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xii SHORT SURVEY

By structure generation we mean designing, implementing (and running) an al-

gorithm to construct objects from a certain class. Structure generation has many

applications in theoretical chemistry and mathematics. In theoretical chemistry it

forms an important tool to predict structures and test hypotheses. In mathematics

it is used for the classiVcation of structures and for the search for counterexamples

to conjectures. We make a distinction between random generation algorithms and

exhaustive generation algorithms. The Vrst type of algorithm has as goal the genera-

tion of a random, equally distributed subset of all structures within a speciVc class.

The second type has as goal the complete generation of a speciVc class. In this thesis

we will only discuss exhaustive generation algorithms. More speciVcally, we will dis-

cuss only isomorphism-free, exhaustive generation algorithms. This means that we

not only generate all structures from a speciVc class, but we also guarantee that only

one structure per isomorphism class is generated.

In the Vrst chapter we introduce concepts which are used throughout the thesis.

The most important two concepts are of a graph and a tiling.

A graph 𝐺(𝑉,𝐸) is a structure that consists of two sets. The elements of the

Vrst set 𝑉 are called the vertices of the graph. The elements of the second set 𝐸

are subsets of size 2 of 𝑉 and are called the edges of the graph. The classic way to

represent a graph is to draw the vertices as points and the edges as lines that connect

these points. A graph is cubic if each vertex is incident to exactly 3 edges.

A tiling is a subdivision of the plane into tiles. We only consider tilings where

each tile is Vnite and where every Vnite environment contains a Vnite number of

tiles. The places where more than two tiles meet, are called the vertices of the tiling,

and the places where exactly two tiles meet, are called the edges of the tiling.

If the symmetry group of a tiling contains two independent translations, then we

call the tiling a periodic tiling.

An equivariant tiling is a pair (𝑇,𝐺) where 𝑇 is a tiling and 𝐺 is the symmetry

group of that tiling.

In this chapter we also introduce Delaney-Dress symbols[25]. This structure con-

sists of a cubic multigraph possibly with semi-edges (i.e., edges with only one vertex)

for which the edges are coloured with three colours, and two functions that map
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the vertices to natural numbers. These Delaney-Dress symbols encode equivariant,

periodic tilings, so a Delaney-Dress symbol is a combinatoric, Vnite representation

of an equivariant, periodic tiling. The graph in a Delaney-Dress symbol is called a

Delaney-Dress graph.

The remainder of this thesis is subdivided into two parts. The subject of the Vrst

part is structure generation for mathematics.

In the second chapter we introduce a generation algorithm for generalised cubic

graphs. Cubic graphs are a well-studied class of graphs and there exist several eX-

cient programs for the generation of simple cubic graphs. We generalise the concept

graph by also allowing multi-edges, semi-edges and loops as well as any combination

of these. We group all these classes under the name pregraphs.

We break down the problem by Vrst reducing it to the generation of cubic pre-

graph primitives. These are multigraphs with degrees 1 and 3. We describe a gener-

ation algorithm, based on McKay’s ‘canonical construction path’-method[43], which

generates the cubic pregraph primitives starting from cubic simple graphs. After-

wards we apply the homomorphism principle[32] to generate the cubic pregraphs

from the cubic pregraph primitives.

We conclude this chapter by describing some modiVcations to the generation

algorithm which allow the generated structures to be limited to only those that are 3-

edge-colourable or only those that are bipartite. Finally we also develop an algorithm

which can determine in linear time whether a given cubic pregraph has a 2-factor

such that each component is a quotient of 𝐶4. This class is interesting because these

graphs are the underlying, uncoloured graphs for the Delaney-Dress graphs.

In the third chapter we return to the Vlter at the end of the previous chapter.

We now use the analysis of the structure of cubic pregraphs with a 2-factor such that

each component is a quotient of 𝐶4, to split these graphs into blocks. Then we de-

scribe a generation algorithm that uses these blocks to immediately generate graphs

of this class. The gain in speed when compared to the Vltering technique used in

the previous chapter is of such a level that it now also becomes possible to generate

Delaney-Dress graphs. Finally we take the last step and describe how we can gen-

erate Delaney-Dress symbols and thus equivariant tilings from these Delaney-Dress
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graphs.

After the third chapter we start the second part of this thesis. The subject of the

second part is structure generation for chemistry.

In the fourth chapter we describe a generation algorithm for a speciVc class of

‘graphite-like’ networks. Azulene (C10H8) is an isomer of naphthalene. It consists of

a Vve-ring and a seven-ring that share two carbon atoms and a bond. This research

was started following a question by Edward Kirby. He was interested in knowing

which carbon networks were possible such that there exists a partition of the atoms

into azulenes. These structures are called azulenoids. We model this using tilings and

focus on those networks where there is only one orbit of azulenes under the symme-

try group of the tiling. In this chapter we describe in detail the algorithm that was

developed to generate all Delaney-Dress symbols that encode tilings that correspond

to such azulenoids. Finally we also describe how we visualised the Delaney-Dress

symbols in such a way that it was meaningful for chemists.

A 1,5-patch is a Vnite, bridgeless plane graph with three kinds of faces: one

“outer face” with unrestricted size, 1 to 5 pentagons and an unrestricted number

of hexagons. Furthermore all the vertices have degree 3 except some of the vertices

of the outer face which have degree 2. If we denote the number of vertices of the

outer face with degree two, respectively degree three, by 𝑏2, respectively 𝑏3, then

the Euler Formula gives us that 𝑏2 − 𝑏3 = 6 − 𝑝 with 𝑝 the number of pentagons

in the patch. If the outer face contains no consecutive vertices of degree three, then

we call the patch pseudo-convex. In the Vfth chapter we describe an algorithm to

generate all pseudo-convex patches with a given boundary sequence (i.e., a sequence

of degrees for the vertices of the outer face). This algorithm is based on the encoding

of pseudo-convex patches in [40]. Instead of directly constructing the pseudo-convex

patches, this algorithm uses operations that act on the boundary sequence and an

outer spiral (a sequence of faces as the pseudo-convex patch is unwounded spiral-

wise starting from a special edge in the outer face). These have the beneVt that

they are both relatively short sequences of numbers, while the pseudo-convex patch

can be a very large graph. This means that we have reduced the overhead during

generation considerably.
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In the Vnal chapter we turn our attention to nanocones. A nanocone is a carbon

network which is conceptually situated between graphite and the one-side inVnite

nanotubes: besides hexagons this structure contains between 1 and 5 pentagons, so

that neither the Wat shape of graphite nor the constant diameter tube of the na-

notubes can be formed.

We view a nanocone as a disordering of a tiling; more speciVc a disordering of

the hexagonal lattice such that all disorderings are faces which are pentagons. We

use a result by Balke[39] which says that a disordering of an equivariant tiling is

completely determined by the original equivariant tiling, a winding number and a

conjugacy class of an automorphism in the symmetry group of the tiling. Using this

result we show that there are 8 (inVnite) classes of nanocones. Afterwards we sub-

divide each of the eight (inVnite) classes in an inVnite number of Vnite classes which

also take the localization of the pentagons into account. Finally we describe how

we can use the algorithm for the generation of pseudo-convex patches to generate a

representation of each nanocone in such a class.

The research in this thesis is not reported in chronological order. The generation

of azulenoids was the Vrst thing that was done. After that we made the classiVcation

of the nanocones. The algorithm for the generation of pseudo-convex patches was

designed while writing a program to generate the nanocones based on the classiV-

cation. Then we worked on the generation algorithm for the cubic pregraphs. The

generation algorithm for Delaney-Dress graphs is the most recent work in this thesis.
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1 DeVnitions

A beginning is the time for taking the most delicate care that the bal-

ances are correct.

Frank Herbert, Dune

1



2 CHAPTER 1. DEFINITIONS

In this chapter we will Vrst pack our bag with the necessary tools and get the

general lay of the land of generation algorithms and (chemical) graph theory.

1.1 Graph theory

We will try to keep as closely as possible to the standard deVnitions in mathe-

matics in general and in graph theory in particular. For the reader’s convenience we

start by giving a brief summary of the deVnitions and the terminology as we will use

it. For a more in-depth overview see e.g., [51].

1.1.1 Graphs
In graph theory there exist several deVnitions of a graph, next to several exten-

sions of the concept of a graph. Here we will only give one deVnition of a simple

graph and give a deVnition of graphs with loops. Other deVnitions and generaliza-

tions will be introduced when they are needed.

DeVnition 1.1.1 A (simple) graph 𝐺(𝑉,𝐸) is an ordered pair (𝑉,𝐸) of sets with(simple)
graph 𝑉 a countable set of arbitrary objects and 𝐸 a set of 2-element subsets of 𝑉 . The

elements of 𝑉 are called the vertices of 𝐺 and the elements of 𝐸 are called thevertices
edges of 𝐺.edges

Two vertices 𝑥, 𝑦 ∈ 𝑉 are called adjacent if there exists an edge 𝑒 ∈ 𝐸 such thatadjacent
𝑥 ∈ 𝑒 and 𝑦 ∈ 𝑒. We will denote the edge 𝑒 = {𝑥, 𝑦} by 𝑥𝑦 or 𝑦𝑥.

A vertex 𝑥 ∈ 𝑉 and an edge 𝑒 ∈ 𝐸 are called incident if 𝑥 ∈ 𝑒.incident
The number of edges incident to a given vertex 𝑥 is called the degree of thedegree

vertex 𝑥. ◇

In this thesis we will mostly be using these graphs as models for certain objects

such as e.g., molecules. We are interested in the structure of the molecules for which

these graphs serve as models. As such it is not important for us which elements

are in 𝑉 , and we will often just represent them with the numbers 1 to |𝑉 |. Since

the assignment of these numbers to the vertices is often arbitrary we can not really

speak of equality, but we will use the concept of isomorphism.

DeVnition 1.1.2 Graphs 𝐺 = (𝑉,𝐸) and 𝐺′ = (𝑉 ′, 𝐸′) are isomorphic, writtenisomor-
phism
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as 𝐺 ∼= 𝐺′, if there exists a bijection 𝜑 : 𝑉 → 𝑉 ′ such that for all vertices 𝑥, 𝑦 ∈ 𝑉
we have that 𝑥 and 𝑦 are adjacent in 𝐺 if and only if 𝜑(𝑥) and 𝜑(𝑦) are adjacent in
𝐺′. ◇

A special case of an isomorphism is the case where the bijection goes from 𝑉 to

𝑉 for the same graph 𝐺(𝑉,𝐸). When this isomorphism is diUerent from the identity

it means that the graph 𝐺 has a symmetry of some kind.

DeVnition 1.1.3 An isomorphism that maps a graph to itself is called an automor-
phism. The group of all automorphisms of a graph 𝐺 is called the automorphism automor-

phismgroup of the graph 𝐺 and is denoted as 𝐴𝑢𝑡(𝐺). ◇
𝐴𝑢𝑡(𝐺)

In this thesis we will almost always mean ‘up to isomorphism’ when we say that

a graph is unique or when we say that two graphs are equal.

There exist several extensions of the concept of a graph. We will mention a few

here and some other extensions will be deVned when needed.

DeVnition 1.1.4 A graph with loops 𝐺(𝑉,𝐸) is an ordered pair (𝑉,𝐸) of sets graph with
loopswith 𝑉 a set of arbitrary objects and 𝐸 a set of 2-element subsets of 𝑉 ∪ {𝐿} with

𝐿 /∈ 𝑉 . The elements of 𝑉 are called the vertices of 𝐺 and the elements of 𝐸 are
called the edges of 𝐺. The edges that contain the element 𝐿 are called loops. ◇ loops

The deVnitions of adjacency and of incidence remain the same for graphs with

loops. To calculate the degree the loops are counted as two edges.

DeVnition 1.1.5 A multiset ℳ is an ordered pair ℳ = (𝑀,𝑚) with𝑀 a set and multiset
𝑚 a function 𝑚 : 𝑀 → N ∖ {0}; 𝑒 ↦→ 𝑚(𝑒). For all 𝑒 ∈ 𝑀 the value 𝑚(𝑒) is called
the multiplicity of 𝑒 and the multiset ℳ is said to contain𝑚(𝑒) copies of 𝑒. multiplicity

We have the following deVnition for the operator ∈: ∈

𝑒 ∈𝑀 ⇔ 𝑒 ∈ ℳ

◇

DeVnition 1.1.6 A multigraph𝑀(𝑉, ℰ) is an ordered pair (𝑉, ℰ) of sets with 𝑉 a multigraph
set of arbitrary objects and ℰ = (𝐸,𝑚) the multiset of edges.

The elements of ℰ with multiplicity 1 are the single edges of𝑀 and the elements single edge
of ℰ with a larger multiplicity are the multi-edges of𝑀 . multi-edge

The graph 𝐺(𝑉,𝐸) is the underlying graph of the multigraph𝑀(𝑉, ℰ). ◇ underlying
graph
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Two vertices are adjacent if they are adjacent in the underlying graph. An edge

and a vertex are incident if they are incident in the underlying graph. To calculate

the degree, each edge is counted with its multiplicity.

1.1.2 Subgraphs

DeVnition 1.1.7 A graph 𝐻(𝑉 ′, 𝐸′) is called a subgraph of the graph 𝐺(𝑉,𝐸) ifsubgraph
we have that 𝑉 ′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸.

If a graph 𝐻(𝑉 ′, 𝐸′) is a subgraph of the graph 𝐺(𝑉,𝐸) and 𝐸′ contains all the
edges 𝑥𝑦 ∈ 𝐸 with 𝑥, 𝑦 ∈ 𝑉 ′, then 𝐻(𝑉 ′, 𝐸′) is called an induced subgraph orinduced

subgraph also the subgraph induced by the set 𝑉 ′ in the graph 𝐺(𝑉,𝐸). ◇

Some special types of subgraphs are speciVcally important in graph theory.

DeVnition 1.1.8 A subgraph 𝑃 (𝑉 ′, 𝐸′) of the graph 𝐺(𝑉,𝐸) is a path if it has thepath
form

𝑉 ′ = {𝑣0, 𝑣1, . . . , 𝑣𝑘} 𝐸′ = {𝑣0𝑣1, 𝑣1𝑣2, . . . , 𝑣𝑘−1𝑣𝑘}

with 𝑘 ≥ 0 and 𝑣0, . . . , 𝑣𝑘 𝑘 + 1 distinct vertices. If 𝑘 = 0, then the set 𝐸′ is empty.
The number of edges in a path is the length of that path. ◇length

Using paths we can deVne the concept of a connected graph.

DeVnition 1.1.9 A graph𝐺(𝑉,𝐸) is connected if for each pair of vertices 𝑥, 𝑦 ∈ 𝑉 ,connected
there exists a path in 𝐺 that starts in 𝑥 and ends in 𝑦. ◇

In this thesis we will work almost exclusively with connected graphs. Whenever

we deal with disconnected graphs we will explicitly state this.

DeVnition 1.1.10 A subgraph 𝐶(𝑉 ′, 𝐸′) of the graph 𝐺(𝑉,𝐸) is a cycle if it hascycle
the form

𝑉 ′ = {𝑣0, 𝑣1, . . . , 𝑣𝑘} 𝐸′ = {𝑣0𝑣1, 𝑣1𝑣2, . . . , 𝑣𝑘−1𝑣𝑘, 𝑣𝑘𝑣0}

with 𝑘 ≥ 2 and 𝑣0, . . . , 𝑣𝑘 𝑘 + 1 distinct vertices.
The number of edges in a cycle (or equivalently, the number of vertices) is the

length of that cycle. ◇length
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1.1.3 Bipartite graphs
DeVnition 1.1.11 A countable set 𝒫 is called a partition of the set 𝑆 if the follow- partition
ing three properties are satisVed

1. 𝒫 is a set of non-empty disjoint subsets of 𝑆,

2.
⋃︁
𝑃∈𝒫

𝑃 = 𝑆, and

3. for all 𝑃1, 𝑃2 ∈ 𝒫 : 𝑃1 ∩ 𝑃2 = ∅.

In plain words a partition is a countable set of non-empty disjoint subsets of a set
whose union is equal to that set.

The size of a Vnite partition 𝒫 is the number of elements in 𝒫 . The elements size
of 𝒫 are referred to as the parts of the partition.

The discrete partition is the partition 𝒫𝑆 = {{𝑠}|𝑠 ∈ 𝑆}. ◇ discrete
partition

It follows immediately from this deVnition that the discrete partition exists only

for countable sets.

DeVnition 1.1.12 For each integer 𝑘 ≥ 2 a graph 𝐺 = (𝑉,𝐸) is called 𝑘-partite if 𝑘-partite
there exists a partition of 𝑉 with size 𝑘 such that there are no edges between vertices
in the same part of the partition.

A 2-partite graph is called a bipartite graph. ◇ bipartite

The diUerent parts of such a partition are often seen as diUerent colour classes

and a 𝑘-partite graph is also called 𝑘-colourable, because the vertices can be 𝑘-colourable
coloured with 𝑘 colours in such a way that the endpoints of an edge never receive the

same colour. The most interesting property of a graph with respect to vertex colour-

ings is the minimum number of colours needed to colour the vertices of a graph.

DeVnition 1.1.13 The chromatic number 𝜒(𝐺) of a graph 𝐺 = (𝑉,𝐸) is the chromatic
numbersmallest number 𝑘 for which the graph 𝐺 is 𝑘-partite. ◇

A result that has often proven useful and powerful for characterising bipartite

graphs is the following lemma.

Lemma 1.1.14 A graph is bipartite if and only if it contains no odd cycle.

See e.g., [51] for a proof of this lemma.
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1.1.4 Edge colouring
Another way to colour a graph is to assign colours to the edges in such a way

that all edges that contain a common vertex receive diUerent colours.

DeVnition 1.1.15 Given a non-empty set 𝐶 , an edge colouring of a graph 𝐺 =edge
colouring (𝑉,𝐸) is a map 𝑐 : 𝐸 ↦→ 𝐶 with the property that two edges 𝑒1, 𝑒2 ∈ 𝐸 are mapped

to diUerent colours if they have a non-empty intersection.
The chromatic index 𝜒′(𝐺) of a graph 𝐺 = (𝑉,𝐸) is the smallest number 𝑘 forchromatic

index which there exists an edge colouring 𝑐 : 𝐸 ↦→ 𝐶 of 𝐺 = (𝑉,𝐸) with |𝐶| = 𝑘. ◇

For any graph this chromatic index is either ∆ or ∆ + 1, with ∆ the maximum

degree of the graph. It is clear that an edge-colouring has at least ∆(𝐺) colours, since

all the edges that meet at a vertex with degree ∆(𝐺) must receive diUerent colours.

That ∆ + 1 colours are suXcient for any graph is a famous theorem by Vizing [10].

Theorem 1.1.16 (Vizing, 1964) For each graph 𝐺 : ∆(𝐺) ≤ 𝜒′(𝐺) ≤ ∆(𝐺) + 1.

See e.g., [51] for a proof of this theorem.

Another well known and useful result is the Parity Lemma [5]. We will here give

the generalization given in [42].

Lemma 1.1.17 (Parity Lemma) Let𝐺 = (𝑉,𝐸) be a graph with an edge-colouring
𝑐 : 𝐸 ↦→ 𝐶 and let 𝑎𝑘 (𝑘 ∈ 𝐶) be the number of vertices 𝑣 in 𝑉 such that no edge
incident to 𝑣 is coloured 𝑘, i.e.

𝑎𝑘 = |{𝑣 ∈ 𝑉 |∀𝑒 ∈ 𝐸 : 𝑣 ∈ 𝑒⇒ 𝑐(𝑒) ̸= 𝑘}|,

then for all 𝑘 ∈ 𝐶 : 𝑎𝑘 ≡ |𝑉 | mod 2.

Proof: DeVne for each 𝑘 ∈ 𝐶 the set 𝐸𝑘 = {𝑒 ∈ 𝐸|𝑐(𝑒) = 𝑘}. Then for each 𝑘 ∈ 𝐶

we have 𝑎𝑘 = |𝑉 | − 2|𝐸𝑘|, which proves the lemma. �

1.1.5 Plane graphs
Graphs that can be drawn in the plane without intersecting edges, form a class

of graphs which has received speciVc attention, owing to the many applications of

these graphs. Graphs with this property are called planar and such a drawing isplanar
called a plane graph.
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DeVnition 1.1.18 A plane graph is an ordered pair (𝑉,𝐸) of Vnite sets with the plane graph
properties:

∙ 𝑉 ⊆ R2;

∙ 𝐸 is a set of subsets of R2 which are homeomorphic to the closed unit interval
[0, 1] such that the images of 0 and 1 are diUerent and are both elements of 𝑉 ;

∙ diUerent edges have diUerent sets of endpoints;

∙ the interior of an edge contains no vertex and no point of any other edge.

◇

Such a plane graph deVnes a simple graph𝐺 in a natural way, and we will usually

use the name 𝐺(𝑉,𝐸) to denote the plane graph (𝑉,𝐸).

DeVnition 1.1.19 Given a plane graph (𝑉,𝐸) the faces of that graph are the re- face
gions of the set R2 ∖ (𝑉 ∪

⋃︀
𝑒∈𝐸 𝑒). ◇

An important result for plane graphs is Euler’s famous Formula [1]: it shows the

connection between the vertices, the edges and the faces of a plane graph.

Theorem 1.1.20 (Euler’s Formula) Let 𝐺 be a connected Vnite plane graph with
𝑣 vertices, 𝑒 edges, and 𝑓 faces, then

𝑣 − 𝑒+ 𝑓 = 2.

See [51] for a proof of this theorem.

1.2 Chemical graph theory

Graphs are purely mathematical objects, but they very often serve as models

for real-life problems. An application where the use of graphs as models is very

natural is in chemistry. In chemical graph theory a molecule is often represented by

a graph such that the vertices correspond to the atoms in the molecule (or possibly to

a signiVcant subset of the atoms) and the edges correspond to the bonds (or possibly

to multiple bonds). A research area where this representation has proven to be very

fruitful is the Veld of fullerenes and related carbon molecules.
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A fullerene is a molecule consisting completely of carbon atoms in such a wayfullerene
that each atom shares a bond with exactly three other carbon atoms and that ev-

ery carbon ring is either a pentagon or a hexagon. The most famous member of this

family of molecules — and also the origin of the name for this family — is Buck-

minsterfullerene C60. This molecule was discovered by Kroto et al. [21] in 1985. It

was their discovery that this molecule has the shape of a truncated icosahedron that

started a whole new Veld of research studying these ball-like molecules.

If we use the translation above and construct a graph 𝐹 by letting the vertices

of 𝐹 correspond to the atoms and letting the edges of 𝐹 connect vertices for which

the atoms share a bond, then 𝐹 will be a planar cubic graph. This motivates the

following deVnition.

DeVnition 1.2.1 A combinatorial fullerene is a Vnite cubic plane graph with onlycombinato-
rial
fullerene

pentagonal faces and hexagonal faces. ◇

A (combinatorial) fullerene contains exactly twelve pentagonal faces. This follows

from Euler’s Formula. The proof is an easy exercise in using Euler’s Formula for

molecules of this kind.

Lemma 1.2.2 A (combinatorial) fullerene contains exactly twelve pentagonal faces.

Proof: Assume we have a fullerene with 𝑣 vertices, 𝑒 edges and 𝑓 faces of which 𝑝

are pentagonal faces and ℎ are hexagonal faces. This means we have

𝑓 = 𝑝+ ℎ.

Since each vertex is cubic and thus is incident to three faces, we also have

𝑣 =
5𝑝+ 6ℎ

3
.

Each edge is incident to exactly two faces, so we also have

𝑒 =
5𝑝+ 6ℎ

2
.

If we substitute these three equalities into Euler’s Formula we get

5𝑝+ 6ℎ

3
− 5𝑝+ 6ℎ

2
+ 𝑝+ ℎ = 2,
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which is equivalent to

𝑝 = 12.

�

This mathematical representation of a chemical molecule allows us to use graph-

theoretical results to look for properties of these molecules, or — the subject of this

thesis — to apply combinatorial generation algorithms to Vnd all possible structures

that satisfy a certain property. One of the problems in the latter case is to translate

the chemical restrictions into mathematical restrictions in order to bound the number

of generated structures. There are e.g., 1812 combinatorial fullerenes with 60 vertices,

but chemists are often only interested in one of those isomers, namely the one that

corresponds to Buckminsterfullerene, because this is the most stable among these

isomers. An important criterion for the stability of fullerenes is the so-called Isolated
Pentagon Rule (IPR). This rule states that a fullerene is more stable if no two of its Isolated

Pentagon
Rule

pentagonal faces share an edge.

In this thesis we will look at two families of molecules that are related to fullerenes:

the family of azulenoids (Chapter 4) and the family of nanocones (Chapter 6). The

deVnitions of these families will be given at the time that this is needed. We will

also look at a certain type of subgraphs in fullerenes, namely pseudo-convex patches

(Chapter 5).

1.3 Tilings and Delaney-Dress symbols

1.3.1 Periodic tilings
A tiling is a subdivision of the plane into tiles. Tilings as we use them here, can

be deVned as follows.

DeVnition 1.3.1 Let 𝑆 be a partition of the Euclidean plane E2 and let 𝑇 =
{𝑇0, 𝑇1, 𝑇2} be a partition of 𝑆, then 𝑇 is a tiling of the Euclidean plane E2 if the
following conditions are met:

1. the elements of 𝑇0 are singletons;
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2. the elements of 𝑇1 are homeomorphic to the open interval (0, 1);

3. the closure of an element of 𝑇1 is homeomorphic to the closed interval [0, 1]
and the images of 0 and 1 are also elements of elements of 𝑇0;

4. each element of 𝑇0 has a non-empty intersection with the closure of at least
three elements in 𝑇1;

5. the elements of 𝑇2 are homeomorphic to the open disk {𝑧 ∈ C | |𝑧| < 1};

6. the closure of an element of 𝑇2 is homeomorphic to the closed disk {𝑧 ∈ C |
|𝑧| ≤ 1}, the image of {𝑧 ∈ C | |𝑧| = 1} is the union of Vnitely many elements
of 𝑇0 and 𝑇1 (and, hence, the same number of elements of both [36]);

7. the closure of an element of 𝑇2 contains at least three elements of 𝑇1;

8. ∀𝑥 ∈ E2 : 𝑥 has a neighbourhood that intersects only a Vnite number of ele-
ments from 𝑇0, 𝑇1 and 𝑇2;

◇

The elements of the set 𝑇0 are called the vertices of the tiling and we will mostlyvertices
identify these singletons with their elements. The elements of the set 𝑇1 are called

the edges of the tiling. The number of edges that contain a vertex 𝑣 in their closureedges
is called the degree of the vertex 𝑣. The elements of 𝑇2 are referred to as the tiles ordegree
the faces of the tiling. The number of vertices that the closure of a face 𝑓 contains isfaces
called the degree of the face 𝑓 . By deVnition the closure of an edge contains exactlydegree
two vertices. The vertices and edges in the closure of a face form a simple closed

curve since they are homeomorphic to {𝑧 ∈ C | |𝑧| = 1}. It follows from the Jordan

curve theorem [2] that for each edge 𝑒 there are exactly two faces that contain 𝑒 in

their closure.

A tiling is called periodic if its symmetry group contains two independent trans-periodic
lations. When a tiling is periodic, we only need a Vnite set of tiles to reproduce the

complete tiling by repeatedly shifting and copying that Vnite set in as many direc-

tions as necessary [48].

DeVnition 1.3.2 The skeleton graph of a tiling 𝑇 = {𝑇0, 𝑇1, 𝑇2} of the Euclideanskeleton
graph
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plane E2 is the (inVnite) graph 𝐺(𝑇0, 𝐸) with 𝑥𝑦 ∈ 𝐸 if 𝑥 and 𝑦 are diUerent and
there exists an edge 𝑒 ∈ 𝑇1 so that {𝑥, 𝑦} ⊂ 𝑒.

A cycle in the skeleton graph that corresponds to the edges and vertices around
a face in the tiling is called a facial cycle. ◇ facial cycle

1.3.2 The Wagspace of a tiling
Given a tiling 𝑇 as deVned in DeVnition 1.3.1, we can now deVne the Wagspace

of a tiling.

DeVnition 1.3.3 The Wagspace ℱ(𝑇 ) of 𝑇 is the set of triples (𝑣, 𝑒, 𝑓) consisting Wagspace
of one vertex 𝑣, one edge 𝑒 and one face 𝑓 such that (𝑣 =)𝑣 ⊆ 𝑒 ⊆ 𝑓 together with
a Coxeter group Σ operating on this set:

Σ = ⟨𝜎0, 𝜎1, 𝜎2|𝜎2
𝑖 = 1⟩,

that satisVes the following conditions:

1. (𝑣, 𝑒, 𝑓)𝜎0 = (𝑣′, 𝑒, 𝑓) with 𝑣 ̸= 𝑣′;

2. (𝑣, 𝑒, 𝑓)𝜎1 = (𝑣, 𝑒′, 𝑓) with 𝑒 ̸= 𝑒′;

3. (𝑣, 𝑒, 𝑓)𝜎2 = (𝑣, 𝑒, 𝑓 ′) with 𝑓 ̸= 𝑓 ′.

◇

Since there are exactly two vertices that belong to the closure of an edge and

since each edge is in the closure of exactly two faces, it follows that 𝜎0 and 𝜎2 are

well deVned involutions. That 𝜎1 is indeed a well deVned involution follows from the

fact that the vertices and edges around a face form a simple closed curve and in this

curve a vertex can only be in the closure of exactly two edges.

Using the same properties, it is easily seen that for each vertex 𝑣 of the tiling

there are 2𝑑 Wags containing 𝑣 as their “0-dimensional component”, where 𝑑 is the

degree of the vertex; for each edge 𝑒 of the tiling there are 4 Wags containing 𝑒 as

their “1-dimensional component”; and for any 𝑛-gon 𝑓 in the tiling, there are 2𝑛 Wags

containing 𝑓 as their “2-dimensional component”.

By choosing a start Wag and alternatingly applying the actions 𝜎1 and 𝜎2, the

Wags containing a given vertex 𝑣 of degree 𝑘 form a circular sequence of 2𝑘 Wags

(𝑣, 𝑒1, 𝑓1), (𝑣, 𝑒2, 𝑓1), (𝑣, 𝑒2, 𝑓2), . . . , (𝑣, 𝑒𝑘, 𝑓𝑘), (𝑣, 𝑒1, 𝑓𝑘).
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This implies that the sequence above corresponds to two interwoven 𝜎1𝜎2-orbits of

size 𝑘 with opposite orientation, namely

(𝑣, 𝑒1, 𝑓1), (𝑣, 𝑒2, 𝑓2), . . . , (𝑣, 𝑒𝑘, 𝑓𝑘);

and

(𝑣, 𝑒2, 𝑓1), (𝑣, 𝑒3, 𝑓2), . . . , (𝑣, 𝑒1, 𝑓𝑘).

By choosing a start Wag and alternatingly applying the actions 𝜎0 and 𝜎2, the

Wags containing a given edge 𝑒 form a circular sequence of 4 Wags

(𝑣1, 𝑒, 𝑓1), (𝑣2, 𝑒, 𝑓1), (𝑣2, 𝑒, 𝑓2), (𝑣1, 𝑒, 𝑓2).

This implies that the sequence above corresponds to two interwoven 𝜎0𝜎2-orbits of

size 2 with opposite orientation, namely

(𝑣1, 𝑒, 𝑓1), (𝑣2, 𝑒, 𝑓2);

and

(𝑣2, 𝑒, 𝑓1), (𝑣1, 𝑒, 𝑓2).

By choosing a start Wag and alternatingly applying the actions 𝜎0 and 𝜎1, the

Wags containing a given face 𝑓 of degree 𝑘 form a circular sequence of 2𝑘 Wags

(𝑣1, 𝑒1, 𝑓), (𝑣2, 𝑒1, 𝑓), (𝑣2, 𝑒2, 𝑓), . . . , (𝑣𝑘, 𝑒𝑘, 𝑓), (𝑣1, 𝑒𝑘, 𝑓).

This implies that the sequence above corresponds to two interwoven 𝜎0𝜎1-orbits of

size 𝑘 with opposite orientation, namely

(𝑣1, 𝑒1, 𝑓), (𝑣2, 𝑒2, 𝑓), . . . , (𝑣𝑘, 𝑒𝑘, 𝑓);

and

(𝑣2, 𝑒1, 𝑓), (𝑣3, 𝑒2, 𝑓), . . . , (𝑣1, 𝑒𝑘, 𝑓).

Since the plane is connected, for any two Wags 𝐹, 𝐹 ′ ∈ ℱ(𝑇 ) there exists an

element 𝜎 in Σ such that 𝐹𝜎 = 𝐹 ′ which also implies that 𝐹 ′𝜎−1 = 𝐹 .
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1.3.3 The Wag graph of a tiling
We may now combine all this information in a graph.

DeVnition 1.3.4 The Wag graph Γ(𝑇 ) = (ℱ(𝑇 ); ℰ0 ∪ ℰ1 ∪ ℰ2) of 𝑇 is the graph Wag graph
with vertex set ℱ(𝑇 ) and edges ℰ = ℰ0 ∪ℰ1 ∪ℰ2, together with a partitioning of the
edges into three sets ℰ0, ℰ1 and ℰ2. Two Wags 𝐹, 𝐹 ′ ∈ ℱ(𝑇 ) are connected by an
edge in ℰ𝑖 if and only if 𝐹 = 𝐹 ′𝜎𝑖 (𝑖 = 0, 1 or 2). An edge of ℰ𝑖 is called a 𝜎𝑖 edge. ◇

Extending the term, we will also refer to the Wag graph as a graph, although it is

technically a pair consisting of a graph and a partition of the edges.

DeVnition 1.3.5 The 𝜎𝑖,𝜎𝑗-components (0 ≤ 𝑖 < 𝑗 ≤ 2) of Γ(𝑇 ) are the con- 𝜎𝑖,𝜎𝑗-
componentsnected components of the graph Γ𝑖𝑗(𝑇 ) := (ℱ(𝑇 ); ℰ𝑖 ∪ ℰ𝑗). ◇

Since 𝜎𝑖 (0 ≤ 𝑖 ≤ 2) is an involution, each vertex of the Wag graph is incident

to exactly one edge in ℰ𝑖. The Wag graph is a connected graph, because for any

two Wags 𝐹, 𝐹 ′ ∈ ℱ(𝑇 ) there exists 𝜎 ∈ Σ that maps 𝐹 to 𝐹 ′. For all 0 ≤ 𝑖 <

𝑗 ≤ 2 : the 𝜎𝑖,𝜎𝑗-components correspond in a canonical one-to-one fashion to the

subsets in 𝑇𝑘 (𝑘 ∈ {0, 1, 2}∖{𝑖, 𝑗}): a given 𝜎𝑖,𝜎𝑗-component is always a cycle of

2𝑚 Wags connected alternatingly by 𝜎𝑖 and 𝜎𝑗 edges, where 𝑚 is equal to 2 for a

𝜎0,𝜎2-component and equal to the degree of the corresponding vertex or face for

other components.

The Wag graph of a tiling of the plane is an inVnite graph.

1.3.4 Delaney-Dress symbols
The Wag graph is already more convenient to work with than the Wagspace, but it

is still an inVnite structure. When we have a periodic tiling, we can reconstruct the

complete tiling using only a Vnite piece of it. We can now translate this property to

the Wag graph.

DeVnition 1.3.6 An equivariant tiling is a pair (𝑇,𝐺) such that 𝑇 = {𝑇0, 𝑇1, 𝑇2} equivariant
tilingis a tiling and 𝐺 is a subgroup of isometries of the plane that stabilize the sets 𝑇0, 𝑇1

and 𝑇2 as sets. ◇

DeVnition 1.3.7 Two tilings 𝑇 and 𝑇 ′ are topologically equivalent if there exists topologi-
cally
equivalent

a homeomorphism that maps tiles of 𝑇 onto tiles of 𝑇 ′. ◇
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In the deVnition above, the symmetry group of the tiling is not mentioned. We are

interested in tilings together with their symmetry group and therefore we introduce

a stronger form of equivalence.

DeVnition 1.3.8 Two tilings 𝑇 and 𝑇 ′ are equivariantly equivalent if there ex-equivari-
antly
equivalent

ists a homeomorphism that maps tiles of 𝑇 onto tiles of 𝑇 ′ and that maps (by
conjugation) the symmetry group of 𝑇 to the symmetry group of 𝑇 ′. ◇

Clearly, 𝐺 acts also on the Wag space ℱ(𝑇 ) and commutes with Σ, so it induces

automorphisms of the Wag graph Γ(𝑇 ). The group 𝐺 acts Vxed-point free on ℱ(𝑇 ),

as 𝑔(𝑣, 𝑒, 𝑓) = (𝑣, 𝑒, 𝑓) for some Wag (𝑣, 𝑒, 𝑓) ∈ ℱ(𝑇 ) implies that also (𝑣, 𝑒, 𝑓)𝜎𝑖

(𝑖 = 0, 1, 2) must remain Vxed under 𝑔, and then we can repeat this step for any of

these Wags and we Vnd that the complete Wag space must remain Vxed; so 𝑔 must be

the identity.

We can now consider the orbit space 𝒟(𝑇,𝐺) := 𝐺∖ℱ(𝑇 ) consisting of all 𝐺𝒟(𝑇,𝐺)

orbits of Wags in ℱ(𝑇 ). As 𝐺 commutes with Σ, 𝒟(𝑇,𝐺) forms the vertex set of a

multigraph with loops

Γ(𝑇,𝐺) := (𝒟(𝑇,𝐺);𝐺∖ℰ0 ∪𝐺∖ℰ1 ∪𝐺∖ℰ2)

with three types of edges which we get by identifying any two 𝜎0-, 𝜎1-, or 𝜎2-edges

{𝐹1, 𝐹
′
1} and {𝐹2, 𝐹

′
2} from Γ(𝑇 ) if and only if there exists some 𝑔 ∈ 𝐺with 𝑔(𝐹1) =

𝐹2 and, hence, 𝑔(𝐹 ′
1) = 𝐹 ′

2. This also means that the edges of this graph correspond

to the action induced on the orbit space 𝒟(𝑇,𝐺) by Σ in the same way that the

edges of the Wag graph correspond to the action of Σ. The induced actions are no

longer Vxed-point free and therefore this graph may contain loops.

DeVnition 1.3.9 The graph Γ(𝑇,𝐺) is the Delaney-Dress graph of the equivari-Delaney-
Dress
graph

ant tiling (𝑇,𝐺). ◇

Any vertex of the Delaney-Dress graph is incident to exactly one edge of each

𝐺∖ℰ𝑖(𝑖 ∈ {0, 1, 2}).
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(1.1.a) (1.1.b) (1.1.c)

Figure 1.1: Three tilings with the same Delaney-Dress graph.

Example 1.3.10 Since for all three tilings in Figure 1.1 there is only one orbit of
faces, one orbit of edges and one orbit of vertices, these three tilings all have the
same Delaney-Dress graph with one vertex. Hence, the Delaney-Dress graph alone
is not suXcient to distinguish between diUerent tilings.

The only extra information that we need, and that is lost in the Delaney-Dress

graph, is the size of the original 𝜎𝑖𝜎𝑗-orbits in the Wagspace. Therefore we deVne

the following functions

∀ 0 ≤ 𝑖 < 𝑗 ≤ 2 : 𝑟𝑖𝑗 : ℱ(𝑇 ) → N;𝐹 ↦→ 𝑚𝑖𝑛{𝑙 ∈ N, 𝑙 > 0 | 𝐹 (𝜎𝑖𝜎𝑗)
𝑙 = 𝐹}.

It follows from this deVnition that all the 𝑟𝑖𝑗 are constant on 𝜎𝑖𝜎𝑗-orbits and that

𝑟02 = 2 for all the Wags in the Wagspace. For each Wag 𝐹 in the Wagspace we can

deVne the following functions

∀ 0 ≤ 𝑖 < 𝑗 ≤ 2 : 𝑚𝑖𝑗 : 𝒟(𝑇,𝐺) → N;𝐺 · 𝐹 ↦→ 𝑚𝑖𝑗(𝐺 · 𝐹 ) := 𝑟𝑖𝑗(𝐹 ).

Since the functions 𝑟𝑖𝑗 are constant on 𝜎𝑖𝜎𝑗-orbits , these functions 𝑚𝑖𝑗 are well-

deVned.

With these last functions we have all the tools at hand for the next deVnition.

DeVnition 1.3.11 The Delaney-Dress symbol of an equivariant tiling (𝑇,𝐺) is Delaney-
Dress
symbol

the triple (𝒟(𝑇,𝐺),𝑚01,𝑚12). ◇
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These Delaney-Dress symbols are now suXcient to distinguish between equivari-

antly diUerent tilings as is shown by the following theorem.

Theorem 1.3.12 (Dress [18]) Two tilings are equivariantly equivalent if and only
if their respective Delaney-Dress symbols are isomorphic.

It can easily be veriVed for the tilings in Figure 1.1. Figure 1.1.a has 𝑚01 = 3

and 𝑚12 = 6, Figure 1.1.b has 𝑚01 = 𝑚12 = 4 and Figure 1.1.c has 𝑚01 = 6 and

𝑚12 = 3.

Hitherto we have described how to construct the Delaney-Dress symbol of a tiling

of the plane. But more diXcult and important will be this question: if we have a

Delaney-Dress symbol, does there exist a tiling of the plane that corresponds to this

symbol? First we need to state when we call a structure a Delaney-Dress symbol.

DeVnition 1.3.13 A triplet (𝒟;𝑚01,𝑚12) is a Delaney-Dress symbol if and only if

1. 𝒟 is a Vnite set;

2. Σ acts transitively on 𝒟;

3. 𝑚01 is constant on ⟨𝜎0, 𝜎1⟩ orbits and for each 𝑑 ∈ 𝒟 : 𝑑(𝜎0𝜎1)𝑚01(𝑑) = 𝑑;

4. 𝑚12 is constant on ⟨𝜎1, 𝜎2⟩ orbits and for each 𝑑 ∈ 𝒟 : 𝑑(𝜎1𝜎2)𝑚12(𝑑) = 𝑑;

5. ∀𝑑 ∈ 𝒟 : 𝑑(𝜎0𝜎2)2 = 𝑑;

◇

DeVnition 1.3.14 The function 𝑟𝑖𝑗 : 𝒟 → N with 0 ≤ 𝑖 < 𝑗 ≤ 2 is deVned such
that 𝑟𝑖𝑗(𝑑) is the smallest non-zero integer such that for each 𝑑 ∈ 𝒟 : 𝑑(𝜎𝑖𝜎𝑗)

𝑟𝑖𝑗(𝑑) =
𝑑. The function 𝑣𝑖𝑗 : 𝒟 → N with 0 ≤ 𝑖 < 𝑗 ≤ 2 is deVned as follows: 𝑣𝑖𝑗 ≡ 𝑚𝑖𝑗

𝑟𝑖𝑗
. ◇

DeVnition 1.3.15 The curvature𝐾(𝒟) of a Delaney-Dress symbol𝒟 is the follow-curvature
ing invariant

𝐾(𝒟) =
∑︁
𝑑∈𝒟

(
1

𝑚01(𝑑)
+

1

𝑚12(𝑑)
− 1

2
).

◇
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Theorem 1.3.16 A Delaney-Dress symbol (𝒟;𝑚01,𝑚12) is the Delaney-Dress sym-
bol of a periodic tiling

∙ of the hyperbolic plane if and only if𝐾(𝒟) < 0;

∙ of the euclidean plane if and only if𝐾(𝒟) = 0;

∙ of the sphere if and only if 𝐾(𝒟) > 0 and for all 0 ≤ 𝑖 < 𝑗 ≤ 2 and for each
𝑑 ∈ 𝒟 we have that 4

𝑣𝑖𝑗(𝑑)𝐾(𝒟) ∈ N.

As is explained in [48], there is, unfortunately, no complete and easily accessible

proof of Theorem 1.3.16 available from the literature. A complete, but rather involved

proof is contained in [27]. A proof for the Euclidean case appears in [26].

Delaney-Dress symbols turned out to be useful and powerful tools for the enu-

meration of tilings (see [24],[36],[50]..., for example).

We introduced the Delaney-Dress graph of a tiling and illustrated that it is not

possible to distinguish between all equivariant tilings using only their Delaney-Dress

graphs. A Delaney-Dress symbol of an equivariant tiling contains basically the same

structure as the Delaney-Dress graph of that tiling, but also has some additional

information in the form of the functions 𝑚01 and 𝑚12. The structural information in

a Delaney-Dress symbol is not given as a graph, but as an action of the group Σ on

the set 𝒟. Sometimes, however, it can be useful to have a graph representation. That

is why we will deVne the Delaney-Dress graph of a Delaney-Dress symbol.

DeVnition 1.3.17 Given a Delaney-Dress symbol (𝒟,𝑚01,𝑚12), the Delaney-Dress
graph Γ(𝒟) of (𝒟,𝑚01,𝑚12) is the graph with as vertices the elements of𝒟 together
with a partition of the edges into three sets 𝐸0, 𝐸1 and 𝐸2. Two vertices 𝑑1, 𝑑2 ∈ 𝒟
are connected by an edge 𝑒 ∈ 𝐸𝑖 if and only if 𝑑1𝜎𝑖 = 𝑑2. ◇

As was the case with the Wag graph of a tiling, we will, by abuse of language,

speak of the Delaney-Dress graph of a Delaney-Dress symbol as a graph. We will

switch between the graph representation and the group representation of the struc-

ture of a Delaney-Dress symbol depending on which representation is most suited.

We will therefore e.g., often refer to the elements of 𝒟 as the vertices of the Delaney-

Dress symbol.
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Note also that although we just use the name Delaney-Dress graph, this graph is

actually a multigraph with loops.

DeVnition 1.3.18 The graph Γ(𝒟)𝑖𝑗 (0 ≤ 𝑖 < 𝑗 ≤ 2) is deVned as (𝒟;𝐸𝑖∪𝐸𝑗). TheΓ(𝒟)𝑖𝑗
set𝐶𝑖𝑗 is the set of components of Γ(𝒟)𝑖𝑗 . A component in𝐶𝑖𝑗 is a 𝜎𝑖𝜎𝑗-component
of Γ(𝒟). ◇𝜎𝑖𝜎𝑗-

component
Since the functions 𝑚𝑖𝑗 are constant on 𝜎𝑖, 𝜎𝑗-components, we can reuse the

same notation and deVne for each 0 ≤ 𝑖 < 𝑗 ≤ 2 the following function:

𝑚𝑖𝑗 : 𝐶𝑖𝑗 → N;𝐶 ↦→ 𝑚𝑖𝑗(𝐶) = 𝑚𝑖𝑗(𝑐) with 𝑐 ∈ 𝐶.

1.3.5 A geometric interpretation of Wags
We deVned a Delaney-Dress symbol of a tiling based on the Wagspace of that

tiling. This led directly to combinatorial objects that are useful when generating

Delaney-Dress symbols. There is however a more geometric interpretation of these

Wags, which we will give here because they provide a more intuitive way of thinking

about Delaney-Dress symbols in relation to the tilings they encode.

DeVnition 1.3.19 A barycentric subdivision 𝐵𝑇 of a periodic tiling 𝑇 is a tilingbarycentric
subdivision that is derived from 𝑇 in the following manner:

1. Choose a point in the interior of each edge and each tile of 𝑇 . Together with
the vertices of 𝑇 , these points will form the vertices of 𝐵𝑇 .

2. For each tile, connect the point chosen in its interior with its vertices and all
the points chosen on its edges by pairwise disjoint arcs.

The vertices of the barycentric subdivision are divided in three groups corresponding
to the vertices, the edges and the faces of the original tiling 𝑇 . Each tile has degree
three and contains exactly one vertex from each group, and these three vertices cor-
respond to incident structures in 𝑇 , i.e., a tile in the barycentric subdivision can only
contain a vertex corresponding to a vertex 𝑣 of 𝑇 , a vertex corresponding to an edge
𝑒 of 𝑇 and a vertex corresponding to a face 𝑓 of 𝑇 if 𝑣 is contained in the closure of
𝑒, and if 𝑒 is contained in the closure of 𝑓 . The barycentric subdivision can always
be constructed to have the same symmetry as the tiling [48]. We will only consider
barycentric subdivisions that are constructed in that way. A tile of the barycentric
subdivision is called a chamber. ◇chamber
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Like the Wags in paragraph 1.3.2 these chambers contain one vertex corresponding

to a vertex of 𝑇 , one vertex corresponding to an edge of 𝑇 and one vertex correspond-

ing to a face of 𝑇 . It is in fact so that we can see these chambers as a geometric rep-

resentation of the Wags. The equivalent of the Wagspace is then called the chamber
system. chamber

system

1.3.6 Examples
Before we continue with some basic properties of Delaney-Dress symbols we will

Vrst give some simple examples of Delaney-Dress symbols.

In Example 1.3.10 we showed that there are three tilings of the euclidean plane

that correspond to the Delaney-Dress graph consisting of a single vertex. We will

now take a closer look at some of those tilings, but this time in terms of the chamber

system.

Example 1.3.20 In Figure 1.2 the barycentric subdivision of the square tiling is
shown. It is quite straightforward to verify that there is only one orbit of cham-
bers under the symmetry group of the tiling. For each ordered pair of faces there
always exists a translation mapping the faces onto each other. Together with the fact
that the center of a face is the center of a rotation of order 4 and the dashed lines
are mirror symmetries, this proves that each chamber can be mapped to each other
chamber by a symmetry of the tiling.

The following is an example of the inWuence of the symmetry group on the

Delaney-Dress symbol. This will also be discussed in more detail in paragraph 1.3.7.1.

Example 1.3.21 The rectangular tiling in Figure 1.3 is closely related to the tiling
in the previous example. The only diUerence is that it has been stretched along the
X axis, causing the dashed lines to no longer be mirror axes. This means that there
are two orbits of chambers in this tiling: one orbit for which the chambers contain
a vertex which corresponds to the short edge and one orbit for which the chambers
contain a vertex corresponding to the long edge of the tiling. This illustrates how
the Delaney-Dress graph codes the equivariant tiling, i.e., the tiling together with its
symmetry group.

Finally we will also show a somewhat larger example of a Delaney-Dress symbol.
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(1.2.a) (1.2.b)

𝑚01
∼= 4

𝑚12
∼= 4

(1.2.c)

Figure 1.2: The square tiling (left), the barycentric subdivision
of the square tiling (center) and the Delaney-Dress symbol of the
square tiling (right).

(1.3.a)

A

B

𝑚01 𝑚12

A 4 4
B 4 4

(1.3.b)

Figure 1.3: The barycentric subdivision of the rectangular tiling
(left) and the Delaney-Dress symbol of the rectangalur tiling
(right).
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(1.4.a) (1.4.b)

Figure 1.4: The bathroom tiling (left) and its barycentric subdivi-
sion (right).

Example 1.3.22 The tiling in Figure 1.4.a is called the bathroom tiling. It consists
of regular octagons and squares. Given any two faces of the same size, there always
exists a translation mapping the faces onto each other. Each centre of a face is a ro-
tation centre of order 4, each line that connects the centre of two neighbouring faces
is a mirror axis, and each line that extends the border between two neighbouring
octagons is a mirror axis. In Figure 1.5 a small triangle containing three chambers is
highlighted. Using the symmetries described above it is possible to cover the com-
plete tiling with this triangle, so the Delaney-Dress graph will at most have order 3.
That no two of these three chambers belong to the same orbit can be easily veriVed.
One chamber lies in a square while the other two lie in an octagon, so they cannot
be in the same orbit. The two chambers in the octagon are in diUerent orbits because
one chamber shares an edge with the square and the other does not. This gives us
the Delaney-Dress symbol that is shown in Figure 1.6.



22 CHAPTER 1. DEFINITIONS

𝐴𝐵

𝐶

Figure 1.5: Representatives of the three orbits of chambers for
the bathroom tiling.

A B C

𝑚01 𝑚12

A 4 3
B 8 3
C 8 3

Figure 1.6: The Delaney-Dress symbol of the bathroom tiling
from Figure 1.4.a
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(1.7.a) (1.7.b)

Figure 1.7: Two tilings that are topologically equivalent, but not
equivariantly equivalent.

1.3.7 Basic algorithms on Delaney-Dress symbols

1.3.7.1 Minimal Delaney-Dress symbols

A Delaney-Dress symbol codes a tiling together with its symmetry group — that

is an equivariant tiling. As we stated earlier this means that two tilings are equivari-

antly equivalent if their Delaney-Dress symbols are isomorphic [18].

The two tilings in Figure 1.7 are clearly not equivariantly equivalent because they

have diUerent symmetry groups: in Figure 1.7.a, a rotation of order 4 around a cen-

ter of a face is a symmetry of the tiling, but in in Figure 1.7.b these symmetries are

not present. Figure 1.7.b is however just Figure 1.7.a stretched along the horizontal

axis. This means that the two tilings are topologically equivalent because there ex-

ists a homeomorphism that maps them onto each other. The tiling in Figure 1.7.a is

topologically the same tiling as in Figure 1.7.b, but with more symmetry. The ques-

tion now arises whether we can see this relation in the corresponding Delaney-Dress

symbols. First, we will need some deVnitions.

DeVnition 1.3.23 An equivariant tiling (𝑇 ′,Γ′) is a symmetry breaking of (𝑇,Γ) symmetry
breakingif and only if there exists a homeomorphism 𝜓 of the Euclidean plane E2 : 𝑇 = 𝜓(𝑇 ′)

and 𝜓Γ′𝜓−1 ( Γ. ◇

It follows from the deVnition that this is a transitive relation.
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A special manner of constructing symmetry breakings is by introducing marked

faces.

DeVnition 1.3.24 Let (𝑇,Γ) be an equivariant tiling, let ℳ be a set of the tiles
of (𝑇,Γ) and let Γℳ be the subgroup of Γ that stabilizes ℳ as a set, then the
equivariant tiling (𝑇,Γℳ) is said to be constructed from (𝑇,Γ) by marking the
faces inℳ. ◇marked

faces
In case Γℳ is a true subgroup of Γ this is a symmetry breaking, otherwise the

two tilings are equivariant.

DeVnition 1.3.25 A function 𝑓 : (𝒟;𝑚01,𝑚12) → (𝒟′;𝑚′
01,𝑚

′
12) between two

Delaney-Dress symbols (𝒟;𝑚01,𝑚12) and (𝒟′;𝑚′
01,𝑚

′
12) is a morphism if andmorphism

only if for each Wag 𝑐 ∈ 𝒟:

∙ ∀𝑖 ∈ {0, 1, 2} : 𝑓(𝜎𝑖(𝑐)) = 𝜎𝑖(𝑓(𝑐))

∙ 𝑚′
01(𝑓(𝑐)) = 𝑚01(𝑐)

∙ 𝑚′
12(𝑓(𝑐)) = 𝑚12(𝑐)

◇

It has been shown in [25] that if there exists a morphism from the Delaney-Dress

symbol of an equivariant tiling (𝑇 ′,Γ′) into the symbol of an equivariant tiling (𝑇,Γ)

and the symbol of the second tiling contains less elements, then (𝑇 ′,Γ′) is a symme-

try breaking of (𝑇,Γ).

DeVnition 1.3.26 A Delaney-Dress symbol is calledminimal if there does not existminimal
a morphism from this symbol to a smaller symbol. ◇

Note 1.3.27 The name minimal is chosen because this symbol has minimal size. The
corresponding equivariant tiling has maximal symmetry, which is why some texts
use the name maximal symbol.

In [48] it is proven that each tiling (𝑇,Γ) has a unique minimal Delaney-Dress

symbol. Finding the minimal Delaney-Dress symbol of a given tiling (𝑇,Γ), i.e., Vnd-

ing the Delaney-Dress symbol of the tiling with maximal symmetry that is isomorphic

to (𝑇,Γ), comes down to Vnding the smallest Delaney-Dress symbol for which there
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exists a morphism for the original symbol into that symbol. This also comes down to

Vnding equivalence classes of Wags in the original Delaney-Dress symbol.

