization: the options include CT window level and window width for 
2D CT slice visualization, and blending factors and colors for the combined 
CT/ultrasound visualization.

6.3.7 C om putational Perform ance

The ray-based simulation of ultrasound is very efficient on the GPU. In this sec-
tion, we present detailed performance results for the two main application areas of 
the simulation framework, simulation and visualization in ultrasound training and 
simulation for registration of ultrasound and CT images. The requirements for the 
two applications are different. Ultrasound training requires more realistic simula-
tion of ultrasound images and uses a more accurate simulation model, whereas for 
registration only a few ultrasound specific effects have to be simulated and a more 
simplified ultrasound model can be employed. We first describe the test environ-
ment and the data-sets and parameters used for the performance evaluation. Then, 
we describe the performance of the simulation and simultaneous visualization for 
ultrasound training using the ultrasound model presented earlier. We conclude 
with an analysis of the throughput performance of the ultrasound simulation for 
registration of ultrasound and CT images using the ultrasound model by Wein et 
al. [103].
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The performance of the ultrasound simulation and visualization was evaluated 
on three computers:

1. AMD Opteron 165 CPU (2x 1.8 GHz), 2 GB RAM, AMD/ATI Radeon 
1950Pro with 256 MB RAM (Shader Model 3.0), Win. XP (32-bit)

2. Intel Core Duo 2 CPU (2x 2.66 GHz, mobile), 4 GB RAM, NVIDIA Quadro 
FX3600M with 512 MB RAM (Shader Model 4.0), Win. Vista (64-bit)

3. Intel Core Duo 2 CPU (2x 2.66G GHz), 4 GB RAM/NVIDIA Quadro FX5600 
with 1.5 GB RAM (Shader Model 4.0), Win. Vista (64-bit)

For our performance measurements, we used a CT volume of the abdomen of 
a human subject with a resolution of 512 x 512 x 484 voxels (16-bit, 242 MB). A 
speckle volume of the same size was pre-computed from the CT data (32-bit float, 
484 MB). The full-size volumes were used with Quadro FX5600 (1.5 GB RAM) 
but the volumes were down-sampled for Quadro FX3600M and Radeon 1950Pro 
cards to fit within the GPU’s memory.

6.3.8 P erfo rm an ce  of S im u la tion  an d  V isu a liza tio n  in T ra in -
ing A pp lica tions

Training applications require interactive frame rates for operation of a virtual trans-
ducer and provision of a smooth and uninterrupted visual feedback. In this section, 
we first evaluate the combined performance of the simulation and visualization and 
then compare the performance of simulations on the different GPUs and with a 
CPU implementation.

Visualization is typically the more time-consuming part of the algorithm. The 
performance of visualization is dependent on many parameters, e.g. direct volume 
rendering technique, local illumination, and the chosen transfer function. For our 
experiments, we adjusted the parameters for high quality visualization using pre-
integrated classification for DVR, local illumination with Blinn-Phong shading and 
on the fly-gradient evaluation. A resolution of 640 x 480 pixels was used for ren-
dering, the number of samples per ray was set to 512, early ray termination and 
empty space leaping optimizations were also activated.

Table 6.1 shows the average frame rate of the combined simulation and visual-
ization as the operator varies simulation and visualization parameters. Changes in 
relative orientation or position of the volume with respect to the camera, the ul-
trasound transducer with respect to the volume, or transducer geometry affect the 
performance. This is due to the fact that these changes require the entire rendering
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pipeline to be re-executed. As can be seen, the algorithm performs interactively on 
higher end GPUs such as FX5600, under all conditions. The performance is equally 
good for mainstream GPU models (e.g. 8800GTX/GTS and 9800GTX) that have 
around the same number of stream processors as FX5600. However, for lower end 
GPUs the rendering quality has to be reduced in order to achieve interactive frame 
rates, under all conditions.

Param. Change Radeon 1950Pro Quadro FX3600M Quadro FX5600
None - Sim. Only 45 79 162
Volume Pose 5 15 32
Transducer Pose 4 16 35
Transducer Shape 4 15 34
Sim. Param. 40 76 157
Transfer Function 9 31 47

Table 6.1: Performance in frames per second for the combined simulation and 
visualization.

The performance of the simulations were also measured by throughput in mega-
pixels rendered per second for varying numbers of scan lines and samples, and ultra-
sound image resolutions (see Table 6.2 for benchmark configuration details). The 
results were compared with the throughput of a CPU implementation measured 
on an Intel Core 2, Quad 3.0 GHz processor. The results are given in Fig. 6.14. 
Unlike the GPU version, the throughput for the CPU implementation does not 
(noticeably) vary with the image size. The GPU implementation outperforms the 
CPU by up to ~  20 times (see Fig. 6.15).

