172 research outputs found

    Irreducible pseudo 2-factor isomorphic cubic bipartite graphs

    Full text link
    A bipartite graph is {\em pseudo 2--factor isomorphic} if all its 2--factors have the same parity of number of circuits. In \cite{ADJLS} we proved that the only essentially 4--edge-connected pseudo 2--factor isomorphic cubic bipartite graph of girth 4 is K3,3K_{3,3}, and conjectured \cite[Conjecture 3.6]{ADJLS} that the only essentially 4--edge-connected cubic bipartite graphs are K3,3K_{3,3}, the Heawood graph and the Pappus graph. There exists a characterization of symmetric configurations n3n_3 %{\bf decide notation and how to use it in the rest of the paper} due to Martinetti (1886) in which all symmetric configurations n3n_3 can be obtained from an infinite set of so called {\em irreducible} configurations \cite{VM}. The list of irreducible configurations has been completed by Boben \cite{B} in terms of their {\em irreducible Levi graphs}. In this paper we characterize irreducible pseudo 2--factor isomorphic cubic bipartite graphs proving that the only pseudo 2--factor isomorphic irreducible Levi graphs are the Heawood and Pappus graphs. Moreover, the obtained characterization allows us to partially prove the above Conjecture

    A counterexample to the pseudo 2-factor isomorphic graph conjecture

    Full text link
    A graph GG is pseudo 2-factor isomorphic if the parity of the number of cycles in a 2-factor is the same for all 2-factors of GG. Abreu et al. conjectured that K3,3K_{3,3}, the Heawood graph and the Pappus graph are the only essentially 4-edge-connected pseudo 2-factor isomorphic cubic bipartite graphs (Abreu et al., Journal of Combinatorial Theory, Series B, 2008, Conjecture 3.6). Using a computer search we show that this conjecture is false by constructing a counterexample with 30 vertices. We also show that this is the only counterexample up to at least 40 vertices. A graph GG is 2-factor hamiltonian if all 2-factors of GG are hamiltonian cycles. Funk et al. conjectured that every 2-factor hamiltonian cubic bipartite graph can be obtained from K3,3K_{3,3} and the Heawood graph by applying repeated star products (Funk et al., Journal of Combinatorial Theory, Series B, 2003, Conjecture 3.2). We verify that this conjecture holds up to at least 40 vertices.Comment: 8 pages, added some extra information in Discrete Applied Mathematics (2015

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    Generation of structures in chemistry and mathematics

    Get PDF

    Clifford group dipoles and the enactment of Weyl/Coxeter group W(E8) by entangling gates

    Full text link
    Peres/Mermin arguments about no-hidden variables in quantum mechanics are used for displaying a pair (R, S) of entangling Clifford quantum gates, acting on two qubits. From them, a natural unitary representation of Coxeter/Weyl groups W(D5) and W(F4) emerges, which is also reflected into the splitting of the n-qubit Clifford group Cn into dipoles C±\pmn . The union of the three-qubit real Clifford group C+ 3 and the Toffoli gate ensures a orthogonal representation of the Weyl/Coxeter group W(E8), and of its relatives. Other concepts involved are complex reflection groups, BN pairs, unitary group designs and entangled states of the GHZ family.Comment: version revised according the recommendations of a refere

    Entropy in Dimension One

    Full text link
    This paper completely classifies which numbers arise as the topological entropy associated to postcritically finite self-maps of the unit interval. Specifically, a positive real number h is the topological entropy of a postcritically finite self-map of the unit interval if and only if exp(h) is an algebraic integer that is at least as large as the absolute value of any of the conjugates of exp(h); that is, if exp(h) is a weak Perron number. The postcritically finite map may be chosen to be a polynomial all of whose critical points are in the interval (0,1). This paper also proves that the weak Perron numbers are precisely the numbers that arise as exp(h), where h is the topological entropy associated to ergodic train track representatives of outer automorphisms of a free group.Comment: 38 pages, 15 figures. This paper was completed by the author before his death, and was uploaded by Dylan Thurston. A version including endnotes by John Milnor will appear in the proceedings of the Banff conference on Frontiers in Complex Dynamic
    • …
    corecore