An algorithm to construct the minimal Delaney-Dress symbol of a tiling is given

in [48]. This algorithm constructs equivalence classes by recursively trying to form

equivalence classes of Wags. Afterwards we get the minimal Delaney-Dress symbol

by taking the equivalence classes as the vertices in the new Delaney-Dress graph. For

a tiling with a Delaney-Dress graph with 𝑛 Wags, the algorithm has a total running

time of 𝑂(𝑛2 · 𝑎(𝑛)) with 𝑎 the inverse Ackermann function.

For more details on the implementation of this algorithm we refer to [48].

1.3.7.2 Fundamental domain and cover

When we want to reconstruct the tiling that corresponds to a Delaney-Dress sym-

bol, we will need the fundamental patch of the Delaney-Dress symbol. In later chap-

ters we will also be interested in the following problem: Given a Delaney-Dress sym-

bol (𝒟;𝑚01,𝑚12) that corresponds to the equivariant tiling (𝑇,Γ), Vnd a Delaney-

Dress symbol (𝒟′;𝑚′
01,𝑚

′
12) that corresponds to a tiling (𝑇 ′,Γ′), such that (𝑇,Γ)

is a symmetry-breaking of (𝑇 ′,Γ′) and Γ′ only contains translations. This Delaney-

Dress symbol (𝒟′;𝑚′
01,𝑚

′
12) is then called a translation-only cover of the original

Delaney-Dress symbol.

DeVnition 1.3.28 If 𝑓 : (𝒟;𝑚01,𝑚12) → (𝒟′;𝑚′
01,𝑚

′
12) is a morphism, then the

set of Wags that is mapped to a 𝜎𝑖𝜎𝑗-component 𝐶 in (𝒟′;𝑚′
01,𝑚

′
12) is called the

cover of 𝐶 . cover
Furthermore we also call the symbol (𝒟;𝑚01,𝑚12) a cover of the symbol

(𝒟′;𝑚′
01,𝑚

′
12). ◇

DeVnition 1.3.29 A Delaney-Dress graph is orientable if it is bipartite. A Delaney- orientable
Dress symbol is orientable if its Delaney-Dress graph is orientable. ◇

DeVnition 1.3.30 Given an equivariant tiling (𝑇,Γ) with Delaney-Dress symbol
(𝒟;𝑚01,𝑚12) a 𝜎𝑖𝜎𝑖-component 𝐶 in 𝒟 (0 ≤ 𝑖 < 𝑗 ≤ 2) is said to be branched if branched

component𝑟𝑖𝑗(𝑐) < 𝑚𝑖𝑗(𝑐) with 𝑐 ∈ 𝐶 .
The branching size of a branched 𝜎𝑖𝜎𝑗-component 𝐶 is equal to 𝑣𝑖𝑗(𝑐) with branching

size𝑐 ∈ 𝐶 . ◇
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DeVnition 1.3.31 Given an equivariant tiling (𝑇,Γ) with Delaney-Dress symbol
(𝒟;𝑚01,𝑚12) a vertex, edge or face is said to be extracted if the correspondingextracted
𝜎𝑖𝜎𝑗-component 𝐶 in 𝒟 (0 ≤ 𝑖 < 𝑗 ≤ 2) is unbranched. ◇

DeVnition 1.3.32 A fundamental patch of an orientable Delaney-Dress symbolfundamen-
tal
patch

(𝒟,𝑚01,𝑚12) is a connected, maximal subgraph (𝒟, 𝐸′) of Γ(𝒟) such that for each
branched component 𝐶 , there exists an edge 𝑒 such that 𝑒 /∈ 𝐸′. ◇

By maximal in the deVnition above, we mean that no additional edge of the

Delaney-Dress graph can be added to the subgraph without breaking the property

that for each branched component 𝐶 , there exists an edge 𝑒 such that 𝑒 /∈ 𝐸′.

A fundamental patch of a Delaney-Dress symbol can be obtained by Vrst taking a

spanning tree of the Delaney-Dress graph and then closing 𝜎𝑖𝜎𝑗-components which

are unbranched. Note that closing is the correct term here, because we are dealing

with an orientable Delaney-Dress symbol and thus each 𝜎𝑖𝜎𝑗-component is a cycle.

When a Delaney-Dress symbol is an orientable symbol without any branched

components, the symbol’s equivariant tiling contains only translational symmetries.

If the symbol however contains branched components then we will have to construct

a cover. Below we give a short description of how this translation-only cover of a

Delaney-Dress symbol can be obtained[65].

To create the cover we start by checking to see if the symbol is orientable. When

the symbol of an equivariant tiling is orientable, the symmetry group of the equivari-

ant tiling does not contain any reWections or glide reWections. To get the orientable

cover of a non-orientable symbol, we Vrst construct a spanning tree of the symbol.

This spanning tree is bipartite — it does not contain any cycles, so certainly no odd

cycles — and we can colour it with two colours. Then we make two copies of the

original symbol, one copy has the same colours as the spanning tree, the other has

opposite colours. When an edge connects two chambers 𝑐1 and 𝑐2 with the same

colour, we remove the edge between 𝑐1 and 𝑐2 in both copies and connect 𝑐1 of the

Vrst copy to 𝑐2 of the second copy, and 𝑐1 of the second copy with 𝑐2 of the second

copy. We deVne functions 𝑚𝑜
01 and 𝑚𝑜

12 such that the values for a chamber in any of

the two copies is the same as the values for the functions 𝑚01 and 𝑚12 for the orig-

inal chamber. This results in a symbol that is twice as big and orientable: since the
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original symbol was not orientable there is at least one pair of edges that connect the

spanning tree of the Vrst symbol to the spanning tree of the second symbol, so this

new symbol is certainly connected and by construction this new symbol is bipartite

and thus orientable. The tiling corresponding to this larger Delaney-Dress symbol is

indeed a symmetry-breaking of the tiling corresponding to the original symbol, be-

cause the function that maps the chambers in the copies to the same chamber in the

original symbol is, by construction of the larger symbol, a morphism.

Lemma 1.3.33 The equivariant tiling corresponding to the oriented cover
(𝒟𝑜,𝑚𝑜

01,𝑚
𝑜
12) of a not-orientable Delaney-Dress symbol (𝒟,𝑚01,𝑚12) is a sym-

metry-breaking of the equivariant tiling corresponding to (𝒟,𝑚01,𝑚12).

Proof: The oriented cover consists of two copies of the original symbol. For each

chamber 𝑣 ∈ 𝒟, there are two corresponding vertices in 𝒟𝑜. We will denote

these chambers by 𝑣1 and 𝑣2. We have to prove that the function 𝑓 which

maps for each chamber 𝑣 ∈ 𝒟 both 𝑣1 ∈ 𝒟𝑜 and 𝑣2 ∈ 𝒟𝑜 to 𝑣, is a morphism.

By construction of the oriented cover for each chamber 𝑐 ∈ 𝒟𝑜 the function 𝑓

satisVes the property that 𝑚01(𝑓(𝑐)) = 𝑚𝑜
01(𝑐) and 𝑚12(𝑓(𝑐)) = 𝑚𝑜

12(𝑐).

What remains to be checked is that for each 𝑖 ∈ {0, 1, 2} and for each chamber

𝑐 ∈ 𝒟𝑜 we have that 𝑓(𝜎𝑖(𝑐)) = 𝜎𝑖(𝑓(𝑐)).

Suppose we have two chambers 𝑐, 𝑑 ∈ 𝒟 such that 𝜎𝑖(𝑐) = 𝑑 for some 𝑖 ∈
{0, 1, 2}. The chamber 𝑐, respectively 𝑑, corresponds to two chambers 𝑐1, 𝑐2 ∈
𝒟𝑜, respectively 𝑑1, 𝑑2 ∈ 𝒟𝑜. During the construction of the oriented cover

there are two possibilities: either 𝑐 and 𝑑 received the same colour, or they

received diUerent colours.

Consider Vrst the case that they received the same colour. In this case we have

the following situation in the oriented cover

𝜎𝑖(𝑐1) = 𝑑2,

𝜎𝑖(𝑐2) = 𝑑1.
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This means we have

𝑓(𝜎𝑖(𝑐1)) = 𝑓(𝑑2) = 𝑑 = 𝜎𝑖(𝑐) = 𝜎𝑖(𝑓(𝑐1)),

and similar reasoning can be constructed for 𝑐2.

The case that 𝑐 and 𝑑 receive diUerent colours is also quite similar. In the

oriented cover we have the following situation

𝜎𝑖(𝑐1) = 𝑑1,

𝜎𝑖(𝑐2) = 𝑑2.

This means e.g., that we have for 𝑐1

𝑓(𝜎𝑖(𝑐1)) = 𝑓(𝑑1) = 𝑑 = 𝜎𝑖(𝑐) = 𝜎𝑖(𝑓(𝑐1)).

�

If the fundamental patch of the oriented symbol is isomorphic to the oriented

symbol, we are done. Otherwise we need to create a larger cover to remove other

symmetries. We start by calculating the branching size 𝑘 of the largest branched

𝜎𝑖𝜎𝑗 cycle in the symbol. Then we create a 𝑘-fold cover of the oriented symbol. For

this we make 𝑘 copies of the fundamental patch and we denote the 𝑘 copies of a

Wag 𝑑 ∈ 𝒟 by 𝑑𝑖 with 1 ≤ 𝑖 ≤ 𝑘. Next we try to add the missing edges in the

fundamental patch in all the possible ways, so that we have a symbol without any

missing edges or branched cycles. This means that when a Wag 𝑑1 is connected to a

Wag 𝑑2 by a 𝜎𝑗-edge that is missing in the fundamental patch, we try to connect 𝑑11
to any 𝑑𝑖2 that is still available, and then the same for 𝑑21, . . . , 𝑑

𝑘
1 . When there is a

contradiction we backtrack.

There is a relation between fundamental patches and tile-transitive tilings. A fun-

damental patch corresponds to the smallest region of a tiling we need to reproduce

the complete tiling. If we realize the fundamental patch of a tiling and then copy

this realization and paste them together based on the symmetries at the edge of the
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fundamental patch we get a realization of the complete tiling. Thus we can view the

fundamental patch as a sort of ‘super-tile’ which is part of a tiling with only one kind

of tiles, i.e., a tile-transitive tiling. tile-
transitive
tiling

There are only two possible types of fundamental patches for a Delaney-Dress

symbol that only contains translational symmetries, i.e., a quadrangle and a hexagon.

This follows from the fact that the only two possibilities for tile-transitive tilings with

only translational symmetries are the square grid with the square extracted and the

honeycomb with the hexagon extracted. That these are the only two possibilities,

can easily be proven with the use of Delaney-Dress symbols.

Theorem 1.3.34 The only two tile-transitive, equivariant tilings containing only
translation symmetries are the square grid with the square extracted and the honey-
comb with the hexagon extracted.

Proof: Since the tiling is tile-transitive, its Delaney-Dress symbol can only have one

𝜎0𝜎1 orbit (and thus the function 𝑚01 is constant for the complete symbol and

we use the same notation for the value of this constant) and because the tiling

may only contain translation symmetry, this orbit will contain exactly 2𝑚01

chambers.

So we can Vll in this information into the formula for the curvature of the tiling:

∑︁
𝑑∈𝒟

(︂
1

𝑚01(𝑑)
+

1

𝑚12(𝑑)
− 1

2

)︂
=

2𝑚01

𝑚01
+

(︃∑︁
𝑑∈𝒟

1

𝑚12(𝑑)

)︃
− 2𝑚01

2
= 0.

This means that ∑︁
𝑑∈𝒟

1

𝑚12(𝑑)
= 𝑚01 − 2.

Suppose the number of 𝜎1𝜎2 orbits is 𝑘 and denote the constant value of the

function 𝑚12 on the 𝑖th orbit by 𝑚𝑖
12. Since the tiling may only contain trans-

lation symmetry, the 𝑖th orbit will contain 2𝑚𝑖
12 chambers. Substituting this

information in the equation above, we Vnd

𝑚01 − 2 =
2𝑚1

12

𝑚1
12

+ · · · +
2𝑚𝑘

12

𝑚𝑘
12

= 2𝑘,



30 CHAPTER 1. DEFINITIONS

or

𝑚01 = 2𝑘 + 2.

The 𝜎1𝜎2 orbits form a partition of the Delaney-Dress graph and thus we also

have the following equality:

𝑚01 = 𝑚1
12 + · · · +𝑚𝑘

12.

At least 3 faces (or edges) meet in a vertex. This means that each of the 𝑚𝑖
12 is

at least 3. So we can rewrite the equality above as

𝑚01 = (3 + 𝑙1) + · · · + (3 + 𝑙𝑘) = 3𝑘 + 𝑙,

with 𝑙𝑖, 𝑙 ∈ N. Combining the equalities we Vnd that

2𝑘 + 2 = 3𝑘 + 𝑙,

or,

−𝑘 + 2 = 𝑙,

with 𝑙 ∈ N and 𝑘 ∈ N*. This equation has only two solutions for (𝑘, 𝑙) and

those are (1, 1) and (2, 0).

The Vrst solution (1, 1) corresponds to a quadrangular tile with exactly 1 𝜎1𝜎2-

component and for this component the value of 𝑚12 is equal to 4. The 𝜎0𝜎1-

component for this symbol is shown in Figure 1.8.a. The symbol must be

orientable, hence the graph has to be bipartite. The 𝜎0𝜎2-components form 4-

cycles. This means that in a valid symbol the oppositely coloured endpoints of

two 𝜎0 edges are connected. If the edge𝐴would be connected to the edge𝐵 or

𝐷, there would be a branched 𝜎1𝜎2-component. Therefore the only possibility

is that 𝐴 is connected to 𝐶 and 𝐵 is connected to 𝐷. The resulting symbol can

be seen in Figure 1.9.a. This is the Delaney-Dress symbol of the square grid

with the square extracted.

The second solution (2, 0) corresponds to a hexagonal tile with exactly 2 𝜎1𝜎2-

components and for both the value of 𝑚12 is 3. The 𝜎0𝜎1-component for this
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Figure 1.8: The two possible 𝜎0𝜎1 orbits corresponding to a
quadrangle(a) and a hexagon (b).

symbol is shown in Figure 1.8.b. Once again the symbol must be orientable,

and thus the graph has to be bipartite. If 𝐴 is connected to 𝐵 or 𝐹 , there

would be a branched 𝜎1𝜎2-component. If 𝐴 is connected to 𝐶 , then 𝐷 must

be connected to 𝐹 and 𝐵 to 𝐸, but this means that there would be two 𝜎1𝜎2-

components with impossible sizes. If 𝐴 is connected to 𝐸 a similar reasoning

can be made. Thus the only remaining possibility is that 𝐴 is connected to 𝐷,

𝐵 to 𝐸 and 𝐶 to 𝐹 . The resulting symbol can be seen in Figure 1.9.b. This is

the Delaney-Dress symbol of the honeycomb with the hexagon extracted.

�

1.4 Generation algorithms

The goal of this section is to oUer a high-level view of the diUerent techniques that

are used in structure generation algorithms. For several of these methods, details will

be explained later on in a more concrete setting when they are applied to speciVc
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Figure 1.9: The Delaney-Dress symbols of the only two tile-
transitive tilings containing only translation symmetry.

situations in diUerent chapters. An introductory overview of these techniques can

also be found in [44].

1.4.1 Construction operations

First the set of structures of interest must be deVned. This is usually the set of all

graphs that share a common property, e.g., all graphs, all cubic graphs, ... This set is

called the search space. In case of an inVnite search space it is often subdivided bysearch space
an extra parameter, e.g., all graphs with 𝑛 vertices, ... At the core almost all generation

algorithms look basically the same. They deVne a set of operations, the construction
operations, which, when iteratively applied to a set of initial structures, transformconstruc-

tion
operation

a structure in the search space into another structure in the search space or, through

intermediary structures, Vnally produce a structure in the search space.

In this thesis we will be focusing on exhaustive generation algorithms, i.e., we

want to be sure that we generate all structures in the search space. For this we must

prove that, given the correct set of initial structures, each structure in the search

space can be reached using the construction operations.
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The common way to do this is by looking at the inverse operations of the con-

struction operations. We will call these inverse operations reduction operations. reduction
operationThe problem of proving that each structure can be reached using the construction

operations is equivalent to proving that each structure in the search space and — if

applicable — each intermediate structure, except for some (small) set of irreducible

structures, can be reduced by one of the reduction operations. Usually an invariant

or a combination of invariants that monotonically increases or decreases is then used

to prove that this reduction process always stops, i.e., that it does not get stuck in

an inVnite loop that keeps cycling through a subset of the search space. Once this

is proven we have proven that the set of irreducible graphs is suXcient to start the

generation process and reach the entire search space.

1.4.2 Isomorphism rejection
We are not interested in exhaustive generation algorithms alone: this thesis is in

fact about isomorph-free exhaustive generation algorithms. The problem with the

construction operations as described above is that there is hardly ever a way for

these operations to guarantee that no two of the generated structures are isomor-

phic. There exist several techniques to add isomorphism rejection to the generation

algorithm and this is the point on which generation algorithms mostly diUer.

To Vlter out isomorphic copies we need a way to recognise isomorphic copies.

Very often we even want to be able to decide whether an isomorphic copy exists

without comparing the graphs. A key concept for this is canonicity. Canonicity is canonicity
derived from the Greek word κανών (kanon) which means rule or measuring stick.

This term is often used in mathematics to identify a unique and natural way to rep-

resent something. In the context of generation algorithms it will mostly be used to

refer to a canonical vertex labelling or numbering. This is a fairly standard con- canonical
vertex
labelling

cept which we will now Vrst deVne here before we will use it in the following sections

to explain the diUerent isomorphism rejection techniques.

Let 𝒢 denote the set of all labelled graphs — or in some cases, the set of all

labelled graphs satisfying certain conditions. A canonical representative function canonical
representa-
tive
function

is a function 𝑐 : 𝒢 → 𝒢 that assigns to each labelled graph another labelled graph
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called its canonical form. There are many diUerent ways a speciVc canonical form

can be deVned, but a canonical form 𝑐(𝐺) of a graph 𝐺 must satisfy the following

two properties:

1. ∀𝐺 ∈ 𝒢 : 𝑐(𝐺) ∼= 𝐺

2. ∀𝐺,𝐺′ ∈ 𝒢 : 𝐺 ∼= 𝐺′ ⇒ 𝑐(𝐺) = 𝑐(𝐺′)

From this deVnition it follows also that ∀𝐺 ∈ 𝒢 : 𝑐(𝑐(𝐺)) = 𝑐(𝐺), so 𝑐 is idem-

potent. In every isomorphism class 𝑐 Vxes exactly one element and this element is

called the canonical representative of the class. An isomorphism 𝜑 : 𝐺 → 𝑐(𝐺)canonical
representa-
tive

is called a canonical labelling of the vertices of 𝐺. The canonical representative of a

graph 𝐺 is unique, but the canonical labellings for a graph 𝐺 are unique only up to

automorphisms of 𝐺.

There are many ways to choose the canonical representative for an isomorphism

class. Although the choice should depend on the problem at hand to choose a form

that is ‘easy’ to calculate, there are some techniques which are easy, common and

often powerful enough for most cases. An example of a canonical form of a graph is

the isomorphic labelled graph for which the binary number formed by concatenating

the rows of the adjacency matrix is largest as the canonical representative.

1.4.3 Isomorphism rejection by lists
A very straight-forward and simple way to make sure that the algorithm does

not output isomorphic structures is by keeping a list of output structures in memory

or on Vle and, each time a new structure is generated, comparing it to the list. This

method is called isomorphism rejection by lists.

It is possible to use isomorphism rejection by lists without using the canonical

representatives, but they could decrease the necessary amount of calculations signif-

icantly. If instead of the generated structure a canonical representative is stored in

the list and before a generated graph is compared to the list, its canonical represen-

tative is calculated, then comparing the two graphs becomes simpler because we are

looking for equality and not just isomorphic equivalence. Moreover, the canonical
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representative could also be stored in a sorted list which would mean that not every

graph must be examined, and so the amount of work needed to verify whether the

current graph is new is further decreased.

This method is easy to implement and usually not especially prone to error, but is

unfortunately also only possible when the search space is really small. In Chapter 4

this technique is used to generate a class of graphs that contains 1274 graphs. In

the other chapters we generate classes of structures that are inVnite except when

restricted to a certain number of vertices. In those cases isomorphism rejection by

lists cannot be used. For this reason several techniques have been developed that

can decide whether a structure should be output or not, without knowing the other

structures.

1.4.4 Canonical representatives
A Vrst method to solve this problem is by generating canonical representatives.

This technique can be split in four steps.

1. First a code should be deVned that is unique for every labelled structure that

will arise during the generation process,

2. then for each structure one of the codes among all isomorphic labelled struc-

tures should be chosen as the canonical code,

3. next generate all structures and make sure that for every isomorphism class

exactly one structure is generated that has the canonical code, and

4. Vnally accept a generated structure if the associated code is canonical and

reject it otherwise.

It is no problem if not all labelled structures are generated, but it is very important

that in step 3 at least all the labelled structures which lead to the canonical codes are

generated. If for a certain structure the labelled version that leads to the canonical

code is not generated, then all labelled versions of this structure will be rejected as

there is no way to know that this structure is missing from the generated structures

and thus the generation process would not be exhaustive.
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The advantage of this method, as announced above, is that it can decide for each

generated structure whether it should be rejected or output. This means also that

this technique allows the generation process to be split into parts and divide over

several computers or runs of the same program. It is however possible that each

structure will be generated several times and will be rejected in all but one case. If

this happens too often, it means that a lot of work goes into generating structures

that will eventually be rejected. It would be advantageous to decide much earlier in

the generation process whether a structure will lead to a canonical representative or

not.

1.4.5 Read/Faradžev-type orderly algorithms
In the Read/Faradžev-type orderly algorithms an early bounding criterion with

respect to the canonicity criterion is used. The construction operations have to be

compatible with the canonical code in such a way that it is possible at an early stage

to decide whether a partial structure will lead to a canonical representative or not. In

case a certain partial structure can no longer lead to a canonical representative, that

branch of the search space is abandoned and the algorithm can backtrack.

An obvious disadvantage is that the code and the construction operations have

to be compatible to make sure that such an early bounding criterion is possible. This

might lead to a canonical form which is diXcult to calculate. In some cases this early

bounding criterion might not even be possible that ‘early’ in the generation process

and so this method might not provide the desired increase in eXciency.

This technique is used in the algorithm in Chapter 5 which is later used in Chap-

ter 6.

1.4.6 McKay’s canonical construction path method
A technique which improves on these vulnerabilities of Read/Faradžev-type or-

derly algorithms is McKay’s canonical construction path method. At its core, this

method is basically the same as the two previous algorithms, but it uses a general

and powerful approach which grants it the right to be mentioned separately. The

power comes from the fact that the eUort to avoid the construction of isomorphic
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copies is made in each construction step instead of waiting until the partial struc-

tures reach a point where the possible codes can be compared.

This method can be applied to each generation algorithm where recursive con-

struction steps are used, i.e., ‘smaller’ structures are used to generate ‘larger’ struc-

tures. This method then assures that at each level only non-isomorphic structures

are used and thus Vxes for each generated structure a unique path from one of the

initial irreducible structure to the structure itself. Hence the name of this method.

This method can also be synthesised into three simple steps.

1. First for each structure a unique reduction (i.e., a unique construction step and

a unique ‘smaller’ structure) must be deVned;

2. during the generation process a structure is accepted only if it is constructed

by the inverse of the unique reduction (which we call the canonical operation),

and

3. for each ancestor it must be checked that only ‘non-isomorphic’ construction

steps are performed.

Step 3 normally requires the calculation of the automorphism group of the an-

cestor structure, but these ancestor structures are usually fewer and ‘smaller’ than

the target structures, so this is mostly not the problem. There are also techniques to

improve on this by using information from previous steps to increase the eXciency

of the calculation of the automorphism group or even render it redundant in some

cases.

This powerful method is explained in [43]. We use this approach in Chapter 2

and Chapter 3.
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This research was joint work with Tomaž Pisanski and is described in [59]. The

main goal was to solve several generation problems for cubic graphs and related

classes. For examples of uses for the diUerent classes we refer to [59]. Here we will

just discuss the generation of these classes.

2.1 DeVnitions

Pregraphs are graphs that also may contain loops, multi-edges and semi-edges

(dangling edges). Loops and multi-edges have already been deVned, but semi-edges

introduce a new concept at this point.

DeVnition 2.1.1 A pregraph 𝑃 is an ordered pair 𝑃 = (𝑉, ℰ) with 𝑉 the set ofpregraph
vertices and ℰ the multiset (𝐸,𝑚) of edges with 𝐸 ⊆

(︀
𝑉
2

)︀
∪ (𝑉 ×{𝐿})∪ (𝑉 ×{𝑆}).

We have the following naming of the edges:

∙ ∀{𝑣, 𝑤} ∈ 𝐸 : 𝑚({𝑣, 𝑤}) = 1 ⇒ {𝑣, 𝑤} is a single edge of 𝑃

∙ ∀{𝑣, 𝑤} ∈ 𝐸 : 𝑚({𝑣, 𝑤}) > 1 ⇒ {𝑣, 𝑤} is a multi-edge of 𝑃

∙ ∀(𝑣, 𝐿) ∈ 𝐸 ⇒ (𝑣, 𝐿) is a loop of 𝑃

∙ ∀(𝑣, 𝑆) ∈ 𝐸 ⇒ (𝑣, 𝑆) is a semi-edge of 𝑃

The degree is a function 𝑑 : 𝑉 → N; 𝑣 ↦→ 𝑑(𝑣). The value 𝑑(𝑣) is called the degreedegree
of the vertex 𝑣 and is deVned as follows:

𝑑𝑒(𝑣) =
∑︁

𝑒∈𝐸𝑒(𝑣)

𝑚(𝑒) with 𝐸𝑒(𝑣) =

{︂
𝑒 ∈ 𝐸 ∩

(︂
𝑉

2

)︂
|𝑣 ∈ 𝑒

}︂

𝑑𝐿(𝑣) =

{︂
0 if (𝑣, 𝐿) /∈ 𝐸
2𝑚 ((𝑣, 𝐿)) if (𝑣, 𝐿) ∈ 𝐸

𝑑𝑆(𝑣) =

{︂
0 if (𝑣, 𝑆) /∈ 𝐸
𝑚 ((𝑣, 𝑆)) if (𝑣, 𝑆) ∈ 𝐸

𝑑(𝑣) = 𝑑𝑒(𝑣) + 𝑑𝐿(𝑣) + 𝑑𝑆(𝑣)

◇
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For this chapter we will redeVne a simple graph such that the simple graphs form

a subset of the pregraphs. This deVnition however is completely equivalent to the

usual deVnition of a simple graph as given in DeVnition 1.1.1.

DeVnition 2.1.2 A simple graph 𝐺 is an ordered pair 𝐺 = (𝑉, ℰ) with 𝑉 the set simple
graphof vertices and ℰ the multiset (𝐸,𝑚) of edges with 𝐸 ⊆

(︀
𝑉
2

)︀
and𝑚 : 𝐸 → {1}. ◇

The bijection between the set of simple graphs using this deVnition and the set

of simple graphs using the common deVnition is (𝑉, (𝐸,𝑚)) ↦→ (𝑉,𝐸).

As described in [59], besides pregraphs we are also interested in some related

classes which are situated somewhere between simple graphs and pregraphs.

DeVnition 2.1.3 A graph with loops 𝐺𝐿 is a pregraph 𝐺𝐿 = (𝑉, (𝐸,𝑚)) with graph with
loops𝐸 ⊆

(︀
𝑉
2

)︀
∪ (𝑉 × {𝐿}) and𝑚 : 𝐸 → {1}. ◇

DeVnition 2.1.4 A graph with semi-edges 𝐺𝑆 is a pregraph 𝐺𝑆 = (𝑉, (𝐸,𝑚)) graph with
semi-edgeswith 𝐸 ⊆

(︀
𝑉
2

)︀
∪ (𝑉 × {𝑆}) and𝑚 : 𝐸 → {1}. ◇

DeVnition 2.1.5 A multigraph 𝐺𝑀 is a pregraph 𝐺𝑀 = (𝑉, (𝐸,𝑚)) with 𝐸 ⊆ multigraph(︀
𝑉
2

)︀
. ◇

DeVnition 2.1.6 A graph with loops and semi-edges 𝐺𝐿𝑆 is a pregraph 𝐺𝐿𝑆 =
(𝑉, (𝐸,𝑚)) with𝑚 : 𝐸 → {1}.
We will also refer to this type as simple pregraphs. ◇ simple

pregraph
DeVnition 2.1.7 A multigraph with loops 𝐺𝑀𝐿 is a pregraph 𝐺𝑀𝐿 = (𝑉, (𝐸,𝑚))
with 𝐸 ⊆

(︀
𝑉
2

)︀
∪ (𝑉 × {𝐿}).

We will also refer to this type as semi-edge-free pregraphs. ◇ semi-edge-
free
pregraphDeVnition 2.1.8 A multigraph with semi-edges 𝐺𝑀𝑆 is a pregraph 𝐺𝑀𝑆 =

(𝑉, (𝐸,𝑚)) with 𝐸 ⊆
(︀
𝑉
2

)︀
∪ (𝑉 × {𝑆}).

We will also refer to this type as loopless pregraphs. ◇ loopless
pregraph

In this chapter we will generate several types of cubic pregraphs and related

classes. These are the classes we will consider:
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DeVnition 2.1.9

∙ The class 𝒞 is the class of all simple cubic graphs.

∙ The class ℒ is the class of all cubic graphs with loops.

∙ The class 𝒮 is the class of all cubic graphs with semi-edges.

∙ The class ℳ is the class of all cubic multigraphs.

∙ The class ℒ𝒮 is the class of all cubic simple pregraphs.

∙ The class ℒℳ is the class of all cubic semi-edge-free pregraphs.

∙ The class 𝒮ℳ is the class of all cubic loopless pregraphs.

∙ The class 𝒫 is the class of all cubic pregraphs.

◇

In Figure 2.1 we show the relations between these diUerent classes of graphs.

𝒫

ℒ𝒮 ℒℳ 𝒮ℳ

ℒ 𝒮 ℳ

𝒞

Figure 2.1: The relations between the diUerent graph classes. In
this Vgure 𝑋 → 𝑌 means 𝑌 ⊆ 𝑋 .
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2.2 Cubic pregraph primitives

We will perform the generation in two steps. First we will generate coarser struc-

tures which we call pregraph primitives. From these pregraph primitives we will

generate the pregraphs in a second step.

DeVnition 2.2.1 A cubic pregraph primitive is a multigraph 𝐺(𝑉, (𝐸,𝑚)) such cubic
pregraph
primitive

that each vertex 𝑣 ∈ 𝑉 has a degree 𝑑(𝑣) ∈ {1, 3}.
The set of cubic pregraph primitives is denoted by 𝒫*. ◇

𝒫*

We can now use this new class to deVne a transformation of 𝒫 into 𝒫*.

DeVnition 2.2.2 Primitivisation is a function * : 𝒫 → 𝒫*;𝐺 ↦→ 𝐺*, with 𝐺* primitivisa-
tiongiven by the following operations:

1. remove all loops;

2. add a vertex for each semi-edge, and replace the semi-edge by an edge con-
necting the new vertex and the vertex that was contained in the semi-edge.

For once, we will repeat this in a more detailed form. If 𝐺 is the pregraph (𝑉, ℰ)
with

∙ 𝑉 the set of vertices, and

∙ ℰ the multiset (𝐸,𝑚) of edges with 𝐸 ⊆
(︀
𝑉
2

)︀
∪ (𝑉 × {𝐿}) ∪ (𝑉 × {𝑆}) and

𝑚 : 𝐸 → {1, 2, 3},

then 𝐺* is the multigraph (𝑉 *, ℰ*) with

∙ 𝑉 * = 𝑉 ∪ {𝑣1, . . . , 𝑣𝑠}, ℰ* = (𝐸*,𝑚*), and

∙ 𝐸* = (𝐸 ∩
(︀
𝑉
2

)︀
) ∪ {𝑒1, . . . , 𝑒𝑠} in which

– 𝑠 =
∑︀

𝑣∈𝑉 𝑑
𝑆(𝑣),

– 𝑣𝑖 ∈ 𝑒𝑖(𝑖 = 1, . . . , 𝑠),

– ∀(𝑣, 𝑆) ∈ 𝐸 : ∃𝐸𝑣 ⊆ {𝑒1, . . . , 𝑒𝑠} : |𝐸𝑣| = 𝑑𝑆(𝑣) ∧ ∀𝑒 ∈ 𝐸𝑣 : 𝑣 ∈ 𝑒,

– ∀𝑒 ∈ 𝐸 : 𝑚*(𝑒) = 𝑚(𝑒), and

– ∀𝑒 ∈ 𝐸* ∖ 𝐸 : 𝑚*(𝑒) = 1.

◇
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If we extend our notation and denote the primitivisation of the sets ℒ𝒮 , ℒℳ,

𝒮ℳ, 𝒮 , ℒ and ℳ by respectively ℒ𝒮*, ℒℳ*, 𝒮ℳ*, 𝒮*, ℒ* and ℳ*. We have that

ℒ𝒮* = ℒ* = 𝒮* (i.e., the cubic pregraph primitives that are simple graphs denoted

by 𝒫*
1 ), ℒℳ* = 𝒮ℳ* = 𝒫* and ℳ* = ℳ. For the cubic pregraph primitives the

diagram shown in Figure 2.1 reduces to the diagram shown in Figure 2.2.

𝒫*

𝒫*
1 ℳ

𝒞

Figure 2.2: The relations between the diUerent pregraph primi-
tive classes. In this Vgure 𝑋 → 𝑌 means 𝑌 ⊆ 𝑋 .

2.3 Reduction operations for pregraph primitives

We will start by describing how we can reduce these cubic pregraph primitives to

a smaller class of graphs. This will be the class of cubic graphs plus some extra graphs

to handle some of the special cases. The inverse operations for these reductions then

give us the construction operations to generate the cubic pregraph primitives from

the cubic graphs and these extra graphs. We Vrst give the operations we will be

discussing.

The Vrst operation, denoted by 𝑂1, (see Figure 2.3) is to unite two vertices of

degree 1 that are not adjacent to the same vertices and add a new vertex that is

adjacent to this newly united vertex. The reduction that corresponds to 𝑂1 is to

select a vertex 𝑥 adjacent to a vertex 𝑦 of degree 1 the removal of which breaks the

graph into exactly two connected components, and not in three components, and
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op.

red.

Figure 2.3: The construction operation𝑂1 and the corresponding
reduction. The grey areas are connected.

op.

red.

Figure 2.4: The construction operation𝑂2 and the corresponding
reduction. The grey areas are connected.

then to remove 𝑥 and 𝑦, add two new vertices 𝑥1 and 𝑥2 and connected each of the

remaining original neighbours of 𝑥 to one of these new vertices.

The second operation, denoted by 𝑂2, (see Figure 2.4) is to subdivide a bridge

with a vertex 𝑥 and connect 𝑥 to a new vertex 𝑦. The reduction that corresponds to

𝑂2 is to select a vertex 𝑥 adjacent to a vertex 𝑦 of degree 1 the removal of which

breaks the graph into exactly three connected components. Remove the vertex 𝑦 and

the vertex 𝑥 and connect the two remaining neighbours of 𝑥 with each other.

The third operation, denoted by 𝑂3, (see Figure 2.5) is to subdivide an arbitrary

edge (this might be a bridge) by inserting a double edge into it. If the original edge is

the connection between the vertices 𝑥 and 𝑦, then this edge is removed, two vertices

𝑥′ and 𝑦′ are added to the graph and 𝑥 is connected to 𝑥′, 𝑦 is connected to 𝑦′ and 𝑥′

is connected twice to 𝑦′. The reduction corresponding to 𝑂3 is to select an edge with
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op.

red.

Figure 2.5: The construction operation𝑂3 and the corresponding
reduction. The grey areas are not necessarily connected, but the
whole graph is connected.

multiplicity 2 with the property that the neighbouring vertices are diUerent. Let the

neighbouring vertices be denoted by 𝑥 and 𝑦, we remove the edge of multiplicity 2

and the vertices incident to it and connect the vertices 𝑥 and 𝑦.

The fourth and Vnal operation, denoted by 𝑂4, (see Figure 2.6) consists of replac-

ing an edge of multiplicity 2 by another speciVc subgraph. Let the vertices of the

edge with multiplicity 2 be 𝑥 and 𝑦, and let the other neighbour of 𝑥, resp. 𝑦, be 𝑥′,

resp. 𝑦′. We remove the edges between 𝑥 and 𝑥′ and between 𝑦 and 𝑦′. We add two

new vertices 𝑣 and 𝑤 and connect 𝑣 to 𝑥′, 𝑦′ and 𝑤, and connect 𝑤 to 𝑥 and 𝑦. The

reduction that corresponds to 𝑂4 is to select an edge with multiplicity 2 such that

the two vertices 𝑥 and 𝑦 incident to that edge share one neighbour 𝑤, such that the

other neighbour 𝑣 of 𝑤 has three diUerent neighbours: 𝑤, 𝑥′ and 𝑦′. We remove the

vertices 𝑤 and 𝑣 and connect 𝑥′ to 𝑥 and 𝑦′ to 𝑦.

We introduce a new notation: we denote a graph obtained by applying operation

𝑥 ∈ {1, . . . , 4} to the graph𝐺 by𝑂𝑥(𝐺). In this case𝐺 is called the parent of𝑂𝑥(𝐺)

and 𝑂𝑥(𝐺) is called a child of 𝐺.

We will see that there is a special graph, namely the theta graph, which needs totheta graph
be considered separately when working with these operations. For simplicity we will

also consider the buoy graph a special case. These graphs are shown in Figure 2.7.buoy graph
We will prove the following theorem:

Theorem 2.3.1 Each cubic pregraph primitive can be reduced to either a cubic
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op.

red.

Figure 2.6: The construction operation𝑂4 and the corresponding
reduction. The grey areas are not necessarily connected, but the
whole graph is connected.

graph,𝐾2 or the theta graph using the reductions 1, 2, 3 and 4.

To prove this theorem we Vrst need two lemmas.

Lemma 2.3.2 Each cubic pregraph primitive containing a parallel edge can be re-
duced by reduction 3 or 4 to a cubic pregraph primitive with fewer vertices, except
when it is the theta graph or the buoy graph.

Proof: Let 𝐺 be a graph diUerent from the theta graph and the buoy graph. Con-

sider two vertices 𝑢 and 𝑣 that are connected to each other by a parallel edge.

Let 𝑥, 𝑦 be the other two neighbours of 𝑢 and 𝑣. If 𝑥 and 𝑦 are two distinct

vertices we can apply reduction 3: we remove the vertices 𝑢 and 𝑣 and add

an edge between 𝑥 and 𝑦. This can create a new parallel edge, but the result

is a cubic pregraph primitive. If 𝑥 = 𝑦, 𝑥 is adjacent to one other vertex 𝑧.

Since 𝐺 is diUerent from the buoy graph, 𝑧 has two other neighbours 𝑧1 and

𝑧2. There are two cases for 𝑧1 and 𝑧2: either they are diUerent – in which case

we can apply reduction 4 – or they are the same – in which case we can apply

reduction 3 to the parallel edges between 𝑧 and 𝑧1. �

Lemma 2.3.3 Each simple cubic pregraph primitive can be reduced to a cubic graph
or𝐾2 by recursively applying reductions 1 and 2.
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(2.7.a) Theta graph (2.7.b) Buoy graph

Figure 2.7: The theta graph and the buoy graph are two cubic
pregraph primitives which will be considered separately when us-
ing our construction operations for cubic pregraph primitives.

Proof: We will show that every cubic simple pregraph primitive 𝐺 that is not 𝐾2

and has at least one vertex 𝑢 of degree 1 can be reduced to a smaller cubic

simple pregraph primitive with fewer edges. Let 𝑣 be the neighbour of 𝑢. Then

𝑣 has degree 3, and is adjacent to two other distinct vertices 𝑥 and 𝑦, because

the cubic pregraph primitive contains no parallel edges. This means that we

can apply either reduction 1, if the graph obtained by removing 𝑢 and 𝑣 is

connected, or reduction 2, otherwise. In both cases we get a cubic pregraph

primitive with fewer edges. �

Now we have the tools to prove Theorem 2.3.1.

Proof of Theorem 2.3.1: The theorem follows from Lemma 2.3.2, Lemma 2.3.3 and

from the fact that the buoy graph can also be reduced to 𝐾2 by applying re-

duction 1 followed by reduction 3. �

Remark 2.3.4 The only cubic pregraph with an edge of multiplicity 3 is the theta
graph. To simplify the implementation this graph is output separately in case the
number of vertices is 2. In all other cases our implementation uses the buoy graph
and 𝐶4,𝑑, i.e., a 4-cycle with additionally two opposite edges being double edges, as
start graphs.
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2.4 Generation of cubic pregraph primitives

In order to assure that no isomorphic graphs are generated, we apply the canoni-

cal construction path method (see Subsection 1.4.6). Informally speaking we deVne a

unique “canonical” last construction step for every graph and make sure that no two

equivalent construction steps are performed. A graph is accepted, if and only if the

last construction step is the canonical one.

In order to generate all cubic pregraph primitives with 𝑛 vertices, the complete

graph on 2 vertices 𝐾2 and either the theta graph if 𝑛 = 2 or the buoy graph and the

graph 𝐶4,𝑑 in all other cases, the generation algorithm applies these steps recursively

starting from the cubic graphs on up to 𝑛 vertices. In its basic form the algorithm to

generate cubic pregraph primitives with 𝑛 vertices looks like this:

Let 𝐺 be a graph that is to be extended. We use the word pair for (unordered)

sets of two elements.

1. If 𝐺 has 𝑛 vertices: output 𝐺. If 𝐺 has no pair of degree-1 vertices that are not
adjacent to the same vertex, then return.

2. Compute the automorphism group of 𝐺.

3. Compute the orbits of pairs of degree-1 vertices, the orbits of edges and the orbits
of double edges.

4. For each orbit of pairs of degree-1 vertices, choose a representative and apply
𝑂1.
For each orbit of double edges, choose a representative and apply 𝑂4.
For each orbit of edges, choose a representative and :

∙ if these edges are bridges, apply 𝑂2 and 𝑂3;

∙ if these edges are not bridges, apply 𝑂3.

5. For each newly constructed graph 𝐺′ compute the canonical last construction
operation and accept 𝐺′ if and only if the last construction operation is equiva-
lent (details will follow) to the canonical one.

The automorphism group is computed with nauty [29] — an eXcient program for

the computation of automorphism groups and canonical labellings of graphs. What
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remains to be explained is the last step: determining the canonical last construction

step.

Assume that we have a unique representative for every isomorphism class of

graphs. A canonical labelling of a graph 𝐺 is an assignment of labels to the ver-

tices of 𝐺 that produces the unique labelled representative of the isomorphism class

of 𝐺. Canonical labellings are unique up to automorphisms of the graph.

We assign a pair of numbers (𝑛(𝑣), 𝑙(𝑣)) to each vertex 𝑣 of degree 1 and 𝑣 is

canonical if it has the lexicographically smallest pair (𝑛(𝑣), 𝑙(𝑣)). The value 𝑛(𝑣) has

been chosen to be easily computable. This value is equal to the number of vertices

at distance at most 4 of 𝑣 and thus lies somewhere between 2 (in case of the 𝐾2)

and 16. The value 𝑙(𝑣) is the canonical label for 𝑣. The value 𝑛(𝑣) is invariant under

isomorphisms, so for all vertices 𝑣, 𝑤 we have that if 𝑣 and 𝑤 are equivalent under

the automorphism group of the graph, then 𝑛(𝑣) = 𝑛(𝑤). Due to the deVnition of a

canonical labelling, for all vertices 𝑣 and 𝑤, we have that 𝑣 and 𝑤 are equivalent if

and only if 𝑙(𝑣) = 𝑙(𝑤). In most cases it is not necessary to calculate 𝑙(𝑣) in order to

decide whether 𝑣 is canonical.

We assign a pair of numbers (𝑎(𝑒), 𝑏(𝑒)) to each reducible double edge 𝑒. The

double edge 𝑒 is canonical if it is reducible and it has the lexicographically smallest

pair (𝑎(𝑒), 𝑏(𝑒)). The value 𝑎(𝑒) is the minimum of the canonical labels of the vertices

incident to 𝑒, and 𝑏(𝑒) is the maximum of these canonical labels.

The selection of the canonical last operation is in steps: If the graph contains

double edges and is not the buoy graph, the last operation must be one of operations

3 or 4. Among all possible operations the one producing the canonical double edge is

chosen as “the canonical last operation”. Note that since canonicity is unique only up

to isomorphisms, an operation is accepted if it is equivalent to the chosen operation –

that is if the double edge produced is in the orbit of the canonical double edge under

the automorphism group of 𝐺′.

The canonical last operation for a simple cubic pregraph primitive with vertices

of degree 1 is the one producing a degree-1 vertex in the orbit of the canonical vertex.

The algorithm is recursively applied to all base graphs (including the buoy graph,

the graph 𝐶4,𝑑 and the complete graph on 2 vertices). Cubic graphs are obtained
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from the generator in [58]. It follows from [43] (by Vtting these operations into the

proposed framework) but can also easily be seen and proven independently that in

this way exactly one pregraph of each isomorphism class is generated.

Theorem 2.4.1 If the algorithm described above is recursively applied, starting with
all cubic graphs on up to 𝑛 vertices, the complete graph on 2 vertices 𝐾2 and either
the theta graph if 𝑛 = 2 or the buoy graph and the graph 𝐶4,𝑑 in all other cases, then
it constructs exactly one representative of every isomorphism class of cubic pregraph
primitives on 𝑛 vertices.

We will Vrst prove some lemmas.

Lemma 2.4.2 If the operations 𝑂3 and 𝑂4 are applied to one edge in each orbit of
edges, respectively to one double edge in each orbit of double edges, for one repre-
sentative of each isomorphism class of cubic pregraph primitives on 𝑛 − 2 vertices,
and the resulting graph 𝐺′ is accepted if and only if the new double edge 𝑒 has
the lexicographically smallest value for (𝑎(𝑒), 𝑏(𝑒)) among all reducible double edges
in 𝐺′, then exactly one representative of each isomorphism class of cubic pregraph
primitives on 𝑛 vertices and containing parallel edges is accepted.

Proof: We Vrst observe that isomorphic graphs are constructed from the same par-

ent. Indeed, due to the deVnition of (𝑎(𝑒), 𝑏(𝑒)), if we have two isomorphic

graphs 𝐺1 and 𝐺2 with respective new double edges 𝑒1 and 𝑒2, and an iso-

morphism 𝛾 from 𝐺1 to 𝐺2, then 𝛾(𝑒1) is in the same orbit as 𝑒2 under the

automorphism group of 𝐺2. Since a double edge cannot be reducible by both

the inverse of 𝑂3 and the inverse of 𝑂4, we have that reducing 𝑒1 in 𝐺1 and 𝑒2
in 𝐺2 produces isomorphic graphs.

Assume that a cubic pregraph primitive𝐺 on 𝑛−2 vertices is the parent of two

isomorphic graph 𝐺1 and 𝐺2 that are both accepted. We already established

that this means that both 𝐺1 and 𝐺2 were obtained by applying the same

operation to 𝐺 and that there exists an isomorphism 𝛾 from 𝐺1 to 𝐺2 which

maps the new double edge 𝑒1 in 𝐺1 to the new double edge 𝑒2 in 𝐺2.

Assume Vrst that 𝐺1, respectively 𝐺2, is obtained by applying operation 𝑂3 to

the edge {𝑢, 𝑣}, respectively {𝑥, 𝑦}, in 𝐺. This situation is illustrated in Fig-

ure 2.8 and we use the notation from this Vgure. The isomorphism 𝛾 maps 𝑒1
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𝑢 𝑣

𝐺

𝑂3

𝑢1 𝑣1𝑒1

𝐺1

𝑥 𝑦

𝐺

𝑂3

𝑥1 𝑦1𝑒2

𝐺2

Figure 2.8: The graphs 𝐺1 and 𝐺2 are obtained by applying op-
eration 𝑂3 to 𝐺.

to 𝑒2 and thus maps {𝑢1, 𝑣1} to {𝑥1, 𝑦1}. This isomorphism induces an auto-

morphism of 𝐺 if we only consider the action on the vertices not contained in

𝑒1 and 𝑒2. This means that {𝑢, 𝑣} and {𝑥, 𝑦} are in the same orbit of the au-

tomorphism group of 𝐺. This is, however, in contradiction with the procedure

we used.

The case where the new double edges were obtained by applying operation

𝑂4 is completely analogue. Assume that 𝐺1, respectively 𝐺2 is obtained by

applying operation 𝑂4 to the double edge {𝑢, 𝑣}, respectively {𝑥, 𝑦}, in 𝐺.

This situation is illustrated in Figure 2.9 and we use the notation from this

Vgure. The isomorphism 𝛾 maps 𝑒1 to 𝑒2 and thus maps {𝑢1, 𝑣1} to {𝑥1, 𝑦1}.

This isomorphism induces an automorphism of𝐺 if we only consider the action

on the vertices at distance at least 3 from 𝑒1 and 𝑒2, and deVne the action on

𝑢 and 𝑣 as follows: 𝑢 is mapped to 𝑥 if 𝑢′ is mapped to 𝑥′, and otherwise 𝑢 is

mapped to 𝑦; 𝑣 is mapped to 𝑦 if 𝑣′ is mapped to 𝑦′ and otherwise 𝑣 is mapped

to 𝑥. In both cases {𝑢, 𝑣} is mapped to {𝑥, 𝑦}, so they are in the same orbit
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𝑒2
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Figure 2.9: The graphs 𝐺1 and 𝐺2 are obtained by applying op-
eration 𝑂4 to 𝐺.



56 CHAPTER 2. PREGRAPHS

of the automorphism group of 𝐺. This is, however, in contradiction with the

procedure we used.

That at least one representative of each isomorphism class of cubic pregraph

primitives on 𝑛 vertices and containing parallel edges is accepted, follows from

the fact that each cubic pregraph primitive 𝐺 on 𝑛 vertices has a canonical

double edge 𝑒 the reduction of which leads to a cubic pregraph primitive 𝐺′ on

𝑛 − 2 vertices, and since applying 𝑂3, respectively 𝑂4, to edges, respectively

double edges, in the same orbit gives isomorphic graphs, at some point 𝐺′ was

extended to form 𝐺 by applying 𝑂3, respectively 𝑂4, and creating a double

edge in the orbit of 𝑒 under the automorphism group of 𝐺. �

Lemma 2.4.3 If the operations 𝑂1 and 𝑂2 are applied to one pair of degree-1 ver-
tices in each orbit of pairs of degree-1 vertices, respectively to one bridge in each
orbit of bridges, for one representative of each isomorphism class of simple cubic
pregraph primitives on up to 𝑛 vertices and for𝐾2, and the resulting graph 𝐺′ is ac-
cepted if and only if𝐺′ has at most 𝑛 vertices, contains no parallel edges and the new
degree-1 vertex 𝑣 has the lexicographically smallest value for (𝑛(𝑣), 𝑙(𝑣)) among all
degree-1 vertices in 𝐺′, then exactly one representative of each isomorphism class of
simple cubic pregraph primitives on at most 𝑛 vertices containing at least one vertex
of degree 1 is accepted, except for𝐾2.

Proof: The proof of this lemma uses more or less the same technique as used in the

previous lemma. Again we Vrst observe that also in this case isomorphic graphs

are constructed from the same parent. Due to the deVnition of (𝑛(𝑣), 𝑙(𝑣)),

if we have two isomorphic graphs 𝐺1 and 𝐺2 with respective new degree-1

vertices 𝑣1 and 𝑣2, and an isomorphism 𝛾 from 𝐺1 to 𝐺2, then 𝛾(𝑣1) is in the

same orbit as 𝑣2 under the automorphism group of 𝐺2. Since a degree-1 vertex

cannot be reducible by both the inverse of 𝑂1 and the inverse of 𝑂2, we have

that reducing 𝑣1 in 𝐺1 and reducing 𝑣2 in 𝐺2 produces isomorphic graphs.

Assume that G is a simple cubic pregraph primitive on up to 𝑛 vertices or 𝐺 is

𝐾2, so that 𝐺 is the parent of two isomorphic graphs 𝐺1 and 𝐺2 that are both

accepted. We already established that this means that both 𝐺1 and 𝐺2 were
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Figure 2.10: The graphs 𝐺1 and 𝐺2 are obtained by applying
operation 𝑂1 to 𝐺.

obtained by applying the same operation to 𝐺. This is in this case even more

clear because by applying 𝑂1 to 𝐺 we obtain a graph with the same number

of vertices as 𝐺, and by applying 𝑂2 we obtain a graph with two vertices more

than 𝐺. Also, we again have that there exists an isomorphism 𝛾 from 𝐺1 to 𝐺2

which maps the new degree-1 vertex 𝑣1 in 𝐺1 to the new degree-1 vertex 𝑣2 in

𝐺2.

Assume Vrst that 𝐺1, respectively 𝐺2, is obtained by applying operation 𝑂1 to

the pair of degree-1 vertices {𝑤, 𝑥}, respectively {𝑦, 𝑧}, in 𝐺. This situation is

illustrated in Figure 2.10 and we use the notation from this Vgure. The isomor-

phism 𝛾 maps 𝑣1 to 𝑣2 and thus maps {𝑤′
1, 𝑥

′
1} to {𝑦′1, 𝑧′1}. This isomorphism

induces an automorphism of𝐺 if we only consider the action on the vertices at

distance at least 2 from 𝑣1 and 𝑣2, and deVne the action on 𝑤 and 𝑥 as follows:

𝑤 is mapped to 𝑦 if 𝑤′ is mapped to 𝑦′, and otherwise 𝑤 is mapped to 𝑧′; 𝑥

is mapped to 𝑧 if 𝑥′ is mapped to 𝑧′, and otherwise 𝑥 is mapped to 𝑦. In both

cases {𝑤, 𝑥} is mapped to {𝑦, 𝑧}, so both pairs of degree-1 vertices are in the



58 CHAPTER 2. PREGRAPHS

𝑤 𝑥

𝐺

𝑂2

𝑤1 𝑥1

𝑣1

𝐺1

𝑦 𝑧

𝐺

𝑂2

𝑦1 𝑧1
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Figure 2.11: The graphs 𝐺1 and 𝐺2 are obtained by applying
operation 𝑂2 to 𝐺.

same orbit of the automorphism group of 𝐺. This is, however, in contradiction

with the procedure we used.

Next we assume that 𝐺1, respectively 𝐺2, is obtained by applying operation

𝑂2 to the edge {𝑤, 𝑥}, respectively the edge {𝑦, 𝑧}, in 𝐺. This situation is

illustrated in Figure 2.11 and we use the notation from this Vgure. The isomor-

phism 𝛾 maps 𝑣1 to 𝑣2 and thus maps {𝑤1, 𝑥1} to {𝑦1, 𝑧1}. This isomorphism

induces an automorphism of 𝐺 if we only consider the vertices at distance at

least 2 of 𝑣1 and 𝑣2. This means that {𝑤, 𝑥} is mapped to {𝑦, 𝑧}, and thus both

edges are in the same orbit of the automorphism group of 𝐺. This is, however,

in contradiction with the procedure we used.

That at least one representative of each isomorphism class of simple cubic pre-

graph primitives on at most 𝑛 containing at least one vertex of degree 1 is

accepted, follows from the fact that each simple cubic pregraph primitive 𝐺

on at most 𝑛 vertices containing at least one degree-1 vertex has a canoni-
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cal degree-1 vertex 𝑣 the reduction of which leads to a simple cubic pregraph

primitive 𝐺′ on at most 𝑛 vertices, and since applying 𝑂1, respectively 𝑂2,

to pairs of degree-1 vertices, respectively edges, in the same orbit gives iso-

morphic graphs, at some point 𝐺′ was extended to form 𝐺 by applying 𝑂1,

respectively 𝑂2, and creating a degree-1 vertex in the orbit of 𝑣 under the

automorphism group of 𝐺. The complete graph on 2 vertices 𝐾2 cannot be

reduced and thus will also not be constructed. �

Together these lemmas can be used to prove Theorem 2.4.1.