Benchmark Index Scan lines Depth Samples Ultrasound Image Resolution
1 256 256 256 x 256
2 512 512 512 x 512
3 512 512 640 x 480
4 512 512 800 x 600
5 1024 1024 1024 x 1024

Table 6.2: Benchmark configuration parameters for performance evaluation of sin-
gle 2D ultrasound image simulation.

6.3.9 Perform ance of Sim ulation for R egistration  A pplica-

tions

Registration of ultrasound and CT images requires the repeated simulation of ul-
trasound images at various orientations and positions from the CT data during
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Figure 6.14: (a) Benchmark results for simulation of a single 2D ultrasound image 
using the simulation model by Shams et al. for benchmark configurations denoted 
in Table 6.2. (b) CPU versus GPU performance comparison for simulation of a 
single 2D ultrasound image: 512 scan lines with 512 samples, 512 x 512 pixels 
image resolution.

GPU Speedup vs CPU - Shams Model
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Figure 6.15: GPU speedups for the simulation of a single 2D ultrasound image 
using the model by Shams et al. for benchmark configurations in Table 6.2.
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Figure 6.16: (a) Simulation performance for a single 2D ultrasound image using 
the benchmark configuration parameters specified in Table 6.2. (b) Comparison of 
GPU and CPU throughput for simulating a single 2D ultrasound image of 128 x 96 
pixels.

optimization of the registration parameters. The simulation of a single 2D ultra-
sound image using the model in [103] barely utilizes the computational resources of 
the GPU. Fig. 6.16 depicts the throughput for a single 2D ultrasound image using 
the scan line and ultrasound image resolutions given in Table 6.2. The throughput 
is limited by the number of active fragment shaders/stream processors and control 
program overhead in the scan line traversal stage. As can be seen in Fig. 6.16(a), 
the throughput improves as the size of the ultrasound image increases, since GPU 
resources are being more optimally utilized for larger images. The authors of [103] 
kindly provided us with the timings of their CPU ultrasound simulation C + +  im-
plementation on a 2.2 GHz Intel Core 2 Duo mobile processor. The simulation of a 
single 2D ultrasound image, 128 x 96 took ~  3.5ms. To compare the performance, 
we used this value for estimation of the GPU speedups compared to the CPU for 
the simulation of single 2D ultrasound images (see Fig. 6.16(b)) and multiple 2D 
ultrasound images on the GPU (see Fig. 6.19) of the same resolution.

The key to increase the throughput of the simulation is to process more frag-
ments in a single pass of the scan line simulation stage. We achieve this by packing 
multiple ultrasound images into tiles of a large texture on the GPU. In each sim-
ulation pass, multiple ultrasound images are processed resulting in an improved 
GPU hardware utilization and increased data throughput per second.

Fig. 6.17 and Fig. 6.18 depict the throughput achieved by the parallel simulation 
of multiple ultrasound images. The throughput increases by the number of image 
tiles. Using a tile configuration of 32 x 16 images, each with a 256 scan lines with 
256 samples and an ultrasound image resolution of 256 x 256 pixels, we achieved a
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Figure 6.17: Throughput [MPixels/sec] for different image tile configurations: the 
throughput increases with the number of tiles and is typically optimal for square 
configurations.
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throughput of >700 MPixels/sec on an NVIDIA Quadro FX5600 board.
Fig. 6.19 depicts the speedup for our multi-image GPU simulation compared 

to the CPU implementation by Wein et al. [103] for the simulation of ultrasound 
images of 128 x 96 pixels resolution and 128 scan lines with 96 samples. With a 
Quadro FX5600 a speedup of more than 200 times can be achieved.

6.4 D iscu ssio n

We are investigating further enhancement of our ultrasound model including ab- 
sorbtion and refraction based on labeling tissue types, multiple echoes, and simu-
lating tissue deformation due to pressure by the ultrasound probe.

One limitation of the method is that it may not be readily used for prenatal 
training due to dependance on CT images as input. Prenatal CT scans are rarely 
performed and are typically reserved for cases with complications or when the fetus 
is deemed unviable. Use of MRI or synthetic models can be investigated.

Another interesting application of ultrasound simulation is real-time registra-
tion of 2D ultrasound to a 3D volume. We are hypothesizing that a more accurate 
simulation of the ultrasound, facilitates registration of an actual ultrasound against 
a CT volume. This is driven by the intuition that comparing an actual ultrasound 
with a closely simulated one, reduces the burden on the design of the similarity 
measure and the optimization algorithm and can potentially lead to interactive 
registration. This application is currently being investigated.

