976 research outputs found

    Is Android or iPhone the Platform for Innovation in Imaging Informatics

    Get PDF
    It is clear that ubiquitous mobile computing platforms will be a disruptive technology in the delivery of healthcare in the near future. While radiologists are fairly sedentary, their customers, the referring physicians, and the patients are not. The need for closer collaboration and interaction with referring physicians is seen as a key to maintaining relationships and integrating tightly with the patient management team. While today, patients have to settle for their images on a CD, in short time, they will be taking them home on their cell phone. As PACS vendors are moving ever outward in the enterprise, they are already actively developing clients on mobile platforms. Two major contenders are the Apple’s iPhone and the Android platform developed by Google. These two designs represent two entirely different architectures and business models

    mHealth Engineering: A Technology Review

    Get PDF
    In this paper, we review the technological bases of mobile health (mHealth). First, we derive a component-based mHealth architecture prototype from an Institute of Electrical and Electronics Engineers (IEEE)-based multistage research and filter process. Second, we analyze medical databases with regard to these prototypic mhealth system components.. We show the current state of research literature concerning portable devices with standard and additional equipment, data transmission technology, interface, operating systems and software embedment, internal and external memory, and power-supply issues. We also focus on synergy effects by combining different mHealth technologies (e.g., BT-LE combined with RFID link technology). Finally, we also make suggestions for future improvements in mHealth technology (e.g., data-protection issues, energy supply, data processing and storage)

    Towards a Low-Cost Mobile Subcutaneous Vein Detection Solution Using Near-Infrared Spectroscopy

    Get PDF
    Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature). The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database) the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction

    Smartphones

    Get PDF
    Many of the research approaches to smartphones actually regard them as more or less transparent points of access to other kinds of communication experiences. That is, rather than considering the smartphone as something in itself, the researchers look at how individuals use the smartphone for their communicative purposes, whether these be talking, surfing the web, using on-line data access for off-site data sources, downloading or uploading materials, or any kind of interaction with social media. They focus not so much on the smartphone itself but on the activities that people engage in with their smartphones

    Digital Forensic Tools & Cloud-Based Machine Learning for Analyzing Crime Data

    Get PDF
    Digital forensics is a branch of forensic science in which we can recreate past events using forensic tools for legal measure. Also, the increase in the availability of mobile devices has led to their use in criminal activities. Moreover, the rate at which data is being generated has been on the increase which has led to big data problems. With cloud computing, data can now be stored, processed and analyzed as they are generated. This thesis documents consists of three studies related to data analysis. The first study involves analyzing data from an android smartphone while making a comparison between two forensic tools; Paraben E3: DS and Autopsy. At the end of the study, it was concluded that most of the activities performed on a rooted android device can be found in its internal memory. In the second study, the Snapchat application was analyzed on a rooted Android device to see how well it handles privacy issues. The result of the study shows that some of the predefined activities performed on the Snapchat application as well as user information can be retrieved using Paraben E3: DS forensic tool. The third study, machine learning services on Microsoft Azure and IBM Watson were used in performing predictive analysis to uncover their performance. At the end of the experiments, the Azure machine learning studio was seen to be more user friendly and builds models faster compared to the SSPS Modeler in the IBM Watson Studio. This research is important as data needs to be analyzed in order to generate insights that can aid organizations or police departments in making the best decisions when analyzing crime data

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint

    Analysis of Secure Apps for Daily Clinical Use by German Orthopedic Surgeons: Searching for the "Needle in a Haystack"

    Get PDF
    Background: It is undeniable that appropriate smartphone apps offer enormous opportunities for dealing with future challenges in orthopedic surgery and public health, in general. However, it is still unclear how the apps currently available in the two major app stores can be used in daily clinical routine by German orthopedic surgeons. Objective: This study aimed to gain evidence regarding the quantity and quality of apps available in the two major app stores and their suitability for use by orthopedic surgeons in Germany. Methods: We conducted a systematic, keyword-based app store screening to obtain evidence concerning the quantity and quality of commercially available apps. Apps that met the inclusion criteria were evaluated using the app synopsis–checklist for users and the German Mobile App Rating Scale for secure use, trustworthiness, and quality. Results: The investigation revealed serious shortcomings regarding legal and medical aspects. Furthermore, most apps turned out to be useless and unsuitable for the clinical field of application (4242/4249, 99.84%). Finally, 7 trustworthy and high-quality apps (7/4249, 0.16%) offering secure usage in the daily clinical routine of orthopedists were identified. These apps mainly focused on education (5/7). None of them were CE (Conformité Européenne) certified. Moreover, there are no studies providing evidence that these apps have any positive use whatsoever. Conclusions: The data obtained in our study suggest that the number of trustworthy and high-quality apps on offer is extremely low. Nowadays, finding appropriate apps in the fast-moving, complex, dynamic, and rudimentarily controlled app stores is most challenging. Promising approaches, for example, systematic app store screenings, app-rating developments, reviews or app libraries, and the creation of consistent standards have been established. However, further efforts are necessary to ensure that these innovative mobile health apps not only provide the correct information but are also safe to use in daily clinical practice

    Smart scientific instruments based on smartphones: a brief review

    Get PDF
    Smartphone has gone beyond a communication hub to be a measurement device itself, thanks to various built-in sensors. This article reviewed achievements in transforming ubiquitous smartphones into cost-effective scientific instruments for educational laboratories, environmental studies, point-of-care diagnostics, home-based health monitoring, and rehabilitation. Magnetic fields were precisely measured by built-in magnetometers, leading to demonstrations for engineering and medical applications. The smartphone-based joint-angle measurement was a viable alternative to traditional goniometers. Characterizations of optical signals captured by cameras led to portable spectrophotometers and colorimeters for both educational and practical uses. Interestingly, smartphones became a platform for high-resolution microscopes and fluorescence microscopes were developed with add-on components. These smart instruments become even more attractive options in the pandemic period with limited facility and laboratory access
    • …
    corecore