Proof of Theorem 2.4.1: This theorem follows from Lemma 2.4.2 and Lemma 2.4.3,

together with the observations that a graph 𝐺 containing parallel edges is not

accepted if it is obtained by applying operation 𝑂1 or 𝑂2, that each graph

which can be reduced to the theta graph is Vrst reduced to 𝐶4,𝑑 and that all

cubic pregraph primitives that are simple cubic graphs on 𝑛 vertices are imme-

diately output in the Vrst step of the algorithm. �

2.5 Generation of cubic pregraphs

In the previous sections we described a set of construction/reduction operations

together with a generation algorithm which can be used to generate all cubic pre-

graph primitives starting from some special graphs and all cubic simple graphs. What

remains to be described, is how to get the cubic pregraphs from these cubic pregraph

primitives.

In case we are generating cubic multigraphs without loops and semi-edges, the

cubic pregraph primitives are exactly the cubic pregraphs.

For the cases with loops, but without semi-edges, there is a one-to-one correspon-

dence between the cubic pregraph primitives on 𝑛 vertices and the cubic pregraphs

with 𝑛 vertices. For the cases with semi-edges, but without loops, there is a one-to-

one correspondence between the cubic pregraph primitives with 𝑛 vertices of degree
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3 and the cubic pregraphs with 𝑛 vertices. In all these cases we can just apply the

inverse of the primitivisation function. If we are generating pregraphs with loops

and no semi-edges, we just add a loop to each vertex of degree 1. If we are generat-

ing pregraphs with semi-edges and no loops, we remove all vertices of degree 1 and

replace the edges incident to these vertices by semi-edges.

If we want both loops and semi-edges, we apply the homomorphism principle

[32, 44]. If the order of the cubic pregraph primitive is 𝑛 and we are generating

pregraphs with 𝑛′ vertices (𝑛′ < 𝑛) then exactly 𝑘 = 𝑛 − 𝑛′ edges incident to

vertices of degree 1 must be transformed to semi-edges. We compute orbits of 𝑘-

element subsets of the set of all edges to vertices of degree 1 and transform exactly

one element of each orbit. Note that this step is very eXcient, because in most cases

the group is trivial, in which case each subset gives rise to a new graph.

2.6 3-edge-colourable pregraphs

Owing to the connection between maps and cubic pregraphs, a further class that

is interesting consists of the cubic pregraphs that are 3-edge-colourable. The pre-

graphs with loops will never allow a proper edge-colouring, so we will not be consid-

ering them for this section and will mean loopless cubic pregraph whenever we write

cubic pregraph in this section. Vizing’s theorem for multigraphs gives the following

restriction on the chromatic index 𝜒′(𝐺) of a multigraph 𝐺:

∆(𝐺) ≤ 𝜒′(𝐺) ≤ ∆(𝐺) + 𝜇(𝐺)

where ∆(𝐺) denotes the maximum degree of 𝐺 and 𝜇(𝐺) denotes the maximum

multiplicity of a multi-edge in 𝐺. In case of cubic pregraphs the maximum degree is

always 3. The maximum multiplicity that occurs is also 3 in case of the theta graph.

This graph is, however, easily veriVed to have a 3-edge-colouring. For all other graphs

the maximum possible multiplicity is 2, so we Vnd that

3 ≤ 𝜒′(𝐺) ≤ 3 + 2 = 5

for a general cubic pregraph diUerent from the theta graph.
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Shannon [6] proved the following upper bound for the chromatic index:

𝜒′(𝐺) ≤ 3

2
∆(𝐺).

For the cubic pregraphs this upper bound is equal to 4.5, and thus each of the cubic

pregraphs is either 3- or 4-edge-colourable.

There are two ways to generate all 3-edge-colourable cubic pregraphs. The Vrst

is just to generate all cubic pregraphs and Vlter out the 3-edge-colourable ones. The

second is to modify the generation process such that we only generate the 3-edge-

colourable cubic pregraphs. We will now show that it is possible to generate only the

3-edge-colourable cubic pregraphs with a minimal set of changes to the generation

algorithm.

First the compatibility of the construction operations with the restriction to 3-

edge-colourability will be examined and we start with operation 1. It is easy to see

that a colouring of 𝑂1(𝐺) implies a colouring of 𝐺. The other direction is not valid,

because it is possible that the two edges incident to the respective vertices of degree

1 might have the same colour for all colourings of 𝐺. This means that we have the

following implication:

𝐺 is not 3-edge-colourable ⇒ 𝑂1(𝐺) is not 3-edge-colourable.

A colouring of𝑂2(𝐺) implies a colouring of𝐺, because the colours in the parts at

either side of the bridge can be permuted. The other direction is also valid and uses

the same argumentation. This means that we have the following implication:

𝐺 is 3-edge-colourable ⇔ 𝑂2(𝐺) is 3-edge-colourable.

In a proper 3-edge-colouring of 𝑂3(𝐺) the two parallel edges get two diUerent

colours and thus the two edges incident to this multi-edge get the same colour. We

can then colour the original edge in 𝐺 with this colour and keep the rest the same.

This leads to a proper 3-edge-colouring of 𝐺. Conversely, given a proper 3-edge

colouring of 𝑂3(𝐺), we keep the same colours as a proper colouring of 𝐺 and colour

the new multi-edge with the remaining two colours. This means that we have the

following implication:

𝐺 is 3-edge-colourable ⇔ 𝑂3(𝐺) is 3-edge-colourable.
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Finally we have operation 4, but due to the triangle with one edge of multiplicity

2 𝑂4(𝐺) will never be 3-edge-colourable.

In summary, we have found that the parent of a 3-edge-colourable graph is al-

ways 3-edge-colourable, so we only need to proceed with the generation when we

have a 3-edge-colourable graph. Moreover, we have that in almost all cases a 3-

edge-colourable parent leads to a 3-edge-colourable child. The only two exceptions

are operations 1 and 4. Operation 4 never results in a 3-edge-colourable graph, so

we just never apply this operation and the only special case remaining is operation

1. This operation can result in both 3-edge-colourable and non-3-edge-colourable

graphs when applied to a 3-edge-colourable graph. So we need to perform a check

whether we have a 3-edge-colourable graph after applying this operation, but to per-

form this check we can use stored information.

We only start the generation process with 3-edge-colourable graphs. When we

have calculated a 3-edge-colouring for a start graph, we store this colouring and

update it while applying the construction operations. When applying operation 1

to two edges 𝑒, 𝑒′ we know that the resulting graph is 3-edge-colourable if and only

if a 3-edge-colouring with 𝑒, 𝑒′ of diUerent colour exists. As a consequence of the

Parity Lemma (see p.6) such a colouring never exists in the case of only two vertices

with degree 1. In case of more vertices with degree 1 and operation 1 applied to

two edges 𝑒, 𝑒′ with the same colour, the new graph needs to be checked for 3-

edge-colourability. In order to try to avoid expensive calculations for colourability,

we Vrst run a cheap test to try and change the original colouring in the original

graph. We modify the original colouring by Kempe-chains starting at 𝑒 or 𝑒′ to check

whether we can Vnd a colouring where the colours of 𝑒 and 𝑒′ diUer. We do not try to

construct completely diUerent colourings. In cases where even Kempe chains do not

give a colouring with 𝑒 and 𝑒′ of diUerent colours, we check the newly constructed

graph for being 3-edge-colourable.

Using the modiVed generation algorithm above we can generate the following

classes:

∙ The class 𝒞𝑐 is the class of all simple cubic graphs that are 3-edge-colourable.
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∙ The class 𝒮𝑐 is the class of all simple cubic pregraphs without loops that are

3-edge-colourable.

∙ The class ℳ𝑐 is the class of all cubic multigraphs that are 3-edge-colourable.

∙ The class 𝒮ℳ𝑐 is the class of all cubic pregraphs without loops that are 3-

edge-colourable.

We can also use these results together with earlier results to determine the num-

bers of graphs in the following classes:

∙ The class 𝒞𝑐 is the class of all simple cubic graphs that are not 3-edge-colourable.

∙ The class 𝒮𝑐 is the class of all simple cubic pregraphs without loops that are

not 3-edge-colourable.

∙ The class ℳ𝑐 is the class of all cubic multigraphs that are not 3-edge-colourable.

∙ The class 𝒮ℳ𝑐 is the class of all cubic pregraphs without loops that are not

3-edge-colourable.

Note that we cannot use the modiVed generation algorithm to generate these classes.

2.7 Bipartite pregraphs

People who are interested in applications of bipartite pregraphs are referred to

[59]. In this section we will show that bipartite pregraphs can be eXciently generated

by a slight modiVcation of the generation algorithm. A graph with a loop is not

bipartite, so we will not consider loops here.

First the compatibility of the construction operations with the restriction to bi-

partite graphs will be examined. We start with Operation 1. Let 𝑣, 𝑤 be the two

vertices of degree 1 to which the operation is applied. Using the characterisation of

bipartite graphs as graphs without odd cycles, the following equivalence is easy to

see:

𝐺 is bipartite and 𝑣 and 𝑤 have an even distance ⇔ 𝑂1(𝐺) is bipartite.
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As no cycles are constructed or modiVed, for operation 2 we immediately have that

𝐺 is bipartite ⇔ 𝑂2(𝐺) is bipartite.

For operation 3 we have

𝐺 is bipartite ⇔ 𝑂3(𝐺) is bipartite.

as the length of possible even cycles remains or changes by 2 and a new cycle of

length 2 can vanish or come into existence.

Finally we have operation 4, but because of the triangle, 𝑂4(𝐺) is not bipartite

for all 𝐺.

In summary, we Vnd that the parent of a bipartite graph is also bipartite, so we

only need to start from bipartite graphs. As the algorithm described in [58] does not

eXciently generate bipartite graphs, we use the algorithm from [35] for the genera-

tion of bipartite simple cubic start graphs. The child of a bipartite graph is always a

bipartite graph except in the case of operation 1, where we have the extra restriction

that the two vertices of degree 1 need to lie at an even distance of each other, so we

only apply this operation to orbits of pairs of degree 1 vertices at even distance and

we never apply operation 4.

Using the modiVed generation algorithm above we can generate the following

classes:

∙ The class 𝒞𝐵 is the class of all simple cubic graphs that are bipartite.

∙ The class 𝒮𝐵 is the class of all simple cubic pregraphs without loops that are

bipartite.

∙ The class ℳ𝐵 is the class of all cubic multigraphs that are bipartite.

∙ The class 𝒮ℳ𝐵 is the class of all cubic pregraphs without loops that are bi-

partite.
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𝑞1 𝑞2 𝑞3 𝑞4

Figure 2.12: The quotients of 𝐶4.

Figure 2.13: A prism (left) and a Möbius ladder (right)

2.8 Pregraphs admitting a 2-factor composed of quo-
tients of 𝐶4

Connected cubic pregraphs that allow a 2-factor where each component is a quo-

tient of 𝐶4 (see Figure 2.12) are of particular interest, because they correspond to

Delaney-Dress graphs [59]. In the Wag graph the 𝜎0, 𝜎2-components are cycles of

order 4, so in the Delaney-Dress graph these components have become quotients of

𝐶4. We use a semi-edge rather than a loop to represent the case where we have a

Wag 𝑑 for which 𝜎𝑖𝑑 = 𝑑 for a certain 𝑖. This representation has the advantage that

the Delaney-Dress graph is cubic.

It is not possible to make small changes to the algorithm in order to generate only

pregraphs that admit a 2-factor composed of quotients of 𝐶4, as was the case for

3-edge-colourable pregraphs and bipartite pregraphs. In this section we will discuss

an algorithm that can eXciently Vlter out these graphs.

DeVnition 2.8.1 A ladder is a maximal subgraph that is isomorphic to the graph ladder
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Figure 2.14: Possible end points of ladders. The grey area stands
for an arbitrary structure — possibly just a semi-edge. It is also
allowed that these structures are connected to each other.

Figure 2.15: Possible types of paths with semi-edges

cartesian product of𝐾2 and the path 𝑃𝑛 with 𝑛 vertices for some 𝑛 ≥ 2.
A prism is a graph that is isomorphic to the graph cartesian product of 𝐾2 andprism

𝐶𝑛 for some 𝑛 > 2 (see the left side of Figure 2.13).
AMöbius ladder is a graph that is isomorphic to the graph on vertices 0, . . . , 2𝑛−Möbius

ladder 1 with vertex 𝑖 adjacent to (𝑖 − 1) mod 2𝑛, (𝑖 + 1) mod 2𝑛 and (𝑖 + 𝑛) mod 2𝑛
where 𝑛 > 1 (see the right side of Figure 2.13).

A crown is a cycle with each vertex additionally incident to one semi-edge. ◇crown

Lemma 2.8.2 A cubic pregraph 𝐺 has a unique partition into subgraphs that are
ladders, subgraphs induced by 2-cycles not contained in a ladder and the components
of the subgraph induced by the complement of these.
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Proof: If 𝐺 is the theta graph, then the unique partition contains one part.

Assume 𝐺 is not the theta graph. Since 𝐺 is cubic, the intersection of two

ladders in 𝐺, respectively of two 2-cycles in 𝐺, is empty. The deVnition of the

partition does not allow a vertex to be in two diUerent types of parts of the

partition. This proves this lemma. �

Theorem 2.8.3 It can be tested in linear time whether a pregraph has a 𝐶𝑞
4 -factor –

a factor of quotients of 𝐶4.

Proof: Pregraphs that are prisms, crowns or Möbius ladders can be detected in lin-

ear time. Prisms and Möbius ladders have a𝐶𝑞
4 -factor if and only if the number

of vertices is a multiple of 4. Crowns have a𝐶𝑞
4 -factor if and only if the number

of vertices is a multiple of 2.

We thus assume that 𝐺 is a pregraph that is neither a prism nor a crown

or a Möbius ladder. We can partition 𝐺 into subgraphs induced by ladders,

subgraphs induced by 2-cycles not contained in ladders and the components

of the subgraph induced by the complement of these, and, due to Lemma 2.8.2,

this partition is unique. This can be done in linear time in a straight forward

way.

We will show that 𝐺 has a 𝐶𝑞
4 -factor if and only if each component has a 𝐶𝑞

4 -

factor. The direction that 𝐶𝑞
4 -factors of the components imply (in fact even

form) a 𝐶𝑞
4 -factor of 𝐺 is trivial; so we will concentrate on the other direction.

We will prove that restricting a 𝐶𝑞
4 -factor 𝐹 of 𝐺 to one of the subgraphs

𝐺𝑠 in the partition gives a 𝐶𝑞
4 -factor of 𝐺𝑠. All edges not in the partitioning

subgraphs are not contained in a 2- or 4-cycle; so if they were contained in 𝐹

their component would be isomorphic to 𝑞3 or 𝑞4. But on the other hand they

must have at least one endpoint in a 2-cycle or a ladder, which means that one

endpoint is a vertex adjacent to 3 (non-semi) edges – a contradiction. Therefore

all edges in 𝐹 are in the partitioning subgraphs.

What remains to be shown is that the components can be checked for the

existence of𝐶𝑞
4 -factors in linear time. Now 2-cycles are a𝐶𝑞

4 -factor themselves.



68 CHAPTER 2. PREGRAPHS

The existence of 𝐶𝑞
4 -factors in a ladder depends only on the number of vertices

of the ladder and the neighbours of the 4 boundary vertices (the vertices not

contained in an edge that is the intersection of two 4-cycles). If either one

of the endpoints of the ladder is of one of the two Vrst types in Figure 2.14,

then this ladder has a 𝐶𝑞
4 -factor . If both endpoints are of the third type, then

this ladder has a 𝐶𝑞
4 -factor if and only if the number of vertices in this ladder

is a multiple of four. Therefore this can also be tested in linear time or even

constant time if some data is stored during the computation of the partition.

Now let 𝐶 be a component not containing 2- or 4-cycles. The only candidate

components of a𝐶𝑞
4 -factor are 𝑞3 and 𝑞4; so assume that each vertex has degree

at least two and contains at least one semi-edge – otherwise no 𝐶𝑞
4 -factor

exists. As 𝐺 is not a crown, 𝐶 is a path with additionally at least one semi-

edge at every vertex. The three possible types for 𝐶 are shown in Figure 2.15.

Such a graph has a 𝐶𝑞
4 -factor if and only if the number of vertices is even or

𝐶 contains a vertex adjacent to two semi-edges. This can again be tested in

linear time or even constant time if some data is stored during the computation

of the partition.

Therefore all the tests can be performed in linear time. �

Using a program implementing the Vltering algorithm as described above, we can

generate — among others — the following classes:

∙ The class 𝒞𝑞 is the class of all simple cubic graphs having a 𝐶𝑞
4 -factor.

∙ The class 𝒮𝑞 is the class of all simple cubic pregraphs having a 𝐶𝑞
4 -factor.

∙ The class ℳ𝑞 is the class of all cubic multigraphs having a 𝐶𝑞
4 -factor.

∙ The class 𝒮ℳ𝑞 is the class of all cubic pregraphs without loops having a 𝐶𝑞
4 -

factor.

∙ The class 𝒞𝐵𝑞 is the class of all bipartite simple cubic graphs having a 𝐶𝑞
4 -

factor.
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∙ The class 𝒮𝐵𝑞 is the class of all bipartite simple cubic pregraphs without loops

having a 𝐶𝑞
4 -factor.

∙ The class ℳ𝐵𝑞 is the class of all bipartite cubic multigraphs having a 𝐶𝑞
4 -

factor.

∙ The class 𝒮ℳ𝐵𝑞 is the class of all bipartite cubic pregraphs without loops

having a 𝐶𝑞
4 -factor.

By slightly modifying the Vltering algorithm described above, we can generate —

among others — the following classes:

∙ The class 𝒞4 is the class of all simple cubic graphs having a 𝐶4-factor.

∙ The class 𝒮4 is the class of all simple cubic pregraphs having a 𝐶4-factor.

∙ The class ℳ4 is the class of all cubic multigraphs having a 𝐶4-factor.

∙ The class 𝒮ℳ4 is the class of all cubic pregraphs without loops having a 𝐶4-

factor.

∙ The class 𝒞𝐵4 is the class of all bipartite simple cubic graphs having a 𝐶4-

factor.

∙ The class 𝒮𝐵4 is the class of all bipartite simple cubic pregraphs without loops

having a 𝐶4-factor.

∙ The class ℳ𝐵4 is the class of all bipartite cubic multigraphs having a 𝐶4-

factor.

∙ The class 𝒮ℳ𝐵4 is the class of all bipartite cubic pregraphs without loops

having a 𝐶4-factor.

2.9 Testing

In order to gain more certainty that not only the algorithms but also the imple-

mentations are correct, we tested as many results as possible against independently
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generated data. In the following tables numbers that have been independently con-

Vrmed are given in bold font. The generator described here has been tested for each

class up to 18 vertices against an independent generator. This independent generator

is a slightly modiVed version of a generator for multigraphs — using similar tech-

niques as the generator in [35] — that has already been extensively tested.

The 3-edge-colourable and bipartite pregraphs have been obtained in two inde-

pendent ways. First by Vltering all pregraphs. Second by altering the generation al-

gorithm to only generate 3-edge-colourable pregraphs or bipartite pregraphs as was

discussed in Sections 2.6 and 2.7. The numbers of structures have been compared up

to 18 vertices.

The Vltering program described in Section 2.8 has been compared to manual com-

putations up to 7 vertices and tested up to 20 vertices against a diUerent generator

which will be described in the next chapter.

One of the Vrst things to notice when looking at Table 2.1 is that the numbers for

class ℒ coincide with the numbers for class ℳ, and the numbers for class ℒ𝒮 coincide

with the numbers for class 𝒮ℳ except for 𝑛 = 1. This can easily be explained by

looking at Figure 2.16. This Vgure shows how each double edge can be transformed

to a loop and vice versa. This transformation can always be performed except for the

balloon graph shown in Figure 2.17. This explains the diUerence of 1 between ℒ𝒮 and

𝒮ℳ in case 𝑛 = 1. This connection was only noticed by looking at the results of the

generator; so this was not used when developing the generator. Since both cases are

handled by diUerent methods, they provide an extra test for the generation program.

2.10 Results

The following pages give an overview of the results obtained using the algorithms

in this chapter. This algorithm was implemented as the program pregraphs and is

available from [64]. The website also contains several other related programs such as

the Vlters used for testing the program.

Besides the counts for the diUerent classes we also give the timings for the pro-

gram pregraphs and — where meaningful — the generation rate for the same pro-

gram.
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Figure 2.16: Each occurence of a loop can be transformed into a
double edge and vice versa.

Figure 2.17: The balloon graph: the only graph in which the loop
cannot be transformed into a double edge. This is because there is
only one vertex.
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𝑛
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531
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0
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10
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91
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91

5464
388

5464
14671

11
0

0
5524

0
18579

0
18579

52826
12

85
509

19430
509

68320
2592

68320
203289

13
0

0
69322

0
255424

0
255424

795581
14

509
3608

262044
3608

1000852
21096

1000852
3241367

15
0

0
1016740

0
4018156

0
4018156

13504130
16

4060
31856

4101318
31856

16671976
204638

16671976
57904671

17
0

0
16996157

0
70890940

0
70890940

253856990
18

41301
340416

72556640
340416

309439942
2317172

309439942
1139231977

19
0

0
317558689

0
1381815168

0
1381815168

5219113084
20

510489
4269971

1424644848
4269971

6310880471
30024276

6310880471
24401837085

21
0

0
6536588420

0
29428287639

0
29428287639

116278408069
22

7319447
61133757

30647561117
61133757

140012980007
437469859

140012980007
564380686932

23
0

0
146647344812

0
0

24
117940535

978098997
978098997

7067109598

Table
2.1:

The
num

ber
of

structures
for

each
class

for
a
given

num
ber

of
vertices

𝑛
.
The

num
bers

in
bold

have
been

indepen-
dently

veriV
ed.
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𝑛 𝒞 ℒ 𝒮 ℳ ℒ𝒮 ℒℳ 𝒮ℳ 𝒫

10 0.0s 0.0s 0.0s 0.0s 0.1s 0.0s 0.1s 0.1s
11 0.0s 0.0s 0.1s 0.0s 0.2s 0.0s 0.3s 0.4s
12 0.0s 0.0s 0.6s 0.0s 0.8s 0.0s 1.3s 1.8s
13 0.0s 0.0s 2.2s 0.0s 3.5s 0.0s 5.4s 7.4s
14 0.0s 0.0s 9.1s 0.1s 14.9s 0.2s 22.6s 32.2s
15 0.0s 0.0s 37.3s 0.0s 64.1s 0.0s 97.2s 144.5s
16 0.0s 0.3s 158.3s 0.5s 290.1s 2.5s 427.1s 669.5s
17 0.0s 0.0s 695.9s 0.0s 1372.7s 0.0s 1931.5s 3192.3s
18 0.1s 3.0s 3182.2s 5.1s 6552.1s 31.0s 8933.5s 15725.4s
19 0.0s 0.0s 14398.5s 0.0s 32533.2s 0.0s 42194.7s 78738.8s
20 1.4s 39.0s 67781.7s 67.9s 164334.4s 441.9s 203152.1s 404351.9s
21 0.0s 0.0s 329875.5s 0.0s 853461.3s 0.0s 997604.8s 2128059.3s
22 18.6s 577.2s 1627712.4s 1044.1s 4549317.5s 7058.5s 4985448.0s 11440675.6s
23 0.0s 0.0s 8088214.3s 0.0s 0.0s
24 298.4s 9620.6s 18022.4s 124630.6s

Table 2.2: The timings for the numbers in Table 2.1 using the pro-
gram pregraphs and run on a 2.40 GHz Intel Xeon. For smaller 𝑛
the CPU time is less than 0.1s.

𝑛 ℒ 𝒮 ℳ ℒ𝒮 ℒℳ 𝒮ℳ 𝒫

20 109486.4/s 21018.1/s 62886.2/s 38402.7/s 67943.6/s 31064.8/s 60348.0/s
21 19815.3/s 34481.1/s 29498.9/s 54640.6/s
22 105914.3/s 18828.6/s 58551.6/s 30776.7/s 61977.7/s 28084.3/s 49331.1/s
23 18131.0/s
24 101667.2/s 54271.3/s 56704.4/s

Table 2.3: The average number of structures per second for the
numbers in Table 2.1 using the program pregraphs and run on a
2.40 GHz Intel Xeon. (Bottom part of the table only)
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𝑛 𝒞𝑐 𝒮𝑐 ℳ𝑐 𝒮ℳ𝑐

1 0 1 0 1
2 0 1 1 3
3 0 2 0 3
4 1 6 2 11
5 0 9 0 17
6 2 28 5 59
7 0 59 0 134
8 5 187 16 462
9 0 501 0 1332

10 17 1679 65 4774
11 0 5310 0 16029
12 80 18989 363 60562
13 0 67461 0 225117
14 475 257738 2588 898619
15 0 997460 0 3598323
16 3848 4052146 23702 15128797
17 0 16762252 0 64261497
18 39687 71905738 263952 283239174
19 0 314293531 0 1264577606
20 496430 1414799656 3438642 5817868002
21 0 6484967876 0 27138011161
22 7174735 30479739145 50763502 129848052113
23 0 145735267008 0
24 116214038 831898577

Table 2.4: The number of 3-edge-colourable structures for each
class for a given number of vertices 𝑛. Classes allowing loops are
omitted because they never allow a proper 3-edge-colouring. The
numbers in bold have been veriVed using a Vltering program on
the original set of graphs.



2.10. RESULTS 75

𝑛 𝒞𝑐 𝒮𝑐 ℳ𝑐 𝒮ℳ𝑐

10 0.0s 0.0s 0.0s 0.1s
11 0.0s 0.2s 0.0s 0.3s
12 0.0s 0.6s 0.0s 1.2s
13 0.0s 2.4s 0.0s 4.9s
14 0.0s 9.3s 0.0s 20.6s
15 0.0s 39.2s 0.0s 88.3s
16 0.0s 164.1s 0.3s 395.7s
17 0.0s 740.1s 0.0s 1794.5s
18 0.2s 3245.6s 3.4s 8245.1s
19 0.0s 15254.9s 0.0s 39076.4s
20 3.0s 70520.4s 48.3s 191074.5s
21 0.0s 349170.5s 0.0s 932273.4s
22 47.1s 1722625.2s 791.7s 4683143.7s
23 0.0s 8491130.8s 0.0s
24 886.3s 14271.1s

Table 2.5: The timings for the numbers in Table 2.4 using the pro-
gram pregraphs and run on a 2.40 GHz Intel Xeon. For smaller
𝑛 the CPU time is less than 0.1s.

𝑛 𝒮𝑐 ℳ𝑐 𝒮ℳ𝑐

20 20062.3/s 71193.4/s 30448.2/s
21 18572.5/s 29109.5/s
22 17693.8/s 64119.6/s 27726.7/s
23 17163.2/s
24 58292.5/s

Table 2.6: The average number of structures per second for the
numbers in Table 2.4 using the program pregraphs and run on a
2.40 GHz Intel Xeon. (Bottom part of the table only)
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𝑛 𝒞𝑐 𝒮𝑐 ℳ𝑐 𝒮ℳ𝑐

1 0 0 0 0
2 0 0 0 0
3 0 0 0 1
4 0 0 0 1
5 0 1 0 5
6 0 1 1 9
7 0 5 0 32
8 0 7 4 72
9 0 30 0 257

10 2 54 26 690
11 0 214 0 2550
12 5 441 146 7758
13 0 1861 0 30307
14 34 4306 1020 102233
15 0 19280 0 419833
16 212 49172 8154 1543179
17 0 233905 0 6629443
18 1614 650902 76464 26200768
19 0 3265158 0 117237562
20 14059 9845192 831329 493012469
21 0 51620544 0 2290276478
22 144712 167821972 10370255 10164927894
23 0 912077804 0
24 1726497 146200420

Table 2.7: The number of non-3-edge-colourable structures for
each class for a given number of vertices 𝑛. Classes with loops
are omitted because they never allow a proper 3-edge-colouring.
These numbers have been obtained by subtracting the numbers in
Table 2.4 from the numbers in Table 2.1.
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𝑛 𝒞𝑞 𝒮𝑞 ℳ𝑞 𝒮ℳ𝑞 𝒞4 𝒮4 ℳ4 𝒮ℳ4

1 1 1
2 1 1 3
3 1 2
4 1 4 2 9 1 3 2 5
5 3 7
6 0 10 3 29
7 9 27
8 3 34 9 105 3 13 5 20
9 34 118

10 0 98 14 392
11 125 546
12 10 367 48 1722 10 77 19 130
13 526 2701
14 0 1352 95 7953
15 2234 13966
16 43 5710 331 40035 43 660 88 1194
17 10187 75341
18 0 24938 873 210763
19 47568 420422
20 242 116186 3145 1162192 242 7559 553 14629

Table 2.8: The number of structures for each class that have a
𝐶𝑞

4 -factor and those that have a 𝐶4-factor for a given number of
vertices 𝑛. The numbers in bold have been veriVed against manual
computations and all numbers have been veriVed against another
generator described in the next chapter.
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𝑛 𝒞𝑞 𝒮𝑞 ℳ𝑞 𝒮ℳ𝑞 𝒞4 𝒮4 ℳ4 𝒮ℳ4

10 0.0s 0.0s 0.0s 0.1s 0.0s 0.0s 0.0s 0.0s
11 0.0s 0.2s 0.0s 0.3s 0.0s 0.0s 0.0s 0.0s
12 0.0s 0.6s 0.0s 1.3s 0.0s 0.6s 0.0s 1.2s
13 0.0s 2.4s 0.0s 5.2s 0.0s 0.0s 0.0s 0.0s
14 0.0s 9.5s 0.0s 22.0s 0.0s 0.0s 0.0s 0.0s
15 0.0s 39.5s 0.0s 94.8s 0.0s 0.0s 0.0s 0.0s
16 0.0s 168.7s 0.3s 420.5s 0.0s 164.5s 0.3s 402.8s
17 0.0s 743.4s 0.0s 1903.5s 0.0s 0.0s 0.0s 0.0s
18 0.0s 3341.9s 3.8s 8850.1s 0.0s 0.0s 0.0s 0.0s
19 0.0s 15407.8s 0.0s 41812.1s 0.0s 0.0s 0.0s 0.0s
20 2.2s 72708.7s 54.0s 201745.4s 1.6s 70550.7s 49.7s 193667.8s

Table 2.9: The timings for the numbers in Table 2.8 using the pro-
gram pregraphs and run on a 2.40 GHz Intel Xeon. For smaller
𝑛 the CPU time is less than 0.1s.

𝑛 𝒮𝑞 ℳ𝑞 𝒮ℳ𝑞 𝒞4 𝒮4 ℳ4 𝒮ℳ4

16 33.8/s 95.2/s 4.0/s 3.0/s
17 13.7/s 39.6/s
18 7.5/s 229.7/s 23.8/s
19 3.1/s 10.1/s
20 1.6/s 58.2/s 5.8/s 0.1/s 11.1/s 0.1/s

Table 2.10: The average number of structures per second for the
numbers in Table 2.8 using the program pregraphs and run on a
2.40 GHz Intel Xeon. (Bottom part of the table only)
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𝑛 𝒞𝐵 𝒮𝐵 ℳ𝐵 𝒮ℳ𝐵

11 0.0s 0.0s 0.0s 0.1s
12 0.0s 0.1s 0.0s 0.3s
13 0.0s 0.3s 0.0s 1.1s
14 0.0s 1.2s 0.0s 3.8s
15 0.0s 3.8s 0.0s 13.6s
16 0.0s 12.8s 0.0s 50.4s
17 0.0s 44.6s 0.0s 186.7s
18 0.0s 156.4s 0.1s 709.4s
19 0.0s 562.2s 0.0s 2727.4s
20 0.1s 2060.0s 0.8s 10663.7s
21 0.0s 7643.1s 0.0s 42106.2s
22 0.2s 28850.9s 5.9s 168857.8s
23 0.0s 111135.1s 0.0s 685140.0s
24 1.4s 432532.0s 50.2s 2819258.6s

Table 2.12: The timings for the numbers in Table 2.11 using
the program pregraphs and run on a 2.40 GHz Intel Xeon. For
smaller 𝑛 the CPU time is less than 0.1s.

𝑛 𝒮𝐵 ℳ𝐵 𝒮ℳ𝐵

21 9367.9/s 17655.1/s
22 8930.6/s 29571.0/s 16605.9/s
23 8474.6/s 15603.4/s
24 8115.3/s 27630.3/s 14726.2/s

Table 2.13: The average number of structures per second for the
numbers in Table 2.11 using the program pregraphs and run on
a 2.40 GHz Intel Xeon. (Bottom part of the table only)
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𝒞𝐵𝑞 𝒮𝐵𝑞 ℳ𝐵𝑞 𝒮ℳ𝐵𝑞

11 0.0s 0.0s 0.0s 0.1s
12 0.0s 0.1s 0.0s 0.3s
13 0.0s 0.4s 0.0s 1.1s
14 0.0s 1.2s 0.0s 4.0s
15 0.0s 3.9s 0.0s 14.4s
16 0.0s 13.1s 0.0s 52.6s
17 0.0s 45.2s 0.0s 194.9s
18 0.0s 159.0s 0.1s 738.6s
19 0.0s 570.5s 0.0s 2832.1s
20 0.1s 2086.4s 0.8s 11080.4s

Table 2.15: The timings for the numbers in Table 2.14 using
the program pregraphs and run on a 2.40 GHz Intel Xeon. For
smaller 𝑛 the CPU time is less than 0.1s.

𝒮𝐵𝑞 ℳ𝐵𝑞 𝒮ℳ𝐵𝑞

16 145.6/s 356.3/s
17 74.3/s 185.6/s
18 45.8/s 121.3/s
19 23.9/s 64.3/s
20 14.1/s 537.5/s 40.3/s

Table 2.16: The average number of structures per second for the
numbers in Table 2.14 using the program pregraphs and run on
a 2.40 GHz Intel Xeon. (Bottom part of the table only)
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𝑛 𝒞𝐵4 𝒮𝐵4 ℳ𝐵4 𝒮ℳ𝐵4

4 0 1 1 3
8 1 5 2 9

12 2 17 5 38
16 5 92 14 226
20 13 592 47 1704

𝑛 𝒞𝐵4/𝒞𝐵 𝒮𝐵4/𝒮𝐵 ℳ𝐵4/ℳ𝐵 𝒮ℳ𝐵4/𝒮ℳ𝐵

4 0.333 1.000 0.375
8 1.000 0.096 0.333 0.048

12 0.400 0.008 0.104 0.003
16 0.132 0.001 0.018 0.000
20 0.018 0.000 0.002 0.000

Table 2.17: The number of bipartite graphs that allow a 2-factor
where each component is a 𝐶4 for a given number of vertices 𝑛
and the ratio of bipartite pregraphs with such a 2-factor versus
the total number of bipartite pregraphs.

𝑛 𝒞𝐵4 𝒮𝐵4 ℳ𝐵4 𝒮ℳ𝐵4

12 0.0s 0.1s 0.0s 0.3s
16 0.0s 12.9s 0.0s 51.1s
20 0.0s 2059.1s 0.8s 10840.6s

Table 2.18: The timings for the numbers in Table 2.17 using
the program pregraphs and run on a 2.40 GHz Intel Xeon. For
smaller 𝑛 the CPU time is less than 0.1s.

𝑛 𝒞𝐵4 𝒮𝐵4 ℳ𝐵4 𝒮ℳ𝐵4

16 7.1/s 4.4/s
20 0.3/s 58.8/s 0.2/s

Table 2.19: The average number of structures per second for the
numbers in Table 2.17 using the program pregraphs and run on
a 2.40 GHz Intel Xeon. (Bottom part of the table only)
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The last class of pregraphs we discussed in the previous chapter, were the pre-

graphs that have a 𝐶𝑞
4 -factor. We showed that there exists an eXcient algorithm

which can decide in time linear in the order of the pregraph whether a pregraph be-

longs to this class. If we however look at the percentage of pregraphs which belong

to this class, we see that this percentage is very low and decreases rapidly when the

number of vertices increases. Up to 20 vertices Table 3.1 shows the number of pre-

graphs with a 𝐶𝑞
4 -factor compared to the 3-edge-colourable pregraphs, i.e., the class

of pregraphs generated in the previous chapter which is best used to Vlter for these

pregraphs with a 𝐶𝑞
4 -factor. Once we reach 20 vertices already 99.98% of the graphs

that are generated do not have a 𝐶𝑞
4 -factor.

This shows that Vltering, although the test is very eXcient, is not the best ap-

proach for the generation of this class of pregraphs. A specialised generation algo-

rithm that does not need to go via the larger class of 3-edge-colourable pregraphs

can be much more eXcient for this generation problem. This alternative approach is

the subject of the Vrst part of this chapter. We go even further than in the previous

chapter and generate all possible Delaney-Dress graphs, i.e., pregraphs with a 𝐶𝑞
4 -

factor together with a colour assignment that corresponds to a valid Delaney-Dress

graph. Afterwards we use these Delaney-Dress graphs as a starting point to generate

Delaney-Dress symbols of tilings of the Euclidean plane.

3.1 𝐶𝑞
4-marked pregraphs

DeVnition 3.1.1 A 𝐶𝑞
4 -marked pregraph is a cubic pregraph in which all the𝐶𝑞

4 -marked
pregraph edges of a given 𝐶𝑞

4 -factor are coloured with colour 0 and all other edges with colour
1. ◇

The colouring in a 𝐶𝑞
4 -marked pregraph clearly is not a proper edge-colouring as

each vertex is incident to two edges of colour 0. It is also clear that the underlying

uncoloured graph of a 𝐶𝑞
4 -marked pregraph is a pregraph which has a 𝐶𝑞

4 -factor. The

following theorem shows that for a given 𝑛 for almost all pregraphs on 𝑛 vertices that

have a 𝐶𝑞
4 -factor there is a unique 𝐶𝑞

4 -factor up to isomorphism.
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𝑛 colourable has 𝐶𝑞
4 -factor ratio

1 1 1 100.00 %
2 3 3 100.00 %
3 3 2 66.67%
4 11 9 81.82%
5 17 7 41.18%
6 59 29 49.15%
7 134 27 20.15%
8 462 105 22.73%
9 1 332 118 8.86%

10 4 774 392 8.21%
11 16 029 546 3.41%
12 60 562 1 722 2.84%
13 225 117 2 701 1.20%
14 898 619 7 953 0.89%
15 3 598 323 13 966 0.39%
16 15 128 797 40 035 0.26%
17 64 261 497 75 341 0.12%
18 283 239 174 210 763 0.07%
19 1 264 577 606 420 422 0.03%
20 5 817 868 002 1 162 192 0.02%

Table 3.1: Comparison of the number of 3-edge-colourable pre-
graphs on 𝑛 vertices and the number of pregraphs with a 𝐶𝑞

4 -
factor on 𝑛 vertices.
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Figure 3.1: The three 𝐶𝑞
4 -markable pregraphs on two vertices.

Figure 3.2: The two 𝐶𝑞
4 -markable pregraphs on two vertices

that have non-isomorphic 𝐶𝑞
4 -factors. The marked 𝐶𝑞

4 -factors are
shown with dashed lines.

Theorem 3.1.2 For each integer 𝑛 > 0 the number of 𝐶𝑞
4 -markable pregraphs that

have multiple pairwise non-isomorphic 𝐶𝑞
4 -factors, depends only on 𝑛 mod 4:

∙ 𝑛 mod 2 ≡ 1: 0 pairs

∙ 𝑛 mod 4 ≡ 0: 4 pairs

∙ 𝑛 mod 4 ≡ 2: 2 pairs

Each 𝐶𝑞
4 -markable pregraph has at most two non-isomorphic 𝐶𝑞

4 -factors.

Proof: It is easily veriVed that there are 3 pregraphs on 2 vertices which have a

𝐶𝑞
4 -factor (see Figure 3.1) and that there are 5 𝐶𝑞

4 -marked pregraphs on 2 ver-

tices. The two pairs of 𝐶𝑞
4 -marked pregraphs that have the same underlying

uncoloured pregraph are shown in Figure 3.2.
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Figure 3.3: All 𝐶𝑞
4 -marked pregraphs on one and three vertices.

The marked 𝐶𝑞
4 -factors are shown with dashed lines.

Figure 3.4: The three isomorphic 𝐶𝑞
4 -factors in a Möbius ladder

on four vertices. The marked 𝐶𝑞
4 -factors are shown with dashed

lines.

It is also easily veriVed that the 𝐶𝑞
4 -factor is unique for all pregraphs on 1 and

3 vertices. Figure 3.3 shows all 𝐶𝑞
4 -marked pregraphs on 1 and 3 vertices.

A crown on 𝑛 ≥ 4 vertices is 𝐶𝑞
4 -markable if 𝑛 is even. A 𝐶𝑞

4 -markable crown

has two isomorphic 𝐶𝑞
4 -factors. A 𝐶𝑞

4 -factor in a crown consists of alternating

edges in the cycle together with the semi-edges incident to each of the edges.

There are two isomorphic sets of alternating edges in the cycle.

A Möbius ladder on 𝑛 ≥ 4 vertices is 𝐶𝑞
4 -markable if 𝑛 is divisible by four. A

Möbius ladder on four vertices has three isomorphic𝐶𝑞
4 -factors (see Figure 3.4).

A 𝐶𝑞
4 -markable Möbius ladder on more than four vertices has two isomorphic

𝐶𝑞
4 -factors (see Figure 3.5).

A prism on 𝑛 ≥ 4 vertices is 𝐶𝑞
4 -markable if 𝑛 is divisible by four. A prism

on four vertices does not exist. A prism on eight vertices is a cube. It is easily

seen that a cube has three isomorphic 𝐶𝑞
4 -factors: each 𝐶𝑞

4 -factor corresponds

to the edges of two opposite ‘faces’ of the cube when viewed as a solid. A
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Figure 3.5: The two isomorphic 𝐶𝑞
4 -factors in a 𝐶𝑞

4 -markable
Möbius ladder on more than four vertices (here twelve vertices).
The marked 𝐶𝑞

4 -factors are shown with dashed lines.

𝐶𝑞
4 -markable prism on 𝑛 > 8 vertices has two isomorphic 𝐶𝑞

4 -factors (see Fig-

ure 3.6).

Let 𝑃 be a pregraph on 𝑛 ≥ 4 vertices which has a 𝐶𝑞
4 -factor and is not a

crown, Möbius ladder or prism. We will show that, except in a few cases,

there is only one 𝐶𝑞
4 -factor in 𝑃 . In Lemma 2.8.2 we saw that 𝑃 has a unique

partition into subgraphs induced by ladders, subgraphs induced by digons not

contained in ladders and the components of the subgraph induced by the com-

plement of these.

If 𝑃 contains a digon that is not contained in a ladder, then at least one of the

two vertices 𝑥 and 𝑦 of the digon is incident to an edge 𝑒 that is not a semi-

edge and that is not contained in the digon. Since 𝑒 is not contained in a 𝐶4

or a digon, and at least one of the vertices of 𝑒 is not incident to a semi-edge,

𝑒 can not be part of a quotient of 𝐶4, and so the original digon is part of the

𝐶𝑞
4 -factor.

If 𝑃 contains a ladder, then there are two possible situations. The Vrst case is
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Figure 3.6: The two isomorphic 𝐶𝑞
4 -factors in a 𝐶𝑞

4 -markable
prism on more than eight vertices (here twelve vertices). The
marked 𝐶𝑞

4 -factors are shown with dashed lines.

that there is a boundary vertex 𝑥 of the ladder (a vertex not contained in an

edge that is the intersection of two 4-cycles) that is incident to an edge 𝑒 that

is not a semi-edge and is not contained in a 𝐶4. Using a similar argumentation

as with the digon, it is easy to see that 𝑒 cannot be contained in a quotient of

𝐶4. This means that the 𝐶4 which contains 𝑥 is part of any 𝐶𝑞
4 -factor of 𝑃 .

This also Vxes any 𝐶𝑞
4 -factor in this ladder. The second case is that the ladder

contains all the vertices of 𝑃 , but 𝑃 is not a prism or a Möbius ladder. In this

case we can look at the boundary vertices to determine the possible𝐶𝑞
4 -factors.

Assume Vrst that there are two boundary vertices which are connected by an

edge 𝑒which is not contained in a𝐶4 or a digon. Again 𝑒 cannot be contained in

a quotient of 𝐶4 and this implies that also in this case the 𝐶𝑞
4 -factor is unique.

There are still 3 graphs containing ladders which we haven’t discussed. These

graphs are shown in Figure 3.7, Figure 3.8 and Figure 3.9.

Let us Vrst consider the graph shown in Figure 3.7. This graph is a ladder

which is bounded by two digons. The edges at one side with a digon are in
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uncoloured graph

𝑛 mod 4 ≡ 0

𝑛 mod 4 ≡ 2

Figure 3.7: A ladder bounded by two digons has two diUerent
𝐶𝑞

4 -factors when its order is divisible by 4 and two isomorphic𝐶𝑞
4 -

factors otherwise. The marked 𝐶𝑞
4 -factors are shown with dashed

lines.
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uncoloured graph

𝑛 mod 4 ≡ 0

𝑛 mod 4 ≡ 2

Figure 3.8: A ladder bounded by four semi-edges has two diUer-
ent 𝐶𝑞

4 -factors when its order is divisible by 4 and two isomorphic
𝐶𝑞

4 -factors otherwise. The marked 𝐶𝑞
4 -factors are shown with

dashed lines.

two ways contained in a quotient of 𝐶4: either the digon itself is the quotient,

or one of the edges of the digon together with the rest of the 𝐶4 in which it

is contained is the quotient. In both cases the rest of the 𝐶𝑞
4 -factor is unique

for the complete graph. In case 𝑛 mod 4 ≡ 0 this means that there are two

non-isomorphic 𝐶𝑞
4 -marked pregraphs, and in case 𝑛 mod 4 ≡ 2 there are two

isomorphic 𝐶𝑞
4 -marked pregraphs.

The graph in Figure 3.8 is a ladder bounded by four semi-edges. Again there are

two ways the edges at one side can be contained in a 𝐶𝑞
4 -factor and also in this

case this means that there are two non-isomorphic𝐶𝑞
4 -marked pregraphs when

𝑛 mod 4 ≡ 0 and two isomorphic 𝐶𝑞
4 -marked pregraphs when 𝑛 mod 4 ≡ 2.

Finally we have the graph shown in Figure 3.9. In this graph, one side of the

ladder is bounded by a digon, while the other side is bounded by two semi-

edges. Again the edges at one side with a digon are in two ways contained in

a quotient of 𝐶4, but here these two 𝐶𝑞
4 -factors are non-isomorphic for all 𝑛.
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uncoloured graph

𝑛 mod 4 ≡ 0

𝑛 mod 4 ≡ 2

Figure 3.9: A ladder bounded by a digon and two semi-edges has
two diUerent 𝐶𝑞

4 -factors. The marked 𝐶𝑞
4 -factors are shown with

dashed lines.
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uncoloured graph

𝑛 mod 4 ≡ 0

𝑛 mod 4 ≡ 1

Figure 3.10: A path where each vertex is incident to at least one
semi-edge and the two end vertices are incident to two semi-edges
has two diUerent 𝐶𝑞

4 -factors when its order is even and two iso-
morphic 𝐶𝑞

4 -factors otherwise. The marked 𝐶𝑞
4 -factors are shown

with dashed lines.

The𝐶𝑞
4 -factor is Vxed in ladders and in digons that are not part of a ladder. The

last step is to Vx the𝐶𝑞
4 -factor in the rest of 𝑃 . From the proof of Theorem 2.8.3

we know that this remainder consists of paths where each vertex is additionally

also incident to at least one semi-edge. First assume that an end vertex 𝑥 of

such a path is incident to exactly one semi-edge. As we saw earlier, this implies

that in 𝑃 the vertex 𝑥 is incident to an edge 𝑒 that has a non-empty intersection

with a digon or a ladder, and thus 𝑒 cannot be contained in a quotient of 𝐶4.

This again Vxes the 𝐶𝑞
4 -factor for the complete path and we Vnd that there is

a unique 𝐶𝑞
4 -factor for 𝑃 in this case.

So assume now that both end vertices are incident to exactly two semi-edges.

This is only possible if 𝑃 is the graph shown in Figure 3.10. If we look at one of

the end vertices of 𝑃 in this case, we see that this vertex is contained in a quo-

tient of 𝐶4 in two ways: either the two semi-edges are the quotient, or one of

the two semi-edges, the third edge and the semi-edge at the neighbouring ver-
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tex are the quotient. Either choice Vxes the 𝐶𝑞
4 -factor for the complete graph.

In case 𝑛 is even, this means that there are two non-isomorphic 𝐶𝑞
4 -factors in

this pregraph, and in case 𝑛 is odd, both 𝐶𝑞
4 -factors are isomorphic. �

Due to the previous theorem we can easily modify a generation algorithm for 𝐶𝑞
4 -

marked pregraphs to also generate pregraphs which have a 𝐶𝑞
4 -factor. We just need

to omit the colours when outputting the graphs and make sure that we correctly

handle the small number of graphs which lead to isomorphic uncoloured pregraphs.

So let us look at how we can generate 𝐶𝑞
4 -marked pregraphs. We already es-

tablished in the proof of Theorem 2.8.3 that a 𝐶𝑞
4 -marked pregraph 𝑃 has a unique

partition into subgraphs induced by ladders, subgraphs induced by digons not con-

tained in ladders and the components of the subgraph induced by the complement

of these. We can reVne this partition, such that each part contains only one type of

quotients of 𝐶4.

DeVnition 3.1.3 Given a 𝐶𝑞
4 -marked pregraph 𝑃 , a block partition of 𝑃 is a par-block

partition tition of 𝑃 into subgraphs of the following types:

1. maximal ladders containing only marked quotients of type 𝑞1;

2. maximal subgraphs induced by marked quotients of type 𝑞2;

3. maximal subgraphs induced by marked quotients of type 𝑞3;

4. marked quotients of type 𝑞4.

Such a partition is unique for each 𝐶𝑞
4 -marked pregraph 𝑃 .

The diUerent subgraphs in a block partition are called blocks. ◇blocks

The possible blocks containing quotients of type 𝑞1 that can occur in a block par-

tition are shown in Figure 3.11 and Figure 3.12 and an overview is given in Table 3.2.

We only show the blocks with 2 quotients of type 𝑞1, but most block types exist

for any integer 𝑛 ≥ 1 of quotients of type 𝑞1 — some block types do not exist for

𝑛 = 1. This integer 𝑛 is called the parameter of the block and Table 3.2 also gives

the minimum value of 𝑛 for each type of block. The reason that for some block types
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H:

LH:

DLH:

DC:

DHB:

OHB:

DLB:

OLB:

LDC:

LDHB:

LOHB:

LDLB:

Figure 3.11: The possible blocks containing quotients of type 𝑞1
that can occur in a block partition when the partition contains
more than one block. The dotted edges mark the vertices from
where connections to other blocks need to be made. The marked
quotients of type 𝑞1 are drawn with dashed lines. All the blocks
that are shown here have parameter 2.

a parameter larger than 1 is required, is to prevent having diUerent descriptions for

the same block. Otherwise DLB(1) would be isomorphic to DHB(1), OLB(1) would be

isomorphic to OHB(1), LDLB(1) would be isomorphic to LDHB(1), DLDLB(1) would

be isomorphic to DLDHB(1) and P(1) would be isomorphic to DDHB(1). These blocks

can be determined by starting from a ladder with an order that is divisible by four

and adding edges between the vertices of degree 2 or adding a semi-edge to these

vertices. This was done by a straightforward ad-hoc script, since no specialised tech-

niques are needed for this small set of blocks.

The possible blocks containing quotients of type 𝑞2 that can occur in a block par-

tition are shown in Figure 3.13 and Figure 3.14 and an overview is given in Table 3.3.

Also in this case these blocks exist for diUerent parameters.

The possible blocks containing quotients of type 𝑞3 that can occur in a block par-

tition are shown in Figure 3.15 and Figure 3.16 and an overview is given in Table 3.4.

Also in this case these blocks exist for diUerent parameters.

The possible blocks containing quotients of type 𝑞4 that can occur in a block par-

tition are shown in Figure 3.17 and Figure 3.18 and an overview is given in Table 3.5.
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DLDC:

CLH:

DDHB:

DLDHB:

DLDLB:

P:

ML:

Figure 3.12: The possible blocks containing quotients of type 𝑞1
that can occur in a block partition when the partition contains one
block. The marked quotients of type 𝑞1 are drawn with dashed
lines. All the blocks that are shown here have parameter 2.

Abbreviation Name Connections Minimum
Parameter

H Hub 4 1
LH Locked Hub 3 1
DLH Diagonally Locked Hub 2 1
DC Diagonal Chain 2 1
DHB Double-roof High Building 2 1
OHB Open-roof High Building 2 1
DLB Double-roof Long Building 2 2
OLB Open-roof Long Building 2 2
LDC Locked Diagonal Chain 1 1
LDHB Locked Double-roof High Building 1 1
LOHB Locked open-roof High Building 1 1
LDLB Locked Double-roof Long Building 1 2
DLDC Double-Locked Diagonal Chain 0 1
CLH Completely Locked Hub 0 1
DDHB Double-roof Double-Woor High Building 0 1
DLDHB Double-Locked Double-roof High Building 0 1
DLDLB Double-Locked Double-roof Long Building 0 2
P Prism 0 2
ML Möbius ladder 0 1

Table 3.2: The possible blocks containing quotients of type 𝑞1
that can occur in a block partition.
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PC: LPC:

Figure 3.13: The possible blocks containing quotients of type 𝑞2
that can occur in a block partition when the partition contains
more than one block. The dotted edges mark the vertices from
where connections to other blocks need to be made. The marked
quotients of type 𝑞2 are drawn with dashed lines. All the blocks
that are shown here have parameter 2.

DLPC: PN:

Figure 3.14: The possible blocks containing quotients of type 𝑞2
that can occur in a block partition when the partition contains one
block. The marked quotients of type 𝑞2 are drawn with dashed
lines. The DLPC block is shown with parameter 2 and the PN
block is shown with parameter 5.

Abbreviation Name Connections Minimum
Parameter

PC Pearl Chain 2 1
LPC Locked Pearl Chain 1 1
DLPC Double-Locked Pearl Chain 0 1
PN Pearl Necklace 0 1

Table 3.3: The possible blocks containing quotients of type 𝑞2
that can occur in a block partition.
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BW: LBW:

Figure 3.15: The possible blocks containing quotients of type 𝑞3
that can occur in a block partition when the partition contains
more than one block. The dotted edges mark the vertices from
where connections to other blocks need to be made. The marked
quotients of type 𝑞3 are drawn with dashed lines. All the blocks
that are shown here have parameter 2.

DLBW: BWN:

Figure 3.16: The possible blocks containing quotients of type 𝑞3
that can occur in a block partition when the partition contains one
block. The marked quotients of type 𝑞3 are drawn with dashed
lines. The DLBW block is shown with parameter 2 and the BWN
block is shown with parameter 5.

Abbreviation Name Connections Minimum
Parameter

BW Barbed Wire 2 1
LBW Locked Barbed Wire 1 1
DLBW Double-Locked Barbed Wire 0 1
BWN Barbed Wire Necklace 0 1

Table 3.4: The possible blocks containing quotients of type 𝑞3
that can occur in a block partition.
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Q4:

Figure 3.17: The only possible block containing a quotient of type
𝑞4 that can occur in a block partition when the partition contains
more than one block. The grey edge marks the vertex from where
the connection to another block needs to be made. The marked
quotient of type 𝑞4 is drawn with dashed lines.

T:

Figure 3.18: The only possible block containing a quotient of type
𝑞4 that can occur in a block partition when the partition contains
one block. The marked quotient of type 𝑞4 is drawn with dashed
lines.

For this type of blocks there is no parameter.