Simulating the scattering image is time-consuming and requires a cluster of 
CPUs to be practical. This is less of a burden as 4- and 8-core systems are becoming 
commonplace. GPU implementation of the scattering simulation is worthwhile as 
GPUs with up to 240 cores are available at retail prices and the processing can be 
easily distributed.
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Figure 6.18: Throughput [MPixels/sec] for different image tile configurations: the 
throughput increases with the number of tiles and is typically optimal for square 
configurations.
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Figure 6.19: Speedups for GPU implementation of Wein’s model and simulation of 
multiple images of resolution 128 x 96 compared to performance of CPU implemen-
tation for simulation of the same total number of images. CPU implementation 
performance values estimated from timings provided by Wein et al. [103].
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(b)

Figure 6.20: Screen shots from visualization of simulated 3D ultrasound volume, 
(a) Coronal, sagittal and axial MPRs extracted from simulated ultrasound volume. 
Upper-right quadrant: Volume rendering of CT data with wire frame rendering of 
ultrasound field of view and ultrasound MPRs inside the CT volume, (b) Coronal, 
sagittal and axial MPRs extracted from simulated ultrasound volume. Upper-right 
quadrant: Volume rendering of simulated ultrasound volume with texture mapped 
MPR planes.
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Figure 6.21: Screen shots from visualization of simulated 3D ultrasound volume, (a) 
Volume rendering of CT data with wire frame rendering of ultrasound field of view 
and ultrasound MPRs inside the CT volume, (b) Volume rendering of simulated 
ultrasound volume with texture mapped MPR planes.
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Figure 6.22: Screen shot from visualization of simulated 3D ultrasound volume. 
Top row, from left to right: Volume rendering of CT data with wire frame render-
ing of ultrasound field of view and ultrasound MPRs inside the CT volume. Volume 
rendering of simulated ultrasound volume with texture mapped MPR planes. Bot-
tom row, from left to right: Axial, sagittal and coronal MPR planes extracted from 
simulated ultrasound volume.



C h ap te r 7 

Conclusions

The traditional approach to solving computational problems, as we have noted in 
more than one occasion in this thesis, is being challenged now more than ever by 
massively parallel architectures. Massively parallel systems are no longer limited 
to super-computing facilities and expensive data centers. A typical desktop system 
is now a heterogeneous computational powerhouse. One whose potential craves to 
be unlocked by a fresh approach to software design from conception of algorithms 
to their implementation. There is enormous potential in clustering these systems 
to form highly powerful and low-cost clusters to tackle computationally challenging 
problems.

The advent of this new generation of low-cost high performance computing 
platforms presents both numerous opportunities and challenges. A plethora of 
fundamental research questions related to high performance computing on many- 
core heterogeneous systems needs to be investigated. The overhaul of software 
platforms, algorithmic design, programming models, and tools required to fully 
embrace these new technologies is indeed a grand challenge. One notable problem 
is efficient and practical scalability of applications in clusters of heterogeneous 
computers, while also ensuring that the associated programs fully utilize all the 
CPU and accelerator resources.

In the field of medical image analysis, in particular, small clusters of heteroge-
neous GPUs and CPUs are of practical interest. They can be deployed in radiology 
departments and operating rooms to solve image analysis and image-based naviga-
tion problems at a low cost, with minimal power consumption and within a small 
footprint . The increased computational resources can be used in a number of ways: 
(a) to improve the robustness of existing processes through combining the results 
from different solutions to a problem by consensus, (b) to solve problems that 
would otherwise be computationally intractable, (c) to enable existing algorithms
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to be run faster, even in real-time, to allow adaptation of a range of preoperative 
tools to intraoperative setups, and (d) to improve productivity through enhanced 
efficiency of existing tools.

Achieving these goals require a coordinated effort by the medical imaging com-
munity to redesign a large set of existing and fundamental algorithms in areas such 
as registration, segmentation and modeling specifically for massively parallel archi-
tectures. A feat which many not be possible without a more enthusiastic adoption 
of high performance computing within the field. We envisage that existing efforts 
in this area will become more focused in the next few years. This may pave the way 
for the organic growth of a computational medical imaging community in much the 
same way that computational physics, chemistry and astronomy have grown out of 
their respective disciplines.



A ppendix  A

R o ta tio n  M atrix

There are two possible scenarios when one talks about a rotation:

1. World axes rotation: rotation of the world coordinates

2. Object axes rotation: rotation of an object w.r.t. fixed world coordinates

Rotation of an object w.r.t. to fixed coordinates can be described by the rotation of 
the coordinates by the same magnitude and in the opposite direction. R ,̂ and R0 
in (A.l) describe world axes and object axes rotations by counterclockwise angle 0 
in R2.