We will use block partitions to generate the 𝐶𝑞
4 -marked pregraphs. This gener-

ation process happens in several phases. To generate all the 𝐶𝑞
4 -marked pregraphs

with 𝑛 vertices we start by generating all lists of blocks such that the sum of the

orders of the blocks is equal to 𝑛. This is done by a simple orderly algorithm without

many optimisations since the time spent in the generation of these lists is negligi-

ble compared to the rest of the generation process. Since each 𝐶𝑞
4 -marked pregraph

corresponds to exactly one such list of blocks, diUerent lists will result in diUerent

𝐶𝑞
4 -marked pregraphs.

We can perform a few tests to discard lists that are not realisable as a block

Abbreviation Name Connections

Q4 Q4 1
T Tristar 0

Table 3.5: The possible blocks containing a quotient of type 𝑞4
that can occur in a block partition.
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partition of a 𝐶𝑞
4 -marked pregraph. We can view a 𝐶𝑞

4 -marked pregraph with a block

partition as a multigraph: the vertices of the multigraph are the blocks of the block

partition, the edges of the multigraph are the edges between the blocks. This means

that when we have a list of blocks we can check whether the degree sequence that

corresponds to that list is realisable as a multigraph without loops.

Degree sequences are well studied, and we will give a summary of the results

that we use.

DeVnition 3.1.4 Given a graph 𝐺 with 𝑛 vertices, the degree sequence 𝑑 =degree
sequence ⟨𝑑1, 𝑑2,

. . . , 𝑑𝑛⟩ of 𝐺 is the monotonic non-increasing sequence of the degrees of the ver-
tices of 𝐺. ◇

DeVnition 3.1.5 Anmonotonic non-increasing sequence of positive integers is called
graphic if it can be the degree sequence of a graph. ◇graphic

DeVnition 3.1.6 Anmonotonic non-increasing sequence of positive integers is called
multigraphic if it can be the degree sequence of a multigraph without loops. ◇multi-

graphic
Since the number of edges of a (multi)graph is equal to half the sum of the de-

grees of that graph, a necessary condition for a sequence 𝑎 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ to be

(multi)graphic, is that
∑︀𝑛

𝑘=1 𝑎𝑘 is even.

If loops are allowed, then each sequence with an even sum is realisable as a

multigraph. Such a realisation is easily constructed. There are an even number of

vertices with odd degree. Divide the vertices with odd degree into pairs and connect

the vertices in each pair to each other. Complete the graph by adding loops until all

degree conditions are satisVed.

Erdős and Gallai proved the following characterisation of graphical sequences.

Theorem 3.1.7 (Erdős and Gallai [7]) A monotonic non-increasing sequence 𝑎 =
⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ of positive integers is graphical if and only if

∑︀𝑛
𝑘=1 𝑎𝑘 is even and

for each integer 𝑖, 1 ≤ 𝑖 ≤ 𝑛− 1,

𝑖∑︁
𝑘=1

𝑎𝑘 ≤ 𝑖(𝑖− 1) +

𝑛∑︁
𝑘=𝑖+1

min(𝑖, 𝑎𝑘).
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Tripathi and Vijay showed that it is not necessary to examine all possible values

for 𝑖 in this theorem.

Corollary 3.1.8 (Tripathi and Vijay [49]) Let 𝑎 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ be a mono-
tonic non-increasing sequence of positive integers. Let 𝑠 be the largest integer such
that 𝑎𝑠 ≥ 𝑠− 1. Then the sequence 𝑎 is graphical if and only if

∑︀𝑛
𝑘=1 𝑎𝑘 is even and

for each integer 𝑖, 1 ≤ 𝑖 ≤ 𝑠,

𝑖∑︁
𝑘=1

𝑎𝑘 ≤ 𝑖(𝑖− 1) +

𝑛∑︁
𝑘=𝑖+1

min(𝑖, 𝑎𝑘).

A loopless multigraph can be transformed into a simple graph using the following

procedure: As long as there exist two vertices that are connected by at least two

parallel edges, subdivide one of these edges by creating a new vertex of degree 2.

This transformation forms the basis for the following result.

Theorem 3.1.9 (Owens and Trent [12]) Let 𝑡 be an integer, let 𝑎 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩
be a monotonic non-increasing sequence of positive integers, and let 𝑎′ be the mono-
tonic non-increasing sequence of positive integers obtained by adding 𝑡 copies of the
integer 2 to 𝑎, then 𝑎 is the degree sequence of a loopless multigraph, whose un-
derlying graph contains at least

∑︀𝑛
𝑘=1 𝑎𝑘 − 𝑡 edges if and only if the sequence 𝑎′ is

graphic.

This gives us the following characterisation of multigraphical sequences.

Corollary 3.1.10 A monotonic non-increasing sequence 𝑎 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ of
positive integers is multigraphical if and only if there exists a 𝑡 ≥ 0 such that the
monotonic non-increasing sequence of positive integers obtained by adding 𝑡 copies
of the integer 2 to 𝑎 is graphical.

A list that does not satisfy the condition above will not be realisable as a multi-

graph and therefore will not be valid, but not all lists that satisfy this condition will

occur as block partition of a 𝐶𝑞
4 -markable pregraph. Another restriction we need to

take into account when connecting the blocks is that not every connection is valid.

A condition for the unicity of the block partition was that the blocks were maximal.

This means that connecting a 𝑞2 block to a 𝑞2 block or a 𝑞3 block to a 𝑞3 block is not
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allowed. Neither is it allowed to connect two 𝑞1 blocks such that two of the connect-

ing edges are part of a 𝐶4. So we can add the following test to discard some more

blocks: if more than half of the connections are connections at 𝑞2 blocks or more than

half of the connections are connections at 𝑞3 blocks, then this list won’t be realisable.

DeVnition 3.1.11 A list 𝐿 of blocks is acceptable if and only ifacceptable

∙ the degree sequence corresponding to 𝐿 is multigraphic,

∙ half or less than half of the missing connections lie in 𝑞2 blocks, and

∙ half or less than half of the missing connections lie in 𝑞3 blocks.

◇

Once we have a list we need to try and add the connections in all possible ways.

DeVnition 3.1.12 A partial 𝐶𝑞
4 -marked pregraph is a not necessarily connectedpartial

𝐶𝑞
4 -marked

pregraph
pregraph 𝑃 in which all the edges of a given𝐶𝑞

4 -factor are coloured with colour 0 and
all other edges with colour 1 and where all vertices have either degree 2 or degree 3.

The vertices with degree 2 are called the deVcient vertices of 𝑃 . ◇deVcient
vertex

DeVnition 3.1.13 Denote by 𝐵(𝑃 ) the block list corresponding to the unique block𝐵(𝑃 )
partition of 𝑃 .

Given a block list 𝐿, denote by ℬ𝐿 the set of partial 𝐶𝑞
4 -marked pregraphs with aℬ𝐿

block partition isomorphic to 𝐿. ◇

A block list corresponds in a trivial way to a partial 𝐶𝑞
4 -marked pregraph . We

construct a new partial 𝐶𝑞
4 -marked pregraph by connecting two deVcient vertices.

The new partial 𝐶𝑞
4 -marked pregraph has two deVcient vertices less than the original

graph. Once we have a partial 𝐶𝑞
4 -marked pregraph with no deVcient vertices we

have found a 𝐶𝑞
4 -marked pregraph. To generate the 𝐶𝑞

4 -marked pregraphs we use

the principle of closed structures [55][60].

DeVnition 3.1.14 A marked subgraph of a partial 𝐶𝑞
4 -marked pregraph 𝑃 is amarked

subgraph subgraph 𝑃𝑠 of 𝑃 such that 𝑃𝑠 is a partial 𝐶𝑞
4 -marked pregraphand the colours of

the edges in 𝑃𝑠 is the same as the colours of the edges in 𝑃 . ◇
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Figure 3.19: A partial 𝐶𝑞
4 -marked pregraph that is not closed.

DeVnition 3.1.15 A partial 𝐶𝑞
4 -marked pregraph 𝑃 ′ is an extension of a partial extension

𝐶𝑞
4 -marked pregraph 𝑃 if 𝑃 is a marked subgraph of 𝑃 ′, and 𝑃 ′ and 𝑃 have the

same number of vertices. ◇

DeVnition 3.1.16 A partial𝐶𝑞
4 -marked pregraph 𝑃 is closed if for all extensions 𝑃1 closed

and 𝑃2 of 𝑃 we have that any isomorphism between 𝑃1 and 𝑃2 induces an automor-
phism of 𝑃 . ◇

The partial 𝐶𝑞
4 -marked pregraph 𝑃 in Figure 3.19 is not closed since the two

extensions in Figure 3.20 are isomorphic, but the isomorphism maps the vertex in the

bottom right to the vertex in the bottom left and vice versa. Clearly this does not

induce an automorphism of 𝑃 since these vertices have diUerent degrees in 𝑃 .

The partial𝐶𝑞
4 -marked pregraph corresponding to a block list 𝐿 is a closed partial

𝐶𝑞
4 -marked pregraph since any connection that would create a subgraph that is a

block leads to a partial 𝐶𝑞
4 -marked pregraph that is not in ℬ𝐿.

The advantage of this technique with closed structures is that if the closed partial

𝐶𝑞
4 -marked pregraph 𝑃 has a trivial symmetry group, no two diUerent extensions of

𝑃 will be isomorphic, and so no isomorphism rejection is needed once a closed graph

with trivial symmetry appears in the generation process. Clearly we want to reach

such a closed partial 𝐶𝑞
4 -marked pregraph as soon as possible during the generation.

The following lemma shows a way how a new closed partial 𝐶𝑞
4 -marked pregraph

can be obtained when starting with a closed partial 𝐶𝑞
4 -marked pregraph.
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Figure 3.20: Two extensions of the partial 𝐶𝑞
4 -marked pregraph

in Figure 3.19 which are isomorphic but for which the isomor-
phism does not induce an automorphism of the original partial
𝐶𝑞

4 -marked pregraph.

Lemma 3.1.17 Let 𝑃 be a closed partial 𝐶𝑞
4 -marked pregraph. Let 𝑂 be an orbit

of deVcient vertices under the automorphism group of 𝑃 . If 𝑃 ′ is an extension of
𝑃 so that 𝑂 contains no deVcient vertices and no edges in 𝑃 ′ ∖ 𝑃 have an empty
intersection with 𝑂, then 𝑃 ′ is also a closed partial 𝐶𝑞

4 -marked pregraph.

Proof: Assume we have two extensions 𝑃 ′
1 and 𝑃 ′

2 of 𝑃 ′. We need to prove that if

there is an isomorphism 𝜎 between 𝑃 ′
1 and 𝑃 ′

2, this isomorphism induces an au-

tomorphism of 𝑃 ′. Since 𝑃 is closed, we have that 𝜎 induces an automorphism

of 𝑃 .

Assume that there is an isomorphism 𝜎 : 𝑃 ′
1 → 𝑃 ′

2 that does not induce an

automorphism of 𝑃 ′. So there exist vertices 𝑥, 𝑦 in 𝑃 ′, such that 𝑥 and 𝑦 are

adjacent in 𝑃 ′, and 𝜎(𝑥) and 𝜎(𝑦) are not adjacent in 𝑃 ′. As 𝑃 is a subgraph

of 𝑃 ′, it cannot be that 𝜎(𝑥) and 𝜎(𝑦) are adjacent in 𝑃 , so we have that 𝑥

and 𝑦 are non-adjacent in 𝑃 . This means at least one of the two vertices 𝑥

and 𝑦 belongs to 𝑂, so assume that 𝑥 ∈ 𝑂. As 𝜎 induces an automorphism on

𝑃 , this means that 𝜎(𝑥) ∈ 𝑂 and so in 𝑃 ′ 𝜎(𝑥) is adjacent to another vertex,

say 𝑧. Since 𝑥 is adjacent to 𝑦 in 𝑃 ′
1, 𝜎(𝑥) is adjacent to 𝜎(𝑦) in 𝑃 ′

2, but this

contradicts that 𝜎(𝑥) is not a deVcient vertex in 𝑃 ′.

So we Vnd that for any two extensions 𝑃 ′
1 and 𝑃 ′

2, there is no isomorphism
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between 𝑃 ′
1 and 𝑃 ′

2 that does not induce an automorphism of 𝑃 ′ and thus 𝑃 ′

is a closed partial 𝐶𝑞
4 -marked pregraph. �

We want to go from closed partial 𝐶𝑞
4 -marked pregraphs to closed partial 𝐶𝑞

4 -

marked pregraphs as ‘fast’ as possible, that is why we will each time select the

smallest orbit of deVcient vertices and add connections to that orbit. Once we Vnd a

partial 𝐶𝑞
4 -marked pregraph with a trivial symmetry, we can stop any isomorphism

rejections and just add the remaining connections in all possible ways. We can even

do this a bit sooner: it is suXcient that the symmetry group acts trivially on the

deVcient vertices.

Theorem 3.1.18 Let 𝑃 be a closed partial 𝐶𝑞
4 -marked pregraph. If the automor-

phism group of 𝑃 acts trivially on the deVcient vertices of 𝑃 , then all extensions of
𝑃 are pairwise non-isomorphic.

Proof: Let 𝑃1 and 𝑃2 be two diUerent extensions of 𝑃 . Assume that there is an iso-

morphism 𝜎 between 𝑃1 and 𝑃2. Since 𝑃 is closed, the isomorphism 𝜎 induces

an automorphism of 𝑃 . Let 𝑒 be an edge in 𝑃1 ∖ 𝑃 . Both vertices incident to

𝑒 are deVcient vertices in 𝑃 , and so they are Vxed by 𝜎. This implies that the

edge 𝑒 is Vxed by 𝜎, so we Vnd that all edges in 𝑃1 ∖ 𝑃 are Vxed by 𝜎, which

contradicts that 𝑃1 and 𝑃2 are diUerent extensions. �

In summary, we use the following algorithm to generate the 𝐶𝑞
4 -marked pre-

graphs with 𝑛 vertices:

1. Generate all acceptable lists of blocks such that the sum of the orders of the

blocks is 𝑛.

2. For each list construct the corresponding partial 𝐶𝑞
4 -marked pregraph 𝑃 and

recursively repeat the following steps :

(a) If 𝑃 has no deVcient vertices: output 𝑃 and return.
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(b) Compute the automorphism group of 𝑃 and compute the orbits of deV-

cient vertices of 𝑃 .

(c) If 𝐴𝑢𝑡(𝑃 ) acts trivial on the set of deVcient vertices of 𝑃 , then complete

𝑃 by adding the remaining connections in all possible ways and output

any complete 𝐶𝑞
4 -marked pregraph obtained this way.

(d) Otherwise choose the smallest orbit 𝑂 and connect all vertices in 𝑂 to

deVcient vertices in all valid ways that give non-isomorphic partial 𝐶𝑞
4 -

marked pregraph and repeat these steps for this new partial 𝐶𝑞
4 -marked

pregraph.

The fact that this algorithm moves from closed partial 𝐶𝑞
4 -marked pregraph to

closed partial 𝐶𝑞
4 -marked pregraph is not suXcient to guarantee that no pairwise

isomorphic structures are output. Although all extensions of a closed partial 𝐶𝑞
4 -

marked pregraph are pairwise non-isomorphic, it might still be possible that they are

isomorphic to extensions of another partial 𝐶𝑞
4 -marked pregraph. That this is not the

case still needs to be proven.

DeVnition 3.1.19 A partial 𝐶𝑞
4 -marked pregraph 𝑃 is strongly closed in a set 𝑆 ofstrongly

closed partial 𝐶𝑞
4 -marked pregraphs, if all partial 𝐶𝑞

4 -marked pregraphs in 𝑆 that contain a
subgraph isomorphic to 𝑃 are extensions of 𝑃 . ◇

Lemma 3.1.20 The partial 𝐶𝑞
4 -marked pregraphs to which the recursive step is ap-

plied in the algorithm above, are strongly closed in ℬ𝐿, with 𝐿 the block list that is
currently connected.

Proof: Due to Lemma 3.1.17, the graphs to which the recursive step is applied are

closed. It is also clear that the initial partial 𝐶𝑞
4 -marked pregraph that cor-

responds to the block list 𝐿 without connections is strongly closed in the set

ℬ𝐿.

What remains to be proven is that if a partial 𝐶𝑞
4 -marked pregraph 𝑃 is

strongly closed in ℬ𝐵(𝑃 ), 𝑂 is an orbit of deVcient vertices of 𝑃 under the

automorphism group of 𝑃 and 𝑃 ′ is an extension of 𝑃 such that all vertices

in 𝑂 are no longer deVcient and no edges were added that have an empty

intersection with 𝑂, then 𝑃 ′ is also strongly closed in ℬ𝐵(𝑃 ).
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Given a partial 𝐶𝑞
4 -marked pregraph 𝑃 ′′ such that 𝐵(𝑃 ′′) = 𝐵(𝑃 ) and that

𝑃 ′′ contains a subgraph 𝑃 ′
𝑠 that is isomorphic to 𝑃 ′. As 𝑃 ′ is an extension

of 𝑃 , 𝑃 ′
𝑠 also contains a subgraph that is isomorphic to 𝑃 , and thus 𝑃 ′

𝑠 is an

extension of 𝑃 . Since 𝑃 is closed, we have that the isomorphism between 𝑃 ′
𝑠

and 𝑃 ′ induces an automorphism of 𝑃 . Since 𝑂 is an orbit under the auto-

morphism group of 𝑃 , 𝑂 is mapped onto 𝑂. This means that both 𝑃 ′ and 𝑃 ′
𝑠

are extensions of 𝑃 and for both partial 𝐶𝑞
4 -marked pregraphs the same orbit

of deVcient vertices was chosen in step 2d of the algorithm above. In step 2d

only pairwise non-isomorphic partial 𝐶𝑞
4 -marked pregraphs are generated, so

we Vnd that 𝑃 ′ = 𝑃 ′
𝑠. So we have that 𝑃 ′′ is an extension of 𝑃 ′, which proves

that 𝑃 ′ is strongly closed in ℬ𝐵(𝑃 ). �

Theorem 3.1.21 The algorithm above outputs exactly one representative of every
isomorphism class of 𝐶𝑞

4 -marked pregraph with 𝑛 vertices.

Proof: This theorem follows from Lemma 3.1.17 and Lemma 3.1.20, together with

the fact that each 𝐶𝑞
4 -marked pregraph has a unique block partition. �

When we construct the partial 𝐶𝑞
4 -marked pregraph 𝑃 corresponding to a list we

also construct the automorphism group of 𝑃 , i.e., we construct a set of generators

for the automorphism group based upon the automorphisms of the blocks and the

isomorphism of similar blocks. For further computations of the automorphism group

we use the program nauty [17].

For step 2d we use once again McKay’s canonical construction path method (see

Subsection 1.4.6). Given a partial 𝐶𝑞
4 -marked pregraph 𝑃 and an orbit 𝑂 of deVcient

vertices, we Vrst calculate the orbits of unordered pairs of deVcient vertices {𝑥, 𝑦}
such that {𝑥, 𝑦} ∩ 𝑂 is not empty. For each orbit of unordered pairs we choose one

pair in that orbit and connect these vertices if this is a valid connection. There are

two reasons why a connection could be invalid: it might create a new block, or it

might create a subgraph which does not contain all the vertices and does not contain

any deVcient vertices. In case this is a valid connection, we still need to verify that
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it is the canonical operation (see Subsection 1.4.6) to obtain the resulting partial 𝐶𝑞
4 -

marked pregraph 𝑃 ′. This is done by labelling each vertex with a 2-tuples (𝑥1, 𝑥2). In

this tuple 𝑥1 is the label of 𝑣 in a canonical labelling of 𝑃 and 𝑥2 is the label of 𝑣 in a

canonical labelling of 𝑃 ′. This operation is accepted if and only if the new connection

is in the orbit of connections in 𝑃 ′ which have a non-empty intersection with 𝑂 and

for which the vertices have the lexicographically smallest vertex labels. It is often not

needed to construct a canonical labelling of 𝑃 ′, since the operation can already be

discarded as being not canonical based on the values of 𝑥1 for the vertices.

Table 3.12 (see p.129) gives an overview of the numbers of block lists, the numbers

of 𝐶𝑞
4 -marked pregraphs and the numbers of 𝐶𝑞

4 -markable pregraphs. The numbers

of 𝐶𝑞
4 -markable pregraphs have been compared to the numbers obtained in the pre-

vious chapter. Since the techniques used in both cases are very diUerent this oUers

an independent test for the implementation.

3.2 Delaney-Dress graphs

Given a Delaney-Dress graph 𝐺 we can easily construct a 𝐶𝑞
4 -marked pregraph

𝑃 from 𝐺 by changing the colour of all edges with colour 2 to colour 0. When we

want to generate Delaney-Dress graphs from 𝐶𝑞
4 -marked pregraphs, then we want

to go in the other direction, i.e., we need to assign colours 0 and 2 to the marked

quotients of 𝐶4 in the 𝐶𝑞
4 -marked pregraph. Clearly the construction above leads

to a unique 𝐶𝑞
4 -marked pregraph corresponding to a Delaney-Dress graph, and so

diUerent 𝐶𝑞
4 -marked pregraphs will lead to diUerent Delaney-Dress graphs.

We need to check that diUerent colour assignments do not lead to isomorphic

Delaney-Dress graphs. In the cases where this does happen, we only accept one of

these isomorphic copies.

A Vrst observation we can make is that if we swap the colours in a quotient of

type 𝑞2 or in a quotient of type 𝑞4, we always get an isomorphic Delaney-Dress graph.

We indeed always have the isomorphism that Vxes all the vertices and all the edges

that are not in that quotient and that interchanges the two edges, resp. semi-edges,

in that quotient. This means that we can just choose an arbitrary colouring for these
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quotients and can focus the isomorphism rejection on the quotients of type 𝑞1 and

the quotients of type 𝑞3.

Given a partially coloured Delaney-Dress graph 𝐷 such that the uncoloured sub-

graphs are quotients of type 𝑞1 and of type 𝑞3. The set of uncoloured quotients is

denoted by 𝑈 . We can deVne a bijection between the set of valid colour assignments

for𝐷 and the set of binary vectors with length |𝑈 |. Choose a matching (i.e., two non-

adjacent edges) in each quotient of type 𝑞1. For a quotient 𝑢 of type 𝑞1 we denote

this matching by 𝑚(𝑢). Label the quotients in 𝑈 with the numbers 1 to |𝑈 |.

A colouring 𝑐 is mapped to a binary vector 𝑣𝑐 as follows. The 𝑖th coordinate of

𝑣𝑐 corresponds to the uncoloured quotient 𝑢 ∈ 𝑈 that has label 𝑖. If 𝑢 is of type 𝑞1,

then the 𝑖th coordinate of 𝑣𝑐 is equal to 0 if the edges in 𝑚(𝑢) receive colour 0, and

is equal to 1 if these edges receive colour 2. If 𝑢 is of type 𝑞3, then the 𝑖th coordinate

of 𝑣𝑐 is equal to 0 if the semi-edges in 𝑢 receive colour 0, and is equal to 0 otherwise.

Given an automorphism 𝜎 of 𝐷 and a binary vector 𝑣𝑐 corresponding to a colour-

ing 𝑐, we can easily construct the binary vector 𝑣′𝑐 that corresponds to the colouring

𝑐′ of 𝐷 when we would apply 𝜎 to the coloured Delaney-Dress graph. The automor-

phism 𝜎 will map a quotient 𝑢 ∈ 𝑈 to another quotient 𝑢′ ∈ 𝑈 , and clearly 𝑢 and

𝑢′ will be of the same type. In case 𝑢 is of type 𝑞3, then the coordinate in 𝑣′𝑐 corre-

sponding to 𝑢′ will have the same value as the coordinate in 𝑣𝑐 corresponding to 𝑢.

In case 𝑢 is of type 𝑞1, then we need to check whether 𝑚(𝑢) is mapped to 𝑚(𝑢′) by

𝜎. If this is the case, then the coordinate in 𝑣′𝑐 corresponding to 𝑢′ will have the same

value as the coordinate in 𝑣𝑐 corresponding to 𝑢. Otherwise they will have diUerent

values.

This means that we can perform the orbit calculations on the set of binary vectors.

We use the union-Vnd algorithm on the set of all binary vectors with length |𝑈 | to

Vnd which coloured Delaney-Dress graphs are isomorphic.

Table 3.13 on page 132 shows an overview of the numbers of Delaney-Dress

graphs with up to 𝑛 = 30 vertices. The numbers up to 𝑛 = 10 vertices have been

independently veriVed by Alen Orbanić.



112 CHAPTER 3. DELANEY-DRESS SYMBOLS

3.3 Delaney-Dress symbols

In this section we will discuss how we can systematically generate Delaney-Dress

symbols of equivariant tilings of the Euclidean plane. Although this work is included

here, we think that even after this thesis there is still a lot of research that can be

done on this topic.

A Delaney-Dress symbol consists of a Delaney-Dress graph together with two

functions 𝑚01 and 𝑚12 from the vertices to the natural numbers.

Given a coloured Delaney-Dress graph 𝒟. We denote by 𝐷𝑖𝑗 the subgraph ob-

tained by excluding all edges that are not coloured with colour 𝑖 or colour 𝑗. The set of

connected components of 𝒟01 is denoted by 𝐹 , and the set of connected components

of 𝒟12 is denoted by 𝑉 . If 𝒟 is part of the Delaney-Dress symbol of an equivari-

ant tiling (𝑇,Γ) then these components will correspond to the orbits of faces, resp.

of vertices, of (𝑇,Γ) under Γ (see Section 1.3). The deVnition of a Delaney-Dress

symbol demands the function 𝑚01 to be constant on elements of 𝐹 and the function

𝑚12 to be constant on elements of 𝑉 . This means that the following functions are

well-deVned:

𝑚𝐹 : 𝐹 → N; 𝑓 ↦→ 𝑚𝐹 (𝑓) = 𝑚01(𝑑) with 𝑑 ∈ 𝑓

and

𝑚𝑉 : 𝑉 → N; 𝑣 ↦→ 𝑚𝑉 (𝑣) = 𝑚12(𝑑) with 𝑑 ∈ 𝑣.

In order that a Delaney-Dress symbol corresponds to an equivariant tiling of the

Euclidean plane, the curvature must be 0 (see Theorem 1.3.16). In terms of the newly

deVned functions this means

0 =
∑︁
𝑓∈𝐹

|𝑓 |
𝑚𝐹 (𝑓)

+
∑︁
𝑣∈𝑉

|𝑣|
𝑚𝑉 (𝑣)

− |𝒟|
2
.

In this chapter we will use the crystallographic restriction theorem several times.

This theorem has been known since the crystallographic work of René-Just Haüy in

1822. It was described by Vaidyanathaswamy [3, 4] and later rediscovered by many

authors [8, 13, 22, 20, 38].
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Theorem 3.3.1 (Crystallographic restriction theorem) The rotational symmetries
in the Euclidean plane are 2-fold, 3-fold, 4-fold or 6-fold.

The following functions are related to the crystallographic restriction:

𝒞 : N → N;𝑛 ↦→ 𝒞(𝑛) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑛
6 𝑛 mod 6 = 0
𝑛
4 𝑛 mod 4 = 0 and 𝑛 mod 3 ̸= 0
𝑛
3 𝑛 mod 3 = 0 and 𝑛 mod 2 ̸= 0
𝑛
2 𝑛 mod 2 = 0 and 𝑛 mod 3 ̸= 0 and 𝑛 mod 4 ̸= 0

𝑛 all other cases

and

𝒞∘ : N → N;𝑛 ↦→ 𝒞∘(𝑛) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑛
3 𝑛 mod 6 = 0
𝑛
2 𝑛 mod 4 = 0 and 𝑛 mod 3 ̸= 0
2𝑛
3 𝑛 mod 3 = 0 and 𝑛 mod 2 ̸= 0

𝑛 𝑛 mod 2 = 0 and 𝑛 mod 3 ̸= 0 and 𝑛 mod 4 ̸= 0

2𝑛 all other cases

Lemma 3.3.2 Let (𝒟,𝑚01,𝑚12) be a Delaney-Dress symbol of a tiling 𝑇 . For any
component 𝑂 of 𝒟𝑖𝑗 with 0 ≤ 𝑖 < 𝑗 ≤ 2 we have that 𝑂 contains between
𝒞(𝑚𝑖𝑗(𝑑)) and 2𝑚𝑖𝑗(𝑑) Wags with 𝑑 ∈ 𝑂.

Proof: Since 𝒟 is the quotient of the Wag graph of 𝑇 and the components of which

𝑂 is the quotient contained 2𝑚𝑖𝑗(𝑑) Wags, we have that the number of Wags in

𝑂 is a divisor of 2𝑚𝑖𝑗(𝑑).

As the crystallographic restriction theorem states, the rotational symmetries

in the Euclidean plane are restricted to 2-fold, 3-fold, 4-fold, or 6-fold. Mir-

ror symmetries have order 2. This means that the only possible sizes for 𝑂

are 2𝑚𝑖𝑗(𝑑)
2·6 , 2𝑚𝑖𝑗(𝑑)

2·4 , 2𝑚𝑖𝑗(𝑑)
2·3 , 2𝑚𝑖𝑗(𝑑)

2·2 , 2𝑚𝑖𝑗(𝑑)
2 , 2𝑚𝑖𝑗(𝑑)

6 , 2𝑚𝑖𝑗(𝑑)
4 , 2𝑚𝑖𝑗(𝑑)

3 and

2𝑚𝑖𝑗(𝑑) with the extra condition of course that this needs to be a natural

number. Note that several of these values are the same, they are only given

here to emphasise the origin of these numbers. For given 2𝑚𝑖𝑗(𝑑) the value

𝒞(𝑚𝑖𝑗(𝑑)) corresponds to the minimum of these values. �



114 CHAPTER 3. DELANEY-DRESS SYMBOLS

Lemma 3.3.3 Let (𝒟,𝑚01,𝑚12) be a Delaney-Dress symbol of an orientable tiling
𝑇 . For any component 𝑂 of 𝒟𝑖𝑗 with 0 ≤ 𝑖 < 𝑗 ≤ 2 we have that 𝑂 contains
between 𝒞∘(𝑚𝑖𝑗(𝑑)) and 2𝑚𝑖𝑗(𝑑) Wags with 𝑑 ∈ 𝑂.

Proof: Similar to proof of Lemma 3.3.2, but in this case there are no mirror symme-

tries possible. �

3.3.1 Enumerating all Delaney-Dress symbols
In this section we will describe an algorithm to generate all Delaney-Dress sym-

bols that have a Delaney-Dress graph with a given number 𝑛 of vertices. By applying

this algorithm for all possible values of 𝑛, one can generate all possible Delaney-Dress

symbols.

Due to Lemma 3.3.2 and Lemma 3.3.3, we have that in case the component 𝑓 of

𝐹 , resp. 𝑣 of 𝑉 , is incident to a semi-edge, then the value 𝑚𝐹 (𝑓), resp. 𝑚𝑉 (𝑣), lies

between |𝑓 | and 6|𝑓 |, resp. |𝑣| and 6|𝑣|. Otherwise the value 𝑚𝐹 (𝑓), resp. 𝑚𝑉 (𝑣),

lies between |𝑓 |
2 and 3|𝑓 |, resp. |𝑣|

2 and 3|𝑣|.
We will describe how we determine all possible functions 𝑚𝐹 . The same tech-

nique is used to determine all possible functions 𝑚𝑉 .

DeVnition 3.3.4 Given a set 𝐹 and functions 𝑚𝐹 : 𝐹 → N ∩ {undeVned} and
𝑚′

𝐹 : 𝐹 → N ∩ {undeVned}, we say that (𝐹,𝑚𝐹 ) is isomorphic to (𝐹,𝑚′
𝐹 ) if and

only if there exists an automorphism 𝜎 of 𝐹 such that

∀𝑓 ∈ 𝐹 : 𝑚𝐹 (𝑓) = 𝑚′
𝐹 (𝜎(𝑓)).

◇

We Vrst deVne two functions: min(𝑓) and max(𝑓). For each 𝑓 in 𝐹 we set

min(𝑓) equal to |𝑓 | if 𝑓 contains semi-edges and |𝑓 |
2 otherwise. For each 𝑓 in 𝐹 we

set max(𝑓) equal to 6|𝑓 | if 𝑓 contains semi-edges and 3|𝑓 | otherwise.

We will assign to each component of 𝑓 of 𝐹 a certiVcate. This certiVcate is a 𝑛-

tuple, where 𝑛 is the depth of of the recursive calls. This means that we Vrst assign a

1-tuple to each component 𝑓 ∈ 𝐹 . To do this we calculate the orbits of components



3.3. DELANEY-DRESS SYMBOLS 115

under the automorphism group of 𝒟 and then we sort these orbits in descending

order according to the size of the components they contain. We then assign to each

component the number of its orbit as certiVcate and apply the following algorithm.

1. Choose a component 𝑓 which has the lexicographically smallest certiVcate and

has not yet received a value for 𝑚𝐹 . We denote by 𝑂 the orbit to which 𝑓

belongs. If all components have received a value for 𝑚𝐹 , output this graph

together with the function 𝑚𝐹 .

2. Repeat the following steps until min(𝑓) > max(𝑓):

(a) Assign to 𝑓 the value min(𝑓).

(b) Set the value of min to min(𝑓) for all components in 𝑂.

(c) Recalculate the orbits of components of 𝐹 taking also the already as-

signed values for 𝑚𝐹 into account.

(d) Order the orbits in descending order according to the size of the compo-

nents they contain and by giving priority to orbits for which the value for

𝑚𝐹 is assigned, and append the number of each orbit to the certiVcate of

each component in that orbit.

(e) Recursively apply this algorithm to the Delaney-Dress graph together

with the new 𝑚𝐹 function.

(f) Increment min(𝑓) by one.

Theorem 3.3.5 All structures output by the algorithm above are pairwise non-
isomorphic.

Proof: Let 𝐹 be a set of components and let 𝑚𝐹 and 𝑚′
𝐹 be two diUerent functions

which were generated by the algorithm above. Assume that there is an isomor-

phism 𝜎 from (𝐹,𝑚𝐹 ) to (𝐹,𝑚′
𝐹 ). This implies that 𝜎 is an automorphism of

𝐹 and that the following equality holds for all components 𝑓 ∈ 𝐹 :

𝑚𝐹 (𝑓) = 𝑚′
𝐹 (𝜎(𝑓)). (3.1)
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It is clear that 𝜎 cannot be the identity, so there exists a component 𝑓 ∈ 𝐹 such

that 𝑚𝐹 (𝑓) ̸= 𝑚′
𝐹 (𝑓). Let 𝑓1 be the Vrst component that receives diUerent

values for 𝑚𝐹 and 𝑚′
𝐹 by the algorithm. Without loss of generality, we can

assume that

𝑚𝐹 (𝑓1) < 𝑚′
𝐹 (𝑓1). (3.2)

We denote 𝜎(𝑓1) by 𝑓 ′1.

When the algorithm assigns the value of𝑚′
𝐹 for 𝑓1, we have that 𝑓1 and 𝑓 ′1 are

in the same orbit, and thus

𝑚′
𝐹 (𝑓1) ≤ 𝑚′

𝐹 (𝑓 ′1). (3.3)

Combining these results

𝑚𝐹 (𝑓1)
3.1
= 𝑚′

𝐹 (𝑓 ′1)
3.3
≥ 𝑚′

𝐹 (𝑓1)
3.2
> 𝑚𝐹 (𝑓1).

This contradiction proves that the algorithm does not output isomorphic struc-

tures. �

The algorithm also tries all possible values, so all valid structures are output by

the algorithm.

Since the orbits after assigning a value for 𝑚𝐹 are subsets of the orbits before

that assignment, we do not need to recalculate the orbits once the automorphism

group acts trivially on the components which have not yet received a value for 𝑚𝐹 .

If a graph is output by this algorithm, we then apply a similar algorithm to cal-

culate the value of 𝑚𝑉 . If a graph is then output by that algorithm, we can calculate

the curvature to determine if the assignment is valid for a tiling of the Euclidean

plane.

There is at the moment no independent implementation to verify this algorithm.

The results of this generator have been used to generate tilings which satisfy certain

conditions. This provide some ways to test the implementation of this algorithm as

will be described in the next subsection.
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Property Description Default

𝑚ℱ The minimum face size in the tiling 3
𝑀ℱ The maximum face size in the tiling 6 * MAXN
𝑚𝒱 The minimum vertex degree in the tiling 3
𝑀𝒱 The maximum vertex degree in the tiling 6 * MAXN
𝑚|𝐹 | The minimum number of face orbits in the tiling 1
𝑀|𝐹 | The maximum number of face orbits in the tiling MAXN
𝑚|𝑉 | The minimum number of vertex orbits in the tiling 1
𝑀|𝑉 | The maximum number of vertex orbits in the tiling MAXN

Table 3.6: The properties of tilings which we want to be able to
specify and the corresponding default values. The value MAXN is
implementation speciVc.

3.3.2 Restricting the tilings
In this subsection we will discuss how the generation process can be bounded

in order to generate Delaney-Dress symbols for equivariant tilings with speciVed

properties.

The properties of tilings which we consider are listed in Table 3.6 together with

their default values. The minima can only be increased and the maxima can only

be decreased. In principle the algorithm would work without the maxima having a

default value, or having inVnity as the default value, but in a program a maximum

is enforced by limitations of the computer. To prevent any confusion we will refer to

the vertices of the Delaney-Dress graph as Wags for the rest of this section.

The generation algorithm for Delaney-Dress symbols works in diUerent phases:

1. Generate all acceptable lists of blocks.

2. Given a list of blocks 𝐿, generate all partial 𝐶𝑞
4 -marked pregraphs in B𝐿.

3. Given a partial 𝐶𝑞
4 -marked pregraph 𝑃 , generate all Delaney-Dress graphs

based on 𝑃 .

4. Given a Delaney-Dress graph𝐷, generate all Delaney-Dress symbols that have
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𝐷 as Delaney-Dress graph.

In each phase we will try to discard as many structures as possible that do not lead

to a Delaney-Dress symbol that satisVes the restrictions.

3.3.2.1 ReVning the restrictions

The restrictions we allow to be speciVed are not all independent of each other.

Before we start to bound the generation process we Vrst try to reVne the restrictions

given. Using the curvature we have

∑︁
𝑑∈𝒟

(︂
1

𝑀ℱ
+

1

𝑀𝒱
− 1

2

)︂
≤
∑︁
𝑑∈𝒟

(︂
1

𝑚01(𝑑)
+

1

𝑚12(𝑑)
− 1

2

)︂
≤
∑︁
𝑑∈𝒟

(︂
1

𝑚ℱ
+

1

𝑚𝒱
− 1

2

)︂
,

which is equivalent to

|𝒟|
(︂

1

𝑀ℱ
+

1

𝑀𝒱
− 1

2

)︂
≤
∑︁
𝑑∈𝒟

(︂
1

𝑚01(𝑑)
+

1

𝑚12(𝑑)
− 1

2

)︂
≤ |𝒟|

(︂
1

𝑚ℱ
+

1

𝑚𝒱
− 1

2

)︂
.

Since |𝒟| is always strictly positive and the curvature is equal to 0, this gives some

simple restrictions on the minimum and maximum face sizes and vertex degrees:

0 ≤ 2𝑚𝒱 + 2𝑚ℱ −𝑚𝒱𝑚ℱ , (3.4)

0 ≥ 2𝑀𝒱 + 2𝑀ℱ −𝑀𝒱𝑀ℱ . (3.5)

An overview of which combinations are allowed by these two inequalities, is

given in Table 3.7 and Table 3.8.

3.3.2.2 Possible orders of Delaney-Dress graphs

As described above, the generation of the Delaney-Dress symbols is done by Vrst

generating the possible Delaney-Dress graphs and then looking for the functions𝑚01

and 𝑚12. Limiting the number of Delaney-Dress graphs is therefore an important

part of making the generation of the Delaney-Dress symbols as eXcient as possible.
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3 4 5 6 7
3 3 2 1 0 -1
4 2 0 -2 -4 -6
5 1 -2 -5 -8 -11
6 0 -4 -8 -12 -16
7 -1 -6 -11 -16 -21

Table 3.7: An overview of the inequality 3.4 calculated for several
diUerent combinations of minima. The shaded cells correspond to
combinations of minima that are allowed.

3 4 5 6 7
3 3 2 1 0 -1
4 2 0 -2 -4 -6
5 1 -2 -5 -8 -11
6 0 -4 -8 -12 -16
7 -1 -6 -11 -16 -21

Table 3.8: An overview of the inequality 3.5 calculated for several
diUerent combinations of maxima. The shaded cells correspond to
combinations of maxima that are not allowed.
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A Vrst thing we can try to bound is the size of possible Delaney-Dress graphs.

The formula for the curvature is

𝐾 =
∑︁
𝑑∈𝒟

(︂
1

𝑚01(𝑑)
+

1

𝑚12(𝑑)
− 1

2

)︂
= 0 (3.6)

Due to Lemma 3.3.2 and since for each 𝑑 ∈ 𝒟 it is so that 𝑚12(𝑑) ≤ 𝑚𝒱 , we Vnd

that

2|𝐹 | + |𝒟|
(︂

1

𝑚𝒱
− 1

2

)︂
≥ 0 (3.7)

which can be rewritten as

|𝒟| ≤
(︂

4𝑚𝒱

𝑚𝒱 − 2

)︂
|𝐹 |.

This implies the following bound for the number of Wags in the Delaney-Dress graph:

|𝒟| ≤
(︂

4𝑚𝒱

𝑚𝒱 − 2

)︂
𝑀|𝐹 |.

In the formula for the curvature the roles of 𝑚01 and 𝑚12 are interchangeable.

Using a similar calculation as above but interchanging vertices by faces, we get

|𝒟| ≤
(︂

4𝑚ℱ

𝑚ℱ − 2

)︂
𝑀|𝑉 |.

If we use the upper bound from Lemma 3.3.2 for the number of Wags for both the

vertex orbits and face orbits and substitute these into the curvature formula, we get

|𝒟| ≤ 4 (|𝑉 | + |𝐹 |) . (3.8)

This formula implies the following upper bound on the number of Wags in a Delaney-

Dress graph:

|𝒟| ≤ 4
(︀
𝑀|𝑉 | +𝑀|𝐹 |

)︀
.

The lower bound of Lemma 3.3.2 gives us a minimum amount of Wags that each

face orbit contributes to the Delaney-Dress graph. By multiplying this by the mini-

mum of face orbits required, we can Vnd the following lower bound for the number

of Wags:

|𝒟| ≥ 𝑚|𝐹 | min{𝒞(𝑛)|𝑚ℱ ≤ 𝑛 ≤𝑀ℱ}.
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In case of orientable tilings we can use Lemma 3.3.3 and improve this bound to

|𝒟| ≥ 𝑚|𝐹 | min{𝒞∘(𝑛)|𝑚ℱ ≤ 𝑛 ≤𝑀ℱ}.

Analogously we can Vnd the following lower bound for the number of Wags:

|𝒟| ≥ 𝑚|𝑉 | min{𝒞(𝑛)|𝑚𝒱 ≤ 𝑛 ≤𝑀𝒱}.

In case of orientable tilings we can improve this bound to

|𝒟| ≥ 𝑚|𝑉 | min{𝒞∘(𝑛)|𝑚𝒱 ≤ 𝑛 ≤𝑀𝒱}.

If we use the upper bound of Lemma 3.3.2 and the required maxima for the num-

ber of orbits, we can make a similar argumentation and get the following upper

bounds on the number of Wags:

|𝒟| ≤ 2𝑀|𝐹 |𝑀ℱ

and

|𝒟| ≤ 2𝑀|𝑉 |𝑀𝒱 .

Another restriction we might want to specify for a tiling is a list of required face

sizes and vertex degrees together with a required minimum multiplicity, and a list of

forbidden face sizes and vertex degrees. Since several face orbits, resp. vertex orbits,

might have the same size, resp. degree, these lists will be represented by multisets.

For the forbidden face sizes and vertex degrees of course a set suXces. We denote

these multisets as follows:

ℛℱ Multiset of required face sizes

ℛ𝒱 Multiset of required vertex degrees

𝒰ℱ Set of forbidden (unwanted) face sizes

𝒰𝒱 Set of forbidden (unwanted) vertex degrees

Given these multisets and sets we can rewrite the last six bounds:

|𝒟| ≥
∑︁

𝑓∈ℛℱ

𝒞(𝑓) + (𝑚|𝐹 | − |ℛℱ |) min{𝒞(𝑛)|𝑚ℱ ≤ 𝑛 ≤𝑀ℱ ∧ 𝑛 /∈ 𝒰ℱ}
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|𝒟| ≥
∑︁

𝑣∈ℛ𝒱

𝒞(𝑣) + (𝑚|𝑉 | − |ℛ𝒱 |) min{𝒞(𝑛)|𝑚𝒱 ≤ 𝑛 ≤𝑀𝒱 ∧ 𝑛 /∈ 𝒰𝒱}

|𝒟| ≥
∑︁

𝑓∈ℛℱ

𝒞∘(𝑓) + (𝑚|𝐹 | − |ℛℱ |) min{𝒞∘(𝑛)|𝑚ℱ ≤ 𝑛 ≤𝑀ℱ ∧ 𝑛 /∈ 𝒰ℱ}

|𝒟| ≥
∑︁

𝑣∈ℛ𝒱

𝒞∘(𝑣) + (𝑚|𝑉 | − |ℛ𝒱 |) min{𝒞∘(𝑛)|𝑚𝒱 ≤ 𝑛 ≤𝑀𝒱 ∧ 𝑛 /∈ 𝒰𝒱}

|𝒟| ≤ 2

⎛⎝ ∑︁
𝑓∈ℛℱ

𝑓

⎞⎠+ 2(𝑀|𝐹 | − |ℛℱ |)𝑀ℱ

|𝒟| ≤ 2

(︃ ∑︁
𝑣∈ℛ𝒱

𝑣

)︃
+ 2(𝑀|𝑉 | − |ℛ𝒱 |)𝑀𝒱

There are several classes of tilings that have been extensively studied and of

course we want this generator to be able to generate these speciVc classes. The class

of tile-𝑁 -transitive tilings can be generated by setting 𝑚|𝐹 | = 𝑀|𝐹 | = 𝑁 . Another

class of tilings which has received a lot of attention is the class of heaven-and-hell

tilings.

DeVnition 3.3.6 A tiling is a heaven-and-hell tiling if its faces can be colouredheaven-and-
hell
tiling

black and white such that no two faces of the same colour share an edge.
A regular heaven-and-hell tiling is a heaven-and-hell tiling which has exactly

regular
heaven-and-
hell
tiling

two orbits of faces if we add the restriction that faces with diUerent colours cannot
be mapped to each other.

A semi-regular heaven-and-hell tiling is a heaven-and-hell tiling of which the

semi-
regular
heaven-and-
hell
tiling

faces can be coloured black and white such that there is exactly one orbit of black
faces if we add the restriction that faces with diUerent colours cannot be mapped to
each other. ◇

These classes of tilings got their name from the famous pictures of M.C. Escher.

In [23] an upper bound for the size of the Delaney-Dress graph in case of semi-

regular heaven-and-hell tilings is given. This upper bound is in some cases stricter

than the upper bounds we have obtained until this point. This bound is also based

on the curvature. If a tiling is semi-regular and heaven-and-hell, the implication for
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the Delaney-Dress graph is that we can partition the Wags into two equal-sized sets

𝒟𝐵 and 𝒟𝑊 such that there is no 𝜎2-edge from a Wag in 𝒟𝐵 to a Wag in 𝒟𝑊 .

0 =
∑︁
𝑑∈𝒟

(︂
1

𝑚01(𝑑)
+

1

𝑚12(𝑑)
− 1

2

)︂
=

∑︁
𝑑∈𝒟𝐵

(︂
1

𝑚01(𝑑)

)︂
+
∑︁

𝑑∈𝒟𝑊

(︂
1

𝑚01(𝑑)

)︂
+
∑︁
𝑑∈𝒟

(︂
1

𝑚12(𝑑)
− 1

2

)︂
Using the fact that there is only one orbit of black faces, we get

0 ≤ 2 +
|𝒟𝑊 |
𝑚ℱ

+
|𝒟|
𝑚𝒱

− |𝒟|
2
,

and because |𝒟𝑊 | = |𝒟𝐵 | = |𝒟|
2

0 ≤ 2 + |𝒟|
(︂
𝑚𝒱 + 2𝑚ℱ −𝑚𝒱𝑚ℱ

2𝑚𝒱𝑚ℱ

)︂
.

The smallest possible value for 𝑚ℱ is 3 and for 𝑚𝒱 is 4, so 𝑚𝒱 + 2𝑚ℱ −𝑚𝒱𝑚ℱ will

always be negative and we Vnd

|𝒟| ≤ 4𝑚𝒱𝑚ℱ

𝑚𝒱𝑚ℱ −𝑚𝒱 − 2𝑚ℱ
.

3.3.2.3 Rejecting lists of blocks

Once we have the possible orders of valid Delaney-Dress graphs the Vrst step in

the generation process is to generate lists of blocks for each of these orders. In this

section we will be looking at when we can decide that a lists of blocks can never lead

to a Delaney-Dress graph that can be used for a valid Delaney-Dress symbol given

the restrictions which were Vxed earlier. Table 3.9 lists some of the properties of a

list of blocks which we will use to reject some of the lists. The value 𝑆1 is already

known during this phase since no semi-edges are added while connecting the list of

blocks to form a 𝐶𝑞
4 -marked pregraph.

A PC block or a LPC block with parameter 𝑝 (see Figure 3.13) always corresponds

to a component of 𝒟01 and a component of 𝒟12 both having more than 2𝑝 Wags
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Property Description

𝑆1 The number of semi-edges with colour 1.
𝑄3 The number of marked 𝐶4-quotients of type 𝑞3.
𝑄4 The number of marked 𝐶4-quotients of type 𝑞4.

Table 3.9: Some properties of lists of blocks which are useful to
reject such a list.

(more since the endpoints of a block may not be connected to each other). Due to

Lemma 3.3.2 such a block is not possible in a tiling which has 𝑀ℱ ≤ 𝑝 or 𝑀𝒱 ≤ 𝑝.

For a LPC block with parameter 𝑝we can even improve this to𝑀ℱ ≤ 2𝑝 or𝑀𝒱 ≤ 2𝑝.

Given a Delaney-Dress graph 𝒟, the components of 𝒟𝑖𝑗 with 0 ≤ 𝑖 < 𝑗 ≤ 2

are either cycles or paths were each end point is incident to a semi-edge or a single

vertex which is incident to two semi-edges. The semi-edges in a component of 𝒟𝑖𝑗

are called the end points of that component and each component either has zero or

two endpoints. Each semi-edge with colour 1 is an endpoint of a component of 𝒟01

and of a component of 𝒟12. The semi-edges in each quotient of type 𝑞4 also are the

endpoints respectively of a component of 𝒟01 and of a component of 𝒟12. This gives

us the following two inequalities which is valid for any Delaney-Dress graph:

|𝒱| ≥
⌈︂
𝑆1 +𝑄4

2

⌉︂

|ℱ| ≥
⌈︂
𝑆1 +𝑄4

2

⌉︂
This gives us the following restrictions for 𝑀|𝒱| and 𝑀|ℱ|:

𝑀|𝒱| ≥
⌈︂
𝑆1 +𝑄4

2

⌉︂

𝑀|ℱ| ≥
⌈︂
𝑆1 +𝑄4

2

⌉︂
and

⌈︁
𝑆1+𝑄4

2

⌉︁
is a possible improvement for both 𝑚|ℱ| and 𝑚|𝒱|.



3.3. DELANEY-DRESS SYMBOLS 125

Each quotient of type 𝑞3 contains two semi-edges and two vertices. Per quotient

these two semi-edges will always receive the same colour: either 0 or 2. This means

that at this point we cannot decide whether these semi-edges are the endpoint of

a component of 𝒟01 or of a component of 𝒟12, but we do know that together all

these semi-edges are the endpoints of at least𝑄3 components of 𝒟01 and 𝒟12, so the

following inequality holds for any Delaney-Dress graph:

2

⌈︂
𝑆1 +𝑄4

2

⌉︂
+𝑄3 ≤ |𝒱| + |ℱ|,

which gives us the following restriction

2

⌈︂
𝑆1 +𝑄4

2

⌉︂
+𝑄3 ≤𝑀|𝒱| +𝑀|ℱ|.

In case we only want to generate Delaney-Dress symbols for orientable tilings,

we only need bipartite Delaney-Dress graphs without semi-edges. So we can exclude

any lists of blocks that contain a block that has a semi-edge in it or has an odd cycle.

3.3.2.4 Rejecting Delaney-Dress graphs

It is important to avoid Delaney-Dress graphs which will not be used, since trying

to Vnd the possible functions 𝑚01 and 𝑚12 for each Delaney-Dress graph is an ex-

pensive part of the algorithm. In Table 3.10 we see that trying to reject Delaney-Dress

graphs as soon as possible is a very useful thing to do: only a very small percentage

of Delaney-Dress graphs appear in Delaney-Dress symbols of tilings of the Euclidean

plane, and probably even less will satisfy the speciVed restrictions.

When looking for the functions 𝑚01 and 𝑚12 we already have more informa-

tion at hand and we can improve the bounds to reduce the number of functions

which need to be checked. Once we have a Delaney-Dress graph the number of

𝒟𝑖𝑗-components with 0 ≤ 𝑖 < 𝑗 ≤ 2 and their respective orders are known.

We can, e.g., revisit the inequality 3.7:

2|𝐹 | +
|𝒟|
𝑚𝒱

− |𝒟|
2

≥ 0.
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𝑛 used unused ratio used

1 1 0 100.00%
2 7 0 100.00%
3 3 0 100.00%
4 20 2 90.91%
5 7 6 53.85%
6 35 35 50.00%
7 18 49 26.87%
8 90 225 28.57%
9 63 330 16.03%

10 163 1414 10.34%
11 161 2354 6.40%
12 452 9028 4.77%
13 436 16769 2.53%
14 1089 60505 1.77%
15 1323 122630 1.07%
16 2997 430033 0.69%
17 3747 927982 0.40%
18 8048 3188793 0.25%

Table 3.10: The number of Delaney-Dress graphs that appear in
Delaney-Dress symbols of a tiling of the Euclidean plane and those
that do not appear in such symbols.
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which can be rewritten as

|𝒟| ≥
(︂
|𝒟|
2

− 2|𝐹 |
)︂
𝑚𝒱 .

In case (︂
|𝒟|
2

− 2|𝐹 |
)︂
𝑚𝒱 > |𝒟| (3.9)

this gives us that the Delaney-Dress graph will not lead to a valid Delaney-Dress

symbol. By interchanging faces and vertices in the previous formulas we Vnd that a

Delaney-Dress graph with (︂
|𝒟|
2

− 2|𝑉 |
)︂
𝑚ℱ > |𝒟| (3.10)

will not lead to a valid Delaney-Dress symbol.

Another useful formula is inequality 3.8:

|𝒟| ≤ 4 (|𝑉 | + |𝐹 |) .

This formula does not give any improvements on the bounds we impose on the face

sizes and vertex degrees, but it does give us a criterion to exclude Delaney-Dress

graphs which have too few 𝒟01- and 𝒟12-components for their order, i.e., we can

reject a Delaney-Dress graph in case

|𝒟| > 4 (|𝑉 | + |𝐹 |) . (3.11)

In Table 3.11 we give an overview of how many Delaney-Dress graphs can be

rejected based upon 3.9, 3.10 and 3.11.

3.4 Results

Table 3.12 shows the number of block lists,𝐶𝑞
4 -marked pregraphs and𝐶𝑞

4 -markable

pregraphs with a given number of vertices. Table 3.13 shows the number of Delaney-

Dress graphs with a given number of vertices. Table 3.14 gives the number of

Delaney-Dress symbols of the Euclidean plane with a Delaney-Dress graph with a

given number of vertices.
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1)
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(3
.1

0)
an

d
(3

.1
1)

(3
.9

),
(3

.1
0)

an
d

(3
.1

1)

To
ta

l

9 0.000% 0.000% 0.031% 0.000% 0.000% 0.000% 0.000% 0.031%
10 0.000% 0.000% 0.040% 0.000% 0.000% 0.000% 0.000% 0.040%
11 0.000% 0.000% 0.014% 0.000% 0.000% 0.000% 0.000% 0.014%
12 0.000% 0.000% 0.021% 0.000% 0.000% 0.000% 0.000% 0.021%
13 0.048% 0.048% 0.000% 0.000% 0.025% 0.025% 0.008% 0.153%
14 0.051% 0.051% 0.000% 0.000% 0.027% 0.027% 0.010% 0.166%
15 0.034% 0.034% 0.000% 0.000% 0.015% 0.015% 0.004% 0.101%
16 0.037% 0.037% 0.000% 0.000% 0.016% 0.016% 0.006% 0.113%
17 0.013% 0.013% 0.042% 0.000% 0.020% 0.020% 0.002% 0.109%
18 0.014% 0.014% 0.040% 0.000% 0.023% 0.023% 0.003% 0.117%
19 0.010% 0.010% 0.027% 0.000% 0.012% 0.012% 0.001% 0.072%
20 0.011% 0.011% 0.027% 0.000% 0.015% 0.015% 0.002% 0.080%
21 0.003% 0.003% 0.086% 0.000% 0.012% 0.012% 0.001% 0.117%
22 0.004% 0.004% 0.083% 0.000% 0.014% 0.014% 0.001% 0.120%
23 0.003% 0.003% 0.060% 0.000% 0.008% 0.008% 0.000% 0.081%
24 0.003% 0.003% 0.059% 0.000% 0.010% 0.010% 0.001% 0.085%
25 0.026% 0.026% 0.044% 0.000% 0.042% 0.042% 0.010% 0.190%
26 0.026% 0.026% 0.041% 0.000% 0.043% 0.043% 0.012% 0.191%

Table 3.11: The percentage of Delaney-Dress graphs that satisfy
the conditions 3.9, 3.10 and/or 3.11 and thus can be rejected. On
up to 8 vertices, no Delaney-Dress graph satisVes any of these
conditions.
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The program ddgraphs has been tested by comparing the results to some known

enumerations of tilings.

There are 93 equivariant tile-transitive tilings of the Euclidean plane (see e.g.,

[34, 33]). The program ddgraphs can be used to generate these tilings by setting

the maximum number of face orbits to 1. Based on this restriction, the program then

tries to reVne the restrictions and Vnally starts the generation with the restrictions

in Table 3.15.

There are 1270 equivariant tile-2-transitive tilings of the Euclidean plane (see e.g.,

[31]). The program ddgraphs can be used to generate these tilings by setting the

minimum and maximum number of face orbits to 2. Based on this restriction, the

program then tries to reVne the restrictions and Vnally starts the generation with the

restrictions in Table 3.16.

There are 30 equivariant edge-transitive tilings of the Euclidean plane [15]. This

number also agrees with the results obtained by the program ddgraphs.

In [24], the 37 minimal, non-transitive equivariant tilings of the Euclidean plane

are enumerated. The program ddgraphs can be used to generate these tilings by

setting the maximum and mininum number of face, vertex and edge orbits to 2.

In [30], the 69 tile-2-transitive tilings of the plane with all faces quadrangles and

all vertices of degree 4 are enumerated. Also for this class the number of tilings

coincide with the number of tilings as generated by the program ddgraphs.

3.5 Future work

As was shown in Table 3.10, only a very small percentage of Delaney-Dress graphs

are used in the Delaney-Dress symbols of the Euclidean plane. It might be possible

to discover structure in the set of Delaney-Dress graphs that are used and those that

are not. This could be possible at diUerent levels, but the most promising moments

seem to be after the lists are constructed and after all colours are assigned.

Another aspect where improvement might be possible is in the reVnement of the

parameters. It appears that the eUective maximum vertex degree and/or face size

is very often smaller than the one determined at the start of the generation. In Ta-
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𝑛 Delaney-Dress graphs time rate

1 1 0.0s
2 7 0.0s
3 3 0.0s
4 22 0.0s
5 13 0.0s
6 70 0.0s
7 67 0.0s
8 315 0.0s
9 393 0.0s

10 1577 0.0s
11 2515 0.0s
12 9480 0.1s 94800.00/s
13 17205 0.1s 172050.00/s
14 61594 0.3s 205313.33/s
15 123953 0.4s 309882.50/s
16 433030 1.6s 270643.75/s
17 931729 2.5s 372691.60/s
18 3196841 9.1s 351301.21/s
19 7258011 16.3s 445276.75/s
20 24630262 55.0s 447822.95/s
21 58309071 105.9s 550605.01/s
22 196266434 345.5s 568064.93/s
23 481330615 722.2s 666478.28/s
24 1610942856 2329.2s 691629.25/s
25 4071117829 5184.9s 785187.34/s
26 13569014653 16422.1s 826265.50/s
27 35202390477 38273.5s 919758.85/s
28 116994675348 121796.3s 960576.60/s
29 310624700725 295889.0s 1049801.45/s
30 1030455432427 949823.0s 1084892.06/s

Table 3.13: An overview of the number of Delaney-Dress graphs
and the time needed by ddgraphs to generate these graphs when
run on a 2.40 GHz Intel Xeon.
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𝑛 Delaney-Dress time
symbols

1 3 0.0s
2 15 0.0s
3 8 0.0s
4 37 0.0s
5 15 0.0s
6 86 0.0s
7 64 0.0s
8 217 0.2s
9 185 0.5s

10 527 3.8s
11 506 13.0s
12 1597 95.1s
13 1575 360.4s
14 4227 2531.5s
15 4532 10383.8s
16 12078 70331.9s
17 13105 304083.2s
18 34250 1994897.8s

Table 3.14: An overview of the number of Delaney-Dress sym-
bols of the Euclidean plane and the time needed by ddgraphs to
generate these symbols when run on a 2.40 GHz Intel Xeon.
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Calculated Actual

𝑚|𝒟| 1 1
𝑀|𝒟| 12 12
𝑚ℱ 3 3
𝑀ℱ 144 6
𝑚𝒱 3 3
𝑀𝒱 144 12
𝑚|𝑉 | 1 1
𝑀|𝑉 | 12 4

Table 3.15: The reVnement on the parameters as calculated by
ddgraphs in order to generate the tile-transitive tilings of the
plane

Calculated Actual

𝑚|𝒟| 2 2
𝑀|𝒟| 24 24
𝑚ℱ 3 3
𝑀ℱ 276 24
𝑚𝒱 3 3
𝑀𝒱 288 24
𝑚|𝑉 | 1 1
𝑀|𝑉 | 24 6

Table 3.16: The reVnement on the parameters as calculated by
ddgraphs in order to generate the tile-2-transitive tilings of the
plane
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ble 3.15, for instance, one can see a comparison of the values calculated for the gen-

eration of the tile-transitive tilings and the actual values. Table 3.16 shows the same

values for the generation of the tile-2-transitive tilings. Since the calculation of the

functions 𝑚01 and 𝑚12 is very time consuming and happens a lot, any bound that

limits the number of calculations per graph can improve the speed of the program

enormously.

At the moment it is not possible to limit the generation of Delaney-Dress symbols

to symbols of heaven-and-hell tilings of the Euclidean plane. It is however the long-

term intention to allow the inclusion of this restriction, and some preliminary versions

of bounding criteria are already implemented.

Face-, edge- and/or vertex-colourable tilings are other classes of tilings that we

eventually want the generator to be able to construct, but there is still some work

that needs to be done for these cases.
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(4.1.a) (4.1.b)

Figure 4.1: The structures of naphthalene (a) and azulene (b).

The research described in this chapter was joint work with Edward Kirby and

Olaf Delgado-Friedrichs. It is described in [56].

Azulene (C10H8) is a molecule that is an isomer of naphthalene. It consists of

a Vve-ring and a seven-ring that share two carbon atoms and a bond. It is not yet

known how many variations of “graphite-like” networks of azulenes are theoretically

possible. This research gives a partial answer to this question: we will give an enu-

meration of such networks with certain conditions on the symmetry of the azulenes

in the network. A fullerene-style network of azulenes, also called an azulenoid, willazulenoid
be modeled by a tiling of the Euclidean plane, where the atoms correspond to the

vertices, the bonds correspond to the edges and the rings correspond to the faces.

4.1 DeVnitions

DeVnition 4.1.1 An azulene graph is a graph isomorphic to the graph shown inazulene
graph Figure 4.2. ◇

DeVnition 4.1.2 An azulenoid tiling 𝑇 is a tiling of the Euclidean plane E2 suchazulenoid
tiling that the skeleton graph 𝑆 of 𝑇 is a cubic graph and there exists a partition 𝒫 of the

vertices of 𝑆 such that for each 𝑃 ∈ 𝒫 the graph 𝑆𝑃 induced by 𝑃 in 𝑆 is isomorphic
to the azulene graph and the 5- and 7-cycle in 𝑆𝑃 are facial cycles. Such a partition
𝒫 is called an azulenic set of the azulenoid tiling T. ◇azulenic set
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Figure 4.2: The azulene graph.

Owing to the large number of possible azulenoids we needed to impose an extra

restriction on the generated set of azulenoids. Our choice was to Vrst enumerate only

those equivariant azulenoid tilings (𝑇,Γ) that have an azulenic set 𝒫 with this extra

condition:

∀𝑃1, 𝑃2 ∈ 𝒫 : ∃𝛾 ∈ Γ : 𝛾𝑃1 = 𝑃2. (𝒜𝒯 )

In an equivariant azulenoid tiling with this property, there exists a partition of the

vertices into azulenes such that each azulene can be mapped to each other azulene

by a symmetry of the tiling.

DeVnition 4.1.3 An equivariant azulenoid tiling that has property 𝒜𝒯 is called an
azulene-transitive azulenoid tiling. ◇ azulene-

transitive
azulenoid
tiling4.2 The enumeration of azulenoids

4.2.1 Translation to Delaney-Dress symbols
DeVnition 4.2.1 𝐴𝑇 is the set of all pairs which consist of an azulene-transitive 𝐴𝑇

azulenoid tiling together with a marked azulenic set. ◇

By a marked azulenic set in the deVnition above we mean that the faces corre-

sponding to the facial cycles in each set of the partition are marked.

An azulene corresponds to twenty-four Wags in the Wagspace distributed over two

diUerent 𝜎0𝜎1-components .
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The only possible internal symmetry of an azulene in these tilings is a mirror axis.

The only other symmetry that could reduce the number of Wags in the Delaney-Dress

graph is a glide-reWection with an axis through the center of the bond connecting the

pentagon and the heptagon. These symmetries can be ‘removed’ by creating the

orientable cover of the tiling as described in paragraph 1.3.7.2. In this orientable

cover there is also only one orbit of azulenes.

DeVnition 4.2.2 𝐴∘
𝑇 is the set of all pairs which consist of an azulene-transitive𝐴∘

𝑇

azulenoid tiling together with a marked azulenic set where the azulenes have no
internal symmetry. ◇

We use a two-step process based on a top-down approach, where we Vrst gener-

ate a set of coarser structures and afterwards generate all the azulenoid tilings from

the structures generated in this Vrst step. We can group the pentagon and the hep-

tagon into one tile. Since azulene only has eight outgoing bonds, we can transform it

to an octagon (see Figure 4.3). An octagon without internal symmetries corresponds

to a single 𝜎0𝜎1-component with sixteen Wags. This gives us a new set of tilings.

Figure 4.3: An azulene has 8 outgoing bonds.

DeVnition 4.2.3 𝑂𝑇 is the set of pairs ((𝑇,Γ),𝒪) where (𝑇,Γ) is an equivariant𝑂𝑇

tiling with a cubic skeleton graph 𝑆 and 𝒪 is a partition of the vertices of 𝑆 into
facial cycles of length 8, such that for any two octagons 𝑂1, 𝑂2 ∈ 𝒪, there exists an
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action 𝛾 ∈ Γ that maps𝑂1 on𝑂2; that the octagons in𝒪 have no internal symmetry,
i.e., that any action that maps an octagon in 𝒪 to itself is necessarily the identity;
and that the faces corresponding to the facial cycles of length 8 in 𝒪 are marked. ◇

As described above, each tiling in 𝐴∘
𝑇 can be transformed into a tiling in 𝑂𝑇 by

replacing the azulenes by octagons. If we take a tiling in 𝑂𝑇 and replace the special

octagons with azulenes, we get a tiling which belongs to 𝐴∘
𝑇 . We can thus Vrst

generate all the tilings in 𝑂𝑇 and then replace the special octagons by azulenes in

all possible ways. Finally we can get the tilings in 𝐴𝑇 by calculating the minimal

symbols as described in paragraph 1.3.7.1.

We can now write down the properties that a Delaney-Dress symbol must have

to be the symbol of a tiling in 𝑂𝑇 .

Property D1 expresses that there is a partition of the vertices into facial cycles of

length 8 that correspond to marked octagons without internal symmetries. Property

D2 expresses that the skeleton graph is cubic. Finally property D3 expresses that this

Delaney-Dress symbol corresponds to a tiling of the Euclidean plane.

D1. There exists a 𝜎0𝜎1-component 𝑂 with the following properties:

∙ 𝑚01(𝑂) = 8,

∙ 𝑂 is a cycle of length 16,

∙ for all 𝜎1𝜎2-components 𝑉 , we have 𝑂 ∩ 𝑉 ̸= ∅,

∙ for all 𝑑 ∈ 𝑂, we have 𝜎2𝑑 /∈ 𝑂;

D2. for all 𝜎1𝜎2-components 𝑉 , we have 𝑚12(𝑉 ) = 3;

D3. (𝒟;𝑚01,𝑚12) satisVes the conditions of Theorem 1.3.16 and the curvature of

this symbol is equal to 0.

4.2.2 Restrictions on the Delaney-Dress symbol

4.2.2.1 Restrictions on the graph

In Chapter 3 we already discussed the restrictions that a graph needs to satisfy

to be a Delaney-Dress graph. We will Vrst summarise these results, before we give
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(4.4.a) (4.4.b)

(4.4.c) (4.4.d) (4.4.e)

Figure 4.4: The Vve possible 𝜎0𝜎2-orbit s.

the restrictions that are speciVc for this class of tilings.

A 𝜎0𝜎2-component corresponds to a 4-cycle in the Wag graph. Such a cycle has

only Vve possible quotients in the Delaney-Dress graph. These Vve possibilities are

shown in Figure 4.4. Figure 4.4.b and Figure 4.4.e correspond to 𝜎0𝜎2-orbits of size 1

in the Delaney-Dress graph. The other three all correspond to 𝜎0𝜎2-orbits of size 2

in the Delaney-Dress graph.

All the vertices have degree 3 and this means that a 𝜎1𝜎2-orbit corresponds to

a 6-cycle in the Wag graph. Such a cycle has only four possible quotients in the

Delaney-Dress graph. These four possibilities are shown in Figure 4.5.

An octagon in the tiling corresponds to a 𝜎0,𝜎1-cycle in the Wag graph with 16

vertices and thus an octagon without internal symmetry corresponds to a 𝜎0,𝜎1-cycle

with 16 vertices in the Delaney-Dress graph. Since every tiling needs to contain

such a special orbit of octagons, we take this 16-cycle as starting point and call this

component again 𝑂.

Every 𝜎1𝜎2-component in a tiling in 𝑂𝑇 has a non-empty intersection with 𝑂.

Since 𝑂 does not contain a 𝜎1-semi-edge the 𝜎1𝜎2-component shown in Figure 4.5.a

is not possible. As the marked octagons do not neighbour each other, we have that
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(4.5.a) (4.5.b)

(4.5.c) (4.5.d)

Figure 4.5: The four possible 𝜎1𝜎2-orbit s.

for each Wag 𝑓 ∈ 𝑂, 𝜎2(𝑓) must be in another 𝜎0𝜎1-component . Figure 4.5.b cor-

responds to a vertex where equivalent faces meet as the 𝜎2-edge does not leave the

𝜎0𝜎1-component. So the 𝜎1𝜎2-component shown in this Vgure is not possible. The

𝜎1𝜎2-component in Figure 4.5.c together with the fact that 𝑚12 is equal to 3 on this

component would correspond to a vertex where two equivalent faces meet a third

face. This would be possible if 𝑂 corresponded to the third face. However, since the

𝜎1-semi-edge may not belong to 𝑂, this is also not possible. So we Vnd that all the

𝜎1𝜎2-components around 𝑂 must be of the kind shown in Figure 4.5.d. Since only

one face around each vertex can correspond to 𝑂, only one 𝜎1-edge for each 𝜎1, 𝜎2-

component can be contained in 𝑂. So we can add 8 𝜎1, 𝜎2-components around 𝑂

each of which has 2 vertices in common with 𝑂 and 4 new vertices. This gives us

the partial Delaney-Dress graph containing 16 + 32 = 48 vertices that is shown in

Figure 4.6.

Since each component corresponding to a vertex has a non-empty intersection

with the orbit corresponding to the octagon, we have now found all the vertices, and

thus also all the Wags in the Delaney-Dress graph.

As the 𝜎0-edges in 𝑂 are already part of a 𝜎2𝜎0𝜎2-path of length 3, the only
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Figure 4.6: The Vrst partial Delaney-Dress graph 𝒟 after con-
necting all the vertex components to the octagon component.
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possible type of 𝜎0𝜎2-component that can contain these edges is the one shown

in Figure 4.4.a. This can also easily be seen because the edges of the octagon corre-

sponding to𝑂 need to separate the octagon from a face that is not equivalent and the

only 𝜎0𝜎2-components that do this are the components of the type in Figure 4.4.a.

After we add these components we get the partial Delaney-Dress graph that is

shown in Figure 4.7. This graph however is not yet complete: there are still some

connections missing at 16 vertices of degree 2.

Figure 4.7: The partial Delaney-Dress graph 𝒟 at the beginning
of the algorithm.

For what follows we will denote the partial Delaney-Dress graph that we have at
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this point with 𝒟. It is depicted in Figure 4.7.

4.2.2.2 Restrictions on the mappings

We will now try to Vnd more restrictions for the complete Delaney-Dress sym-

bol. We still have not used condition D3 which states, among other things, that the

curvature for the symbol is zero, i.e.∑︁
𝑑∈𝒟

(
1

𝑚01(𝑑)
+

1

𝑚12(𝑑)
− 1

2
) = 0.

The partial symbol 𝒟 contains 48 Wags and for each Wag 𝑑 ∈ 𝒟 it is so that

𝑚12(𝑑) = 3. Knowing this, we can reduce the equality above to the following:∑︁
𝑑∈𝒟

1

𝑚01(𝑑)
+ 16 − 24 = 0,

or ∑︁
𝑑∈𝒟

1

𝑚01(𝑑)
= 8.

For the component 𝑂 we also already know the value of 𝑚01. These are 16 Wags

for which we know that for each Wag 𝑑 ∈ 𝑂 : 𝑚01(𝑑) = 8. We will denote the set

of remaining Wags by 𝒟32. (This means that 𝒟32 consists of the outer two circles

in Figure 4.7 or, equivalently: the Wags that do not belong to the inner octagon in

Figure 4.17.) This gives us the equality∑︁
𝑑∈𝒟32

1

𝑚01(𝑑)
= 8 − 16 · 1

8
= 6.

The function 𝑚01 is constant on a 𝜎0𝜎1-component . As can be seen in Figure 4.7,

this implies that the Wags in 𝒟32 are already grouped in groups of 4. There are 8

𝜎0𝜎1-components in the partial Delaney-Dress symbol induced by 𝒟32. We use the

notation 𝑀01(𝑖) to denote the value of 𝑚01 on the 𝑖th 𝜎0𝜎1-component . This gives

us the following equality

8∑︁
𝑖=1

4

𝑀01(𝑖)
= 6 ⇒

8∑︁
𝑖=1

1

𝑀01(𝑖)
=

3

2
.
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The number of Wags in a 𝜎0𝜎1-component is a divisor of 2𝑚01. Since the Wags

are already grouped in 𝜎0𝜎1-components of 4 Wags, a 𝜎0𝜎1-component in the partial

Delaney-Dress symbol induced by 𝒟32 in a Delaney-Dress symbol for a tiling from

𝑂𝑇 will always contain a multiple 𝑎 of 4 Wags. Thus

4𝑎 = 2𝑚01 ⇒ 𝑎 =
𝑚01

2
,

or in words: 𝑚01 has to be even. And since a face of order 2 does not exist, the value

of 𝑚01 is at least 4.

So we need to solve the following problem: Vnd 8 even positive integers 𝑎𝑖 (1 ≤
𝑖 ≤ 8) greater than 2 that satisfy the condition

8∑︁
𝑖=1

1

𝑎𝑖
=

3

2
.

We can already Vx some integers based on this property. When we calculate the

mean value 𝜈 of the inverse of the integers, we Vnd

8∑︁
𝑖=1

1

𝑎𝑖
=

3

2
⇒ 8𝜈 =

3

2
⇒ 𝜈 =

3

16
= 0, 1875.

The maximum value for 1
𝑎𝑖

is 1
4 = 0, 25. The second largest value is 1

6 = 0, 1666....

This implies that at least one of the eight integers must be 4. We again use 𝜈 to

denote the mean of the inverse of the remaining 7 integers.

7∑︁
𝑖=1

1

𝑎𝑖
=

3

2
− 1

4
=

5

4
⇒ 7𝜈 =

5

4
⇒ 𝜈 =

5

28
≈ 0, 18.

This means that still at least one of the remaining seven integers must be 4.

6∑︁
𝑖=1

1

𝑎𝑖
=

5

4
− 1

4
= 1.

For the remaining 6 integers we cannot Vx any more values, so we will enumerate

those.
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We have 24 (6 × 4) Wags for which these integers will be used. If we assume that

these six are all equal to 𝑚, then we have 24 Wags 𝑐 for which 𝑚01(𝑐) = 𝑚. Due to

the crystallographic restriction theorem (see p. 113), the maximum branching of an

orbit in a Delaney-Dress symbol of a tiling of the plane is 12. Therefore the 24 Wags 𝑐

for which 𝑚01(𝑐) = 𝑚, can correspond to a face of at most size 24·12
2 = 144, so 144

is an upper bound for the value of 𝑚.

When we take 144 as upper bound and perform an exhaustive search, we Vnd the

sequences of integers that are shown in Table 4.1.

The integers # circular # symbols # canonical
strings symbols

4 4 4 4 4 6 24 24 12 6 6
4 4 4 4 4 8 12 24 21 21 21
4 4 4 4 4 8 16 16 12 30 30
4 4 4 4 4 10 10 20 12 0 0
4 4 4 4 4 12 12 12 5 34 31
4 4 4 4 6 6 8 24 54 0 0
4 4 4 4 6 6 12 12 33 2 2
4 4 4 4 6 8 8 12 54 9 9
4 4 4 4 8 8 8 8 8 140 108
4 4 4 6 6 6 6 12 19 4 3
4 4 4 6 6 6 8 8 38 26 26
4 4 6 6 6 6 6 6 4 25 19

Table 4.1: The twelve sets of eight integers that are valid candi-
dates for the values of𝑚01 in the Delaney-Dress graph.

4.2.3 Enumerating the octagon tilings
The next step is to take each possible distinct assignment of the sequence of eight

numbers to the Wags in the partial Delaney-Dress symbol. This gives us the number

of canonical circular strings that are given in Table 4.1.

Afterwards we assign each of these 272 canonical circular strings to the Wags

of the 𝜎0𝜎1-components of the partial Delaney-Dress symbol induced by 𝒟32. The
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symbols constructed this way are complete except for some 𝜎0-edges. The only thing

that remains to be done is to try to complete these partial symbols by Vlling in the

missing 𝜎0-edges.

When we compare Figure 4.4 and Figure 4.7, we see that the only possible 𝜎0𝜎2-

components are of the type 4.4.a, 4.4.b or 4.4.c, because all the 𝜎2-edges are already

present and none of them is a semi-edge.

The Vnal step in generating the octagon tilings is to describe the action of 𝜎0
for the remaining Wags. Each Wag 𝑑 of degree 2 in 𝒟 has three possible types of

operations that can be applied to add the 𝜎0-edge:

∙ attach a 𝜎0-semi-edge to 𝑑,

∙ connect 𝑑 to 𝜎2𝑑, and

∙ connect 𝑑 to a Wag of degree 2 in another 𝜎0𝜎2-component of 𝒟 for which the

function 𝑚01 has the same value.

We systematically try all possible 𝜎0-edges and backtrack in case of contradic-

tions like

∙ the number of Wags in a completed 𝜎0𝜎1-component might not be a divisor of

2𝑚01,

∙ in case the 𝜎0𝜎1-component still contains Wags with degree 2: the number of

Wags in the 𝜎0𝜎1-component might be larger than 2𝑚01.

This approach leads to isomorphic Delaney-Dress symbols. Since the Vnal num-

ber of symbols that we Vnd this way is quite small (297 symbols) we apply a simple

Vltering method afterwards to remove isomorphic copies and we Vnally Vnd that 𝑂𝑇

contains 255 tilings.

4.2.4 Inserting the azulene
As can be seen in Figure 4.8, it is possible that a tiling contains two diUerent sets

of octagons that satisfy the property that each vertex is contained in exactly one of
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Figure 4.8: The bathroom tiling belongs to 𝑂𝑇 and contains two
diUerent sets of octagons that satisfy the property that each vertex
is contained in exactly one of the octagons in the set.

the octagons in the set. In such a tiling, the replacement by an azulene would in

principle have to take place for every set in order to get all tilings in 𝐴𝑇 . But in fact,

the tiling in Figure 4.8 is the only tiling for which this happens and here both sets

of octagons are equivalent under the symmetry group and would give isomorphic

tilings of 𝐴𝑇 .

This was just the Vrst, coarser step in the generation. The next step is to replace

those octagons with azulenes to create the azulenoid tilings. When we do this an

azulene can in principle be pasted into an octagon in eight diUerent ways by choos-

ing two edges in the octagon that are seperated by two other edges, adding a vertex

to these edges and connecting these two vertices. Owing to symmetries of the oc-

tagon tiling it will be possible that two or more distinct choices for the two edges

lead to the same azulenoid tiling. This could be avoided by using the double coset

method (cf. Dendral [14]), but there are 255 octagon tilings and together with the 8

possible distinct choices of edges, this leads to only 2040 possible azulenoids, which
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is a small enough number for us simply to try all possible choices of edges and Vlter

out the isomorphic ones afterwards as we did earlier during the generation of the

octagon tilings. Figure 4.9 shows this process of inserting two vertices in the tiling

and connecting those two vertices by an edge. We see an octagon (16-cycle) and two

edges (4-cycles). We add a vertex of degree 3 (6-cycle) to each of the edges, respec-

tively a-b-c-d-e-f and g-h-i-j-k-l, and connect these two vertices by the edge (4-cycle)

b-c-h-i.
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Figure 4.9: Replacing an octagon with an azulene in the partial
Delaney-Dress symbol.

First of all we notice that the Delaney-Dress symbol grows. We add twelve Wags

to the graph. In Figure 4.18 these are denoted with small letters a through l. Table 4.2

shows the changes and the new values for the 𝜎’s. These changes are also shown in

Figure 4.9.

Since we add two new vertices to this symbol, there are several 𝜎0𝜎1-components

for which the value of𝑚01 has to change. First of all we will have to adjust the values

for the azulene itself. The new values are shown in Table 4.3.

The value of 𝑚01 for the 𝜎0𝜎1-component that contains Wag A also must be

adjusted. We added a vertex to that face for each time that the edge of A is in that
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Wag 𝜎0 𝜎1 𝜎2

0 d
1 a
6 j
7 g
A e
B f
C k
D l
a 1 b f
b i a c

Wag 𝜎0 𝜎1 𝜎2

c h d b
d 0 c e
e A f d
f B e a
g 7 h l
h c g i
i b j h
j 6 i k
k C l j
l D k g

Table 4.2: Changes to 𝜎𝑖 for the partial Delaney-Dress symbol in
Figure 4.9 when replacing an octagon by an azulene. The actions
that are not changed are marked in gray.

orbit. Thus we the value of 𝑚01 is increased by twice the old value of 𝑚01 divided by

the number of Wags in the original symbol in the 𝜎0𝜎1-component that contains A.

The value of 𝑚01 for the 𝜎0𝜎1-component that contains Wag C is adjusted in a

similar manner.

It is possible that Wags A and C are in the same 𝜎0𝜎1-component . This however

does not change the fact that we need to increase the value of𝑚01 for this component

by 1 for each vertex we have added to it.

The last step is to Vlter out the isomorphic tilings. This is done by keeping a

list of the minimal Delaney-Dress symbols of the tilings in canonical form. When

a new Delaney-Dress symbol is constructed, its minimal Delaney-Dress symbol is

calculated and the canonical form is compared to all the symbols found up to that

point. If the new symbol is not already in the list, it is added at the end. After we

Vlter out the isomorphic ones we Vnd 1274 tilings.
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Wag 𝑚01

0 7
1 5
2 5
3 5
4 5
5 5
6 5
7 7

Wag 𝑚01

8 7
9 7
10 7
11 7
12 7
13 7
14 7
15 7

Wag 𝑚01

a 5
b 5
c 7
d 7
g 7
h 7
i 5
j 5

Table 4.3: Adjusting 𝑚01 for the azulene

4.3 Testing

The algorithm described above has been implemented as the C-program azul.

This program takes less than 2 seconds on a 2.2 GHz Pentium Core Duo processor

to generate the 1274 tilings. This conVrms our claims that isomorphism rejection by

lists is more than suXcient in this case.

The program has been tested against an independent program implementing

a slightly diUerent algorithm. This program was implemented by Olaf Delgado-

Friedrichs. It is also based on the use of Delaney-Dress symbols, but generates in

its Vrst phase all tilings in which the tiles are octagons and all related by symmetry,

but the vertex degree may be arbitrary. Relative to the approach described above, the

order of adding edges to the Delaney-Dress graph (here 𝜎2 instead of 𝜎0) and gener-

ating combinations of numbers (here𝑚12 instead of𝑚01) is reversed. The 𝜎0𝜎1-cycle

representing that tile is then replaced by the partial Delaney-Dress graph 𝒟 and the

𝜎2-edges by 𝜎0-edges.

The results of both algorithms agree, allowing us to be very conVdent in the

completeness of the list.
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4.4 Marked and unmarked tilings

Since we calculated the minimal Delaney-Dress symbol of the symbols that we

found without concerning ourselves with marked tiles, the 1274 tilings we found are

unmarked tilings. This means that these are azulenoid tilings, but the azulenic set is

not Vxed in these tilings. For some tilings there is more than one possible azulenic set.

Sometimes these diUerent azulenic sets lead to isomorphic marked tilings as shown

in Figure 4.10. But this is not the rule as can be seen in Figure 4.11.

DeVnition 4.4.1 Given an azulenoid tiling (𝑇,Γ) and two azulenic sets 𝒫1 and 𝒫2

of 𝑇 , 𝒫1 and 𝒫2 are isomorphic azulenic sets if there is an element of Γ that maps
the elements of 𝒫1 on to the elements of 𝒫2. ◇

When we generate marked tilings, we Vnd that there are 1324 diUerent marked

azulenoid tilings. In this set there are 48 tilings that are equivariantly equivalent to

another tiling as an unmarked tiling, but not as a marked tiling. These 48 marked

tilings correspond to 24 unmarked tilings. There are 98 tilings that as an unmarked

tiling have a minimal symbol that is isomorphic to another tilings (unmarked) mini-

mal symbol, but not as marked tilings. Among these 98 there are 94 that come in pairs

and thus correspond to 47 unmarked minimal tilings and 4 that come in a quartet and

thus correspond to 1 unmarked minimal tiling (see Figure 4.15). So these 98 marked

tilings correspond all together to 48 unmarked tilings, which gives the diUerence of

50 tilings.

4.5 Inserting the azulene in the chamber system

Replacing the octagons by azulenes can be seen as subdividing two edges at dis-

tance 3 in an octagon, and adding an edge between the new vertices. It might be

easier to visualise this operation in terms of the chamber system (which was intro-

duced in paragraph 1.3.5), so we include some illustrations of this process for the

chamber system.

Figure 4.16 shows the local chamber systems for an octagon and a vertex of degree

3 and Figure 4.17 and Figure 4.18 show the equivalent of Figure 4.7 and Figure 4.9 in
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(4.10.a)

(4.10.b)

(4.10.c)

Figure 4.10: Some tilings with two isomorphic azulenic sets. On
the left hand side the tiling is shown with a separate colour for
each face size. On the right hand side the two azulenic sets are
highlighted in diUerent colours and the other faces are shown in
white.
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(4.11.a)

(4.11.b)

Figure 4.11: Some tilings with two nonisomorphic azulenic sets.
On the left hand side the tiling is shown with a separate colour
for each face size. On the right hand side the two azulenic sets
are highlighted in diUerent colours and the other faces are shown
in white.
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4

5

6

7

24

(4.12.a) An azulenoid tiling with faces of size 4, 5, 6, 7 and 24.

(4.12.b) There is a rotational symmetry of 180 degrees in the
center of the quadrangle.

(4.12.c) There is a vertical mirror axis through the middle of
the quadrangle.

Figure 4.12: Marked and unmarked tilings do not necessarily
have the same minimal symbol.
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(4.13.a)

(4.13.b)

Figure 4.13: The Delaney-Dress graphs for the marked tilings in
Figure 4.12.
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Figure 4.14: The Delaney-Dress graphs for the minimal un-
marked tiling in Figure 4.12.
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(4.15.a)

(4.15.b) (4.15.c)

(4.15.d) (4.15.e)

Figure 4.15: An unmarked azulene-transitive azulenoid graph
(4.15.a) and the 4 marked azulene-transitive azulenoid graph
(4.15.b - 4.15.e) that have this tiling as underlying unmarked tiling.



4.5. INSERTING THE AZULENE IN THE CHAMBER SYSTEM 163

(4.16.a) (4.16.b)

Figure 4.16: The local chamber system of an octagon (a) and a
vertex of degree three (b). For each chamber 𝑑 the neighbouring
chamber at the solid edge is 𝜎0(𝑑), at the dotted edge is 𝜎1(𝑑)
and at the dashed edge is 𝜎2(𝑑).

Figure 4.17: The chamber system of our start point. For each
chamber 𝑑 the neighbouring chamber at the solid edge is 𝜎0(𝑑),
at the dotted edge is 𝜎1(𝑑) and at the dashed edge is 𝜎2(𝑑).
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terms of the chamber system.
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Figure 4.18: Replacing an octagon with an azulene in the
Delaney-Dress symbol.

4.6 Visualising the results

The previous paragraphs have focused on the generation of azulenoids. Since this

was a cooperation with chemists, we also wanted to visualise the results in a way

that makes sense from a chemical point of view. We, however, found that there were

no suitable visualisers of tilings for this goal. The available visualisers give math-

ematically correct equivariant tilings by breaking symmetry with strangely shaped

edges when necessary. So we set about writing our own visualiser that uses methods

that produce chemically more plausible structures. We decided to write an embed-

der for periodic graphs for which the isometry group only contains translations. The

reason we chose this was because the restriction to translations only would be suf-
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Vcient to visualise the structure for chemists. We then needed only to translate our

Delaney-Dress symbols to such periodic graphs (see later).

We will start by describing how the embedder works. First we needed a repre-

sentation of a periodic graph.

4.6.1 Periodic graph
DeVnition 4.6.1 A periodic graph is an inVnite embedded graph with two inde- periodic

graphpendent translational symmetries. ◇

Since we have two independent translations in the isometry group, we can con-

struct a fundamental domain that has the shape of a parallelogram.

For the rest of the chapter we will use the convention that the X axis points right

and the Y axis points downwards.

Figure 4.19: Fundamental domain

As can be seen in Figure 4.19, we need three parameters to describe our funda-

mental domain: an angle 𝛼, the length of the horizontal side ℎ𝑠 and the length of the

vertical side 𝑣𝑠.

These fundamental domains form a discrete grid that we parametrise using our

previously mentioned convention. The result of this coordinatization is shown in

Figure 4.20.

To describe the positions of the vertices in a periodic graph we now only need to

describe their positions inside a fundamental domain.

The only part of the periodic graph that still needs to be coded are the edges. For

this we look at the fundamental domain with coordinates (0, 0). We will describe the
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Figure 4.20: The grid of fundamental domains

edges for each vertex in this domain. For this we need to store the start vertex, the

end vertex and the coordinates of the fundamental domain to which the end vertex

belongs. In Figure 4.21 we see three edges that start in vertex 1.

Edge Start End Target

a 1 2 (0, 0)
b 1 2 (0,−1)
c 1 1 (0, 1)

Table 4.4: The parameters for the edges in Vgure 4.21

We are explicitly saving a start and an end vertex for the edges. This means that

we are saving directed edges, but since the graphs are undirected, we represent each

undirected edge by two directed edges which are each others inverse. Each edge has

an inverse edge that can easily be described as follows: (edge(𝑣1, 𝑣2, (𝑥, 𝑦)))−1 =

edge(𝑣2, 𝑣1, (−𝑥,−𝑦)), as can be seen in Figure 4.22. When looking at the inVnite

structure, we see that this inverse edge is in the same orbit as the edge that would

‘intuitively’ be deVned as the inverse edge.

When we change the embedding there is no problem as long as the vertices stay
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Figure 4.21: Some examples of edges in a periodic graph.

Figure 4.22: An edge and its inverse in a periodic graph.
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inside the same fundamental domain. When a vertex crosses the border of the fun-

damental domain it ’reappears’ on the other side. However we need to be careful

because at that point we also need to alter the edges.

Suppose we want to move the vertex with coordinates (𝑥1, 𝑦1) inside the fun-

damental domain with coordinates (0, 0) to the position with coordinates (𝑥′2, 𝑦
′
2).

These coordinates lie inside the fundamental domain with coordinates (𝑋2, 𝑌2). We

then calculate the coordinates of the new position as if the fundamental domain with

coordinates (𝑋2, 𝑌2) was the fundamental domain with coordinates (0, 0). These

new coordinates are called (𝑥2, 𝑦2). Next we move the vertex to position (𝑥2, 𝑦2) and

for each edge starting in the vertex we change the target (𝑋,𝑌 ) to (𝑋−𝑋2, 𝑌 −𝑌2)

and the target of the inverse edge to (−𝑋 +𝑋2,−𝑌 + 𝑌2).

For our implementation vertex coordinates are always stored as coordinates in

the square with corners (−1,−1), (−1, 1), (1, 1) and (1,−1). They are then trans-

formed to coordinates inside the fundamental domain with the following linear trans-

formation, that can be broken down into two steps.

Figure 4.23: Rescaling of the fundamental domain.

Figure 4.24: Shearing of the fundamental domain.
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First the square is rescaled. The new horizontal length of the side is the same as

the horizontal side ℎ𝑠 in the target parallelogram. The new vertical side has the same

length as the height ℎ of the target parallelogram, i.e., ℎ = 𝑣𝑠 · sin(𝛼) with 𝑣𝑠 the

length of the vertical side. This means that the horizontal scaling factor is ℎ𝑠
2 and the

vertical scaling factor is ℎ
2 . The matrix for this transformation is[︃

ℎ𝑠
2 0

0 ℎ
2

]︃
.

The second step is a shearing of the thus created rectangle along the X-axis. The

matrix for this transformation is[︃
1 cotan(𝛼)

0 1

]︃
.

This gives us the Vnal transformation[︃
ℎ𝑠
2 0

0 ℎ
2

]︃
.

[︃
1 cotan(𝛼)

0 1

]︃
=

[︃
ℎ𝑠
2

ℎ
2 cotan(𝛼)

0 ℎ
2

]︃
,

and the inverse transformation

4

ℎ𝑠.ℎ

[︃
ℎ
2 −ℎ

2 cotan(𝛼)

0 ℎ𝑠
2

]︃
=

[︃
2
ℎ𝑠 − 2

ℎ𝑠cotan(𝛼)

0 2
ℎ

]︃
.

4.6.2 Embedding the tiling for a Delaney-Dress symbol
We Vrst translate the translation-only cover of the symbol to a periodic graph. In

1.3.7.2 we already described how to get the translation-only cover from the symbol.

To avoid special cases we secure that no vertices lie on the edge of the fundamental

patch, i.e., we make sure that no 𝜎1𝜎2-component is incomplete. This can be achieved

by constructing the fundamental patch by a depth-Vrst traversal where the children

are visited in the order 𝜎1 → 𝜎2 → 𝜎0. By choosing this order, we will primarily

group the vertex components, next the face components and lastly the edge compo-

nents, and thus the border of the fundamental patch will split edge components and

face components.
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We can easily check whether a fundamental patch corresponds to a quadrangle

or a hexagon by counting the number of patches that meet at an incomplete cycle.

For a quadrangle this is 4 (at a ‘corner’ of the fundamental domain) or 2 (at an ‘edge’

of the fundamental domain), for a hexagon it is 3 (at a ‘corner’ of the fundamental

domain) or 2 (at an ‘edge’ of the fundamental domain). This counting can be done by

choosing a Wag in the fundamental patch that belongs to the border. We then look at

the components through that Wag in the original symbol and count how many times

we cross the border in the fundamental patch when traversing those components. If

this number is not equal to 2, it has to be 3 or 4. If it is 2, we choose another Wag

and recount for that Wag. As soon as we Vnd a 3 or a 4, we can decide whether this

fundamental patch corresponds to a quadrangle or a hexagon. If we need to cross

the border of the fundamental patch twice, we say that the component is cut into

two parts, and analogously for three and four.

If the fundamental patch corresponds to a quadrangle we search for a Wag that

lies on the boundary of the fundamental patch. When we Vnd such a Wag 𝑥 we

construct the edges of the patch as follows. We walk along the 𝜎0𝜎2-component

through 𝑥 until we meet the border in the Wag 𝑥1. Next we walk along the 𝜎0𝜎1-

component through 𝑥1 until we meet the border in the Wag 𝑥2. We now repeat these

steps until we meet an orbit that is cut into four parts. We call this component the

corner 𝑏. We keep repeating the previous steps until we meet another orbit that is cut

into four parts. This component will be called corner 𝑐. Finally we return to the Wag 𝑥

and repeat the same steps, but this time we start with the 𝜎0𝜎1-component through

𝑥. When we meet a component that is cut into four parts, we call that component

corner 𝑎. Also see Figure 4.25.a. This is suXcient: we won’t need the exact other

edges, because 𝑎𝑏will be identiVed with 𝑑𝑐 and 𝑏𝑐with 𝑎𝑑. We determine the number

of vertices inside this patch, i.e., the number of 𝜎1𝜎2-component s. Then we turn our

attention to the edges: when a 𝜎0𝜎2-component is complete this corresponds to

an edge that does not intersect with the border (i.e., target (0, 0)), otherwise it will

intersect either 𝑎𝑏 or 𝑏𝑐. When it intersects with 𝑎𝑏 it has target (−1, 0) and when it

intersects with 𝑏𝑐 it has target (0,−1).

If the fundamental patch corresponds to a hexagon we proceed in a similar way:
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(4.25.b)

Figure 4.25: The two types of boundaries for fundamental
patches.

we search for a Wag that lies on the boundary of the fundamental patch. When we

Vnd such a Wag 𝑥 we construct the edges of the patch by walking along components

that are cut into two until we meet a component that is cut into three parts. This is

the corner 𝑏. We then continue until we meet another corner. This is 𝑐. But now we

still continue because we need the third corner 𝑑. Finally we again return to 𝑥 and

go in the other direction until we meet the corner 𝑎. Also see Figure 4.25.b. As before

we won’t need the exact other edges, because 𝑎𝑏 will be identiVed with 𝑒𝑑, 𝑏𝑐 with

𝑓𝑒 and 𝑐𝑑 with 𝑎𝑓 . The vertices and internal edges are handled in exactly the same

way as before. The other edges will intersect either 𝑎𝑏, 𝑏𝑐 or 𝑐𝑑. When it intersects

with 𝑎𝑏 it has target (−1, 0) and when it intersects with 𝑐𝑑 it has target (0,−1), just

as before, and when it intersects 𝑏𝑐 it has target (−1,−1).

Figure 4.26 shows a schematic view of how the hexagonal fundamental patches

are translated to the quadrangular grid of the periodic graph. In Figure 4.27 this is

made more concrete by giving an example with an actual tiling.

To embed the periodic graph we implemented several force-directed graph em-

bedders such as spring embedders, Tutte embedders and embedders that change the
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Figure 4.26: A schematic view of how hexagonal fundamental
patches are positioned in a quadrangular grid.

fundamental domain.

A spring embedder is a well known algorithm for embedding graphs. It starts

from an arbitrary embedding of the graph and regards the edges as springs pulling

the vertices together or repelling them away from each other. We have used diUerent

spring embedders. Based on their respective goals, we can distinguish:

∙ embedders that try to get the edges to a Vxed length,

∙ embedders that try to get the edges to equal length by taking the mean as

guide value,

∙ embedders that try to get the edges to length zero,

∙ embedders that do one of the above, but also pull the vertices of a face to the

center of that face.

The spring embedders that also contract faces were added because otherwise

faces with a great order would grow quite large, and this counteracts that eUect.
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(4.27.a) (4.27.b)

Figure 4.27: An example of a tiling with a hexagonal fundamen-
tal patch that has been translated to a periodic graph. The bound-
aries of the hexagonal fundamental patches are drawn in the peri-
odic graph to clarify the grouping of the vertices. The boundaries
of the fundamental patch are not used once the tiling has been
translated to a periodic graph.
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A Tutte embedder regards the vertices as masses. It Vxes some points and then

tries iteratively to place the other vertices in the barycenters of their neighbours. It

was proven by Tutte [9] that when this is done for a planar graph and the vertices

and edges that are Vxed form a convex polygon, that the resulting embedding while

have no edges crossing. Due to this last property this embedder was used to ob-

tain the initial embedding. When translating the fundamental patch to a periodic

graph, we get a cyclic order of the edges that cross the boundary of the fundamen-

tal patch. We can use this order to place the vertices which are incident to these

edges and the vertices on faces that cross the boundary of the fundamental patch

on a pre-embedded cycle in the fundamental domain. Afterwards we use the Tutte

embedder to obtain the initial embedding. In the other embedders no special mea-

sures were taken to prevent crossing edges, simply because these embedders were

written speciVcally for this case, and it never occurred that the graph was changed

to introduce crossing edges.

Finally, we have some embedders that change the fundamental domain based on

an energy function. There are two diUerent energy functions we implemented. The

Vrst energy function is based on the angles between the edges meeting in a vertex.

If we denote the degree of a vertex 𝑣 by 𝑑𝑣 and the sequence of angles between the

edges at that vertex 𝑣 by 𝛼𝑣
1, . . . , 𝛼

𝑣
𝑑𝑣

, then the energy function is given by the sum

∑︁
𝑣∈𝑉

𝑑𝑣∑︁
𝑖=1

(
2𝜋

𝑑𝑣
− 𝛼𝑣

𝑖 )2.

The second energy function is based on the length of the edges. If we denote the

mean length of the edges by 𝑒, then the energy function is given by the sum∑︁
𝑒∈𝐸

(𝑒− 𝑒)2.

These two energy functions are then used in two diUerent embedders. The Vrst

embedder tries to optimise the angles of the fundamental domain in such a way that

the energy functions is minimal. If the upper left corner of the fundamental domain

is 𝛼, then this embedder calculates the energy function for this domain, and then

calculates it for the domain with the angle 𝛼 replaced by the angle 𝛼− 𝜖 for a given
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𝜖. Finally the angle 𝛼 is changed by the amount given by the diUerence between the

two energy functions times 𝜖 times a given constant 𝑘.

The second embedder tries to optimise the length of the sides of the fundamental

way in such a way that the energy function is minimal. If the horizontal side of the

fundamental domain is ℎ𝑠, then this embedder calculates the energy function for this

domain, and then calculates it for the domain with the horizontal side ℎ𝑠 replaced by

the horizontal side ℎ𝑠 − 𝜖 for a given 𝜖. Finally the horizontal side ℎ𝑠 is changed by

the amount given by the diUerence between the two energy functions times 𝜖 times

a given constant 𝑘 times a variable factor such that the horizontal side is always at

least a given length.

4.6.3 Periodic tilings, cylinders and tori
A cylinder is the surface formed by the points at a Vxed distance of a line. If we

cut a cylinder open along its axis, we get a rectangle. The other direction works as

well: if we identify (read: glue together) two opposite sides of a rectangle we get a

cylinder.

A torus is a closed surface that is created by rotating a circle around an axis

coplanar with the circle. An example of a torus can be seen in Figure 4.28.

If we cut the torus open along the two circles drawn upon it in Figure 4.28, we

get a rectangle (see Figure 4.29). The other way works as well: if we identify (read:

glue together) the opposite sides of the rectangle we get a torus. Thus if we have a

drawing on the torus and a way to cut it, we also have a drawing in the rectangle

and the top and bottom will have to match, as well as the right and left; so we have

a rectangle that can be used to build a periodic tiling.

This means that if we have the graph of a periodic tiling we can extract a graph

from this that is embedded on a cylinder or a torus.

When we paste several parallelogram-shaped domains of a periodic tiling to-

gether in a 𝑚 × 𝑛 conVguration (𝑚,𝑛 ∈ N), we get a new parallelogram-shaped

domain of a periodic tiling as can be seen in Figure 4.30. When we tile the plane

using these ‘supertiles’ we get the same tiling. Even if we introduce an oUset when

glueing these larger domains together — e.g., glue tile 1 to 2’ instead of to 1’,. . . —
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Figure 4.28: A torus with two topologically diUerent fundamen-
tal cycles.

Figure 4.29: A torus cut open and shown as a rectangle.
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(4.30.a)

1 2 3 4

1′ 2′ 3′ 4′

(4.30.b)

Figure 4.30: A small tile and the 4× 4 large tile corresponding to
this tile.

we get the same periodic tiling. On the torus and cylinder however we get diUerent

tilings. This can easily be seen by looking at Figure 4.30. If we identify the bottom and

the top of the rectangle in Figure 4.30.b and let 𝑛 correspond to 𝑛′ (𝑛 = 1, . . . , 4) we

get a cylinder with circles. If however we let 𝑛 correspond to (𝑛+ 1)′ (𝑛 = 1, . . . , 3)

we get a cylinder with a spiral on it.

4.7 Results

This algorithm was implemented as the program azul and is available from [63].

The site also includes several other related resources such as the visualiser and the

catalogue of tilings in several formats.

Including an image of all the tilings in the catalogue would take up a lot of space.

It is also diXcult to select a sample from the 1274 tilings that is interesting and at the

same time small enough to be included in this thesis. We selected the six structures

in which the azulenes are all equivalent under a subgroup of the symmetry group

that only contains translations. These tilings are shown in Figure 4.31.



178 CHAPTER 4. AZULENOIDS

Figure 4.31: The six structures where all the azulenes are equiv-
alent under a group of translations.
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5.1 DeVnitions

We re-use many of the deVnitions established in [40].

DeVnition 5.1.1 A 1,5-patch is a Vnite, bridgeless, plane graph with three kinds1,5-patch
of faces: 1 "outer" face with unrestricted size, 1 to 5 pentagons and an unrestricted
number of hexagons. Furthermore all the vertices have degree 3 except some of the
vertices of the outer face which have degree 2. In this thesis we use just the word
patch to mean 1,5-patch. The boundary of the patch is formed by the vertices andboundary
edges of the outer face.
The degrees of the boundary vertices in the order of the cycle form a cyclic sequence
of 2’s and 3’s. If this sequence does not contain any consecutive 3’s, the patch is
called pseudo-convex.pseudo-

convex A boundary edge that contains two vertices of degree 2 is called a break-edge. ◇
break-edge

When drawing a patch as a graph and giving its boundary sequence we always

choose a clockwise direction for the boundary sequence. The patch corresponding to

counterclockwise direction is of course isomorphic to the patch corresponding to the

clockwise direction.

When writing down the boundary sequence we will denote repetitive parts by

superscripts. We use (𝑥1 . . . 𝑥𝑛)𝑘 as an abbreviation for

(𝑥1 . . . 𝑥𝑛) . . . (𝑥1 . . . 𝑥𝑛)⏟  ⏞  
𝑘 times

.

We will sometimes write a superscript 1. This is to emphasise certain structures or

groupings in the boundary. An example of this notation can be seen in the caption of

Figure 5.1.

Lemma 5.1.2 In a pseudo-convex patch the number of break-edges is equal to 6−𝑝,
where 𝑝 is the number of pentagons in the patch.

This result follows easily from the Euler formula. See e.g., [47] for a proof of this

lemma.

Moving to a higher level of abstraction, we can view pseudo-convex patches as

polygons where the corners are formed by the break-edges, and the lengths of the
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Figure 5.1: A patch with boundary 2(23)22(23)32(23)4

sides are determined by their number of 3’s. This gives us yet another representation

of a boundary. We can just give the cyclic sequence of lengths of the sides of this

polygon (once again in clockwise direction). The (6 − 𝑝)-tuple (𝑛1, . . . , 𝑛6−𝑝) of a

boundary of a patch which is lexicographically smallest among all its cyclic permu-

tations is called the boundary vector of that patch. boundary
vector

5.2 Constructing pseudo-convex patches

In [54] an algorithm is described that can generate non-isomorphic patches for

an arbitrary (i.e., not necessarily pseudo-convex) boundary. In that general case,

however, it is diXcult to predict which faces can have a disconnected intersection

with the boundary, which makes the generation for this general case more diXcult

and less eXcient.

In [40] it is shown that all pseudo-convex patches can be unwound in a spiral

from the outside starting at a break-edge. This is done by selecting a break-edge and

removing the face incident to that edge. Then the algorithm proceeds to remove faces
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along the boundary in a clockwise direction. Figure 5.2 shows an example of these

outer spirals. This implies that for a given pseudo-convex boundary and a Vxedouter spiral
break-edge where the spiral must start, the pseudo-convex patch can be encoded in

a string of constant length at most 5. This is because there are at most 5 pentagons

in the patch and all other faces are hexagons. Therefore we only need to record the

positions of the pentagons in the outer spiral. For a pseudo-convex patch with 𝑝

pentagons we can encode the spiral as a string [𝑠1, . . . , 𝑠𝑝] with 𝑠1 the number of

hexagons before the Vrst pentagon and, for 2 ≤ 𝑖 ≤ 𝑝, 𝑠𝑖 is the number of hexagons

between the (𝑖 − 1)-th and the 𝑖-th pentagon. For the examples in Figure 5.2 these

encodings are, respectively, [0, 4, 4], [3, 3, 2] and [0, 3, 4]; so a single pseudo-convex

patch might have diUerent outerspiral codes depending on which break-edge is cho-

sen. If one does not distinguish between mirror images (and we usually do not want

to do this), there are even more diUerent outerspiral codes because diUerent direc-

tions for the spiral must also be taken into account.
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Figure 5.2: The three possible outer spirals in the pseudo-convex
patch from Figure 5.1.

DeVnition 5.2.1 A marked patch is an embedded pseudo-convex patch togethermarked
patch with a Vxed break-edge in its boundary.

A marked boundary is a boundary together with a Vxed break-edge.marked
boundary The Vxed break-edge of a marked patch, respectively of a marked boundary, is

called the marked break-edge of that marked patch, respectively of that markedmarked
break-edge boundary.

Themark of a marked patch or of a marked boundary, is the second (in clockwise
mark
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direction) vertex of the marked break-edge.
The boundary sequence of a marked patch or a marked boundary is the se- boundary

sequencequence of lengths of the sides starting with the side after the marked break-edge and
proceeding in clockwise direction. ◇

In a marked patch it makes sense to speak of the outer spiral of that marked

patch. In that case we mean the unique outer spiral that starts with the face incident

to the mark and then proceeds in clockwise direction.

In [40], it is also explained that while removing faces in this manner we interme-

diately obtain diUerent pseudo-convex patches. Namely, if we start from a marked

pseudo-convex patch and remove faces we will have a new pseudo-convex patch

the moment that we remove a pentagon or the moment we remove a hexagon with a

break-edge diUerent from the mark. This allows us to deVne a successor for a marked

patch.