Ru,(0) =
cos 0 sin 0 

— sin 9 cos 9 Ro(0) =
cos 9 —sin 9 
sin 9 cos 9

(A.l)

According to Euler’s rotation theorem, a rotation in R3 may be described by 
only three parameters. These parameters are known as Euler angles. Rotations in 
R3 can be described by three rotations around the three principal axes or by three 
rotations around two principal axes where no two consecutive rotations are around 
the same axis. (A.2) gives world axes rotation matrices around the three principal 
axes by counterclockwise1 angles a , ß  and 7 around x, y and z axes, respectively.

1 Counterclockwise/clockwise direction is determined by an observer whose feet are at the
origin and is standing in the direction of the axis.
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168 Rotation Matrix

'  1 0 0 '

R x ( a )  = 0 cos a s in n

0 — sin a cos a

cos ß  0 - sin ß

Ry{0) — 0 1 0

sin ß  0 cos ß

cos 7 sin 7 0

R*(7 ) = — sin 7 cos 7 0

0 0 1

— 7r <  a < 7T, —— < / ? < —, —7T < 7  <  7T. (A.2)

For a right-handed coordinate system, there are 24 ways of parameterizing 
a rotation2. When using Euler angles the order in which rotations are applied 
and the order in which the angles are given must be specified. We specify the 
parametrization convention by three letter axes designations. For example, xyz  
convention is a rotation around the x-axis followed by rotations around y and z 
axes.

R Xyz(a,ß, 'y)  = R z( j )Ry(ß)Rx(a) = (A.3)

cos ß  cos 7 cos a  sin 7  +  sin a  sin ß  cos 7 sin a  sin 7 — cos a  sin ß  cos 7 

— cos ß  sin 7 cos a  cos 7 — sin a  sin ß  sin 7 sin a  cos 7 +  cos a  sin ß  sin 7 

sin ß  — sin a  cos ß  cos a  cos ß

In this document, rotation implicitly refers to world axes rotation. To avoid 
confusion, we directly work with rotation matrices as opposed to parametrization 
by Euler angles, where possible. Any parametrization by Euler angles is done 
according to the xyz  convention.

212 for world axes and 12 for object axes rotations.



A ppend ix  B

M edical Im aging C oord ina te  
System s

In this section, we explain the conventions and the terminology used throughout 
this thesis to specify the manner in which 3D image data is stored and represented 
to the user.

B ,1 A natom ica l D irection s and P lanes

Fig. B .l depicts the 6 principal directions w.r.t. to a human subject’s anatomy: 
left/right, anterior/posterior, and superior/inferior or for short L/R, A/P, and S/I. 
Note that use of terms such as back/front and up/down is ambiguous when dealing 
with different orientations of a subject (e.g. standing up, lying down, etc.) and 
should be avoided. In the context of human subjects, one may use head/foot term 
instead of superior/inferior but we prefer the later due to its generality. Fig. B.l 
also shows the three principal anatomical planes: axial (or transverse), sagittal 
and coronal planes. These planes are defined as being orthogonal to S/I, L/R, and 
A /P directions, respectively.

B .2 V oxel O rdering

3D images are stored as streams of intensity values. The order in which these voxels 
are stored is arbitrary and determined by the scanner. In order to visualize and 
manipulate the data correctly, one needs to know the voxel ordering. The order 
of voxels is specified with a three-letter direction code, starting with the fastest 
changing index to the slowest w.r.t. the subject’s orientation. This allows for a 
volumetric image to be stored in 48 different ways.
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Figure B.l: MATLAB-based implementation of a 3D medical image viewer. The 
image shows principal anatomical directions and planes.

For example, when we say an image is stored in ‘RPS’ order, it means that 
voxels are stored from right to left, in rows that are from posterior to anterior and 
in slices that are from superior to inferior of the subject. This is called the from 
order code specification which is used by most storage formats as opposed to the to 
order code specification where each letter specifies the direction to the respective 
anatomical orientation. We use ‘from codes’ to specify storage orders in this thesis.

B.3 S ub ject C oo rd ina te  System

Medical images typically depict a single subject. Software that visualizes or manip-
ulates the image should use the same coordinate system for all subjects regardless 
of the voxel ordering of the underlying data for consistency and improved user ex-
perience. The origin of the coordinate system is chosen in the center of the volume 
and the direction of the principal axes x, y and z are specified by a three-letter 
direction code. It is customary, however confusing, to use to order codes to specify
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the subject’s coordinate system. For example, an ‘RAS’ coordinate system refers to 
one where the rr-axis points to the right of the subject, y-axis points to the anterior 
of the subject and 2-axis points to the superior of the subject. Unless otherwise 
specified, we use ‘RAS’ coordinate system in this thesis.