DeVnition 5.2.2 Given a marked patch 𝑃 with a boundary sequence diUerent from
𝑙, 0, 0, 𝑙, 0, 0 and from 𝑙, 0, 𝑙, 0, 0 with 𝑙 ∈ N. The successor 𝑠(𝑃 ) of 𝑃 is the marked successor
patch that is obtained by removing faces along the boundary in clockwise direction
starting with the face containing the mark until for the Vrst time a pentagon or a face
with a break-edge diUerent from the marked break-edge is removed and by choosing
the second vertex (in clockwise direction on the boundary) of the Vrst break-edge (in
clockwise direction starting from the old mark) in the new patch as the mark. ◇

The successor of a patch is always deVned except when all faces are removed to

get to the next step in the outer spiral.

The algorithm we will discuss here is basically the same as the algorithm de-

scribed in [41, 40] to solve the PentHex Puzzles (note that in [41, 40], this algorithm is

not used: the authors of [41, 40] use the inverse of the algorithm in order to generate

all solutions of PentHex Puzzles with any given number of hexagons). The diUerence

from the algorithm as it is described in [41], lies in the implementation. We will give

the algorithm in terms of the outer spiral code and the boundary sequence, which

are both relatively short sequences of integers. Given a boundary sequence and a

partial outer spiral, the operations we use, give a longer partial outer spiral and the

boundary sequence of a possible successor. After applying such a step the algorithm
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recursively tries to Vll the new boundary sequences until a boundary sequence is

obtained for which it can easily be determined whether there is no patch with this

boundary, or, if there is such a patch, to list all all patches with that boundary. By

enumerating the pseudo-convex patches in this way instead of by immediately gen-

erating the graph, we gain a lot of speed. Note also that for a program that uses

these pseudo-convex patches by reading them through standard input or from a Vle,

the time to transform an outer spiral code into an internal graph representations is –

depending on the internal data structure used – not necessarily much more than to

decode a standard graph format.

5.3 Extending the spiral

While Vlling the pseudo-convex patch we are dealing with two objects: an out-

erspiral code and a boundary sequence. Each operation takes a pair of these objects

and maps them to a new pair. The rules for this mapping will be described later.

When Vlling a pseudo-convex patch one side at a time, we allow two possible oper-

ations. The Vrst operation is Vlling the Vrst side completely with hexagons. We will

denote this operation with ℋ. The second operation is adding a pentagon to the Vrst

side after 𝑖 hexagons. In the non-degenerate case this means that 0 ≤ 𝑖 ≤ 𝑠 where 𝑠

is the length of the Vrst side. This operation will be denoted by 𝒫(𝑖).

Our ultimate goal is to determine all the possible outerspiral codes that Vll the

original boundary of the pseudo-convex patch. To achieve this goal we consecu-

tively apply combinations of operations ℋ and 𝒫(𝑖) and thus rewrite the boundary

sequence while growing the outerspiral code. We do not act directly on the outer-

spiral code, but use what we call an extended spiral code, which also documents the

separate steps in the construction. The reason for using this data structure will be-

come clear once we explain the canonicity check. An extended spiral is a sequence

with elements from N ∪ {𝑃}. The numbers record the number of hexagons added

to the outer spiral and the 𝑃 ’s record the positions of the pentagons in the outer

spiral. The outerspiral code can be obtained from an extended spiral code by sum-

ming up the numbers which are not separated by a 𝑃 . E.g., the extended spiral code



5.3. EXTENDING THE SPIRAL 185

(3)(𝑃 )(3)(𝑃 )(1)(1)(𝑃 ) corresponds to the outerspiral code [3, 3, 2].

The boundary sequence is a sequence 𝑠1, . . . , 𝑠𝑙 with 𝑠𝑖 ∈ N(1 ≤ 𝑖 ≤ 𝑙). In this,

𝑙 is the length of the boundary sequence.

The operations transform an extended spiral and a boundary into a longer ex-

tended spiral and a shorter remaining boundary to be Vlled (‘shorter’ means that

the sum of the numbers is smaller). The fact that the remaining boundary decreases

proves that this algorithm always terminates, because each side length must be at

least 0.

5.3.1 The algorithm

The algorithm recursively applies the operations until the obtained boundary se-

quence 𝑅 = (𝑠1, . . . , 𝑠𝑙) encodes a single pentagon or has length 6. In the second

case the partial outerspiral code encodes a pseudo-convex patch if and only if 𝑅 en-

codes a pseudo-convex patch with only hexagons. This can be tested in constant time

by testing whether 𝑅 describes a closed curve in the hexagonal lattice. This is the

case if the following two equations hold

2𝑠1 + 𝑠2 − 𝑠3 − 2𝑠4 − 𝑠5 + 𝑠6 = 0,

and

𝑠1 + 2𝑠2 + 𝑠3 − 𝑠4 − 2𝑠5 − 𝑠6 = 0.

In the case when 𝑅 encodes a single pentagon or a patch with 6 break-edges, it

has to be tested whether the representation of the patch is canonical. This is done by

computing all alternative representations of the patch and comparing these. As will

be explained later on, this can be done without really building the patch in memory.

However, as will also be explained later on, we can already build the alternative

representations during the construction and often already decide very early in the

construction process whether the outer spiral that is being built will be canonical or

not.
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length of the boundary
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1 ̸= 𝑠2 ̸= 0 ̸= 𝑠𝑙
5.3.3

5.3.4.2 5.3.4.1

𝑠2 = 1, 𝑠𝑙 ̸= 0 5.3.5.2 N/A

𝑠2 = 0 5.3.5.1 5.3.5.1 5.3.5.3 5.3.5.2 N/A

𝑠𝑙 = 0 5.3.5.1 5.3.5.1 5.3.5.3 5.3.5.2 N/A

𝑠2 = 𝑠𝑙 = 0 5.3.5.1 5.3.5.4 5.3.5.3 5.3.5.2 N/A

𝑠2 = 𝑠𝑙 = 𝑠𝑙−1 = 0 5.3.5.5 5.3.5.4 5.3.5.3 N/A N/A

Table 5.1: An overview of the diUerent cases for the operations to
Vll a pseudo-convex boundary. The non-degenerate case is shaded
in white, the Vrst class of degenerate cases is shaded in light grey,
and the second class of degenerate cases is shaded in dark grey.
For each case the corresponding paragraph is listed.

5.3.2 Overview of the cases
As will be explained in the following pages, there are several degenerate cases for

the construction operations. This leads to more implementation work, but does not

aUect the eXciency of the technique.

Table 5.1 gives an overview of the diUerent cases and the paragraphs in which

they are discussed. In Subsection 5.3.3, the non-degenerate case is discussed. In this

general case either a complete side of hexagons is added to the marked boundary,

or a number of hexagons followed by a pentagon is added to the marked boundary.

This leads to a new boundary for which most sides are the same as the previous

boundary except for the side to which the faces where added and the side before and

after that one. A Vrst class of degenerate cases corresponds to those cases where

the side before and after the side to which the faces are added coincide. This class

of degenerate cases is discussed in Subsection 5.3.4. The calculations for the sides

of the new boundary involve some subtractions. A second class of degenerate cases

corresponds to those cases where some of the new boundary elements would be
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smaller than zero if the rules from the previous cases where applied. This class of

degenerate cases is discussed in Subsection 5.3.5.

5.3.3 The non-degenerate case

𝑠1

𝑠1 + 1

𝑠𝑙 𝑠2

𝑠𝑙 − 1 𝑠2 − 1

Figure 5.3: The non-degenerate case of the operation ℋ. The
marked break-edge is shown with an arrow. The arrow points
towards the mark.

The Vrst operation we consider, is to Vll the Vrst side completely with hexagons.

Generally speaking, this means 𝑠1 + 1 times adding a hexagon. This situation is

shown in Figure 5.3. If we had a partial extended spiral <extended spiral> and a

boundary sequence 𝑠1, 𝑠2, . . . , 𝑠𝑙 before applying this operation, then by applying

this operation, we add the number 𝑠1 + 1 to the extended spiral and get a new

boundary sequence which is equal to 𝑠2 − 1, . . . , 𝑠𝑙 − 1, 𝑠1 + 1. So we write down

this operation as:

<extended spiral>

𝑠1, 𝑠2, . . . , 𝑠𝑙

ℋ↦−→
<extended spiral>(𝑠1 + 1)

𝑠2 − 1, . . . , 𝑠𝑙 − 1, 𝑠1 + 1

(Fig. 5.3)

The second operation is to place a number of hexagons followed by a pentagon

along the Vrst side. If this pentagon is also the last face that is added to this side,

then the behaviour is slightly diUerent. Therefore we will consider adding a pentagon

after adding 𝑠1 hexagons as a separate operation.
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𝑠1

𝑖+ 1

𝑠𝑙 𝑠2

𝑠𝑙 − 1
𝑠2

𝑠1 − 1 − 𝑖

Figure 5.4: The non-degenerate case of the operation 𝒫(𝑖) with
0 ≤ 𝑖 < 𝑠1. The marked break-edge is shown with an arrow. The
arrow points towards the mark.

When we add a pentagon after adding 𝑖 (0 ≤ 𝑖 < 𝑠1) hexagons (see Figure 5.4),

we add the number 𝑖 to the extended spiral followed by a 𝑃 . We also get a new

boundary which is one longer than the previous boundary and which is given by

𝑠1 − 1 − 𝑖, 𝑠2, . . . , 𝑠𝑙 − 1, 𝑖+ 1. So we write down this operation as:

0 ≤ 𝑖 < 𝑠1

<extended spiral>

𝑠1, 𝑠2, . . . , 𝑠𝑙

𝒫(𝑖)↦−→
<extended spiral>(𝑖)(𝑃 )

𝑠1 − 1 − 𝑖, 𝑠2, . . . , 𝑠𝑙 − 1, 𝑖+ 1

(Fig. 5.4)

𝑠1

𝑠1

𝑠𝑙 𝑠2

𝑠𝑙 − 1 𝑠2 − 1

0

Figure 5.5: The non-degenerate case of the operation 𝒫(𝑠1). The
marked break-edge is shown with an arrow. The arrow points
towards the mark.

When we add a pentagon after adding 𝑠1 hexagons (see Figure 5.5), we add the

number 𝑠1 to the extended spiral followed by a 𝑃 . We also get a new boundary which
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𝑠1

𝑠1 − 1

Figure 5.6: The operation ℋ in case the length of the boundary
sequence is 1

is one longer than the previous boundary and which is given by 0, 𝑠2 − 1, . . . , 𝑠𝑙 −
1, 𝑠1. The reason that this operation is diUerent from the 𝒫(𝑖)-case, is that the Vrst

element of the new boundary would be smaller than zero if the previous rule was

applied. We write this operation down as:

<extended spiral>

𝑠1, 𝑠2, . . . , 𝑠𝑙

𝒫(𝑠1)↦−→
<extended spiral>(𝑠1)(𝑃 )

0, 𝑠2 − 1, . . . , 𝑠𝑙 − 1, 𝑠1

(Fig. 5.5)

5.3.4 A Vrst class of degenerate cases

In the deVnitions above, each of these three operations uses up to three elements

of the boundary sequence which are not simply copied in order to to determine the

new boundary sequence. Therefore a Vrst class of degenerate cases might arise if

there are less than three elements in the boundary sequence.
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𝑠1

𝑖+ 1
𝑠1 − 2 − 𝑖

Figure 5.7: The operation𝒫(𝑖) in case the length of the boundary
sequence is 1

5.3.4.1 Boundary length is 1

The situation when adding a side of hexagons is illustrated in Figure 5.6. In this

case the side is already completely Vlled after adding 𝑠1 hexagons. The reason is that

the Vrst hexagon lies also at the break-edge at the end of the side, since this is the

same break-edge as the break-edge at the beginning of the side. This gives us the

following operation:

<extended spiral>

𝑠1

ℋ↦−→
<extended spiral>(𝑠1)

𝑠1 − 1

(Fig. 5.6)

The possibilities when adding a pentagon after Vrst adding a number of hexagons

are shown in Figure 5.7 and Figure 5.8. Note that the case where the pentagon is the

last face at the current side, this time corresponds to adding a pentagon after adding

𝑠1 − 1 hexagons. This gives us the following two operations:
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𝑠1

𝑠1 − 2

0

Figure 5.8: The operation 𝒫(𝑠1 − 1) in case the length of the
boundary sequence is 1

0 ≤ 𝑖 ≤ 𝑠1 − 2

<extended spiral>

𝑠1

𝒫(𝑖)↦−→
<extended spiral>(𝑖)(𝑃 )

𝑠1 − 2 − 𝑖, 𝑖+ 1

(Fig. 5.7)

<extended spiral>

𝑠1

𝒫(𝑠1−1)↦−→
<extended spiral>(𝑠1)(𝑃 )

0, 𝑠1 − 2

(Fig. 5.8)

5.3.4.2 Boundary length is 2

The situation when adding a side of hexagons is illustrated in Figure 5.9. In this

case the side before the side following the mark and the side after the side following

the mark are the same. This gives us the following operation:
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𝑠1

𝑠1 + 1

𝑠2

𝑠2 − 2

Figure 5.9: The operation ℋ in case the length of the boundary
sequence is 2

<extended spiral>

𝑠1, 𝑠2

ℋ↦−→
<extended spiral>(𝑠1 + 1)

𝑠2 − 2, 𝑠1 + 1

(Fig. 5.9)

The possibilities when adding a pentagon after Vrst adding a number of hexagons

are shown in Figure 5.10 and Figure 5.11. This gives us the following two operations:

0 ≤ 𝑖 ≤ 𝑠1 − 1

<extended spiral>

𝑠1, 𝑠2

𝒫(𝑖)↦−→
<extended spiral>(𝑖)(𝑃 )

𝑠1 − 1 − 𝑖, 𝑠2 − 1, 𝑖+ 1

(Fig. 5.10)

<extended spiral>

𝑠1, 𝑠2

𝒫(𝑠1)↦−→
<extended spiral>(𝑠1)(𝑃 )

0, 𝑠2 − 2, 𝑠1

(Fig. 5.11)
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𝑠1

𝑠1 − 1 − 𝑖

𝑠2

𝑠2 − 1

𝑖+ 1

Figure 5.10: The operation 𝒫(𝑖) in case the length of the bound-
ary sequence is 2

𝑠1

𝑠1

𝑠2

𝑠2 − 2

0

Figure 5.11: The operation𝒫(𝑠1) in case the length of the bound-
ary sequence is 2
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5.3.5 A second class of degenerate cases
Each of the three operations take some elements of the boundary sequence and

increase or decrease them to construct the new boundary sequence. The elements

of the boundary sequence are natural numbers so they may increase inVnitely but at

the other end they are bounded by 0. Therefore a second class of degenerate cases

is formed by the cases where some elements of the boundary sequence are less than

the amount that will be subtracted from them, when using the previous operations

to calculate the new boundary sequence.

Lemma 5.3.1 There exists no pseudo-convex patch such that a pentagon lies at a
side of length 0, except for the following cases:

∙ the boundary has the form 0, 𝑙, 0, 0, 𝑙 with 𝑙 ∈ N and the pentagon lies at the
Vrst side, or

∙ the boundary has the form 0, 𝑙, 0, 𝑙 with 0 < 𝑙 ∈ N.

Proof: A pseudo-convex patch with boundary length 6 contains 0 pentagons, so we

only need to examine the cases with boundary length < 6. Assume there exists

a patch 𝑃 with a boundary of the form 𝑠1, 𝑠2, . . . , 𝑠𝑙 with 𝑙 < 6 and a pentagon

at a side of length 0.

There is no pseudo-convex patch with a boundary of the form 0 or 0, 0, because

the Vrst would correspond to a single vertex with a loop and the second would

correspond to a digon. Both are not simple graphs. There is no pseudo-convex

patch with a boundary of the form 0, 0, 0, resp. of the form 0, 0, 0, 0, since this

corresponds to a triangle, resp. a quadrangle. These are not pseudo-convex

1, 5-patches. So assume that 𝑃 has a boundary diUerent from these cases.

If the boundary of 𝑃 contains 3 consecutive sides of length 0, then 𝑃 has 5

consecutive vertices of degree 2 on the boundary. The patch 𝑃 can only have

a pentagon at these sides if the boundary consists of just these 5 vertices, in

which case 𝑃 would have a boundary of the form 0, 𝑙, 0, 0, 𝑙 with 𝑙 = 0. A

boundary with 3 consecutive sides of length 0 cannot have another side of

length 0 that is not adjacent to one of these three sides, since the maximum
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length of a boundary is 5. So assume now that the boundary of 𝑃 does not

contain 3 consecutive sides of length 0.

Assume 𝑃 has a boundary with two consecutive sides of length 0 followed and

preceded by a side of length greater than 0 (possibly the same side). This con-

Vguration corresponds to 4 consecutive vertices of degree 2 on the boundary

followed and preceded by a vertex of degree 3. This means that a face at this

sides contains these 6 vertices, so it is a hexagon. Note that it is not possible

that the following and preceding vertex of degree 3 are the same. There is an

edge pointing inwards at the vertex of degree 3, and so this face at these 5

vertices would be larger than 6.

We have already proven that there exist no pseudo-convex patches with a pen-

tagon that lies at a side of length 0 that is not followed and preceded by sides

of length greater than 0, except in the case where the boundary sequence is

0, 0, 0, 0, 0.

This means that the only cases that we still need to examine are the patches

with a pentagon at the Vrst side and with the following boundary sequences:

0, 𝑙, or 0, 𝑙, 𝑘, or 0, 𝑙, 𝑘,𝑚, or 0, 𝑙, 𝑘,𝑚, 𝑛.

We Vrst look at the case with boundary sequence 0, 𝑙 with 0 < 𝑙 ∈ N. We can

immediately also assume that 𝑙 > 1, because a patch with boundary sequence

0, 1 has only one vertex on the boundary with an edge pointing inwards, so

this patch has a bridge. Assume the face at the side of length 0 is a pentagon,

then the patch we obtain by removing that face has a boundary of the form

0, 0, 𝑙−2. The face at the sides of length 0, is a hexagon as was already proven.

The patch obtained by removing that hexagon has a boundary of the form

0, 0, 𝑙 − 4. This argument can be used until the third side length is either 0 or

1. In the Vrst case we have a triangular face and in the second case we have a

boundary with one vertex of size 3. Both are not valid structures, so the initial

assumption that the face at the side of length 0 was a pentagon was false.

Now we look at the case with boundary sequence 0, 𝑙, 𝑘 with 0 < 𝑙, 𝑘 ∈ N.

Assume the face at the side of length 0 is a pentagon. The patch we obtain
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by removing that face has a boundary of the form 0, 0, 𝑙 − 1, 𝑘 − 1. Again the

face at the sides of length 0, is a hexagon as was already proven. The patch

obtained by removing that hexagon, has a boundary of the form 0, 0, 𝑙−2, 𝑙−𝑘.

This argument continues until there are at least three sides of length 0. If 𝑙 = 𝑘

the last face would be a quadrangle, which is not possible. If 𝑙 ̸= 𝑘, we Vnd

a patch with boundary sequence 0, 0, 0, |𝑙 − 𝑘|. Such a patch does not exist,

since it would contain a face of size > 6.

Next we look at the case with boundary sequence 0, 𝑙, 𝑘,𝑚 with 0 < 𝑙,𝑚 ∈ N
and 𝑘 ∈ N. Assume the face at the Vrst side is a pentagon. The patch we

obtain by removing that face has a boundary of the form 0, 0, 𝑙 − 1, 𝑘,𝑚 − 1.

We already know that the face at the two consecutive sides of length 0 is a

hexagon. The patch we obtain by removing that hexagon, has a boundary of

the form 0, 0, 𝑙 − 2, 𝑘,𝑚 − 2. We can repeat this argument, until we obtain a

patch with a boundary of the form 0, 0, 0, 𝑘,𝑚−𝑙, or of the form 0, 0, 𝑙−𝑚, 𝑘, 0.

In both cases such a patch does not exist, since it would contain a face of size

> 6, except in the case where all the side lengths are 0, i.e., when 𝑘 = 0 and

𝑙 = 𝑚.

Finally we look at the case with boundary sequence 0, 𝑙, 𝑘,𝑚, 𝑛with 0 < 𝑙, 𝑛 ∈
N and 𝑘,𝑚 ∈ N. Assume the face at the Vrst side is a pentagon. The patch we

obtain by removing that face has a boundary of the form 0, 0, 𝑙−1, 𝑘,𝑚, 𝑛−1.

We already know that the face at the Vrst two consecutive sides of length 0

is a hexagon. The patch we obtain by removing that hexagon, has a bound-

ary of the form 0, 0, 𝑙 − 2, 𝑘,𝑚, 𝑛 − 2. We can repeat this argument, until we

obtain a patch with a boundary of the form 0, 0, 0, 𝑘,𝑚, 𝑛 − 𝑙, or of the form

0, 0, 𝑙 − 𝑛, 𝑘,𝑚, 0. In both cases such a patch does not exist, since it would

contain a face of size > 6, except in the case where all the side lengths are 0,

i.e., when 𝑘 = 𝑚 = 0 and 𝑙 = 𝑛. �
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𝑠1

𝑠𝑙

𝑠3𝑠𝑙 − 1 𝑠3 − 1

𝑠2 = 0

0𝑠1

Figure 5.12: The operation ℋ in the general case of the second
class of degenerate cases with 𝑠2 = 0

5.3.5.1 The general case of the second class of degenerate cases

If we look at the operations in the non-degenerate case, then we see that there

are three possible situations in which we have boundary elements that would be less

than zero, if those operations were applied. Those cases are 𝑠2 = 0, 𝑠𝑙 = 0 and

𝑠2 = 𝑠𝑙 = 0.

We start by looking at the case 𝑠2 = 0 and 𝑠𝑙 > 0. The situation when adding 𝑠1
hexagons to the Vrst side is shown in Figure 5.12. The Vnal hexagon also lies at the

side which corresponds to 𝑠3. This gives us the following operation:

<extended spiral>

𝑠1, 0, 𝑠3, . . . , 𝑠𝑙

ℋ↦−→
<extended spiral>(𝑠1 + 1)

0, 𝑠3 − 1 . . . , 𝑠𝑙 − 1, 𝑠1

(Fig. 5.12)

The operation of adding a pentagon after 𝑖 hexagons with 0 ≤ 𝑖 < 𝑠1 is not

degenerated for this case. A pentagon after 𝑠1 hexagons is not possible due to

Lemma 5.3.1 and the fact that 𝑠𝑙 > 0.

Next we look at the case 𝑠𝑙 = 0 and 𝑠2 > 0. For all operations in this case, the

Vrst hexagon also lies at the side which corresponds to 𝑠𝑙−1. The situation when

adding 𝑠1 hexagons to the Vrst side is shown in Figure 5.13. This gives us the follow-

ing operation:
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𝑠1

𝑠𝑙−1

𝑠2

𝑠𝑙−1 − 1 𝑠2 − 1

𝑠𝑙 = 0

0 𝑠1

Figure 5.13: The operation ℋ in the general case of the second
class of degenerate cases with 𝑠𝑙 = 0

𝑠1

𝑠𝑙−1

𝑠2

𝑠𝑙−1 − 1
𝑠2

0

0

𝑠1 − 1 − 𝑖

𝑖

Figure 5.14: The operation 𝒫(𝑖) in the general case of the second
class of degenerate cases with 𝑠𝑙 = 0

<extended spiral>

𝑠1, 𝑠2, . . . , 𝑠𝑙−1, 0

ℋ↦−→
<extended spiral>(𝑠1 + 1)

𝑠2 − 1, . . . , 𝑠𝑙−1 − 1, 0, 𝑠1

(Fig. 5.13)

The situations when adding a pentagon after 𝑖 hexagons is shown in Figure 5.14

and Figure 5.15. Note that due to Lemma 5.3.1 and the fact that 𝑠2 > 0, adding a

pentagon after 0 hexagons will not lead to a pseudo-convex patch. This gives us the

following operations:
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𝑠1

𝑠𝑙−1

𝑠2

𝑠𝑙−1 − 1 𝑠2 − 1

0

0 𝑠1 − 1
0

Figure 5.15: The operation 𝒫(𝑠1) in the general case of the sec-
ond class of degenerate cases with 𝑠𝑙 = 0

0 < 𝑖 < 𝑠1

<extended spiral>

𝑠1, 𝑠2, . . . , 𝑠𝑙−1, 0

𝒫(𝑖)↦−→
<extended spiral>(𝑖)(𝑃 )

𝑠1 − 1 − 𝑖, 𝑠2, . . . , 𝑠𝑙−1 − 1, 0, 𝑖

(Fig. 5.14)

<extended spiral>

𝑠1, 𝑠2, . . . , 𝑠𝑙−1, 0

𝒫(𝑠1)↦−→
<extended spiral>(𝑠1)(𝑃 )

0, 𝑠2 − 1, . . . , 𝑠𝑙−1 − 1, 0, 𝑠1 − 1

(Fig. 5.15)

𝑠1

𝑠1 − 1
𝑠𝑙−1

𝑠3𝑠𝑙−1 − 1 𝑠3 − 1

0

0

0

Figure 5.16: The operation ℋ in the general case of the second
class of degenerate cases with 𝑠2 = 𝑠𝑙 = 0

And Vnally we come to the case 𝑠2 = 𝑠𝑙 = 0. The situation when adding 𝑠1
hexagons to the Vrst side is shown in Figure 5.16. The Vrst hexagon also lies at the
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side which corresponds to 𝑠𝑙−1 and the Vnal hexagon also lies at the side which

corresponds to 𝑠3. This gives us the following operation:

<extended spiral>

𝑠1, 0, 𝑠3, . . . , 𝑠𝑙−1, 0

ℋ↦−→
<extended spiral>(𝑠1 + 1)

0, 𝑠3 − 1, . . . , 𝑠𝑙−1 − 1, 0, 𝑠1 − 1

(Fig. 5.16)

The operation of adding a pentagon after 𝑖 hexagons with 0 < 𝑖 < 𝑠1 is the same

for the case 𝑠𝑙 = 0 and 𝑠2 > 0 and the case 𝑠2 = 𝑠𝑙 = 0. Due to Lemma 5.3.1, in

this case adding a pentagon after 0 hexagons will lead to a pseudo-convex patch if

the boundary length is 4 and 𝑠3 = 𝑠1 > 0, or the boundary length is 5, 𝑠3 = 0 and

𝑠4 = 𝑠1. These cases will be handled in respectively 5.3.5.4 and 5.3.5.5.

Due to Lemma 5.3.1, adding a pentagon after 𝑠1 hexagons will theoretically lead

to a pseudo-convex patch if the boundary length is 4 and 𝑠3 = 𝑠1 > 0, or the

boundary length is 5, 𝑠4 = 0 and 𝑠3 = 𝑠1. These cases will be handled in respectively

5.3.5.4 and 5.3.5.5.

The cases where 𝑠𝑙−1 is equal to 0 degenerate further. These cases will be handled

separately for each length of the boundary in the following paragraphs.

5.3.5.2 Boundary length is 2

As was already used in the proof of Lemma 5.3.1, there exists no patch with

boundary sequence 0,0, since this patch would just be a digon. By examining the

operations in the Vrst class of degenerate cases with boundary length equal to 2, we

Vnd that those operation further degenerate when 𝑠2 = 0 and also, in case of the

operation of adding a side of hexagons and the operation of adding a pentagon after

𝑠1 hexagons, when 𝑠2 = 1.

We start with the case 𝑠2 = 0 and Vrst look at the operation ℋ. Here we note

that the same happens as in the Vrst class of degenerate cases with the case where

the boundary length is 1. The Vrst hexagon also lies at the end of the side that

corresponds to 𝑠1. Therefore this operation here corresponds to adding 𝑠1 hexagon.

This situation is shown in Figure 5.17. This gives us the following operation:
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𝑠1

𝑠1 − 3

0

0

Figure 5.17: The operationℋ in the case length = 2 of the second
class of degenerate cases with 𝑠2 = 0

<extended spiral>

𝑠1, 0

ℋ↦−→
<extended spiral>(𝑠1)

0, 𝑠1 − 3

(Fig. 5.17)

In this case there are only 𝑠1 faces that have a non-empty intersection with the

boundary. Therefore it is not possible to add a pentagon after 𝑠1 hexagons. The 𝑠1th

face cannot be a pentagon either, since this face contains at least 6 vertices, as can

be seen in Figure 5.17.

The situation for 𝒫(𝑖) with 0 ≤ 𝑖 ≤ 𝑠1 − 2 is shown in Figure 5.18. Also in this

case the Vrst hexagon also lies at the end of the side that corresponds to 𝑠1. This

gives us the following operation:

0 ≤ 𝑖 ≤ 𝑠1 − 2

<extended spiral>

𝑠1, 0

𝒫(𝑖)↦−→
<extended spiral>(𝑖)(𝑃 )

𝑠1 − 2 − 𝑖, 0, 𝑖

(Fig. 5.18)
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𝑠1

𝑠1 − 2 − 𝑖

0

0

𝑖

Figure 5.18: The operation 𝒫(𝑖) in the case length = 2 of the
second class of degenerate cases with 𝑠2 = 0

𝑠1

𝑠1 − 1

1

0

Figure 5.19: The operationℋ in the case length = 2 of the second
class of degenerate cases with 𝑠2 = 1
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𝑠1

𝑠1

0

0

𝑠3

𝑠3 − 2

Figure 5.20: The operationℋ in the case length = 3 of the second
class of degenerate cases with 𝑠2 = 0

Next we look at the case 𝑠2 = 1. The situation for operation ℋ is shown in

Figure 5.19. In this case the Vrst and the last hexagon both lie at the side that corre-

sponds to 𝑠2. This gives the following operation.

<extended spiral>

𝑠1, 1

ℋ↦−→
<extended spiral>(𝑠1 + 1)

0, 𝑠1 − 1

(Fig. 5.19)

The operation 𝒫(𝑖) with 0 ≤ 𝑖 ≤ 𝑠1 − 1 is not further degenerated for this case.

A pentagon after 𝑠1 hexagons is not possible, since also in this case the last face

contains at least 6 vertices, as is illustrated in Figure 5.19.

5.3.5.3 Boundary length is 3

In this section we will discuss the cases where the general case of the second class

of degenerate cases degenerate further due to overlap of the boundary elements that

are used to build the new boundary in the case where the boundary length is 3.
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𝑠1

𝑠2 − 2

0

0

𝑠2

𝑠1

Figure 5.21: The operationℋ in the case length = 3 of the second
class of degenerate cases with 𝑠3 = 0

We start with the case 𝑠2 = 0. The only operation we had for this case in 5.3.5.1

was ℋ. The only diUerence with the situation there, is that in this case the Vnal

hexagon lies also at the side corresponding to 𝑠3 (see Figure 5.20). This gives the

following operation:

<extended spiral>

𝑠1, 0, 𝑠3

ℋ↦−→
<extended spiral>(𝑠1 + 1)

0, 𝑠3 − 2, 𝑠1

(Fig. 5.20)

Next we turn our attention to the case 𝑠3 = 0. The only two operations that

further degenerate in this case are ℋ and 𝒫(𝑠1). For both operations the further

degeneration stems from the fact that there is a face which lies at the beginning of

the side corresponding to 𝑠2 and a face which lies at the end of the side corresponding

to 𝑠2. These situations are shown in Figure 5.21 and Figure 5.22. This leads to the

following operations:



5.3. EXTENDING THE SPIRAL 205

𝑠1

𝑠2 − 2

0

0

0

𝑠2

𝑠1

Figure 5.22: The operation 𝒫(𝑠1) in the case length = 3 of the
second class of degenerate cases with 𝑠3 = 0

<extended spiral>

𝑠1, 𝑠2, 0

ℋ↦−→
<extended spiral>(𝑠1 + 1)

𝑠2 − 2, 0, 𝑠1

(Fig. 5.21)

<extended spiral>

𝑠1, 𝑠2, 0

𝒫(𝑠1)↦−→
<extended spiral>(𝑖)(𝑃 )

0, 𝑠2 − 2, 0, 𝑠1

(Fig. 5.22)

The case 𝑠2 = 𝑠3 = 0 is not possible, since there exists no pseudo-convex patch

with boundary 𝑠1, 0, 0. If 𝑠1 = 0, then the pseudo-convex patch would be a triangle.

If 𝑠1 = 1, then the pseudo-convex patch would have a bridge. If 𝑠1 > 1, then the face

at the two sides of length 0 is a hexagon, since it contains at least six vertices. The

patch obtained by removing that face, has boundary 𝑠1 − 2, 0, 0. By repeating this

argument, we would eventually Vnd a pseudo-convex patch with either boundary

0, 0, 0 or boundary 1, 0, 0, depending on the parity of 𝑠1.

Note that there is no further degeneration for these cases. Adding a side of

hexagons to the side corresponding to 𝑠1 in a boundary of the form 𝑠1, 0, 1 or a
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𝑠1

𝑠3 − 2

0

0

𝑠3

𝑠1 − 1

0

0

Figure 5.23: The operationℋ in the case length = 4 of the second
class of degenerate cases with 𝑠2 = 𝑠4 = 0

boundary of the form 𝑠1, 1, 0 is not possible and adding a pentagon after 𝑠1 hexagons

in a boundary of the form 𝑠1, 1, 0, because in all these cases, the last face cannot be

placed.

5.3.5.4 Boundary length is 4

In this section we will discuss the cases where the general case of the second class

of degenerate cases degenerate further due to overlap of the boundary elements that

are used to build the new boundary in the case where the boundary length is 4. The

only case that deviates from the general case in 5.3.5.1 is 𝑠2 = 𝑠4 = 0.

The situation when adding hexagons to the side of length 𝑠1 is shown in Fig-

ure 5.23. The Vrst and the last hexagon both lie at the side of length 𝑠3. This gives

the following operation:

<extended spiral>

𝑠1, 0, 𝑠3, 0

ℋ↦−→
<extended spiral>(𝑠1 + 1)

0, 𝑠3 − 2, 0, 𝑠1 − 1

(Fig. 5.23)
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Due to Lemma 5.3.1 applying operation 𝒫(0) to a boundary sequence 𝑠1, 0, 𝑠3, 0

will lead to a new boundary sequence that is the boundary of a pseudo-convex patch

if and only if 𝑠1 = 𝑠3. The operation in this case is:

<extended spiral>

𝑠1, 0, 𝑠1, 0

𝒫(0)↦−→
<extended spiral>(0)(𝑃 )

𝑠1 − 1, 0, 𝑠1, 0, 0

Let 𝑃 be a pseudo-convex patch with a boundary of the form 𝑙, 0, 𝑙, 0 with 𝑙 > 0.

Assume the face at one of the sides of length 0 is a pentagon. The patch obtained

by removing that pentagon has a boundary of the form 𝑙 − 1, 0, 𝑙 − 1, 0, 0. Due to

Lemma 5.3.1, the face at the two consecutive sides of length 0 is a hexagon (unless

𝑙 − 1 is 0), and the patch obtained by removing that hexagon has a boundary of the

form 𝑙 − 2, 0, 𝑙 − 2, 0, 0. The same reasoning can be repeated, until we Vnally have

a patch with a boundary of the form 0, 0, 0, 0, 0. This patch contains one bounded

face, and that face is a pentagon. So we Vnd that for a patch with a boundary of the

form 𝑙, 0, 𝑙, 0 with 𝑙 > 0, if one of the faces at a side of length 0 is a pentagon, then

also the other face at a side of length 0 is a pentagon. Therefore applying operation

∫∞ to a boundary sequence 𝑠1, 0, 𝑠1, 0 will not lead to a pseudo-convex patch, since

a hexagon is placed at one of the sides of length 0.

5.3.5.5 Boundary length is 5

The only cases that further degenerate for this boundary length, are those cases

where 𝑠4 = 𝑠5 = 0, and those cases where 𝑠2 = 𝑠5 = 0 and a pentagon is placed

at a side of length 0. Due to Lemma 5.3.1, this last situation won’t lead to a pseudo-

convex patch if the boundary is not of the form 𝑙, 0, 𝑙, 0, 0. So in all cases that still

need to be handled, the boundary contains two consecutive sides of length 0.

Let 𝑃 be a pseudo-convex patch with a boundary that contains two consecutive

sides of length 0: 𝑘, 𝑙,𝑚, 0, 0 with 𝑘, 𝑙,𝑚 ∈ N. If 𝑘 = 𝑙 = 𝑚 = 0, then 𝑃 contains

only one bounded face and that face is a pentagon. There is no pseudo-convex patch

with boundary length smaller than or equal to 5 and three consecutive sides of length
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0 and at least one other side with length greater than 0, since the three consecutive

sides of length 0 preceeded or followed by a side of length greater than 0, correspond

to at least 5 boundary vertices of degree 2 preceeded or followed by a boundary

vertex of degree 3, which would mean that there is a face with size greater than 6.

So assume that 𝑘 and 𝑚 are greater than 0. Due to Lemma 5.3.1, the face at the two

consecutive sides of length 0 is a hexagon. The patch obtained by removing that face

has a boundary of the form 𝑘− 1, 𝑙,𝑚− 1, 0, 0. The same reasoning can be repeated,

until we obtain a patch with boundary length 5 and at least three consecutive sides

of length 0. However, we already showed that there is only one such patch, that

it is a patch with one bounded face and that that face is a pentagon. So we Vnd

that 𝑘 = 𝑚 and 𝑙 = 0, and that 𝑃 is up to isomorphism the only patch with that

boundary.

5.4 Avoiding isomorphic copies

A representation of a pseudo-convex patch consists of a marked boundary to-

gether with an outer spiral. In principle we generate all possible representations of

the pseudo-convex patches but accept a representation only if it is the canonical

representation. A representation of a pseudo-convex patch is canonical if the bound-

ary sequence in clockwise direction starting with the mark is equal to the boundary

vector of the boundary and the outer spiral is lexicographically largest for all such

possible marks.

There are several optimisations possible. E.g., we do not need to generate a repre-

sentation that does not start at a break-edge which leads to the boundary vector. In

many cases this will already reduce the number of possible starting points to one. We

can also try to eliminate other starting points during the generation process, when

we can determine that an outer spiral starting from those marks is lexicographically

smaller than the current outer spiral being built, or we can abort the current genera-

tion branch and backtrack, when we can determine that an outer spiral from one of

the alternative marks is lexicographically larger than the current outer spiral being

built for all structures that will be constructed in this branch. Once we only have
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one possible starting point we can continue with the generation without perform-

ing any checks for canonicity, since each subsequent structure in this branch will be

canonical.

The following section will discuss at which points in the generation process we

are able to determine parts of the outer spirals from the alternative starting points.

5.5 Splitting the patches into shells

A pseudo-convex patch is shellable, i.e., it can be subdivided into disjoint shells.

But let us Vrst deVne what we mean by shells.

DeVnition 5.5.1 Given a pseudo-convex patch 𝑃 , the outer shell or Vrst shell of outer shell
𝑃 is the set of bounded faces of 𝑃 which have a non-empty intersection with the
boundary of 𝑃 . ◇

DeVnition 5.5.2 Given a pseudo-convex patch 𝑃 , the 𝑛th shell (𝑛 > 1) is the outer 𝑛th shell
shell of the patch that is obtained by removing the Vrst, second, . . . , (𝑛 − 1)th shell
of 𝑃 . ◇

This implies that we can see a pseudo-convex patch as a sequence of shells.

We observe that the subdivision of the patch into shells is independent of which

outer spiral is used to describe the patch. Also, since the outer spiral is constructed

by removing faces along the boundary in a clockwise direction, the faces in the outer

spiral will be grouped together by shell, i.e., each outer spiral will Vrst contain all

the faces of the Vrst shell, then all faces of the second shell, . . . This means that

we can construct the partial outer spiral for all alternative starting points up to the

same point. This can be done without constructing the partial patch in memory: the

extended spiral contains the necessary information to determine the partial outer

spirals.

It is also not necessary to always compute the partial outer spiral starting from

the break-edges on the initial boundary. If an outer spiral starting from an alternative

starting point is lexicographically smaller than the current outer spiral being built,

then that starting point is eliminated. If an outer spiral starting from an alternative

starting point is lexicographically larger than the current outer spiral being built, then
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the current branch of the generation process is terminated and we backtrack. So, if

the generation process continues with still at least one alternative starting point, we

can just remember the break-edges in the new boundary where the alternative partial

outer spirals ended, and when the next shell is Vnished, just compare the part of the

partial outer spirals that corresponds to that shell, since the previous parts of the

outer spirals will necessarily be equal.

5.6 Isolated pentagons

As was already explained in Chapter 1, the isolated-pentagon-rule (IPR) (p. 9) is

an important rule concerning the stability of fullerenes and fullerene-like structures.

Therefore special attention is given to allow the generation of pseudo-convex patches

with isolated pentagons.

There are only two possible situations in which a face will be placed next to a

pentagon. Either the previous face that was placed was a pentagon or either we

reached a break-edge that corresponds to a pentagon in a previous shell. So by sim-

ply tracking the last face and the face neighbouring each break-edge we can easily

prevent patches with neighbouring pentagons to be generated.

5.7 Implementation

The algorithm described in this chapter is not yet implemented as a standalone

program. It is however used in the program cone described in the next chapter.



6 Nanocones
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6.1 Introduction

Nanocones are carbon networks conceptually situated between graphite and the

famous fullerene nanotubes. It is common for all these three that the degree of

an atom is 3. Graphite is a planar carbon network where the faces formed are all

hexagons. Fullerene nanotubes [37] are discussed in two forms: once as the Vnite,

closed version where, except for hexagons, there are only 12 pentagons and once as

the one-side inVnite version where 6 pentagons bend the molecule so that an inVnite

tube with constant diameter is formed. A nanocone lies between graphite and the

one-side inVnite fullerene nanotubes: in addition to hexagons it has between 1 and 5

pentagons, so that neither the Wat shape of graphite nor the constant diameter tube

of the nanotubes can be formed. Recently, the attention of the chemical world in

nanocones has strongly increased. Figure 6.1 shows an overview of these 3 types of

carbon networks.

(6.1.a) Graphite (6.1.b) Nanocone (6.1.c) Nanotube

Figure 6.1: Three types of carbon networks

The structure of graphite is uniquely determined, but for nanotubes and nanocones

an inVnite variety of possibilities exist. Algorithms to generate all combinatorially

possible molecules in a given class have long been important tools in chemistry (see

e.g., [11][16]). They are e.g., used to detect energetically possible or even optimal

bonding structures.

There already exist fast algorithms to generate representatives of fullerene nan-

otubes (see [45]). These representatives of the inVnite nanotubes consist of a cap

containing all pentagons that can be uniquely extended to form the inVnite nanotube
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for which it stands. Since graphite is unique, the generation problem is trivial for this

case. Our goal is now to classify the nanocones and develop a generator for them.

Nanocones were already classiVed by D.J. Klein in [46] and [52]. The result was

established independently by C. Justus in [53]. We will give a new and simple proof

of the classiVcation result that can easily be generalised for other (cone-like) classes

of inVnite graphs. We will also subdivide each of the eight (inVnite) classes in an

inVnite number of Vnite classes which also take the localization of the pentagons

into account. These Vner classes will form the basis for the generator. To the best of

our knowledge, no generators for nanocones existed so far.

Figure 6.2: Two views of a patch with two pentagons.

The Vrst step however is to translate these chemical molecules into combinatorial

structures.

DeVnition 6.1.1 A cone graph is an inVnite, cubic, 3-connected, plane graph with cone graph
1 ≤ 𝑝 ≤ 5 pentagonal faces and all remaining faces hexagonal. ◇

6.2 Cone Patches

For computer generation of these structures, they must Vrst be described in a

Vnite way. We describe the inVnite molecule by a unique Vnite structure from which

the cone can be reconstructed. For this, consider a cycle in the cone graph. By the

Jordan curve theorem a cycle divides the cone graph into two parts. One of those
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will be Vnite, the other will be inVnite. The Vnite part is called the inside of the cycle

and the inVnite part the outside. A piece of the cone graph can be cut out of the cone

by considering only the vertices that are on the cycle or inside the cycle. We re-use

much of the deVnitions established in [40] and already used in the previous chapter.

DeVnition 6.2.1 A (cone) patch is a Vnite, 2-connected, planar graph with threecone patch
kinds of faces: 1 "outer" face with unrestricted size, 1 to 5 pentagons and an unre-
stricted number of hexagons. Furthermore all interior vertices have degree 3. The
vertices of the outer face have degree 2 or 3. The boundary of the patch are theboundary
vertices and edges of the outer face.
◇

When drawing a cone graph and giving its boundary sequence we always choose

a clockwise direction for the boundary sequence. By choosing the counterclockwise

direction we would obtain similar results.

Remark 6.2.2 Let 𝐺 be a cone graph and let 𝐶 be a cycle in 𝐺, such that all the
pentagons lie inside the cycle. The Vnite subgraph 𝐺𝐶 of the cone graph 𝐺 formed
by the vertices and edges that lie inside or on the cycle is a (cone) patch.

All the vertices in a cone have degree 3, so the vertices that were inside the cycle
still have degree 3 and the vertices that were on the cycle have degree 2 or 3. The
boundary of the patch corresponds to the vertices and edges of the cycle.

The subgraph 𝐺𝐶 is 2-connected because its faces are cycles with the property
that if they share a vertex, then they share an edge.

DeVnition 6.2.3 Given a cone patch P, if we encode the boundary of a cone patch
as a cyclic sequence of 2’s and 3’s according to the degree of the vertices on the
boundary, then we call it:

∙ a symmetric boundary if the encoding has the formsymmetric
boundary

(2(23)𝑘)6−𝑝(𝑘 ∈ N, 1 ≤ 𝑝 ≤ 5);

∙ a near-symmetric boundary if the encoding has the formnear-
symmetric
boundary (2(23)𝑘−1)(2(23)𝑘)6−𝑝−1(𝑘 ∈ N, 1 < 𝑝 < 5).

◇
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The reason to exclude 𝑝 = 1 in case of a near-symmetric boundary will become

clear later (see p. 265).

We can view the boundary of pseudo-convex cone patches as polygons where the

corners are formed by the break-edges, and the lengths of the sides are determined

by their number of 3’s. This gives us yet another representation of a boundary. We

can just give the cyclic sequence of lengths of the sides of this polygon (once again

in clockwise direction). A symmetric boundary (2(23)𝑘)6−𝑝, for instance, can then

be written as the cyclic (6− 𝑝)-tuple (𝑘, . . . , 𝑘). The (6− 𝑝)-tuple (𝑛1, . . . , 𝑛6−𝑝) of

a boundary of a cone patch which is lexicographically smallest among all its cyclic

permutations is called the boundary vector of that cone patch. boundary
vectorThis means that the boundary vector for a symmetric patch is the (6 − 𝑝)-tuple

(𝑘, . . . , 𝑘), and for a near-symmetric patch it is the (6 − 𝑝)-tuple (𝑘 − 1, 𝑘, . . . , 𝑘).

6.3 Families of Cone Patches

DeVnition 6.3.1 Given a cone patch 𝑃 , the set of all faces with a non-empty inter-
section with the boundary of 𝑃 is said to form a layer when the subgraph in the layer
dual graph induced by these faces is a simple cycle. ◇

Lemma 6.3.2 In a layer no face contains two or more consecutive break-edges un-
less the layer contains only three faces.

Proof: Suppose Vrst that the layer contains a pentagon with two consecutive break-

edges. Then it is clear that this pentagon can only have one neighbouring face.

Therefore it corresponds to a vertex of degree one in the dual and thus an

induced subgraph containing this vertex can never be a simple cycle.

Next suppose that the layer contains a hexagon with more than two consecu-

tive break-edges. In this case it can only have at most one neighbouring face,

and thus, again, an induced subgraph in the dual containing the vertex corre-

sponding to this face can never be a simple cycle. If however the hexagon has

exactly two consecutive break-edges, then it can have two neighbouring faces.

These two neighbouring faces, however, share an edge and thus the subgraph

induced by these three faces in the dual, is a triangle. This means that there
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(6.3.a) (6.3.b) (6.3.c)

Figure 6.3: There are no consecutive break-edges in a layer with
more than three faces.

cannot be any other faces in the layer, because a simple cycle only contains a

triangle when it is a triangle. �

Lemma 6.3.3 Given a pseudo-convex cone patch 𝑃 with a layer of only hexagons.
A new pseudo-convex cone patch 𝑃 ′ can be obtained from 𝑃 by removing the layer
of only hexagons. If 𝑃 has the boundary vector

(𝑛1, . . . , 𝑛𝑚),

then 𝑃 ′ has the boundary vector

(𝑛1 − 1, . . . , 𝑛𝑚 − 1).

Proof: In Figure 6.4 the boundary and the outer layer is shown for a cone patch

with three pentagons and at least one layer of only hexagons. If we look at

the relation between the boundary of the original patch and the boundary of

the patch obtained by removing the layer of hexagons, we see that in the old

patch the new 2’s are neighbours of the old 3’s and the new 3’s come from

the old 2’s that lie between two 3’s on the old boundary. Furthermore the ro-

tational order around the patch is preserved, so each side contains one 3 less. �

Above we have described the removal of a layer of only hexagons. We will use

the symbol 𝜌 for this operation. So the notation

𝑃 ′ = 𝜌𝑃,
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Figure 6.4: The boundary of a cone patch with 3 pentagons and
a layer of hexagons. The cone patch that is obtained by removing
the layer of hexagons is omitted in the picture. The degrees of the
boundary vertices in the inner patch can be easily derived from
the degrees of the inner cycle: a vertex of degree 2 corresponds to
a vertex of degree 3 and vice versa.

means that 𝑃 ′ can be obtained from 𝑃 by the removal of a layer of only hexagons.

The addition of such a layer is deVned as the inverse operation of 𝜌, and thus will be

written as 𝜌−1.

Corollary 6.3.4 Given a pseudo-convex cone patch 𝑃 with boundary vector

(𝑛1, . . . , 𝑛𝑚),

then 𝜌−1𝑃 has the boundary vector

(𝑛1 + 1, . . . , 𝑛𝑚 + 1).

Extending the notation, we will write 𝜌−𝑎 with 𝑎 ∈ N to mean the addition of 𝑎

layers of hexagons.

These operations enable us to deVne the following relation between two pseudo-

convex cone patches 𝑃1 and 𝑃2:

𝑃1 ∼𝐹 𝑃2 ⇐⇒ ∃𝑘 ∈ Z : 𝑃1
∼= 𝜌𝑘𝑃2.

Note that 𝑘 is in Z, and thus can be negative.
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Lemma 6.3.5 The relation ∼𝐹 is an equivalence relation.

Proof: This follows from the fact that the operation 𝜌 can be inverted in a unique

way. �

These last two lemmas justify the following deVnitions.

DeVnition 6.3.6 Given a pseudo-convex cone patch with boundary vector (𝑛1, . . . ,
𝑛6−𝑝). The boundary signature of that cone patch is given by the (6 − 𝑝)-tupleboundary

signature (0, 𝑛2 − 𝑛1, . . . , 𝑛6−𝑝 − 𝑛1).
An equivalence class associated with the equivalence relation∼𝐹 is called a fam-

ily of patches. Due to Lemma 6.3.3 the boundary signature is an invariant of a familyfamily of
patches of patches.

A family of patches is said to be a canonical family if it has a symmetric or acanonical
family near-symmetric boundary. ◇

The boundary vector (𝑛1, . . . , 𝑛6−𝑝) is lexicographically smallest among all its

cyclic permutations, and thus for each 𝑖 with 1 ≤ 𝑖 ≤ 6 − 𝑝, we have that 𝑛1 ≤ 𝑛𝑖.

This means that the elements of the boundary signature are all elements of N. A

symmetric boundary has the boundary signature (0, . . . , 0) and a near-symmetric

boundary has the boundary signature (0, 1, . . . , 1).

DeVnition 6.3.7 Given a family of cone patches ℱ , we deVne an order on the ele-
ments of this family: for all cone patches 𝑃1, 𝑃2 ∈ ℱ , we say that 𝑃1 ≤𝐹 𝑃2 if and
only if there exists a subgraph in 𝑃2 that is isomorphic to 𝑃1. ◇

Lemma 6.3.8 For each family of cone patches ℱ : the order ≤𝐹 is a total order.

Proof: This follows from the fact that the operation 𝜌 shortens the boundary and

can be inverted in a unique way. �

Corollary 6.3.9 Each family of cone patches contains a unique smallest non-empty
member.

Proof: The cone patch 𝑃 ′ obtained from a given cone patch 𝑃 by the removal of a

layer of only hexagons contains less vertices than 𝑃 . A cone patch is a Vnite
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graph and so the removal operation cannot be repeated inVnitely. Since ≤𝐹

is a total order this means that we have a unique smallest member in each

family. The only thing that needs to be proven is that this smallest member is

non-empty. This is however quite trivial since a cone patch contains at least

one pentagon, and this pentagon cannot be removed by the removal operation.

�

DeVnition 6.3.10 Given a family of patches, the canonical representative of the canonical
representa-
tive

family is the unique smallest member of this family. ◇

Corollary 6.3.11 Given a canonical family ℱ of cone patches, the canonical repre-
sentative of this family contains a pentagon that has a non-empty intersection with
the boundary.

Proof: A cone patch 𝑃 is the unique smallest member of a family ℱ if and only if the

operation 𝜌 can not be applied to 𝑃 . There are three reasons why this might be

the case. The Vrst is that the layer contains a pentagon. The second is that one

of the components of the boundary vector is 0. It can easily be shown that for a

canonical family the latter is never the case without also the former applying.

The third reason is that there is no layer, but it was already shown that in this

case either one of the Vrst two also applies.

If we have a symmetric boundary, then the boundary vector will be the 6 − 𝑝

zero-vector. This means that the patch is a 6 − 𝑝-gon. In case 𝑝 = 1 this is

a pentagon, and thus the patch indeed contains a pentagon with a non-empty

intersection with the boundary. In the other cases (2 ≤ 𝑝 ≤ 5) there exists no

patch with this boundary, because the patch would correspond to, respectively,

a quadrangle, a triangle, a cycle of length 2 and a single vertex of degree 2.

In case of a near-symmetric boundary, we have three possibilities. When 𝑝 = 2

the boundary is 2(23)0(2(23)1)3. Due to Lemma 6.3.2 the face carrying the

two break-edges is a hexagon (and otherwise we would have proven this case).

Suppose one of the other faces is a hexagon (see Figure 6.5). This would mean

that there is a bridge in the patch. Therefore the patch only contains two more
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Figure 6.5: A pseudo-convex patch with boundary
2(23)0(2(23)1)3 cannot have two hexagons in the bound-
ary.

faces, and these are pentagons. When 𝑝 = 3, the boundary is 2(23)0(2(23)1)2.

We consider the face 𝐹 that contains the three vertices corresponding to the

three consecutive 2’s. If the vertices corresponding to the two 3’s are adjacent

to the same vertex inside the patch, then also in this case there is a bridge in

the patch, since there are no other ingoing edges into the patch. If the vertices

corresponding to the two 3’s are adjacent to diUerent vertices inside the patch,

then 𝐹 will have a size of at least 7, which is not possible. So in this case

it is not possible that one number in the boundary vector becomes 0. Finally

when 𝑝 = 3, the boundary is 2(23)0(2(23)1)1, which is a contradiction with

the 2-connectedness of a cone patch, because the edge that does not lie on the

boundary and is incident to the vertex of degree 3 on the boundary is a bridge.

�

6.3.1 ClassiVcation of nanocones
We will now classify the diUerent types of nanocones by using a theory developed

for the study of disordered tilings.

We Vrst need to deVne when two disordered tilings — or, more generally, two

inVnite plane graphs — are equivalent.

DeVnition 6.3.12 Given two inVnite plane graphs 𝐶 = (𝑉,𝐸) and 𝐶 ′ = (𝑉 ′, 𝐸′).
𝐶 and 𝐶 ′ are called equivalent if there are Vnite subsets 𝑉0 ⊂ 𝑉 and 𝑉 ′

0 ⊂ 𝑉 ′ so
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that the graphs 𝐶[𝑉 ∖ 𝑉0] and 𝐶 ′[𝑉 ′ ∖ 𝑉 ′
0 ] induced by 𝑉 ∖ 𝑉0, resp. 𝑉 ′ ∖ 𝑉 ′

0 are
isomorphic. ◇

The previously mentioned method to classify disordered tilings was devised in

[19], extended in [28] and was completely solved in [39]. A tiling 𝒯 ′ is a disordering

of a periodic tiling 𝒯 if we can map the chamber system of 𝒯 ′ onto the Delaney-Dress

symbol of 𝒯 such that the actions of 𝜎𝑖 (with 0 ≤ 𝑖 ≤ 2) and the values of 𝑚𝑖𝑗 (with

0 ≤ 𝑖 < 𝑗 ≤ 2) are respected on the complement of a Vnite set. We just mention the

main result from [39] here. It would not be trivial to introduce the prerequisites for

this theorem, but we will translate it to our speciVc case.

Theorem 6.3.13 (Balke [39]) A disordered periodic tiling 𝒯 ′ of an equivariant pe-
riodic tiling 𝒯 is up to equivalence characterised by

∙ the corresponding equivariant periodic tiling 𝒯

∙ a winding number

∙ a conjugacy class of an automorphism in the symmetry group of 𝒯

For details and proofs on how the invariants correspond to the tilings 𝒯 and 𝒯 ′,

see [39]. Here we will give a short sketch of the constructions for the special case of

the hexagonal tiling discussed here:

In a hexagonal tiling one can have vertex or face disorders. Vertex disorders are

vertices with degree diUerent from 3 and face disorders are faces with size diUerent

from 6. A disordered hexagonal tiling is a hexagonal tiling with a Vnite number of

vertex and face disorders.

First, choose a closed path in clockwise direction around all disorders repeating the

starting edge at the end. This path is described by right and left turns. Then choose

an arbitrary directed starting edge 𝑒 in the hexagonal lattice and follow the same

path. The last (directed) edge 𝑒′ of this path will (in general) no longer be identical

to 𝑒, but there is an automorphism 𝛾 of the tiling mapping 𝑒 to 𝑒′. This is trivial in

the case of the hexagonal tiling but in fact also true in more complicated cases. The

conjugacy class of 𝛾 in the symmetry group of the hexagonal tiling is the invariant

in the third point of Theorem 6.3.13. Furthermore 𝛾 can be written as the product
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of automorphisms obtained as paths around the single disorders – the pentagons.

These automorphisms can easily be determined as a rotation by 60 degrees in coun-

terclockwise direction around the center of a face. If there are only 𝑝 pentagons as

disorders, 𝛾 is the product of 𝑝 rotations by 60 degrees around centers of faces.

In our case of only one face size and only disordering faces with smaller size, the

winding number is a direct consequence of the automorphism, so it does not give

extra information and we can neglect it here. In the case of the hexagonal lattice

it would only be needed to distinguish e.g., between a disorder by a 5-gon and a

disorder by an 11-gon which would correspond to the same conjugacy class.

Two rotations belong to the same conjugacy class if and only if they have the

same angle of rotation and the centers of rotation are equivalent under a symmetry

of the tiling – that is in our case: they are both centers of edges, both centers of faces

or both vertices.

This gives us only a limited number of possibilities for these symmetries. They

are all rotations and are depicted in Table 6.1. The patches in Table 6.1 are example

patches that correspond to these symmetries and therefore also prove existence of

such cones.

In [39] the existence of disordered tilings for a given parameter set is proven in

a very general context. Nevertheless this result can not be applied here, because we

have very special requirements for the disordered tilings: we do not want an arbitrary

disordered tiling for this parameter set, but one with only face disorders and these

disorders are 1 ≤ 𝑝 ≤ 5 pentagons.

In the previous text we have only considered nanocones containing hexagons and

up to Vve pentagons. This technique however can also be used for other cases. We

will give a short example by allowing quadrangles forming cones instead of pen-

tagons as disorders of the hexagonal tiling to illustrate that. A cone is formed if there

are one or two quadrangles.

In case of one quadrangle we have, as with the one-pentagon-case, a unique

structure. Two quadrangles correspond to two rotations of 120∘ around the center of

a face, so that makes 240∘. There are two candidate conjugacy classes of symmetries

in the automorphism group of the hexagonal tiling. One corresponds to a rotation of
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25 =
(2(23)0)5

2(23)1(2(23)2)2

a e

(2(23)1)4 (2(23)2)2

b f

2(23)0(2(23)1)3 2(23)22(23)3

c g

(2(23)1)3 2(23)5

d h

Table 6.1: The complete classiVcation of cone patches.
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240∘ around the center of a face and one to a rotation of 240∘ around a vertex. A

short investigation however shows that a rotation of 240∘ around a vertex can not

be written as the combination of two rotations of 120∘ around the center of a face.

Let 𝐶 denote the center of the rotation that is the result of the two rotations 𝑟1, 𝑟2
of 120∘ around face centers 𝑓1, 𝑓2. Then 𝐶 lies on the perpendicular bisector of the

segment connecting 𝑓1 and 𝑓2. Since 𝐶 is a Vxed point of the combination of 𝑟1 and

𝑟2, the line connecting 𝐶 to 𝑓1, resp. 𝑓2 forms an angle of 60∘ with the segment

connecting 𝑓1 and 𝑓2. Thus the three centers form an equilateral triangle and since

𝑓1 and 𝑓2 lie in the center of faces, so does 𝐶 , since it is the image of 𝑓1 under a

rotation of 60∘ around 𝑓2. See also Figure 6.6.

This gives us only one class for the nanocones with two quadrangles. That this class

is realizable, can be seen by considering two quadrangles that share an edge. This

structure forms a cone patch for these quadrangle cones and corresponds to the

boundary (2(23)1)2.

This example with quadrangles also illustrates the fact that it is not always so

that each conjugacy class of symmetries corresponds to an equivalence class of cones

under the stricter conditions we use.

Theorem 6.3.14 For each cone graph 𝐺(𝑉,𝐸), there exists a canonical family ℱ
such that for each cone patch 𝑃 ∈ ℱ , there exist sets 𝑉𝐹 ⊂ 𝑉 and 𝐸𝐹 ⊂ 𝐸 such
that the subgraph 𝐹 (𝑉𝐹 , 𝐸𝐹 ) of 𝐺(𝑉,𝐸) is isomorphic to 𝑃 .

In case of 𝑝 ∈ {1, 5} the family will have a symmetric boundary. In the other
cases both symmetric and near-symmetric boundaries are possible.

Proof: We need only prove there exists a subgraph 𝐹 in the cone graph 𝐺 such

that 𝐹 is induced by all the vertices in or on a cycle in 𝐺; 𝐹 is a symmetric

or a near-symmetric cone patch and 𝐹 contains all the pentagonal faces in 𝐺.

Since the addition or removal of a layer of only hexagons can only be done in a

unique way, all the other members of the family will also be contained in 𝐺.

Table 6.1 contains an example for each possible equivalence class of automor-

phisms. Also each patch has either a symmetric boundary or a near-symmetric

boundary. Due to the theorem of Balke (Theorem 6.3.13) two disordered tilings

that correspond to the same automorphism (and of course the same winding
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𝑓1

𝑓2

𝐶

Figure 6.6: The Vxed point of the combination of two counter-
clockwise rotations of 120∘ around the centre of a face is always
the centre of a face.
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number) are equivalent. By Corollary 6.3.4 we can add a number of layers to

the patch and the signature stays the same. If we have a cone graph, it must

correspond to one of the eight automorphisms in Table 6.1. We can then en-

large the exemplary patch for that automorphism by adding layers of hexagons

until the complement of that cone patch in its cone graph is isomorphic to a

part of the given cone graph. Since the original patch and thus the enlarged

patch was either symmetric or near-symmetric, the given cone contains a sym-

metric or a near-symmetric family. �

A cone can be seen as the limit of a family of cone patches with respect to the

operation 𝜌−1.

DeVnition 6.3.15 Given a cone graph 𝐺, a cone patch 𝑃 of 𝐺 is a canonical cone
patch if it is the canonical representative of a canonical family of patches of 𝐺. ◇canonical

cone patch
Due to the previous theorem each cone has at least one canonical cone patch.

The following theorems will prove the unicity of this canonical cone patch, but Vrst

we need some more deVnitions.

DeVnition 6.3.16 A marked cone patch 𝑃𝑚 consists of a cone patch 𝑃 and amarked
cone patch mark𝑚 on one of the edges in the boundary of 𝑃 . For a marked patch the boundary

sequence is no longer cyclic, i.e., it has a Vxed starting point: the boundary is given
as the sequence of degrees following the marked edge in clockwise direction.

A marked cone patch 𝑃𝑚 based on a cone patch 𝑃 is called canonically markedcanonically
marked
patch

when the boundary sequence is lexicographically smallest among its cyclic permuta-
tions.

The edge carrying the mark in a (canonically) marked patch is called a (/the)
(canonical) marked edge. ◇canonical

marked
edge Since the graphite lattice and the cone graph are both cubic graphs we can de-

scribe paths in both these structures by right and left turns. We deVne the following

operations on the set 𝐸* of directed edges:

𝜏2 : 𝐸* → 𝐸* : 𝑒 ↦→ right neighbour of 𝑒
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𝜏3 : 𝐸* → 𝐸* : 𝑒 ↦→ left neighbour of 𝑒

A path can then be described by a directed start edge 𝑒 and a sequence of operations

𝜏2 and 𝜏3. The subsequent edges of the path can then be obtained by applying the

sequence of operations on the start edge. The names of the operation have been cho-

sen such that the path of the boundary of a cone patch when traversed in clockwise

direction has the sequence described by the degrees of the vertices on the boundary

in the order they appear.

Theorem 6.3.17 For each cone graph 𝐺(𝑉,𝐸) that is not equivalent to the cone
graph corresponding to the near-symmetric cone patch with two pentagons in Ta-
ble 6.1 c, there exists exactly one canonical family ℱ of subgraphs of 𝐺. In the case
that 𝐺 is equivalent to the cone graph corresponding to the near-symmetric cone
patch with two pentagons there can exist at most two canonical families of sub-
graphs of 𝐺.

Proof: Given a cone 𝐶 , select two cone patches 𝑃1 and 𝑃2 with a symmetric or a

near-symmetric boundary. We need to prove that these two belong to the same

family of patches, or in case of a near-symmetric cone with two pentagons they

can belong to diUerent families but any other patch will belong to one of both

families. For this proof we will again be embedding the patch boundaries in

the hexagonal lattice to get a path which identiVes the boundary.

A path in the carbon network can be described by a directed start edge and a

sequence of 𝜏2 and 𝜏3 operations.

We start by making some observations.

Observation 1 The two patches will have the same boundary signature, be-
cause they contain the same number of pentagons and correspond to the same
automorphism.

In this proof we will always consider the patches 𝑃1 and 𝑃2 as subgraphs of

the same cone graph associated with 𝐶 instead of as two separate structures.

Observation 2 W.l.o.g. we can consider only the case where the boundaries
of 𝑃1 and 𝑃2 share at least 1 edge. If this is not the case we can replace the
smallest patch 𝑃𝑖 by 𝜌−1𝑃𝑖 and repeat this until this condition is met.
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We choose a directed edge 𝑒 on the boundary of 𝑃1, such that 𝑒 also lies on the

boundary of 𝑃2 and the edge following 𝑒 is diUerent for 𝑃1 and 𝑃2. If such an

edge does not exist we have proven the theorem so assume that such an edge

exists.

Split the boundary at the start vertex of 𝑒. The Vrst operation in the operation

sequences of both paths will diUer, because otherwise the edge following 𝑒

would have been shared by both boundaries. W.l.o.g. we can assume that the

sequence of 𝑃1 starts with 𝜏2 and the sequence of 𝑃2 starts with 𝜏3.

𝑒1

𝑒2𝑒3

Figure 6.7: Vectors in the hexagonal grid.

We can associate a vector with a directed path in the hexagonal lattice in the

following way: we take the vector that starts at the start vertex of the Vrst

edge and that ends at the end vertex of the last edge. If we choose an arbitrary

point 𝑜 in the hexagonal lattice, we deVne the vectors e1, e2 and e3 with 𝑜 as

starting point as shown in Figure 6.7. By abuse of notation, we will also use

e1, e2 and e3 for the three directed edges that have 𝑜 as Vrst vertex.

We introduce the following notation for some more vectors (see also Figure 6.8

and Figure 6.9):

𝑏0 = e1 𝑏3 = −e1

𝑏1 = −e3 𝑏4 = e3

𝑏2 = e2 𝑏5 = −e2
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𝑏0
𝑏1

𝑏2
𝑏3

𝑏4

𝑏5

Figure 6.8: Vectors in the hexagonal grid.

and

𝐵𝑖 = 𝑏𝑖 + 𝑏𝑖+1 (𝑖 ∈ {0, . . . , 5}).

Note that index arithmetic on the vectors 𝑏𝑖 is done modulo 6.

𝐵0

𝐵1

𝐵2𝐵3

𝐵4

𝐵5

Figure 6.9: Vectors in the hexagonal grid.

A sequence that starts with 𝜏2 and corresponds to a patch with 6 − 𝑝 break-
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edges will result in the following vector when applied to the directed edge e1:

6−𝑝∑︁
𝑖=0

(𝐵𝑖𝑛𝑖 + 𝑏𝑖) − 𝑏6−𝑝,

where 𝑛𝑖 is the number of three’s between the break-edges (see Figure 6.10 for

an example).

A

B
C

D E F G

H
I

J
K

L

M

𝐵0

𝑏0
𝐵1

𝑏1
𝐵2

𝐵2

𝑏2
𝐵3

𝑏3 −𝑏3

F

G H I
J

K

L

M
A

BCD

E

Figure 6.10: The vector corresponding to the boundary
2322322323223. This is a boundary with 3 break-edges and the
values for 𝑛0, 𝑛1, 𝑛2 and 𝑛3 are respectively 1,1, 2 and 1.

A sequence that starts with 𝜏3 and corresponds to a patch with 6 − 𝑝 break-

edges will result in the following vector when applied to the directed edge e1:

6−𝑝∑︁
𝑖=0

(𝐵𝑖−1𝑚𝑖 + 𝑏𝑖−1) − 𝑏5,

where 𝑚𝑖 is the number of three’s between the break-edges. Note that index

arithmetic on the vectors 𝐵𝑖 and 𝑏𝑖 is done modulo 6. Since we have the extra

condition that the sequence must start with 𝜏3 we have that 𝑚0 ≥ 1.
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The vectors corresponding to boundaries with 5 break-edges are then:

(2𝑛0+𝑛1−𝑛2−2𝑛3−𝑛4+𝑛5)e1+(𝑛0+2𝑛1+𝑛2−𝑛3−2𝑛4−𝑛5+1)e2, (6.1)

and
(𝑚0 + 2𝑚1 +𝑚2 −𝑚3 − 2𝑚4 −𝑚5)e1

+(−𝑚0 +𝑚1 + 2𝑚2 +𝑚3 −𝑚4 − 2𝑚5 + 1)e2.
(6.2)

The vectors corresponding to boundaries with 4 break-edges are:

(2𝑛0 +𝑛1−𝑛2− 2𝑛3−𝑛4 + 1)e1 + (𝑛0 + 2𝑛1 +𝑛2−𝑛3− 2𝑛4 + 2)e2, (6.3)

and

(𝑚0+2𝑚1+𝑚2−𝑚3−2𝑚4+1)e1+(−𝑚0+𝑚1+2𝑚2+𝑚3−𝑚4+2)e2. (6.4)

The vectors corresponding to boundaries with 3 break-edges are:

(2𝑛0 + 𝑛1 − 𝑛2 − 2𝑛3 + 2)e1 + (𝑛0 + 2𝑛1 + 𝑛2 − 𝑛3 + 2)e2, (6.5)

and

(𝑚0 + 2𝑚1 +𝑚2 −𝑚3 + 2)e1 + (−𝑚0 +𝑚1 + 2𝑚2 +𝑚3 + 2)e2. (6.6)

The vectors corresponding to boundaries with 2 break-edges are:

(2𝑛0 + 𝑛1 − 𝑛2 + 2)e1 + (𝑛0 + 2𝑛1 + 𝑛2 + 1)e2, (6.7)

and

(𝑚0 + 2𝑚1 +𝑚2 + 2)e1 + (−𝑚0 +𝑚1 + 2𝑚2 + 1)e2. (6.8)

The vectors corresponding to boundaries with 1 break-edge are:

(2𝑛0 + 𝑛1 + 1)e1 + (𝑛0 + 2𝑛1)e2, (6.9)

and

(𝑚0 + 2𝑚1 + 1)e1 + (−𝑚0 +𝑚1)e2. (6.10)

We will now discuss each possible value of 𝑝 separately. The calculations in

this proof have been veriVed using Sage[66].
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∙ 𝑝 = 1

In this case only a symmetric boundary is possible.

The Vrst path 𝑃1 has the vector given by (6.1). Since

𝑛0 + 𝑛5 = 𝑛,

𝑛1 = . . . = 𝑛4 = 𝑛,

this is also equal to

− (𝑛0 + 2𝑛5)e1 + (𝑛0 − 𝑛5 + 1)e2. (6.11)

The second path 𝑃2 has the vector given by (6.2). Since

𝑚0 +𝑚5 = 𝑚,

𝑚1 = . . . = 𝑚4 = 𝑚,

this is also equal to

(𝑚0 −𝑚5)e1 + (𝑚+𝑚0 + 1)e2. (6.12)

When we combine (6.11) and (6.12) we Vnd the following system of equa-

tions: {︃
−𝑛0 − 2𝑛5 = 𝑚0 −𝑚5

𝑛0 − 𝑛5 = 𝑚0 +𝑚
(6.13)

By multiplying the second equation by two and subtracting the Vrst

equation from it, and, by subtracting the new equation from the second

equation, we Vnd that this system is equivalent to{︃
𝑛0 = 𝑚

−𝑛5 = 𝑚0

(6.14)

Since 𝑛𝑖 and𝑚𝑖 are all positive, we Vnd that𝑚0 = 0, but this contradicts

𝑚0 ≥ 1, so there is only one path.
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∙ 𝑝 = 2

In this case also a near-symmetric boundary is possible. For a near-

symmetric boundary one of the elements in the boundary vector will be

one smaller than the others.

The Vrst path 𝑃1 has the vector given by (6.3). Since

𝑛0 + 𝑛4 = 𝑛− 𝛿4,

𝑛𝑖 = 𝑛− 𝛿𝑖(∀1 ≤ 𝑖 ≤ 3),

4∑︁
𝑖=1

𝛿𝑖 ≤ 1

∀1 ≤ 𝑖 ≤ 4 : 𝛿𝑖 ∈ {0, 1}

this is also equal to

(2𝑛0−𝑛4−2𝑛−𝛿1+𝛿2+2𝛿3+1)e1+(𝑛0−2𝑛4+2𝑛−2𝛿1−𝛿2+𝛿3+2)e2.

(6.15)

The second path 𝑃2 has the vector given by (6.4). Since

𝑚0 +𝑚4 = 𝑚− 𝜕4,

𝑚𝑖 = 𝑚− 𝜕𝑖(∀1 ≤ 𝑖 ≤ 3),

4∑︁
𝑖=1

𝜕𝑖 ≤ 1

∀1 ≤ 𝑖 ≤ 4 : 𝜕𝑖 ∈ {0, 1}

this is also equal to

(𝑚0−2𝑚4+2𝑚−2𝜕1−𝜕2+𝜕3+1)e1+(3𝑚−𝜕1−2𝜕2−𝜕3+𝜕4+2)e2.

(6.16)

When we combine (6.15) and (6.16) we Vnd the following system of equa-

tions:{︃
2𝑛0 − 𝑛4 − 2𝑛− 𝛿1 + 𝛿2 + 2𝛿3 = 𝑚0 − 2𝑚4 + 2𝑚− 2𝜕1 − 𝜕2 + 𝜕3

𝑛0 − 2𝑛4 + 2𝑛− 2𝛿1 − 𝛿2 + 𝛿3 = 3𝑚− 𝜕1 − 2𝜕2 − 𝜕3 + 𝜕4
(6.17)
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By subtracting the second equation from the Vrst, we Vnd the following

equation

−3𝑛0−3𝑛4 +𝛿1 +2𝛿2 +𝛿3−4𝛿4 = −3𝑚4−𝜕1 +𝜕2 +2𝜕3−2𝜕4 (6.18)

By looking at this equation modulo 3, we Vnd that

(𝛿1 + 2𝛿2 + 𝛿3 + 2𝛿4) mod 3 = (2𝜕1 + 𝜕2 + 2𝜕3 + 𝜕4) mod 3 (6.19)

Since only one 𝛿𝑖 and only one 𝜕𝑖 can be equal to one, and all the others

are equal to zero, we can derive that there are nine possible situations:

𝛿1 = 1 ∧ 𝜕2 = 1, (6.20)

𝛿1 = 1 ∧ 𝜕4 = 1, (6.21)

𝛿2 = 1 ∧ 𝜕1 = 1, (6.22)

𝛿2 = 1 ∧ 𝜕3 = 1, (6.23)

𝛿3 = 1 ∧ 𝜕2 = 1, (6.24)

𝛿3 = 1 ∧ 𝜕4 = 1, (6.25)

𝛿4 = 1 ∧ 𝜕1 = 1, (6.26)

𝛿4 = 1 ∧ 𝜕3 = 1, (6.27)

𝛿1 = 𝛿2 = 𝛿3 = 𝛿4 = 𝜕1 = 𝜕2 = 𝜕3 = 𝜕4 = 0. (6.28)

We Vrst consider possibility (6.20). In this case, system (6.17) reduces to{︃
−𝑛4 = 𝑚0

𝑛0 = 𝑚
(6.29)

Since 𝑛𝑖 and𝑚𝑖 are all positive, this contradicts𝑚0 ≥ 1; so this situation

is not possible.

Next we consider possibility (6.21). In this case, system (6.17) reduces to{︃
−𝑛4 = 𝑚0 + 1

𝑛0 = 𝑚
(6.30)
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Since 𝑛𝑖 and𝑚𝑖 are all positive, this contradicts 𝑚0 ≥ 1; so this situation

is not possible.

Next we consider possibility (6.22). In this case, system (6.17) reduces to{︃
−𝑛4 = 𝑚0 − 1

𝑛0 = 𝑚
(6.31)

This leads to another solution with 𝑛0 = 𝑛 = 𝑚, 𝑛4 = 0, 𝑚0 = 1 and

𝑚4 = 𝑚− 1.

Next we consider possibility (6.23). In this case, system (6.17) reduces to{︃
−𝑛4 = 𝑚0

𝑛0 = 𝑚
(6.32)

Since 𝑛𝑖 and𝑚𝑖 are all positive, this contradicts 𝑚0 ≥ 1; so this situation

is not possible.

Next we consider possibility (6.24). In this case, system (6.17) reduces to{︃
−𝑛4 = 𝑚0 − 1

𝑛0 = 𝑚− 1
(6.33)

This leads to another solution with 𝑛0 = 𝑚4 = 𝑛 = 𝑚 − 1, 𝑛4 = 0 and

𝑚0 = 1.

Next we consider possibility (6.25). In this case, system (6.17) reduces to{︃
−𝑛4 = 𝑚0

𝑛0 = 𝑚
(6.34)

Since 𝑛𝑖 and𝑚𝑖 are all positive, this contradicts 𝑚0 ≥ 1; so this situation

is not possible.

Next we consider possibility (6.26). In this case, system (6.17) reduces to{︃
−𝑛4 = 𝑚0

𝑛0 = 𝑚− 1
(6.35)
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Since 𝑛𝑖 and𝑚𝑖 are all positive, this contradicts𝑚0 ≥ 1; so this situation

is not possible.

Next we consider possibility (6.27). In this case, system (6.17) reduces to{︃
−𝑛4 = 𝑚0 + 1

𝑛0 = 𝑚− 1
(6.36)

Since 𝑛𝑖 and𝑚𝑖 are all positive, this contradicts𝑚0 ≥ 1; so this situation

is not possible.

Finally we consider possibility (6.28). In this case, system (6.17) reduces

to {︃
−𝑛4 = 𝑚0

𝑛0 = 𝑚
(6.37)

Since 𝑛𝑖 and𝑚𝑖 are all positive, this contradicts𝑚0 ≥ 1; so this situation

is not possible.

∙ 𝑝 = 3

In this case also a near-symmetric boundary is possible. For a near-

symmetric boundary one of the elements in the boundary vector will be

one smaller than the others.

The Vrst path 𝑃1 has the vector given by (6.5). Since

𝑛0 + 𝑛3 = 𝑛− 𝛿3,

𝑛𝑖 = 𝑛− 𝛿𝑖(∀1 ≤ 𝑖 ≤ 2),

3∑︁
𝑖=1

𝛿𝑖 ≤ 1

∀1 ≤ 𝑖 ≤ 3 : 𝛿𝑖 ∈ {0, 1}

this is also equal to

(2(𝑛0 −𝑛3)− 𝛿1 + 𝛿2 + 2)e1 + (𝑛0 −𝑛3 + 3𝑛− 2𝛿1 − 𝛿2 + 2)e2. (6.38)
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The second path 𝑃2 has the vector given by (6.6). Since

𝑚0 +𝑚3 = 𝑚− 𝜕3,

𝑚𝑖 = 𝑚− 𝜕𝑖(∀1 ≤ 𝑖 ≤ 2),

3∑︁
𝑖=1

𝜕𝑖 ≤ 1

∀1 ≤ 𝑖 ≤ 3 : 𝜕𝑖 ∈ {0, 1}

this is also equal to

(𝑚0−𝑚3 +3𝑚−2𝜕1−𝜕2 +2)e1 +(−𝑚0 +𝑚3 +3𝑚−𝜕1−2𝜕2 +2)e2.

(6.39)

When we combine (6.38) and (6.39) we Vnd the following system of equa-

tions:{︃
2(𝑛0 − 𝑛3) − 𝛿1 + 𝛿2 = 𝑚0 −𝑚3 + 3𝑚− 2𝜕1 − 𝜕2

𝑛0 − 𝑛3 + 3𝑛− 2𝛿1 − 𝛿2 = −𝑚0 +𝑚3 + 3𝑚− 𝜕1 − 2𝜕2
(6.40)

If we add the second equation to the Vrst we Vnd that this is equivalent

to {︃
𝑛0 − 𝑛3 + 𝑛− 𝛿1 = 2𝑚− 𝜕1 − 𝜕2

𝑛0 − 𝑛3 + 3𝑛− 2𝛿1 − 𝛿2 = −𝑚0 +𝑚3 + 3𝑚− 𝜕1 − 2𝜕2
(6.41)

Since 𝑛0 + 𝛿3 = 𝑛− 𝑛3 and 𝑚3 + 𝜕3 = 𝑚−𝑚0 we can rewrite this to{︃
2𝑛0 − 𝛿1 + 𝛿3 = 2𝑚− 𝜕1 − 𝜕2

2𝑛0 + 2𝑛− 2𝛿1 − 𝛿2 + 𝛿3 = 2𝑚3 + 2𝑚− 𝜕1 − 2𝜕2 + 𝜕3
(6.42)

The Vrst equation in (6.42) leads to

(𝛿1 = 1 ∨ 𝛿3 = 1) ⇔ (𝜕1 = 1 ∨ 𝜕2 = 1). (6.43)

The second equation in (6.42) leads to

(𝛿2 = 1 ∨ 𝛿3 = 1) ⇔ (𝜕1 = 1 ∨ 𝜕3 = 1). (6.44)
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Putting (6.43) and (6.44) together we Vnd four possibilities:

𝛿1 = 1 ∧ 𝜕2 = 1, (6.45)

𝛿2 = 1 ∧ 𝜕3 = 1, (6.46)

𝛿3 = 1 ∧ 𝜕1 = 1, (6.47)

𝛿1 = 𝛿2 = 𝛿3 = 𝜕1 = 𝜕2 = 𝜕3 = 0. (6.48)

We Vrst consider possibility (6.45). In this case system (6.42) reduces to{︃
𝑛0 = 𝑚

𝑛 = 𝑚3

(6.49)

Since 𝑛− 𝑛3 = 𝑛0 = 𝑚 = 𝑚0 +𝑚3 = 𝑚0 + 𝑛 we Vnd 𝑛3 = −𝑚0. This

contradicts 𝑚0 ≥ 1.

Next we consider possibility (6.46). In this case system (6.42) reduces to{︃
𝑛0 = 𝑚

𝑛− 1 = 𝑚3

(6.50)

Since 𝑛− 𝑛3 = 𝑛0 = 𝑚 = 𝑚0 +𝑚3 + 1 = 𝑚0 + 𝑛 we Vnd 𝑛3 = −𝑚0.

This contradicts 𝑚0 ≥ 1.

Then we consider possibility (6.47). In this case system (6.42) reduces to{︃
𝑛0 + 1 = 𝑚

𝑛 = 𝑚3

(6.51)

Since 𝑛− 𝑛3 = 𝑛0 + 1 = 𝑚 = 𝑚0 +𝑚3 = 𝑚0 + 𝑛 we Vnd 𝑛3 = −𝑚0.

This contradicts 𝑚0 ≥ 1.

Finally we consider possibility (6.48). In this case system (6.42) reduces to{︃
𝑛0 = 𝑚

𝑛 = 𝑚3

(6.52)

Since 𝑛− 𝑛3 = 𝑛0 = 𝑚 = 𝑚0 +𝑚3 = 𝑚0 + 𝑛 we Vnd 𝑛3 = −𝑚0. This

contradicts 𝑚0 ≥ 1.
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∙ 𝑝 = 4

In this case also a near-symmetric boundary is possible. For a near-

symmetric boundary one of the elements in the boundary vector will be

one smaller than the others.

The Vrst path 𝑃1 has the vector given by (6.7). Since

𝑛0 + 𝑛2 = 𝑛− 𝛿2,

𝑛1 = 𝑛− 𝛿1,

2∑︁
𝑖=1

𝛿𝑖 ≤ 1

∀1 ≤ 𝑖 ≤ 2 : 𝛿𝑖 ∈ {0, 1}

this is also equal to

(3𝑛0 − 𝛿1 + 𝛿2 + 2)e1 + (3𝑛− 2𝛿1 − 𝛿2 + 1)e2. (6.53)

The second path 𝑃2 has the vector given by (6.8). Since

𝑚0 +𝑚2 = 𝑚− 𝜕2,

𝑚1 = 𝑚− 𝜕1,

2∑︁
𝑖=1

𝜕𝑖 ≤ 1

∀1 ≤ 𝑖 ≤ 2 : 𝜕𝑖 ∈ {0, 1}

this is also equal to

(3𝑚− 2𝜕1 − 𝜕2 + 2)e1 + (3𝑚2 − 𝜕1 + 𝜕2 + 1)e2. (6.54)

When we combine (6.53) and (6.54), we Vnd the following system of equa-

tions: {︃
3𝑛0 − 𝛿1 + 𝛿2 = 3𝑚− 2𝜕1 − 𝜕2

3𝑛− (2𝛿1 + 𝛿2) = 3𝑚2 − 𝜕1 + 𝜕2
(6.55)
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By looking at these equations modulo 3, we Vnd that

(2𝛿1 + 𝛿2) mod 3 = (𝜕1 + 2𝜕2) mod 3 (6.56)

Since only one 𝛿𝑖 and only one 𝜕𝑖 can be equal to one, and all the others

are equal to zero, we can derive that there are three possible situations:

𝛿1 = 1 ∧ 𝜕2 = 1, (6.57)

𝛿2 = 1 ∧ 𝜕1 = 1, (6.58)

𝛿1 = 𝛿2 = 𝜕1 = 𝜕2 = 0. (6.59)

First we consider possibility (6.57). In this case, system (6.55) reduces to{︃
𝑛0 = 𝑚

𝑛 = 𝑚2 + 1
(6.60)

Since 𝑛 − 𝑛2 = 𝑛0 = 𝑚 = 𝑚0 + 𝑚2 + 1 = 𝑚0 + 𝑛, we Vnd that

𝑚0 = −𝑛2. This contradicts 𝑚0 ≥ 1.

Next we consider possibility (6.58). In this case, system (6.55) reduces to{︃
𝑛0 = 𝑚− 1

𝑛 = 𝑚2

(6.61)

Since 𝑛 − 𝑛2 = 𝑛0 + 1 = 𝑚 = 𝑚0 + 𝑚2 = 𝑚0 + 𝑛, we Vnd that

𝑚0 = −𝑛2. This contradicts 𝑚0 ≥ 1.

Finally we consider possibility (6.59). In this case, system (6.55) reduces

to {︃
𝑛0 = 𝑚

𝑛 = 𝑚2

(6.62)

Since 𝑛𝑖 and 𝑚𝑖 are all positive, we Vnd that{︃
𝑛2 = 𝑚0 = 0

𝑛0 = 𝑚2 = 𝑛 = 𝑚
(6.63)

Again this contradicts 𝑚0 ≥ 1 and thus we Vnd that there is only one

possible path.
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∙ 𝑝 = 5

In this case only a symmetric boundary is possible.

The Vrst path 𝑃1 has the vector given by (6.9) and the second path 𝑃2 has

the vector given by (6.9).

When we combine (6.9) and (6.10), we Vnd the following system of equa-

tions: {︃
2𝑛0 + 𝑛1 = 𝑚0 + 2𝑚1

2𝑛1 + 𝑛0 = 𝑚1 −𝑚0

(6.64)

which is equivalent to {︃
𝑛1 = −𝑚0

𝑛0 = 𝑚1 +𝑚0

(6.65)

Since 𝑛𝑖 and 𝑚𝑖 are all positive, we Vnd that{︃
𝑛1 = 𝑚0 = 0

𝑛0 = 𝑚1 = 𝑛 = 𝑚
(6.66)

Again this contradicts 𝑚0 ≥ 1 and thus we Vnd that there is only one

possible path.

We have proven that in all cases except a near-symmetric cone with two pen-

tagons the two patches need to coincide. In the near-symmetric case with two

pentagons we found that there are possibly two other possible patches, but it

is easily veriVed that these two correspond to the same family. This proves the

theorem. �

At this point we have a one-to-one correspondence for all nanocones and cone

patches except for the near-symmetric case with two pentagons. This case needs

some further investigation. The following theorem proves that the two diUerent

canonical families in a near-symmetric cone with two pentagons are in fact isomor-

phic. We will be using facial paths for this, but Vrst some deVnitions and lemmas are

needed.
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DeVnition 6.3.18 A facial path is a sequence 𝑓1, . . . , 𝑓𝑛 of 𝑛 diUerent faces so thatfacial path
∀1 ≤ 𝑖 < 𝑛: face 𝑓𝑖 shares an edge with 𝑓𝑖+1. ◇

Note 6.3.19 If a facial path 𝑓1, . . . , 𝑓𝑛 is the shortest facial path connecting 𝑓1 and
𝑓𝑛, then for each 𝑖 with 1 ≤ 𝑖 < 𝑛−1, face 𝑓𝑖 does not share an edge with face 𝑓𝑖+2.

It follows from this lemma that if for some 1 < 𝑖 < 𝑛 the face 𝑓𝑖 is a hexagon

there are only 3 possibilities for 𝑓𝑖+1 in a shortest facial path 𝑓1, . . . , 𝑓𝑛. We will

denote these 3 possibilities with right, left and straight, as is illustrated in Figure 6.11.

Using this terminology we can also give the facial path as 𝑓1, 𝑓2, 𝑑1, . . . , 𝑑𝑘 with

𝑑1, . . . , 𝑑𝑘 ∈ {left, right, straight}.

𝑓𝑖−1 𝑓𝑖

left

straight

right

Figure 6.11: The three possible directions in a shortest facial path
when arriving in a hexagon.

Another way of thinking about these facial paths is by looking at the dual situ-

ation. In the dual the hexagons correspond to vertices of degree 6 and the vertices

correspond to triangles. A facial path 𝑓1, . . . , 𝑓𝑛 becomes a path 𝑣1, . . . , 𝑣𝑛 which

we can also identify with a sequence of 𝑛 − 1 directed edges. The concepts of right,

left and straight can also be ported to this case. For a directed edge 𝑒 there are 3

possible next edges which we will denote with 𝑅(𝑒), 𝐿(𝑒) and 𝑆(𝑒). When we look

at the 6 directed edges which share the same starting vertex, we see that they form a
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cyclic sequence. We will denote the edge before 𝑒 when this sequence is considered

clockwise as 𝐵(𝑒) and the edge after 𝑒 as 𝐴(𝑒).

Lemma 6.3.20 In the dual of a nanocone, for each edge 𝑒 and for each 𝑛 ∈ N : the
path corresponding to

𝑒, 𝐿(𝑒), 𝑆(𝐿(𝑒)), 𝑆2(𝐿(𝑒)), . . . , 𝑆𝑛(𝐿(𝑒)), 𝐿(𝑆𝑛(𝐿(𝑒)))

and the path corresponding to

𝐵(𝑒), 𝑆(𝐵(𝑒)), . . . , 𝑆𝑛+1(𝐵(𝑒))

have the same start and end vertex when all vertices except possibly the start and
end vertex of the Vrst path have degree 6.

Proof: We will prove this by induction on 𝑛. The situation for 𝑛 = 0 is illustrated in

Figure 6.13.

The edges 𝑒 and 𝐵(𝑒) have the same start vertex by deVnition of 𝐵(𝑒).

𝑒

𝐿(𝑒) 𝑆(𝐿(𝑒)) 𝑆2(𝐿(𝑒))

𝐿(𝑆2(𝐿(𝑒)))

𝐵(𝑒) 𝑆(𝐵(𝑒)) 𝑆2(𝐵(𝑒)) 𝑆3(𝐵(𝑒))

Figure 6.12: A sequence containing only straight steps and two
left steps can always be rewritten as a shorter sequence.

Since all faces are triangles and the vertex 𝑣 has degree 6, the path that cor-

responds to 𝑒 and the path that corresponds to 𝐵(𝑒) followed by the edge
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𝐴(𝑅(𝐵(𝑒))) have the same end vertex. Similar argumentations can be used to

show that the path that corresponds to 𝐿(𝑒) and the path that corresponds

to 𝐵(𝐿(𝑒)) followed by the edge 𝑅(𝐵(𝑒)) have the same end vertex and

that the path that corresponds to 𝐿(𝐿(𝑒)) and the path that corresponds to

𝐵(𝐿(𝐿(𝑒))) followed by the edge 𝑆(𝐵(𝑒)) have the same end vertex.

Combining these results we Vnd that the path 𝑒, 𝐿(𝑒), 𝐿(𝐿(𝑒)) has the same

start and end vertex as the path

𝐵(𝑒), 𝐴(𝑅(𝐵(𝑒))), 𝐵(𝐿(𝑒)), 𝑅(𝐵(𝑒)), 𝐵(𝐿(𝐿(𝑒))), 𝑆(𝐵(𝑒)).

If we remove consecutive inverse edges in the last path, we Vnd that that path

has the same start and end vertex as 𝐵(𝑒), 𝑆(𝐵(𝑒)).

For further 𝑛, we just need to repeat the last two detours in the case for 𝑛 = 0.

�

Lemma 6.3.21 In the dual of a nanocone, for each edge 𝑒 and for each 𝑛 ∈ N : the
path corresponding to

𝑒,𝑅(𝑒), 𝑆(𝑅(𝑒)), 𝑆2(𝑅(𝑒)), . . . , 𝑆𝑛(𝑅(𝑒)), 𝑅(𝑆𝑛(𝑅(𝑒)))

and the path corresponding to

𝐴(𝑒), 𝑆(𝐴(𝑒)), . . . , 𝑆𝑛+1(𝐴(𝑒))

have the same start and end vertex when all except possibly the start and end vertex
have degree 6.

Proof: Completely analogous to the previous lemma. �

Corollary 6.3.22 A shortest path between two given vertices in the dual of a nanocone
with all vertices (except possibly the start and end vertex) of degree 6, does not turn
in the same direction twice without Vrst turning in the other direction.

Proof: This is a direct consequence of the previous two lemmas since the new se-

quence in these two lemmas is always one shorter than the original sequence.

�
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𝑒

𝐵
(𝐿

(𝑒
))

𝐵(𝑒)

𝐴
(𝑅

(𝐵
(𝑒
))
) 𝐵(𝐿

(𝐿
(𝑒)))

𝑅
(𝐵

(𝑒))

𝐿(𝑒)

𝐿
(𝐿

(𝑒
))

𝑆(𝐵(𝑒))𝑣

Figure 6.13: A sequence containing only straight steps and two
left steps can always be rewritten as a shorter sequence.
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Lemma 6.3.23 In the dual of a nanocone, for each edge 𝑒 and for each 𝑛 ∈ N : the
path corresponding to

𝑒, 𝐿(𝑒), 𝑆(𝐿(𝑒)), 𝑆2(𝐿(𝑒)), . . . , 𝑆𝑛(𝐿(𝑒))

and the path corresponding to

𝐵(𝑒), 𝑆(𝐵(𝑒)), . . . , 𝑆𝑛(𝐵(𝑒)), 𝑅(𝑆𝑛(𝐵(𝑒)))

have the same start and end vertex when all except possibly the start and end vertex
have degree 6 and all faces are triangles.

Proof: See Figure 6.14. This proof is also analogous to the previous two lemmas. �

𝑒

𝐿(𝑒) 𝑆(𝐿(𝑒)) 𝑆2(𝐿(𝑒))

𝐵(𝑒) 𝑆(𝐵(𝑒)) 𝑆2(𝐵(𝑒))

𝑅(𝑆2(𝐵(𝑒)))

Figure 6.14: Two sequences with the same length.

Theorem 6.3.24 A near-symmetric cone with two pentagons contains two canoni-
cal patches and these two patches are isomorphic.

Proof: We start by constructing an initial patch based on shortest paths between

the pentagons and then construct a symmetric or near-symmetric patch from

this initial patch.

Using the previous lemmas one can see that in a nanocone with two pentagons

there are two possible situations for shortest paths connecting the pentagon:
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1 There is a unique shortest path that goes straight at each hexagon (see

Figure 6.15).

· · ·

Figure 6.15: A chain of hexagons bounded by a pentagon on each
side.

The patch corresponding to this path has a boundary of the form

(22(23)𝑙)2, 𝑙 ≥ 1,

where 𝑙 − 1 is the number of hexagons.

2 There is no straight path between the pentagons. In this case there

are several shortest paths but due to Lemma 6.3.20, Lemma 6.3.21 and

Lemma 6.3.23 there exist exactly two shortest paths with only one turn

each. One of them has only one right turn and the other one only one left

turn (see Figure 6.16). The initial patch is then formed by taking the faces

enclosed by these two shortest paths.

Figure 6.16: A quadrangular patch formed by two pentagons and
the enclosing shortest paths with only one turn each.

This patch has a boundary of the form

(2(23)𝑘2(23)𝑙)2, 0 < 𝑘 ≤ 𝑙,

where 𝑘 is the number of hexagons in the left or right side and 𝑙 is the

number of hexagons in the top or bottom side.
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We can summarise both results in a general boundary form:

(2(23)𝑘2(23)𝑙)2, 0 ≤ 𝑘 ≤ 𝑙 ̸= 0.

Including hexagons of the cone that lie along the two sides with length 𝑙, the

corresponding sides in the new patch will have length 𝑙 − 1 and the other two

sides will have length 𝑘 + 2. Note that the sets of hexagons for both sides

are disjoint, because otherwise some bounded region would be formed that —

due to the structure of the boundary and the Euler formula — would have to

contain pentagons. We can distinguish three cases for the parameters 𝑘 and 𝑙,

which will be handled diUerently:

(i) 𝑙 − 𝑘 mod 3 = 0

We can add 𝑙−𝑘
3 times a side of hexagons to the sides with length 𝑙. This

results in a patch with a boundary of the form (2(23)𝑚)4 with

𝑚 = 𝑙 − 𝑙 − 𝑘

3
= 𝑘 + 2

(︂
𝑙 − 𝑘

3

)︂
=

2𝑙 + 𝑘

3
. (6.67)

We only add hexagons to two opposite sides, so in the obtained patch the

pentagons are (on symmetric positions) on the boundary, and thus this is

a canonical patch corresponding to a symmetric cone.

(ii) 𝑙 − 𝑘 mod 3 = 1

In this case the four sides will never be equal. We can add 𝑙−𝑘−1
3 times a

side of hexagons to the sides with length 𝑙. This results in a patch with a

boundary of the form (2(23)𝑚2(23)𝑚+1)2 with

𝑚 =
𝑘 + 2𝑙 − 2

3
. (6.68)

At this moment this patch still contains a rotational symmetry of 180∘

and the pentagons are on the sides with length𝑚. To get a canonical cone

patch we can add one side of hexagons to one side with length𝑚+1. This

results in a patch with boundary 2(23)𝑚(2(23)𝑚+1)3. We can choose the
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side in two ways, but this results in isomorphic patches, and as maximal

two patches exist, these are all. The two opposite sides with length𝑚+1

will both contain one of the pentagons.

(iii) 𝑙 − 𝑘 mod 3 = 2

In this case the four sides will never be equal. We can add 𝑙−𝑘+1
3 times a

side of hexagons to the sides with length 𝑙. This results in a patch with a

boundary of the form (2(23)𝑚2(23)𝑚+1)2 with

𝑚 =
𝑘 + 2𝑙 − 1

3
. (6.69)

At this moment this patch still contains a rotational symmetry of 180∘

and the pentagons are on the sides with length 𝑚+ 1. To get a canonical

cone patch we can add one side of hexagons to one side with length 𝑚+

1. This results in a patch with boundary 2(23)𝑚(2(23)𝑚+1)3. We can

choose the side in two ways, but this results in isomorphic patches, and

as maximal two patches exist, these are all. The side opposite to the side

with length 𝑚 will contain one of the pentagons. The other pentagon

does not lie on the boundary.

In Theorem 6.3.17 we showed that a near-symmetric cone with two pentagons

contains at most two canonical cone patches. The construction above now

proves that these two are isomorphic. �

There is also an intuitive argument for this theorem. The initial patch in Fig-

ure 6.16 has a 2-fold rotational symmetry. A near-symmetric cone patch does not

have such a 2-fold rotational symmetry, so the near-symmetric patch will be mapped

on to another near-symmetric cone patch in the cone and that patch will thus be iso-

morphic to the Vrst one. In the case of a symmetric cone patch, the patch is mapped

on to itself.

Lemma 6.3.25 Each pseudo-convex patch with 1 ≤ 𝑝 ≤ 5 pentagons can be ex-
tended to a unique nanocone by adding layers of hexagons.
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Proof: Let 𝑃 be a pseudo-convex patch that is the subgraph of a cone graph𝐺. Both

𝑃 and 𝐺 contain 1 ≤ 𝑝 ≤ 5 pentagons. We denote the vertices of degree 2,

respectively degree 3, on the boundary of 𝑃 by 𝑏2, respectively 𝑏3. Due to the

Euler formula, we have

𝑏2 − 𝑏3 = 6 − 𝑝. (6.70)

We need to prove that the set of neighbouring hexagons 𝑁𝑃
𝐻 of 𝑃 induces a

cycle in the dual graph of 𝐺. There are two possible (mutually non-exclusive)

situations when 𝑁𝑃
𝐻 does not induce a cycle:

∙ there is a hexagon that has a disconnected intersection with the boundary

of 𝑃 , or

∙ there are two hexagons that share an edge that has an empty intersection

with 𝑃 .

Assume Vrst that there is a hexagon 𝐻 that has a disconnected intersection

with the boundary of 𝑃 . The possible situations are shown in Figure 6.17. Only

one of the regions𝐴 and𝐵 (or𝐴, 𝐵 and 𝐶 in the Vfth case) is unbounded. The

other regions are bounded and correspond to a (not necessarily pseudo-convex)

patch in 𝐺 with only hexagons.

Consider the subgraph 𝐺𝐴 of 𝐺 that corresponds to 𝐴. We denote the number

of vertices with degree 2, respectively degree 3, in the boundary of 𝐺𝐴 by 𝑏𝐴2 ,

respectively 𝑏𝐴3 . If 𝐴 is a bounded face, then we know from the Euler formula

that

𝑏𝐴2 − 𝑏𝐴3 = 6. (6.71)

If 𝐴 is an unbounded face, then its complement is a patch with 𝑝 pentagons,

and so we know from the Euler formula that

𝑏𝐴2 − 𝑏𝐴3 = 𝑝− 6. (6.72)

We will now examine case by case. Assume Vrst that we have the situation in

Figure 6.17.a. Since either 𝐴 or 𝐵 is bounded, and the other is unbounded, we
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know from 6.71 and 6.72, that

(𝑏𝐴2 − 𝑏𝐴3 ) + (𝑏𝐵2 − 𝑏𝐵3 ) = 𝑝. (6.73)

The vertices of degree 2 in the boundary of 𝐺𝐴 and 𝐺𝐵 correspond to the

vertices of degree 3 in the boundary of 𝑃 plus the four vertices of the hexagon

that lie on the boundary of either 𝐺𝐴 or 𝐺𝐵 . This gives us

𝑏𝐴2 + 𝑏𝐵2 = 𝑏3 + 4. (6.74)

The vertices of degree 3 in the boundary of 𝐺𝐴 and 𝐺𝐵 correspond to the

vertices of degree 2 in the boundary of 𝑃 minus the four vertices of the hexagon

that lie on the boundary of either 𝐺𝐴 or 𝐺𝐵 . This gives us

𝑏𝐴3 + 𝑏𝐵3 = 𝑏2 − 4. (6.75)

If we substitute 6.74 and 6.75 into 6.73, then we get

𝑏3 − 𝑏2 = 𝑝− 8.

This is in contradiction with 6.70, so the situation in Figure 6.17.a cannot occur.

Assume that we have the situation in Figure 6.17.b. Since again either 𝐴 or 𝐵

is bounded, and the other is unbounded, we know from 6.71 and 6.72, that

(𝑏𝐴2 − 𝑏𝐴3 ) + (𝑏𝐵2 − 𝑏𝐵3 ) = 𝑝. (6.76)

The vertices of degree 2 in the boundary of 𝐺𝐴 and 𝐺𝐵 correspond to the

vertices of degree 3 in the boundary of 𝑃 plus the four vertices of the hexagon

that lie on the boundary of either 𝐺𝐴 or 𝐺𝐵 and on the boundary of 𝑃 . This

gives us

𝑏𝐴2 + 𝑏𝐵2 = 𝑏3 + 4. (6.77)

The vertices of degree 3 in the boundary of 𝐺𝐴 and 𝐺𝐵 correspond to the

vertices of degree 2 in the boundary of 𝑃 minus the four vertices of the hexagon
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𝑃

𝑃

𝐴 𝐵

(6.17.a)

𝑃

𝑃

𝐴

𝐵

(6.17.b)

𝑃

𝑃

𝐴 𝐵

(6.17.c)

𝑃

𝑃

𝐴

𝐵

(6.17.d)

𝑃 𝑃

𝑃

𝐴 𝐵

𝐶

(6.17.e)

Figure 6.17: Possible situations when a neighbouring hexagon
has a disconnected boundary with a pseudo-convex patch 𝑃 .
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that lie on the boundary of either 𝐺𝐴 or 𝐺𝐵 and on the boundary of 𝑃 and

plus the single vertex of the hexagon that does not lie on the boundary of 𝑃 .

This gives us

𝑏𝐴3 + 𝑏𝐵3 = 𝑏2 − 3. (6.78)

If we substitute 6.77 and 6.78 into 6.76, then we get

𝑏3 − 𝑏2 = 𝑝− 7.

This is in contradiction with 6.70, so the situation in Figure 6.17.b cannot occur.

Assume that we have the situation in Figure 6.17.c. Since again either 𝐴 or 𝐵

is bounded, and the other is unbounded, we know from 6.71 and 6.72, that

(𝑏𝐴2 − 𝑏𝐴3 ) + (𝑏𝐵2 − 𝑏𝐵3 ) = 𝑝. (6.79)

The vertices of degree 2 in the boundary of 𝐺𝐴 and 𝐺𝐵 correspond to the

vertices of degree 3 in the boundary of 𝑃 plus the four vertices of the hexagon

that lie on the boundary of 𝑃 . This gives us

𝑏𝐴2 + 𝑏𝐵2 = 𝑏3 + 4. (6.80)

The vertices of degree 3 in the boundary of 𝐺𝐴 and 𝐺𝐵 correspond to the

vertices of degree 2 in the boundary of 𝑃 minus the four vertices of the hexagon

that lie on the boundary of 𝑃 and plus the two vertices of the hexagon that do

not lie on the boundary of 𝑃 . This gives us

𝑏𝐴3 + 𝑏𝐵3 = 𝑏2 − 2. (6.81)

If we substitute 6.80 and 6.81 into 6.79, then we get

𝑏3 − 𝑏2 = 𝑝− 6.

So here we Vnd no contradiction with 6.70.

Since 𝑃 is a pseudo-convex patch, the boundary of 𝐺𝐴 has exactly two edges

that are incident to two vertices of degree 2, i.e., the two edges that are incident
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to exactly one vertex of the hexagon. The boundary of 𝐺𝐴 has at most (6 −
𝑝) − 2 edges that are incident to two vertices of degree 3, since such an edge

corresponds to a break-edge of 𝑃 that is not incident to the hexagon. All other

edges on the boundary of𝐺𝐴 are incident to exactly one vertex of degree 2 and

exactly one vertex of degree 3. This gives us

𝑏𝐴3 − 𝑏𝐴2 ≤ (6 − 𝑝) − 2 − 2 = 2 − 𝑝.

The same argumentation can be used for 𝐺𝐵 . The obtained inequality, how-

ever, is in contradiction with 6.72, so the situation in Figure 6.17.c cannot occur.

Also for the situations in Figure 6.17.d and Figure 6.17.e, the initial approach

to calculate the sum of the number of degree two and degree three vertices in

the boundary of the diUerent regions will not work. Therefore we immediately

use the second approach for these cases.

Assume that we have the situation in Figure 6.17.d. Since 𝑃 is a pseudo-convex

patch, the boundary of 𝐺𝐴 has exactly three edges that are incident to two

vertices of degree 2, i.e., the three edges that are incident to a vertex of the

hexagon. The boundary of 𝐺𝐴 has at most (6 − 𝑝) − 2 edges that are incident

to two vertices of degree 3, since such an edge corresponds to a break-edge of

𝑃 that is not incident to the hexagon. All other edges on the boundary of 𝐺𝐴

are incident to exactly one vertex of degree 2 and exactly one vertex of degree

3. This gives us

𝑏𝐴3 − 𝑏𝐴2 ≤ (6 − 𝑝) − 2 − 3 = 1 − 𝑝. (6.82)

Since this is in contradiction to 6.72, we Vnd that 𝐴 is bounded.

Since 𝑃 is a pseudo-convex patch, the boundary of 𝐺𝐵 has exactly two edges

that are incident to two vertices of degree 2, i.e., the two edges that are incident

to exactly one vertex of the hexagon. The boundary of 𝐺𝐵 has at most (6 −
𝑝) − 2 + 1 edges that are incident to two vertices of degree 3, since such an

edge corresponds to a break-edge of 𝑃 that is not incident to the hexagon or

to the edge of the hexagon that has an empty intersection with 𝑃 . All other

edges on the boundary of𝐺𝐴 are incident to exactly one vertex of degree 2 and
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exactly one vertex of degree 3. This gives us

𝑏𝐵3 − 𝑏𝐵2 ≤ (6 − 𝑝) − 2 + 1 − 2 = 3 − 𝑝.

Since this is in contradiction to 6.72, we Vnd that𝐵 is bounded. So we Vnd that

the situation in Figure 6.17.d cannot occur, because either𝐴 or𝐵 is unbounded.

Assume that we have the situation in Figure 6.17.e. The same argumentation

as for the region 𝐴, can be used for all regions in this case. This means that

all regions satisfy 6.82, and thus all regions are bounded. So we Vnd that the

situation in Figure 6.17.e cannot occur, because either𝐴, 𝐵 or 𝐶 is unbounded.