B .4  2D a n d  3D D isp lay  o f A n a to m ic a l P la n e s

A common method for displaying 3D medical images is to show 3 principal anatomi-
cal planes in 2D together with a 3D display of the selected principal planes. Fig. B.l 
shows our MATLAB-based implementation of a 3D medical viewer. The 3D im-
age is given in an ‘RAS’ coordinate system and the 2D views depict the so called 
radiological point of view.
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A ppend ix  C

H ardw are  C onfiguration

The following summarizes the hardware specification of a number of systems that 
were used in different experiments. The relevant table number is referenced within 
the main text where appropriate.

Table C.l: Host Specification (CPU)
Processor AM2 Athlon 64x2 6000+ 3.0 GHz
Memory 4 GB, 800 MHz DDR2

Motherboard ASUS M2N-SLI Deluxe
Operating System Windows XP 32-bit

Table C.2: Device Specification (GPU)
Model

Number of GPUs 

Multiprocessors per GPU 
Cores per multiprocessor 

GDDR3 memory 

Memory interface 
Nominal memory bandwidth 

Shared memory per block 

Registers per multiprocessor 

Max threads per block 

Max active warps per multiprocessor 

Warp size

GTX 8800 GTX 280 GTX 295
1 1 2

16 30 30

8 8 8
768 MB 1GB 1792 MB

384 bits 512 bits 896 bits
86.4 GB/s 141.7 GB/s 223.8 GB/s

16 KB 16 KB 16 KB

8 KB 16 KB 16 KB

512 512 512

24 32 32

32 32 32
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A ppend ix  D

In trao p e ra tiv e  U ltraso u n d  P ro b e  
C alib ra tion  in a S terile  F ield

D .l In tro d u c tio n

Strict sterility requirements impose restrictions on the type of equipment and its 
handling in an operating room (OR). In this chapter, we propose three methods 
for intraoperative calibration of a tracked ultrasound probe under sterile condi-
tions. We categorically call these methods air calibration to contrast them with 
the common phantom-based calibration methods that employ a coupling medium 
(e.g. a water-bath). The methods each consist of a preoperative and an intraoper-
ative calibration stage. The preoperative stage is performed once in a non-sterile 
environment where any of the existing calibration methods can be used. The in-
traoperative stage is performed before each intervention in the OR. To minimize 
impact on the interventional work-flow, we required that the intraoperative calibra-
tion took less than 10 minutes, produced a robust result and was easy to perform.

The proposed calibration methods are designed to be used with a navigation sys-
tem for laparoscopic [121,122] and endoscopic [123] transgastric interventions. The 
system had been initially validated in vivo on porcine models with a non-survival 
protocol [124] where sterility of the operating room (OR) was not a requirement. 
In moving from porcine to human subjects, sterility of the experimental equipment 
became a primary concern. This imposed limitations on the type of equipment 
and its handling in the sterile field (and during the disinfection process for en-
doscopy). As we have found, introduction of new material and practices into an 
OR is complex; it requires extensive iterative development of appropriate protocols 
and eventual certification. The process can postpone experiments for months. In 
this chapter, we discuss one specific challenge that we encountered with the cali-
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bration of ultrasound and new methods that were devised around these practical 
limitations.

The aforementioned navigation system consists of a laparoscopic ultrasound 
(LUS) or an endoscopic ultrasound (EUS) probe. An electromagnetic (EM) sensor 
(Ascension Technology) is attached close to the transducer on the probe where the 
relative position of the sensor w.r.t. the ultrasound plane can be maintained. In 
prior porcine experiments, Polyolehn tubes (shrink wrap) were used to secure the 
EM sensor. A standard single-wall phantom calibration was then performed [125] 
in a water-bath prior to the operation. The calibration procedure need not be 
repeated as long as the EM sensor is not removed.

In human subjects, however, there is a concern that biological sediments may 
not be properly removed by the disinfection or sterilization process, if the sensor 
is not detached from the instrument. This means that the EM sensor may not be 
configured permanently, but rather is attached after the components are sterilized 
separately and supplied in the sterile field of the OR. As such, there is a need for 
intraoperative calibration of the instrument in the sterile field.

An intraoperative calibration method has been proposed by Chen et al. in [126], 
who designed a double-N phantom that can be disassembled for sterilization and 
reassembled for the operation. Sub-millimeter accuracy is reported in conjunction 
with an optical tracking system.

There are good arguments against ultrasound calibration in the OR with phan-
toms and liquids. Sterilization, phantom construction, and phantom assembly 
issues aside, accurate calibration is time-consuming and a delicate task. For ex-
ample, correction for the speed of sound [127] may involve controlling the water 
temperature or creating water-glycerol or water-ethanol solutions. The more com-
plicated an engineering solution, the less likely it is to be integrated into a clinical 
work-flow.

A phantom-less method for quality-control of calibration parameters is given 
by Boctor et al. [128]. The method can recover a sub-set of calibration parameters. 
In [129], Wein and Khamene propose a method that employs spatial consistency of 
two orthogonal freehand ultrasound sweeps of a region of interest to determine cal-
ibration parameters. The method is suitable for transcutaneous ultrasound probes 
and cannot be readily applied to the calibration of endoscopic or laparoscopic ul-
trasound.
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D .2 A ir  C a lib ra tio n

We propose three calibration methods (Mold Calibration, Funnel Calibration, and 
the Closest Point Calibration) that do not involve use of a phantom or a coupling 
medium (such as a water-bath) and can be performed easily by technicians in the 
OR. The third method has the added advantage that it uses only material already 
available in the OR and thus does not require an approval process. We categorically 
call these techniques air calibration methods.

These methods partition the process into preoperative and intraoperative cal-
ibration steps. Preoperatively, the ultrasound probe can be calibrated using any 
phantom-based method such as the single-wall phantom, Cambridge phantom, 3- 
wire phantom [125], or Hopkins phantom [130]. In a conventional calibration setup 
the following coordinate systems are dehned, the tracker (world) coordinates C t , 
the sensor coordinates Cs, and the ultrasound image coordinates Cu as shown in 
Fig. D.2. The conventional calibration problem determines sTy the transformation 
matrix from the ultrasound image’s coordinate system to the sensor’s coordinate 
system.

I

7T
(D

Figure D.l: Coordinate systems and transformations used in air calibration
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For air calibration, we introduce an extra coordinate system (Cp) whose po-
sition remains fixed w.r.t. the ultrasound transducer. This coordinate system is 
attached to a physical (mold and funnel calibration) or virtual (the closest point 
calibration) object that maintains its relative position to the ultrasound plane.

We postulate that we can specify a stable coordinate system that remains fixed 
w.r.t. to the ultrasound coordinate system. The transformation matrix from the 
ultrasound plane to this coordinate system is denoted by FTu- The purpose of 
the preoperative calibration is to determine this transformation. We first perform 
a conventional calibration and determine sTp. Then, the position of Cp is deter-
mined w.r.t. the tracker (xTp = FT^ ) and we can now determine *'Tu based on 
known relationships

f T u =  f T t  t T s s T u . (D.l)

During the intraoperative phase, the position of the EM sensor has changed (the 
sensor has been detached and reinstalled) and sTu from the preoperative stage is 
no longer valid and a new calibration is required. The intraoperative calibration 
stage consists of measuring the position of Cp w.r.t. the tracker with the same 
method used in the preoperative step to determine ’Tp and then compute the 
calibration matrix sTu using known matrices

sT Lr =  TT g 1 FT 1;1FT U. (D.2)

So far we have not been specific in setting the fixed coordinate system and its 
position and orientation in the coordinate frame of the tracking device. In the next 
sections, we discuss three air calibration methods to achieve this. The first two 
that require a device to be built are briefly discussed; the third method that uses 
point-to-surface registration will be explained in detail.

D.2.1 Mold Calibration

The tip of the ultrasound probe is cast to create a mold. We built a mold that fits 
the inflexible tip of the ultrasound probe. The asymmetries in the probe’s shape 
ensure that the probe fits in the mold in a unique position. A second sensor is 
attached to the exterior of the mold. During the preoperative calibration stage, 
the ultrasound plane is calibrated relative to the mold sensor. The position of 
the mold sensor defines our fixed coordinate system, as the sensor does not have 
to be removed for sterilization (it does not directly touch the probe). During the
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intraoperative phase, a sensor is also attached to the probe and the probe is inserted 
in the mold. Probe calibration matrix is then computed using (D.2).

D .2 .2 Funnel C a lib ra tio n

This method is a variation of the mold calibration process, in which the mold is 
built with a sharp pointed end, like a funnel. Preoperatively, the ultrasound plane 
is calibrated against the tip of the funnel in a manner similar to calibration of a 
stylus. Since the position of the funnel tip does not change w.r.t. the ultrasound 
plane, the same process can be repeated intraoperatively to recover the calibration 
matrix. The funnel calibration requires a single sensor.

D .2 .3 C losest P o in t C a lib ra tio n

The previous methods require purpose-built appliances. Even when the appliances 
are built using approved material and are sterilizable, they must pass the approval 
process before they can be used. To further simplify the calibration process, we de-
veloped a third method that relies solely on material and devices already approved 
for use in the OR.

We use the same principle that the ultrasound probe must be calibrated w.r.t. 
a fixed point in space in relation to the ultrasound plane. We then create a model 
of the ultrasound probe by imaging the probe in a CT scanner and extracting a 
surface model by segmenting the image. Fig. D.2.3 shows a laparoscopic probe and 
the surface model of its tip derived from a CT scan of the probe.. Three easy- 
to-identify landmarks (e.g. for laparoscopic probe: tip of the probe, entrance of 
the biopsy channel and lower exit of biopsy channel) are approximately identified 
in the model. The user is later instructed to touch these landmarks to initialize 
the registration process. We inserted a needle in the biopsy channel to give the 
model more spatial extent. We segmented the needle and the probe separately. 
The model with the needle inserted is used to guide the registration algorithm in 
the initial phase of the calibration process.

P reo p e ra tiv e  C alib ra tion :

The preoperative calibration involves a calibration phantom, two EM sensors, and 
the probe to be calibrated. One of the sensors is mounted on the probe and the 
second one is used to scan the surface of the probe. In addition to the coordinate 
systems defined at the beginning of Section D.2 we also have the coordinate system 
of the scanning sensor which we denote by Cs'. The fixed coordinate system Cp,



180 Intraoperative Ultrasound Probe Calibration in a Sterile Field

Figure D.2: A laparoscopic probe and its 3D mesh model (needle partially visible 
in the biopsy channel).

in this setup is defined at an arbitrary (but fixed) position in the segmented CT 
volume.

We first determine the calibration matrix between the probe sensor and the 
ultrasound plane sTu using the single-wall phantom. We then scan the surface of 
the probe by moving the second senor slowly against the surface of the probe. The 
scanning sensor is attached to a stylus for easy handling.

The precise location of the coordinate system attached to the scanning sensor 
is not known. The offset between the location of the coordinate system and the 
tip of the sensor can be described by a translation. The position of the tip of the 
sensor based on the sensor measurements x s/ is given by

Xf =  xs/ +  [vx Vy vz]T, (D.3)

where the unknown translation vector v =  [vx vy vz]T is computed as part of our 
calibration/ registration process.

The set of points measured on the surface of the probe {x*} are related to 
corresponding surface points in the model {xm} by a rigid transformation. The
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iterative closest point (ICP) algorithm can be used to register the two point sets 
as long as v is given. The adaptation of ICP to solve for v in addition to the 
rigid registration parameters is not trivial. One could install the sensor on a stylus 
and calibrate the stylus to retrieve v. We did not find this option convenient 
nor particularly helpful for overall accuracy. The error is further compounded 
by the stylus calibration. Alternatively, we solve for v and the rigid registration 
together using a 9-parameter local optimization algorithm with a closest point cost 
function (a suitable optimization algorithm such as Powell, Simplex, or Gradient 
Descent variants can be used). The outcome of the closest point optimization is the 
transformation matrix from the tracker coordinates to the model (fixed) coordinates 
f T t - We also measure the position of the sensor attached to the probe and can 
now compute FTy using (D.l). Note that the probe must remain stationary during 
the scanning process for this method to work. However, it is more convenient to 
have the flexibility to move the probe to gain access to the surface. The ability to 
move the probe has the added advantage that one does not have to worry about 
securing the probe in position and errors due to pressure against the tip of the 
probe which may cause small movements. To this end, we record the position of 
the scanning sensor and the probe sensor simultaneously, and compute the position 
of the surface points in the coordinate system of the probe sensor:

Using {xs} instead of {xf} means that the outcome of the registration process 
is 1 Ts and (D.l) can be simplified to

Intraoperative Calibration:

The intraoperative calibration involves two EM sensors and the probe to be cal-
ibrated. The calibration process is similar to the preoperative calibration except 
that no phantom-based calibration is involved. The surface of the probe is scanned 
using a sensor and the resulting object measurements are registered against the 
model to determine }'T s, as before. Since 1 Ty is known, the calibration matrix is 
computed using:

T (D.4)

F  r p  F  r p  S r p
J -U  =  ->-S A u  • (D.5)

S r p    F  r p  — 1 F  r p
A U  —  A g  l y . (D.6)
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Thiee-Poifrt Registration Image Registration without Sensor Correction

(a) 3-point registration (b) 6-param. registration

Image Registration with Sensor Correction Final Image Registration Needle Removed

(c) 9-para.m. registration (d) 9-param. reg., needle removed

Figure D.3: Incremental improvement in the alignment of a scanned probe (red 
cloud) with the model (blue): (a) the registration is initialized with a 3-point rigid 
alignment first, (b) a 6-parameter registration is unable to register the point cloud 
to the surface of the model due to the distance of the origin of the sensor’s coordi-
nate system from its tip, (c) a 9-parameter optimization algorithm retrieves rigid 
registration parameters together with the sensor’s calibration, (d) starting from the 
results of the previous run, a second 9-parameter optimization is performed with 
the needle points removed for improved alignment.

Object to M odel Registration:

To ensure convergence, a three-stage registration is performed for object to model 
registration. Each stage is designed to improve the registration accuracy and is 
initialized from the solution returned by the previous stage.

1. 3-point registration: the user is requested to identify 3 previously selected 
landmarks in a pre-defined order by touching the corresponding points on the 
object by the sensor. An approximate rigid transformation from the object to 
the model is computed and used for initializing the registration optimization 
algorithm.

2. 9-param eter registration - initial: a 9-parameter registration consisting
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of rigid object-to-model alignment parameters (6 parameters) and position 
of the sensor’s tip in the coordinate system of the sensor (3 parameters) is 
performed. The results are used to initialize the next registration stage.

3. 9-param eter registration - final: data points that belong to the needle 
are removed from both the object samples and the model and a constrained 9- 
parameter optimization is performed to determine the registration parameters 
more accurately.

Fig. D.3 illustrates incremental improvement in registration of a point of clouds 
measured from the surface of a laparoscopic probe (shown in red) to a model of the 
probe (shown in blue). Fig. D.3(b) shows the result of a 6-parameter registration 
which does not include the calibration parameters of the sensor. This is shown for 
comparison with 9-parameter registrations only and is not part of our registration 
algorithm.

D.3 R esu lts

An LUS probe was calibrated preoperatively using the single-wall phantom. The 
probe was then registered to its 3D segmented model to compute the calibration 
matrix w.r.t. a fixed point in the model. For the intraoperative calibration we used 
a different sensor which was placed at a different location on the surface of the 
probe. The calibration was determined by the closet point calibration algorithm. 
Table D.l shows air calibration precision for 6 experiments. The first three rows 
show the mean registration error for each registration step. The registration error 
is reduced by each step. To validate the air calibration method, the intraoperative 
sensor was also independently calibrated using the single-wall phantom so that the 
air calibration results can be compared with the single-wall phantom. Single-wall 
calibration was also performed several times. The results are summarized in Table 
D.2. The precision of the calibration methods was computed for a point in the 
center of the ultrasound image. This makes sense as the operators tend to keep 
objects of interests in the center of the field of view. We also report the preoperative 
calibration precision with the single-wall phantom for completeness.

D.4 D iscussion

This study demonstrates a fast, easy-to-use method for instrument calibration suit-
able for intraoperative use. It uses equipment and material already available in the
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Table D.l: Registration error and the calibration precision for a number of exper-
iments given in mm

E xperim ent 1 2 3 4 5 6

Mean registration error (step 1) 2.14 1.60 1.97 3.20 1.88 2.81

Mean registration error (step 2) 0.53 0.48 0.59 0.60 0.81 0.64

Mean registration error (step 3) 0.50 0.48 0.59 0.54 0.73 0.63

Air calibration error 2.07 2.33 0.37 2.18 2.27 2.20

Table D.2: Precision of the single-wall phantom and the closest point calibration 
methods in mm

M eth o d M ean S td . Dev. M in M ax

Wall-phantom calib., pre-op. sensor 1.26 0.44 0.79 1.85

Wall-phantom calib., intra-op sensor 1.17 0.40 0.66 1.71

Air calib., intra-op sensor 1.90 0.76 0.37 2.33

OR. Our experiments were not directed toward reconstruction of 3D freehand ul-
trasound volumes but with approximate alignment of the B-mode ultrasound with 
a preoperative CT. The reformatted CT were shown side-by-side with the ultra-
sound stream to provide anatomical context for interpreting the ultrasound and 
improving the navigation of laparoscopic and endoscopic ultrasound [123]. For this 
application, the highest calibration accuracy was not the primary concern and we 
limited ourselves to qualitative assessment of the resulting calibration. It will be 
interesting to investigate the limits of the proposed methods for freehand ultra-
sound and to provide accuracy results in addition to precision in the future work. 
Single-wall phantom preoperative calibration is easy to perform but not the most 
accurate method. We expect the overall precision and accuracy to improve with a 
better preoperative calibration method.
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