This means that it is not possible that a hexagon of 𝑁𝑃
𝐻 has a disconnected

intersection with the boundary of 𝑃 . Next we turn our attention to the pos-

sible situations for two hexagons of 𝑁𝑃
𝐻 to share an edge that has an empty

intersection with 𝑃 . The possibilities are shown in Figure 6.18.

Assume Vrst that we have the situation in Figure 6.18.a or in Figure 6.18.b.

Since either 𝐴 or 𝐵 is bounded, and the other is unbounded, we know from

6.71 and 6.72, that

(𝑏𝐴2 − 𝑏𝐴3 ) + (𝑏𝐵2 − 𝑏𝐵3 ) = 𝑝. (6.83)

The vertices of degree 2 in the boundary of 𝐺𝐴 and 𝐺𝐵 correspond to the

vertices of degree 3 in the boundary of 𝑃 plus the four vertices of the hexagons

that lie on the boundary of either 𝐺𝐴 or 𝐺𝐵 and on the boundary of 𝑃 plus

the two vertices that lie on the edge that is shared by the two hexagons. This

gives us

𝑏𝐴2 + 𝑏𝐵2 = 𝑏3 + 4 + 2 = 𝑏3 + 6. (6.84)

The vertices of degree 3 in the boundary of 𝐺𝐴 and 𝐺𝐵 correspond to the

vertices of degree 2 in the boundary of 𝑃 minus the four vertices of the hexagon

that lie on the boundary of either 𝐺𝐴 or 𝐺𝐵 and on the boundary of 𝑃 plus

the two vertices of the hexagons that do not lie on the boundary of 𝑃 or on the

edge that is shared by the two hexagons. This gives us

𝑏𝐴3 + 𝑏𝐵3 = 𝑏2 − 4 + 2 = 𝑏2 − 2. (6.85)
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𝑃

𝑃

𝐴 𝐵

(6.18.a) 𝑃

𝑃

𝐴

𝐵

(6.18.b)

𝑃

𝑃

𝐴

𝐵

(6.18.c)

𝑃

𝑃

𝐴

𝐵

(6.18.d)

Figure 6.18: Possible situations when two neighbouring
hexagons share an edge that has an empty intersection with the
pseudo-convex patch 𝑃 .
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𝑃

𝑃

𝐴 𝐵

(6.18.e)

𝑃

𝑃

𝐴 𝐵

(6.18.f)

𝑃

𝑃

𝐴

𝐵

(6.18.g)

𝑃

𝑃

𝐴

𝐵

(6.18.h)

Figure 6.18: Possible situations when two neighbouring
hexagons share an edge that has an empty intersection with the
pseudo-convex patch 𝑃 . (Continued)
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If we substitute 6.84 and 6.85 into 6.83, then we get

𝑏3 − 𝑏2 = 𝑝− 8.

This is in contradiction with 6.70, so the situations in Figure 6.18.a and in Fig-

ure 6.18.b cannot occur.

Assume that we have the situation in Figure 6.18.c or in Figure 6.18.d. Since

either 𝐴 or 𝐵 is bounded, and the other is unbounded, we know from 6.71 and

6.72, that

(𝑏𝐴2 − 𝑏𝐴3 ) + (𝑏𝐵2 − 𝑏𝐵3 ) = 𝑝. (6.86)

The vertices of degree 2 in the boundary of 𝐺𝐴 and 𝐺𝐵 correspond to the

vertices of degree 3 in the boundary of 𝑃 plus the four vertices of the hexagons

that lie on the boundary of either 𝐺𝐴 or 𝐺𝐵 and on the boundary of 𝑃 plus

the two vertices that lie on the edge that is shared by the two hexagons. This

gives us

𝑏𝐴2 + 𝑏𝐵2 = 𝑏3 + 4 + 2 = 𝑏3 + 6. (6.87)

The vertices of degree 3 in the boundary of 𝐺𝐴 and 𝐺𝐵 correspond to the

vertices of degree 2 in the boundary of 𝑃 minus the four vertices of the hexagon

that lie on the boundary of either 𝐺𝐴 or 𝐺𝐵 and on the boundary of 𝑃 plus

the three vertices of the hexagons that do not lie on the boundary of 𝑃 or on

the edge that is shared by the two hexagons. This gives us

𝑏𝐴3 + 𝑏𝐵3 = 𝑏2 − 4 + 3 = 𝑏2 − 1. (6.88)

If we substitute 6.87 and 6.88 into 6.86, then we get

𝑏3 − 𝑏2 = 𝑝− 7.

This is in contradiction with 6.70, so the situations in Figure 6.18.c and in Fig-

ure 6.18.d cannot occur.

For the remaining four cases, it is again so that the initial approach to calculate

the sum of the number of degree two and degree three vertices in the boundary
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of the diUerent regions will not work. Therefore, for these cases, we will again

use the second approach and Vnd an upper bound on the diUerence of the

number of degree three and degree two vertices in the boundary of the diUerent

regions.

Assume that we have the situation in Figure 6.18.e. Since 𝑃 is a pseudo-convex

patch, the boundary of 𝐺𝐴 has exactly two edges that are incident to two

vertices of degree 2, i.e., the two edges that are incident to exactly one vertex

of the hexagons. The boundary of 𝐺𝐴 has at most (6 − 𝑝) − 2 edges that are

incident to two vertices of degree 3, since such an edge corresponds to a break-

edge of 𝑃 that is not incident to one of the hexagon. All other edges on the

boundary of 𝐺𝐴 are incident to exactly one vertex of degree 2 and exactly one

vertex of degree 3. This gives us

𝑏𝐴3 − 𝑏𝐴2 ≤ (6 − 𝑝) − 2 − 2 = 2 − 𝑝.

The same argumentation can be used for 𝐺𝐵 . The obtained inequality, how-

ever, is in contradiction with 6.72, so the situation in Figure 6.18.e cannot occur.

Assume that we have the situation in Figure 6.18.f. Since 𝑃 is a pseudo-convex

patch, the boundary of 𝐺𝐴 has exactly three edges that are incident to two

vertices of degree 2, i.e., the two edges that are incident to exactly one vertex

of the hexagons and the edge that is incident to a vertex of 𝑃 and to a vertex of

the edge that is shared by the two hexagons. The boundary of 𝐺𝐴 has at most

(6 − 𝑝) − 2 + 1 edges that are incident to two vertices of degree 3, since such

an edge corresponds to a break-edge of 𝑃 that is not incident to one of the

hexagon or to the edge on the hexagons that is not shared by the two hexagons

and that has an empty intersection with 𝑃 . All other edges on the boundary

of 𝐺𝐴 are incident to exactly one vertex of degree 2 and exactly one vertex of

degree 3. This gives us

𝑏𝐴3 − 𝑏𝐴2 ≤ (6 − 𝑝) − 2 + 1 − 3 = 2 − 𝑝.

The same argumentation can be used for 𝐺𝐵 . The obtained inequality, how-

ever, is in contradiction with 6.72, so the situation in Figure 6.18.f cannot occur.
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Assume that we have the situation in Figure 6.18.g. Since 𝑃 is a pseudo-convex

patch, the boundary of 𝐺𝐴 has exactly three edges that are incident to two

vertices of degree 2, i.e., the two edges that are incident to exactly one vertex

of the hexagons and the edge that is incident to a vertex of 𝑃 and to a vertex

of the edge that is shared by the two hexagons. The boundary of 𝐺𝐴 has at

most (6− 𝑝)− 2 edges that are incident to two vertices of degree 3, since such

an edge corresponds to a break-edge of 𝑃 that is not incident to one of the

hexagon. All other edges on the boundary of 𝐺𝐴 are incident to exactly one

vertex of degree 2 and exactly one vertex of degree 3. This gives us

𝑏𝐴3 − 𝑏𝐴2 ≤ (6 − 𝑝) − 2 − 3 = 1 − 𝑝.

Since this is in contradiction to 6.72, we Vnd that 𝐴 is bounded.

Since 𝑃 is a pseudo-convex patch, the boundary of 𝐺𝐵 has exactly two edges

that are incident to two vertices of degree 2, i.e., the two edges that are incident

to exactly one vertex of the hexagons. The boundary of 𝐺𝐵 has at most (6 −
𝑝)−2+1 edges that are incident to two vertices of degree 3, since such an edge

corresponds to a break-edge of 𝑃 that is not incident to one of the hexagon or

to the edge on the hexagons that has an empty intersection with the patch 𝑃

and an empty intersection with the edge that is shared by the two hexagons.

All other edges on the boundary of 𝐺𝐵 are incident to exactly one vertex of

degree 2 and exactly one vertex of degree 3. This gives us

𝑏𝐴3 − 𝑏𝐴2 ≤ (6 − 𝑝) − 2 + 1 − 2 = 3 − 𝑝.

Since this is in contradiction to 6.72, we Vnd that𝐵 is bounded. So we Vnd that

the situation in Figure 6.18.g cannot occur, because either𝐴 or𝐵 is unbounded.

Finally assume that we have the situation in Figure 6.18.h. Since 𝑃 is a pseudo-

convex patch, the boundary of 𝐺𝐴 has exactly two edges that are incident to

two vertices of degree 2, i.e., the two edges that are incident to exactly one

vertex of the hexagons. The boundary of 𝐺𝐴 has at most (6− 𝑝)− 2 + 2 edges

that are incident to two vertices of degree 3, since such an edge corresponds
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to a break-edge of 𝑃 that is not incident to one of the hexagon or to one of the

edge on the hexagons that has an empty intersection with the patch 𝑃 and an

empty intersection with the edge that is shared by the two hexagons. All other

edges on the boundary of𝐺𝐴 are incident to exactly one vertex of degree 2 and

exactly one vertex of degree 3. This gives us

𝑏𝐴3 − 𝑏𝐴2 ≤ (6 − 𝑝) − 2 + 2 − 2 = 4 − 𝑝.

Since this is in contradiction to 6.72, we Vnd that 𝐴 is bounded.

Since 𝑃 is a pseudo-convex patch, the boundary of 𝐺𝐵 has exactly four edges

that are incident to two vertices of degree 2, i.e., the two edges that are incident

to exactly one vertex of the hexagons the edges that are incident to a vertex of

𝑃 and to a vertex of the edge that is shared by the two hexagons. The boundary

of 𝐺𝐵 has at most (6− 𝑝)− 2 edges that are incident to two vertices of degree

3, since such an edge corresponds to a break-edge of 𝑃 that is not incident to

one of the hexagon. All other edges on the boundary of 𝐺𝐵 are incident to

exactly one vertex of degree 2 and exactly one vertex of degree 3. This gives us

𝑏𝐴3 − 𝑏𝐴2 ≤ (6 − 𝑝) − 2 − 4 = −𝑝.

Since this is in contradiction to 6.72, we Vnd that 𝐵 is bounded. So we Vnd

that the situation in Figure 6.18.h cannot occur, because either 𝐴 or 𝐵 is un-

bounded.

This means that it is not possible that two hexagons of 𝑁𝑃
𝐻 share an edge that

has an empty intersection with 𝑃 . �

Corollary 6.3.26 There is a 1-1 correspondence between the set of canonical patches
and the set of nanocones.

Proof: Due to the previous lemma each (canonical) patch can be extended to a

unique nanocone by adding layers of hexagons. Due to Theorem 6.3.14 each

nanocone contains a canonical patch. Owing to Theorem 6.3.17 and Theorem
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6.3.24, each nanocone has a unique canonical patch that contains all the pen-

tagons, as subgraph. �

The proof of Theorem 6.3.24 gives us even more information about the structure

of the canonical patches with two pentagons.

In Chapter 5 it is discussed how a marked cone patch — which is a pseudo-convex

patch — can be reconstructed by its boundary and its outer spiral code.

Corollary 6.3.27 If we distinguish between mirror images, there are exactly 𝑚
canonical patches with boundary (2(23)𝑚)4 and they have outer spiral code (𝑖, 2𝑚+
𝑖) with 𝑖 = 0, . . . ,𝑚− 1. When we do not distinguish between mirror images, there
are exactly ⌈𝑚+1

2 ⌉ canonical patches with boundary (2(23)𝑚)4 and they have outer
spiral code (𝑖, 2𝑚+ 𝑖) with 𝑖 = 0, . . . , ⌈𝑚+1

2 ⌉ − 1.

Proof: This result follows from the proof of Theorem 6.3.24 together with the fact

that there are 𝑚 possible positions for the pentagon on a side. In this proof

it was shown that if the parameters 𝑙 and 𝑘 satisfy the condition 𝑙 − 𝑘 mod

3 = 0 then the initial patch leads to a symmetric patch. The value of 𝑖 in

Figure 6.19 is equal to the number of sides of hexagons that are added to one

side of the initial patch. This means that 𝑖 = 𝑙−𝑘
3 . When we substitute this in

formula 6.67, we Vnd:

𝑚 =
2𝑙 + 𝑘

3
= 𝑙 − 𝑖.

This equation has a solution for 𝑙 ∈ N for each value of 𝑖 ∈ {0, . . . ,𝑚 − 1}
and so an initial patch for each of the 𝑚 positions of the pentagon can be

constructed and thus a symmetric patch for each position exists. The outer

spiral code can be deduced from Figure 6.19.

When we take all symmetries into account we can use the fact that the patches

with 𝑖 < ⌈𝑚+1
2 ⌉ are mirror images with as mirror axis the middle row of

hexagons of the patches with 𝑖 > ⌈𝑚+1
2 ⌉. Therefore each patch was con-

sidered twice in this case except the patch with 𝑖 = 0 and, in case 𝑚 ∈ 2N, the

patch with 𝑖 = 𝑚
2 . �
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𝑖

𝑚− 𝑖

𝑚

𝑖

Figure 6.19: A symmetric cone patch with two pentagons. In this
example the values for the parameters are 𝑘 = 2, 𝑙 = 5,𝑚 = 4
and 𝑖 = 1.

Corollary 6.3.28 If we distinguish between mirror images, there are exactly 2𝑚+ 1
canonical patches with boundary 2(23)𝑚(2(23)𝑚+1)3 and they have outer spiral
code (𝑖, 2𝑚 + 1 + 𝑖) with 𝑖 = 𝑚 + 1, . . . , 3𝑚 + 1. When we do not distinguish
between mirror images, there are exactly 𝑚 + 1 canonical patches with boundary
2(23)𝑚(2(23)𝑚+1)3 and they have outer spiral code (𝑖, 2𝑚 + 1 + 𝑖) with 𝑖 = 𝑚 +
1, . . . ,𝑚+ 2 + ⌊𝑚+1

2 ⌋, 2𝑚+ 2, . . . , 3𝑚+ 1 − ⌊𝑚
2 ⌋.

Proof: This result follows from the proof of Theorem 6.3.24 together with the fact

that there are 𝑚 + 1 possible positions for the pentagon on the Vrst side with

length 𝑚 and 𝑚 positions for the pentagon on the second side with length 𝑚.

Assume Vrst that there is a pentagon on the second side with length 𝑚. The

only case where this occurs in the proof of Theorem 6.3.24 is when 𝑙 − 𝑘 mod

3 = 2. The value of 𝑖 in Figure 6.20.a is equal to 𝑙−𝑘+1
3 + (2𝑚 + 1), i.e., the

number of hexagon sides added to one side plus 2𝑚 + 1. When we substitute

this equality in formula 6.69, we Vnd:

𝑚 =
𝑘 + 2𝑙 − 1

3
= 𝑙 + (2𝑚+ 1) − 𝑖,

which means that

𝑚 = 𝑖− 1 − 𝑙.
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This last equation has a solution for 𝑙 ∈ N for each value of 𝑖 ∈ {2𝑚 +

2, . . . , 3𝑚 + 1} and so an initial patch for each of the 𝑚 positions of the

Vrst pentagon in Figure 6.20.a can be constructed and thus a near-symmetric

patch for each position exists. The outer spiral code can be deduced from Fig-

ure 6.20.a. This code is (𝑖, 2𝑚+ 1 + 𝑖) with 𝑖 = 2𝑚+ 2, . . . , 3𝑚+ 1.

The other case in the proof of Theorem 6.3.24 is when there is a pentagon on

the Vrst side with length 𝑚, and this patch corresponds to an initial patch for

which 𝑙−𝑘 mod 3 = 1. The value of 𝑖 in Figure 6.20.b is equal to 𝑙−𝑘−1
3 +𝑚+1,

i.e., the number of hexagon sides added to one side plus 𝑚 + 1. When we

substitute this equality in formula 6.68, we Vnd:

𝑚 =
𝑘 + 2𝑙 − 2

3
= 𝑙 − 𝑖+𝑚,

which means that

𝑙 = 𝑖.

This last equation has a solution for 𝑙 ∈ N for each value of 𝑖 ∈ {𝑚 +

1, . . . , 2𝑚 + 1} and so an initial patch for each of the 𝑚 + 1 positions of the

Vrst pentagon in Figure 6.20.b can be constructed and thus a near-symmetric

patch for each position exists. The outer spiral code can be deduced from Fig-

ure 6.20.b. This code is (𝑖, 2𝑚+ 1 + 𝑖) with 𝑖 = 𝑚+ 1, . . . , 2𝑚+ 1.

These two cases can be summarised in the given code.

When we take all symmetries into account we can use the fact that, for the case

of Figure 6.20.b, the patches with 𝑖 < 3𝑚+ 1−⌊𝑚
2 ⌋ are mirror images with as

mirror axis the middle row of hexagons of the patches with 𝑖 > 3𝑚+ 1−⌊𝑚
2 ⌋,

and, for the case of Figure 6.20.a, the patches with 𝑖 < 𝑚 + 1 − ⌊𝑚+1
2 ⌋ are

mirror images with as mirror axis the middle row of hexagons of the patches

with 𝑖 > 𝑚+1−⌊𝑚+1
2 ⌋. This gives us ⌈𝑚

2 ⌉+⌈𝑚+1
2 ⌉ = 𝑚+1 distinct patches.

�

Remark 6.3.29 To generate all canonical cone patches with two pentagons, a given
side length and a near-symmetric boundary we can just generate the spiral code for
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𝑚+ 1

𝑚+ 1

𝑖− (2𝑚+ 1)

3𝑚+ 2 − 𝑖

𝑚 𝑖− (2𝑚+ 1)

(6.20.a) In this example the values for the parameters are 𝑘 = 2, 𝑙 =
4,𝑚 = 3 and 𝑖 = 8.

𝑚+ 1

𝑖−𝑚

2𝑚+ 1 − 𝑖

𝑚

𝑖−𝑚

(6.20.b) In this example the values for the parameters
are 𝑘 = 2, 𝑙 = 3,𝑚 = 2 and 𝑖 = 3.

Figure 6.20: Two near-symmetric patches.

near-symmetric patches with 𝑖 = 𝑚+ 1 + ⌊𝑚+1
2 ⌋, . . . , 3𝑚+ 1−⌊𝑚

2 ⌋. This will give
the same patches, but for the patches of the type in Figure 6.20.b the mirror image
will be generated. This is the method that is used in cone.

Theorem 6.3.30 There is up to isomorphism exactly one cone with one pentagon
and the canonical cone patch for this cone is the pentagon.

The reason that we deVned a near-symmetric boundary only for 1 < 𝑝 < 5

and not for 1 ≤ 𝑝 < 5 is because this would not allow for the 1-1 correspondence

between canonical cone patches and cones. If we allowed the near-symmetric variant

for 𝑝 = 1, then the unique nanocone with one pentagon would contain two non-
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isomorphic canonical cone patches (see Figure 6.21).

Figure 6.21: The unique nanocone with one pentagon with a
near-symmetric-like patch in grey. This patch has the canonical
boundary sequence 2(23)0(2(23)1)4.

6.4 Algorithm

Since these nanocone patches are also pseudo-convex patches we will use the al-

gorithm developed in Chapter 5. For this special case the pseudo-convex boundaries

have some speciVc properties.

A symmetric patch has 2(6 − 𝑝) possible ways of deVning a canonical marked

edge: each break-edge once for the patch and once for the mirror image of the patch.

A near-symmetric patch has 2 possible ways of deVning a canonical marked edge:

the two break-edges next to the shortest side: one for the patch and the other for the

mirror image of the patch.

A canonical cone patch also has the restriction that there must be a pentagon

with a non-empty intersection with the boundary. This means that a pentagon must

be placed in the Vrst shell. In the case of a symmetric patch, due to the symmetry

of the boundary, a pentagon must be placed in the Vrst half of the Vrst side after

the break-edge that is used as mark. In most cases this will break the symmetry

very early in the generation process and in those cases the generation can be com-
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pleted without performing any isomorphism checks as was explained in the previous

chapter.

In chemistry, IPR-structures, i.e., structures in which no two pentagons share an

edge, are especially interesting because they tend to be energetically better than

structures with fused pentagons. The generation in cone can also be restricted to

this subclass.

6.5 Testing

This algorithm was implemented in C as the program cone. It was tested against

the completely independent program vul_in described in [54], which was itself al-

ready extensively tested.

For our test we compared the output structures with boundary (2(23)𝑠)6−𝑝 and

2(23)𝑠(2(23)𝑠+1)6−𝑝−1 for 2 ≤ 𝑝 ≤ 5 and 𝑠 up to 35 and compared the numbers of

structures for 𝑠 up to 50. This was done once with and once without the restriction

to IPR-structures. We had agreement in all cases.

6.6 Results

Table 6.2: The number of canonical cone patches for given min-
imal side length, given number of pentagons and given type of
boundary.

1 2 2 3 3 4 4 5

s n s n s n

0 1 0 1 0 0 0 0 0

1 0 1 2 1 2 0 0 0

2 0 2 3 3 8 1 2 0

3 0 2 4 5 18 4 9 0

4 0 3 5 12 37 16 32 0

Continued on next page
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Table 6.2: The number of canonical cone patches for given min-
imal side length, given number of pentagons and given type of
boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

5 0 3 6 18 63 37 89 1

6 0 4 7 31 104 89 204 5

7 0 4 8 44 153 175 420 14

8 0 5 9 67 224 336 786 41

9 0 5 10 88 305 579 1376 93

10 0 6 11 124 413 975 2272 212

11 0 6 12 157 534 1533 3589 413

12 0 7 13 207 688 2363 5450 797

13 0 7 14 255 856 3477 8021 1399

14 0 8 15 323 1064 5030 11474 2424

15 0 8 16 387 1288 7040 16032 3941

16 0 9 17 476 1557 9716 21928 6317

17 0 9 18 560 1845 13078 29452 9686

18 0 10 19 671 2184 17400 38902 14654

19 0 10 20 778 2543 22707 50645 21451

20 0 11 21 915 2960 29342 65056 31025

21 0 11 22 1046 3399 37336 82585 43754

22 0 12 23 1212 3901 47112 103692 61042

23 0 12 24 1371 4428 58705 128920 83484

24 0 13 25 1567 5024 72627 158822 113084

25 0 13 26 1757 5646 88918 194044 150732

26 0 14 27 1987 6344 108185 235240 199211

27 0 14 28 2209 7070 130476 283165 259804

28 0 15 29 2476 7877 156502 338586 336263

Continued on next page
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Table 6.2: The number of canonical cone patches for given min-
imal side length, given number of pentagons and given type of
boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

29 0 15 30 2734 8715 186315 402377 430401

30 0 16 31 3039 9640 220741 475422 547166

31 0 16 32 3336 10597 259839 558724 689034

32 0 17 33 3683 11648 304554 653296 862426

33 0 17 34 4020 12733 354953 760276 1070653

34 0 18 35 4412 13917 412111 880814 1321891

35 0 18 36 4793 15138 476101 1016193 1620501

36 0 19 37 5231 16464 548137 1167708 1976744

37 0 19 38 5659 17828 628299 1336797 2396247

38 0 20 39 6147 19304 717946 1524908 2891749

39 0 20 40 6623 20820 817168 1733640 3470397

40 0 21 41 7164 22453 927478 1964606 4147802

41 0 21 42 7692 24129 1048972 2219576 4932954

42 0 22 43 8287 25928 1183328 2500332 5844785

43 0 22 44 8870 27771 1330651 2808825 6894435

44 0 23 45 9523 29744 1492788 3147018 8104688

45 0 23 46 10162 31763 1669854 3517049 9489198

46 0 24 47 10876 33917 1863876 3921070 11075123

47 0 24 48 11575 36120 2074977 4361416 12879072

48 0 25 49 12351 38464 2305373 4840436 14933165

49 0 25 50 13113 40858 2555196 5360672 17257392

50 0 26 51 13955 43400 2826857 5924678 19889522

51 0 26 52 14781 45994 3120500 6535209 22853408

52 0 27 53 15692 48741 3438740 7195036 26193138

Continued on next page
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Table 6.2: The number of canonical cone patches for given min-
imal side length, given number of pentagons and given type of
boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

53 0 27 54 16586 51543 3781729 7907137 29937017

54 0 28 55 17567 54504 4152297 8674504 34136195

55 0 28 56 18532 57521 4550607 9500348 38823982

56 0 29 57 19587 60704 4979708 10387894 44059455

57 0 29 58 20624 63945 5439775 11340592 49881557

58 0 30 59 21756 67357 5934087 12361908 56358126

59 0 30 60 22869 70830 6462829 13455541 63534485

60 0 31 61 24079 74480 7029519 14625206 71488151

61 0 31 62 25271 78192 7634353 15874861 80271535

62 0 32 63 26563 82088 8281094 17208478 89972894

63 0 32 64 27835 86048 8969952 18630280 100652509

64 0 33 65 29212 90197 9704944 20144508 112410395

65 0 33 66 30568 94413 10486290 21755660 125315638

66 0 34 67 32031 98824 11318272 23468250 139481120

67 0 34 68 33474 103303 12201123 25287061 154985603

68 0 35 69 35027 107984 13139394 27216892 171956115

69 0 35 70 36558 112735 14133332 29262817 190482058

70 0 36 71 38204 117693 15187768 31429928 210705824

71 0 36 72 39827 122724 16302961 33723600 232728588

72 0 37 73 41567 127968 17484031 36149226 256709426

73 0 37 74 43285 133286 18731250 38712492 282762348

74 0 38 75 45123 138824 20050033 41419100 311064629

75 0 38 76 46937 144438 21440668 44275053 341744268
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Table 6.3: The number of canonical IPR cone patches for given
minimal side length, given number of pentagons and given type of
boundary.

1 2 2 3 3 4 4 5

s n s n s n

0 1 0 0 0 0 0 0 0

1 0 1 2 0 0 0 0 0

2 0 2 3 2 5 0 0 0

3 0 2 4 4 14 0 0 0

4 0 3 5 10 32 4 6 0

5 0 3 6 16 57 15 36 0

6 0 4 7 29 97 48 111 0

7 0 4 8 41 145 111 272 0

8 0 5 9 64 215 238 565 0

9 0 5 10 85 295 441 1063 1

10 0 6 11 120 402 782 1844 13

11 0 6 12 153 522 1279 3022 46

12 0 7 13 203 675 2029 4717 153

13 0 7 14 250 842 3055 7093 358

14 0 8 15 318 1049 4499 10319 797

15 0 8 16 382 1272 6390 14617 1527

16 0 9 17 470 1540 8922 20216 2817

17 0 9 18 554 1827 12130 27405 4787

18 0 10 19 665 2165 16269 36479 7916

19 0 10 20 771 2523 21381 47803 12411

20 0 11 21 908 2939 27790 61749 19067

21 0 11 22 1039 3377 35544 78766 28230

22 0 12 23 1204 3878 45045 99310 41108

23 0 12 24 1363 4404 56349 123923 58269

Continued on next page
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Table 6.3: The number of canonical IPR cone patches for given
minimal side length, given number of pentagons and given type of
boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

24 0 13 25 1559 4999 69943 153155 81478

25 0 13 26 1748 5620 85890 187650 111580

26 0 14 27 1978 6317 104772 228059 151090

27 0 14 28 2200 7042 126660 275136 201233

28 0 15 29 2466 7848 152238 329644 265436

29 0 15 30 2724 8685 181585 392456 345462

30 0 16 31 3029 9609 215496 464453 445875

31 0 16 32 3325 10565 254059 546636 569080

32 0 17 33 3672 11615 298188 640015 721084

33 0 17 34 4009 12699 347979 745727 905102

34 0 18 35 4400 13882 404474 864918 1128825

35 0 18 36 4781 15102 467779 998870 1396537

36 0 19 37 5219 16427 539071 1148875 1717937

37 0 19 38 5646 17790 618465 1316369 2098545

38 0 20 39 6134 19265 707283 1502797 2550509

39 0 20 40 6610 20780 805650 1709757 3080836

40 0 21 41 7150 22412 915040 1938858 3704461

41 0 21 42 7678 24087 1035588 2191869 4430260

42 0 22 43 8273 25885 1168929 2470569 5276392

43 0 22 44 8855 27727 1315209 2776907 6253850

44 0 23 45 9508 29699 1476232 3112843 7384619

45 0 23 46 10147 31717 1652154 3480514 8682157

46 0 24 47 10860 33870 1844957 3882068 10172724

47 0 24 48 11559 36072 2054809 4319839 11872774

Continued on next page
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Table 6.3: The number of canonical IPR cone patches for given
minimal side length, given number of pentagons and given type of
boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

48 0 25 49 12335 38415 2283877 4796173 13813410

49 0 25 50 13096 40808 2532340 5313610 16014425

50 0 26 51 13938 43349 2802560 5874701 18512550

51 0 26 52 14764 45942 3094728 6482200 21331380

52 0 27 53 15674 48688 3411408 7138874 24513852

53 0 27 54 16568 51489 3752803 7847700 28088065

54 0 28 55 17549 54449 4121688 8611667 32103875

55 0 28 56 18513 57465 4518279 9433984 36594341

56 0 29 57 19568 60647 4945570 10317873 41617232

57 0 29 58 20605 63887 5403789 11266783 47211159

58 0 30 59 21736 67298 5896158 12284176 53442525

59 0 30 60 22849 70770 6422919 13373750 60356392

60 0 31 61 24059 74419 6987529 14539217 68028673

61 0 31 62 25250 78130 7590243 15784533 76511464

62 0 32 63 26542 82025 8234763 17113667 85891413

63 0 32 64 27814 85984 8921358 18530841 96228389

64 0 33 65 29190 90132 9653982 20040292 107620657

65 0 33 66 30546 94347 10432918 21646517 120136977

66 0 34 67 32009 98757 11262381 23354027 133888284

67 0 34 68 33451 103235 12142669 25167603 148952957

68 0 35 69 35004 107915 13078266 27092041 165456083

69 0 35 70 36535 112665 14069484 29132414 183486560

70 0 36 71 38180 117622 15121085 31293810 203184684

71 0 36 72 39803 122652 16233397 33581603 224651235

Continued on next page
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Table 6.3: The number of canonical IPR cone patches for given
minimal side length, given number of pentagons and given type of
boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

72 0 37 73 41543 127895 17411467 36001183 248042966

73 0 37 74 43260 133212 18655638 38558234 273473426

74 0 38 75 45098 138749 19971252 41258455 301117586

75 0 38 76 46912 144362 21358668 44107848 331102843

Table 6.4: The number of canonical non-IPR cone patches for
given minimal side length, given number of pentagons and given
type of boundary.

1 2 2 3 3 4 4 5

s n s n s n

0 0 0 1 0 0 0 0 0

1 0 0 0 1 2 0 0 0

2 0 0 0 1 3 1 2 0

3 0 0 0 1 4 4 9 0

4 0 0 0 2 5 12 26 0

5 0 0 0 2 6 22 53 1

6 0 0 0 2 7 41 93 5

7 0 0 0 3 8 64 148 14

8 0 0 0 3 9 98 221 41

9 0 0 0 3 10 138 313 92

10 0 0 0 4 11 193 428 199

11 0 0 0 4 12 254 567 367

12 0 0 0 4 13 334 733 644

Continued on next page
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Table 6.4: The number of canonical non-IPR cone patches for
given minimal side length, given number of pentagons and given
type of boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

13 0 0 0 5 14 422 928 1041

14 0 0 0 5 15 531 1155 1627

15 0 0 0 5 16 650 1415 2414

16 0 0 0 6 17 794 1712 3500

17 0 0 0 6 18 948 2047 4899

18 0 0 0 6 19 1131 2423 6738

19 0 0 0 7 20 1326 2842 9040

20 0 0 0 7 21 1552 3307 11958

21 0 0 0 7 22 1792 3819 15524

22 0 0 0 8 23 2067 4382 19934

23 0 0 0 8 24 2356 4997 25215

24 0 0 0 8 25 2684 5667 31606

25 0 0 0 9 26 3028 6394 39152

26 0 0 0 9 27 3413 7181 48121

27 0 0 0 9 28 3816 8029 58571

28 0 0 0 10 29 4264 8942 70827

29 0 0 0 10 30 4730 9921 84939

30 0 0 0 10 31 5245 10969 101291

31 0 0 0 11 32 5780 12088 119954

32 0 0 0 11 33 6366 13281 141342

33 0 0 0 11 34 6974 14549 165551

34 0 0 0 12 35 7637 15896 193066

35 0 0 0 12 36 8322 17323 223964

36 0 0 0 12 37 9066 18833 258807

Continued on next page
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Table 6.4: The number of canonical non-IPR cone patches for
given minimal side length, given number of pentagons and given
type of boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

37 0 0 0 13 38 9834 20428 297702

38 0 0 0 13 39 10663 22111 341240

39 0 0 0 13 40 11518 23883 389561

40 0 0 0 14 41 12438 25748 443341

41 0 0 0 14 42 13384 27707 502694

42 0 0 0 14 43 14399 29763 568393

43 0 0 0 15 44 15442 31918 640585

44 0 0 0 15 45 16556 34175 720069

45 0 0 0 15 46 17700 36535 807041

46 0 0 0 16 47 18919 39002 902399

47 0 0 0 16 48 20168 41577 1006298

48 0 0 0 16 49 21496 44263 1119755

49 0 0 0 17 50 22856 47062 1242967

50 0 0 0 17 51 24297 49977 1376972

51 0 0 0 17 52 25772 53009 1522028

52 0 0 0 18 53 27332 56162 1679286

53 0 0 0 18 54 28926 59437 1848952

54 0 0 0 18 55 30609 62837 2032320

55 0 0 0 19 56 32328 66364 2229641

56 0 0 0 19 57 34138 70021 2442223

57 0 0 0 19 58 35986 73809 2670398

58 0 0 0 20 59 37929 77732 2915601

59 0 0 0 20 60 39910 81791 3178093

60 0 0 0 20 61 41990 85989 3459478

Continued on next page
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Table 6.4: The number of canonical non-IPR cone patches for
given minimal side length, given number of pentagons and given
type of boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

61 0 0 0 21 62 44110 90328 3760071

62 0 0 0 21 63 46331 94811 4081481

63 0 0 0 21 64 48594 99439 4424120

64 0 0 0 22 65 50962 104216 4789738

65 0 0 0 22 66 53372 109143 5178661

66 0 0 0 22 67 55891 114223 5592836

67 0 0 0 23 68 58454 119458 6032646

68 0 0 0 23 69 61128 124851 6500032

69 0 0 0 23 70 63848 130403 6995498

70 0 0 0 24 71 66683 136118 7521140

71 0 0 0 24 72 69564 141997 8077353

72 0 0 0 24 73 72564 148043 8666460

73 0 0 0 25 74 75612 154258 9288922

74 0 0 0 25 75 78781 160645 9947043

75 0 0 0 25 76 82000 167205 10641425

Table 6.5: The maximum number of hexagons in a cone patch for
given minimal side length, given number of pentagons and given
type of boundary.

1 2 2 3 3 4 4 5

s n s n s n

0 0 N/A 1 N/A N/A N/A N/A N/A

1 2 7 0 3 N/A N/A N/A

Continued on next page
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Table 6.5: The maximum number of hexagons in a cone patch for
given minimal side length, given number of pentagons and given
type of boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

2 8 15 4 9 0 2 N/A

3 16 26 11 17 4 7 N/A

4 27 39 19 27 10 13 N/A

5 40 55 30 39 16 21 1

6 56 73 42 53 24 29 5

7 74 94 57 69 33 39 8

8 95 117 73 87 44 50 13

9 118 143 92 107 55 63 17

10 144 171 112 129 68 76 23

11 172 202 135 153 82 91 28

12 203 235 159 179 98 107 35

13 236 271 186 207 114 125 41

14 272 309 214 237 132 143 49

15 310 350 245 269 151 163 56

16 351 393 277 303 172 184 65

17 394 439 312 339 193 207 73

18 440 487 348 377 216 230 83

19 488 538 387 417 240 255 92

20 539 591 427 459 266 281 103

21 592 647 470 503 292 309 113

22 648 705 514 549 320 337 125

23 706 766 561 597 349 367 136

24 767 829 609 647 380 398 149

25 830 895 660 699 411 431 161

Continued on next page
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Table 6.5: The maximum number of hexagons in a cone patch for
given minimal side length, given number of pentagons and given
type of boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

26 896 963 712 753 444 464 175

27 964 1034 767 809 478 499 188

28 1035 1107 823 867 514 535 203

29 1108 1183 882 927 550 573 217

30 1184 1261 942 989 588 611 233

31 1262 1342 1005 1053 627 651 248

32 1343 1425 1069 1119 668 692 265

33 1426 1511 1136 1187 709 735 281

34 1512 1599 1204 1257 752 778 299

35 1600 1690 1275 1329 796 823 316

36 1691 1783 1347 1403 842 869 335

37 1784 1879 1422 1479 888 917 353

38 1880 1977 1498 1557 936 965 373

39 1978 2078 1577 1637 985 1015 392

40 2079 2181 1657 1719 1036 1066 413

41 2182 2287 1740 1803 1087 1119 433

42 2288 2395 1824 1889 1140 1172 455

43 2396 2506 1911 1977 1194 1227 476

44 2507 2619 1999 2067 1250 1283 499

45 2620 2735 2090 2159 1306 1341 521

46 2736 2853 2182 2253 1364 1399 545

47 2854 2974 2277 2349 1423 1459 568

48 2975 3097 2373 2447 1484 1520 593

49 3098 3223 2472 2547 1545 1583 617

Continued on next page
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Table 6.5: The maximum number of hexagons in a cone patch for
given minimal side length, given number of pentagons and given
type of boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

50 3224 3351 2572 2649 1608 1646 643

Table 6.6: The minimum number of hexagons in a cone patch for
given minimal side length, given number of pentagons and given
type of boundary.

1 2 2 3 3 4 4 5

s n s n s n

0 0 N/A 1 N/A N/A N/A N/A N/A

1 2 6 0 2 N/A N/A N/A

2 7 13 3 6 0 1 N/A

3 14 22 7 11 2 3 N/A

4 23 33 12 17 4 5 N/A

5 34 46 18 24 6 7 1

6 47 61 25 32 8 9 2

7 62 78 33 41 10 11 3

8 79 97 42 51 12 13 5

9 98 118 52 62 14 15 6

10 119 141 63 74 16 17 8

11 142 166 75 87 18 19 9

12 167 193 88 101 20 21 11

13 194 222 102 116 22 23 12

14 223 253 117 132 24 25 14

15 254 286 133 149 26 27 15

Continued on next page
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Table 6.6: The minimum number of hexagons in a cone patch for
given minimal side length, given number of pentagons and given
type of boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

16 287 321 150 167 28 29 17

17 322 358 168 186 30 31 18

18 359 397 187 206 32 33 20

19 398 438 207 227 34 35 21

20 439 481 228 249 36 37 23

21 482 526 250 272 38 39 24

22 527 573 273 296 40 41 26

23 574 622 297 321 42 43 27

24 623 673 322 347 44 45 29

25 674 726 348 374 46 47 30

26 727 781 375 402 48 49 32

27 782 838 403 431 50 51 33

28 839 897 432 461 52 53 35

29 898 958 462 492 54 55 36

30 959 1021 493 524 56 57 38

31 1022 1086 525 557 58 59 39

32 1087 1153 558 591 60 61 41

33 1154 1222 592 626 62 63 42

34 1223 1293 627 662 64 65 44

35 1294 1366 663 699 66 67 45

36 1367 1441 700 737 68 69 47

37 1442 1518 738 776 70 71 48

38 1519 1597 777 816 72 73 50

39 1598 1678 817 857 74 75 51

Continued on next page
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Table 6.6: The minimum number of hexagons in a cone patch for
given minimal side length, given number of pentagons and given
type of boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

40 1679 1761 858 899 76 77 53

41 1762 1846 900 942 78 79 54

42 1847 1933 943 986 80 81 56

43 1934 2022 987 1031 82 83 57

44 2023 2113 1032 1077 84 85 59

45 2114 2206 1078 1124 86 87 60

46 2207 2301 1125 1172 88 89 62

47 2302 2398 1173 1221 90 91 63

48 2399 2497 1222 1271 92 93 65

49 2498 2598 1272 1322 94 95 66

50 2599 2701 1323 1374 96 97 68

Table 6.7: The maximum number of vertices in a cone patch for
given minimal side length, given number of pentagons and given
type of boundary.

1 2 2 3 3 4 4 5

s n s n s n

0 5 N/A 11 N/A N/A N/A N/A N/A

1 14 27 10 18 N/A N/A N/A

2 30 47 21 33 12 17 N/A

3 50 73 38 52 22 29 N/A

4 76 103 57 75 36 43 N/A

5 106 139 82 102 50 61 16

Continued on next page
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Table 6.7: The maximum number of vertices in a cone patch for
given minimal side length, given number of pentagons and given
type of boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

6 142 179 109 133 68 79 25

7 182 225 142 168 88 101 32

8 228 275 177 207 112 125 43

9 278 331 218 250 136 153 52

10 334 391 261 297 164 181 65

11 394 457 310 348 194 213 76

12 460 527 361 403 228 247 91

13 530 603 418 462 262 285 104

14 606 683 477 525 300 323 121

15 686 769 542 592 340 365 136

16 772 859 609 663 384 409 155

17 862 955 682 738 428 457 172

18 958 1055 757 817 476 505 193

19 1058 1161 838 900 526 557 212

20 1164 1271 921 987 580 611 235

21 1274 1387 1010 1078 634 669 256

22 1390 1507 1101 1173 692 727 281

23 1510 1633 1198 1272 752 789 304

24 1636 1763 1297 1375 816 853 331

25 1766 1899 1402 1482 880 921 356

26 1902 2039 1509 1593 948 989 385

27 2042 2185 1622 1708 1018 1061 412

28 2188 2335 1737 1827 1092 1135 443

29 2338 2491 1858 1950 1166 1213 472

Continued on next page
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Table 6.7: The maximum number of vertices in a cone patch for
given minimal side length, given number of pentagons and given
type of boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

30 2494 2651 1981 2077 1244 1291 505

31 2654 2817 2110 2208 1324 1373 536

32 2820 2987 2241 2343 1408 1457 571

33 2990 3163 2378 2482 1492 1545 604

34 3166 3343 2517 2625 1580 1633 641

35 3346 3529 2662 2772 1670 1725 676

36 3532 3719 2809 2923 1764 1819 715

37 3722 3915 2962 3078 1858 1917 752

38 3918 4115 3117 3237 1956 2015 793

39 4118 4321 3278 3400 2056 2117 832

40 4324 4531 3441 3567 2160 2221 875

41 4534 4747 3610 3738 2264 2329 916

42 4750 4967 3781 3913 2372 2437 961

43 4970 5193 3958 4092 2482 2549 1004

44 5196 5423 4137 4275 2596 2663 1051

45 5426 5659 4322 4462 2710 2781 1096

46 5662 5899 4509 4653 2828 2899 1145

47 5902 6145 4702 4848 2948 3021 1192

48 6148 6395 4897 5047 3072 3145 1243

49 6398 6651 5098 5250 3196 3273 1292

50 6654 6911 5301 5457 3324 3401 1345
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Table 6.8: The minimum number of vertices in a cone patch for
given minimal side length, given number of pentagons and given
type of boundary.

1 2 2 3 3 4 4 5

s n s n s n

0 5 N/A 11 N/A N/A N/A N/A N/A

1 14 25 10 16 N/A N/A N/A

2 28 43 19 27 12 15 N/A

3 46 65 30 40 18 21 N/A

4 68 91 43 55 24 27 N/A

5 94 121 58 72 30 33 16

6 124 155 75 91 36 39 19

7 158 193 94 112 42 45 22

8 196 235 115 135 48 51 27

9 238 281 138 160 54 57 30

10 284 331 163 187 60 63 35

11 334 385 190 216 66 69 38

12 388 443 219 247 72 75 43

13 446 505 250 280 78 81 46

14 508 571 283 315 84 87 51

15 574 641 318 352 90 93 54

16 644 715 355 391 96 99 59

17 718 793 394 432 102 105 62

18 796 875 435 475 108 111 67

19 878 961 478 520 114 117 70

20 964 1051 523 567 120 123 75

21 1054 1145 570 616 126 129 78

22 1148 1243 619 667 132 135 83

23 1246 1345 670 720 138 141 86

Continued on next page
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Table 6.8: The minimum number of vertices in a cone patch for
given minimal side length, given number of pentagons and given
type of boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

24 1348 1451 723 775 144 147 91

25 1454 1561 778 832 150 153 94

26 1564 1675 835 891 156 159 99

27 1678 1793 894 952 162 165 102

28 1796 1915 955 1015 168 171 107

29 1918 2041 1018 1080 174 177 110

30 2044 2171 1083 1147 180 183 115

31 2174 2305 1150 1216 186 189 118

32 2308 2443 1219 1287 192 195 123

33 2446 2585 1290 1360 198 201 126

34 2588 2731 1363 1435 204 207 131

35 2734 2881 1438 1512 210 213 134

36 2884 3035 1515 1591 216 219 139

37 3038 3193 1594 1672 222 225 142

38 3196 3355 1675 1755 228 231 147

39 3358 3521 1758 1840 234 237 150

40 3524 3691 1843 1927 240 243 155

41 3694 3865 1930 2016 246 249 158

42 3868 4043 2019 2107 252 255 163

43 4046 4225 2110 2200 258 261 166

44 4228 4411 2203 2295 264 267 171

45 4414 4601 2298 2392 270 273 174

46 4604 4795 2395 2491 276 279 179

47 4798 4993 2494 2592 282 285 182

Continued on next page



6.7. NUMBER OF HEXAGONS IN CONE PATCHES 287

Table 6.8: The minimum number of vertices in a cone patch for
given minimal side length, given number of pentagons and given
type of boundary. (Continued)

1 2 2 3 3 4 4 5

s n s n s n

48 4996 5195 2595 2695 288 291 187

49 5198 5401 2698 2800 294 297 190

50 5404 5611 2803 2907 300 303 195

6.7 Number of hexagons in cone patches

In [47] Bornhöft et al. prove that for a given upper bound on the boundary length

(i.e., the number of vertices in the boundary) and for a given number of pentagons,

the patch with the maximum number of hexagons is given by an inner spiral that

starts with all the pentagons. Note that this is not the same as the outer spiral in

the previous chapter. An inner spiral is a patch 𝑃 with 𝑓 faces in which the faces

can be numbered from 1 to 𝑓 in a way that for 1 < 𝑛 ≤ 𝑓 face 𝑛 has a connected

intersection with the subgraph induced by the faces 1, . . . , 𝑛 − 1 which includes an

edge of face 𝑛− 1 and for 𝑛 > 2 an edge of the smallest of the faces sharing a vertex

with face 𝑛−1 that is in the boundary of the patch induced by the faces 1, . . . , 𝑛−1.

See [47] for more details. Figure 6.22 shows some examples of inner spirals.

The upper bounds proved in [47] for the number of hexagons per number of pen-

tagons are given in Table 6.9. In Table 6.10, we express these upper bounds in function

of the shortest side for symmetric and near-symmetric boundaries.

The importance of having a good upper bound for the number of hexagons, is that

it also provides an upper bound on the number of vertices for a cone patch, which

allows us to do eXcient memory management when implementing the algorithm.

Using the Euler formula we Vnd

𝑣 − 𝑒+ ℎ+ 𝑝+ 1 = 2,
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𝑝 Upper bound

0 ℎ ≤ 𝑏2+12
48

1 ℎ ≤ 𝑏2−25
40

2 ℎ ≤ 𝑏2−64
32

3 ℎ ≤ 𝑏2−81
24

4 ℎ ≤ 𝑏2−100
16

5 ℎ ≤ 𝑏2−113
8

Table 6.9: The upper bounds on the number of hexagons in a
pseudo-convex patch with 𝑝 pentagons given in [47] expressed as
functions of the length 𝑏 of the boundary.

𝑝
Upper bound

symmetric boundary near-symmetric boundary

1 ℎ ≤ 5𝑚2−5𝑚
2

2 ℎ ≤ 4𝑚2+4𝑚−3
2 ℎ ≤ 16𝑚2+40𝑚+9

8

3 ℎ ≤ 3𝑚2+3𝑚−6
2 ℎ ≤ 6𝑚2+14𝑚−7

4

4 ℎ ≤ 𝑚2 +𝑚− 6 ℎ ≤ 4𝑚2+8𝑚−21
4

5 ℎ ≤ 𝑚2+𝑚−28
2

Table 6.10: The upper bounds from Table 6.9 expressed as func-
tion of the length of the shortest side.
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with 𝑣 the number of vertices, 𝑒 the number of edges, ℎ the number of hexagons and

𝑝 the number of pentagons. The number of edges can be counted as follows

𝑒 =
6ℎ+ 5𝑝+ 𝑏

2

in which 𝑏 stands for the length of the boundary. Substituting this second formula in

the Vrst formula, we Vnd

ℎ =
2𝑣 − 3𝑝− 𝑏− 2

4
.

We can express the length of the boundary for symmetric and near-symmetric

patches in function of the length 𝑚 of the shortest side of the patch. For symmetric

boundaries this is

𝑏 = (6 − 𝑝)(2𝑚+ 1),

and for near-symmetric boundaries

𝑏 = (6 − 𝑝− 1)(2𝑚+ 3) + 2𝑚+ 1.

Again substituting these formulas into the formula above we Vnd the following equal-

ity for symmetric boundaries

ℎ =
𝑣 − 𝑝− (6 − 𝑝)𝑚− 4

2
,

and for near-symmetric boundaries

ℎ =
𝑣 − (6 − 𝑝)𝑚− 9

2
.

Bornhöft et al. were looking at general patches and actually worked out a lower

bound for the boundary given the number of hexagons and pentagons. A cone patch

has some extra restrictions. First, although it would indeed give the patch with the

most hexagons for that boundary, it is not possible – except for a few small cases –

to place all pentagons in the centre, because the boundary needs to share an edge

with a pentagon. Using this extra restriction we can Vnd a new upper bound on the

number of hexagons in a cone patch that performs better or in some very few cases

at least as good as the old bound. Furthermore even these new bounds will in most
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cases not be sharp, because the patch that is obtained by Vrst placing all pentagons

and then adding hexagons is not guaranteed to have a symmetric or near-symmetric

boundary.

In a cone patch the boundary shares at least one edge with at least one pentagon.

Choose such an edge 𝑒 and insert a vertex into it. The resulting new patch will have

one pentagon less and one hexagon more than the original patch. Furthermore, its

boundary length will be one larger than that of the original patch. Using the old

bounds, we can now calculate new bounds for these modiVed patches and deduce

from them better bounds for the original patches.

If we denote the upper bound from [47] for the number of hexagons in a patch

with 𝑏 boundary vertices and 𝑝 pentagons by 𝑓(𝑏, 𝑝), then we can write down to new

upper bounds in case there are pentagons that lie at the boundary as follows. If there

are 𝑘 pentagons in the boundary and we use the construction above 𝑘 times, we Vnd

the following upper bound on the number of hexagons:

𝑓(𝑏+ 𝑘, 𝑝− 𝑘) − 𝑘. (6.89)

There is only one patch in case of 1 pentagon and it does not contain any

hexagons, therefore we leave this case out for the rest of the discussion.

In a patch with two pentagons and a symmetric boundary, we have already

shown that the two pentagons always lie at the boundary. Using the formula above,

with 𝑏 = 8𝑚+ 4, 𝑘 = 2 and 𝑝 = 2, we Vnd

ℎ ≤ 4𝑚2 + 6𝑚+ 3

3
. (6.90)

For the other types, we can only assume that there is at least one pentagon that

lies at the boundary. The new upper bounds for the diUerent types of patches are

given in Table 6.11

As we noted before these upper bounds are not necessarily sharp, because placing

all but one pentagon at the center of the patch might not be possible for that speciVc

boundary. In one case however this bound is sharp. This case is that of 5 pentagons.

The patch shown in Figure 6.22.a has a spiral code that starts with 4 pentagons and

then 2 hexagons and the boundary code is 2(23)42(23)1. If we remove a vertex of
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𝑝
Upper bound

symmetric boundary near-symmetric boundary

2 ℎ ≤ 4𝑚2+6𝑚+3
3 ℎ ≤ 8𝑚2+22𝑚+7

5

3 ℎ ≤ 9𝑚2+12𝑚−20
8 ℎ ≤ 9𝑚2+24𝑚−8

8

4 ℎ ≤ 2𝑚2+3𝑚−9
3 ℎ ≤ 2𝑚2+5𝑚−10

3

5 ℎ ≤ 𝑚2+2𝑚−28
4

Table 6.11: The new upper bounds for the number of hexagons in
a cone patch with 𝑝 pentagons.

degree 2 in the last hexagon added, the new boundary code would be 2(23)5. As

can be seen in Lemma 6.3.3 adding a layer of hexagons corresponds to adding one to

each side, so if we add 𝑛 layers of hexagons to this patch the boundary code would

be 2(23)4+𝑛2(23)1+𝑛, and after removal of a vertex of degree 2 in the last hexagon

we get a patch with boundary 2(23)5+2𝑛. Analogously we Vnd that the other patch

leads to patches with boundary 2(23)6+2𝑛. Since both these patches have a valid

symmetric boundary for the case with 5 pentagons, and all have by construction

a pentagon in the boundary, these are valid cone patches. The Vrst patch is the

prototype for patches with an odd number of 3’s in the boundary, the second is

the prototype for the patches with an even number of 3’s. So for each boundary

corresponding to a patch with 5 pentagons, there exists a patch from this family, and

so the upper bound is in this case sharp.

In Corollary 6.3.27 and Corollary 6.3.28, we saw that we can give very concrete

descriptions of the patches in case of 2 pentagons. This immediately suggests that

we can use these descriptions to Vnd a sharp upper bound for this case.

First consider a symmetric boundary (2(23)𝑚)4. This corresponds to an initial

patch with parameters 𝑙 and 𝑘, such that 𝑙−𝑘 mod 3 = 0. Without loss of generality

we can assume that 𝑙 > 𝑘. The number of hexagons in the initial patch is equal to

(𝑙+ 1)(𝑘+ 1)− 2. To both sides of length 𝑙 we add 𝑖 = 𝑙−𝑘
3 times a side of hexagons.
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(6.22.a) Prototype for odd length
patches

(6.22.b) Prototype for even length patches

Figure 6.22: The prototypes for cone patches with 5 pentagons
and the maximum number of hexagons

This corresponds to 2
∑︀𝑖

𝑗=1(𝑙 − 𝑗 + 1) hexagons. Putting this together, we Vnd that

the cone patch contains ℎ hexagons with

ℎ = (𝑙 + 1)(𝑘 + 1) − 2 + 2

𝑖∑︁
𝑗=1

(𝑙 − 𝑗 + 1)

=
5𝑘𝑙 + 12𝑙 + 6𝑘 − 9 + 5𝑙2 − 𝑘2

9

=
5𝑚2 + 8𝑚− 4 − 𝑘2

4
.

The last equality is due to 𝑚 = 2𝑙+𝑘
3 . It is clear that this last formula for the number

of hexagons is maximal when 𝑘2 is minimal. For 𝑚 even this means 𝑘 = 0 which

gives us

ℎ =
5𝑚2 + 8𝑚− 4

4
, (6.91)

and for 𝑚 odd this means 𝑘 = 1 which gives us

ℎ =
5𝑚2 + 8𝑚− 5

4
. (6.92)
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These are sharp upper bounds for the number of hexagons in symmetric patches with

2 pentagons.

By subtracting the actual maxima for this case in 6.91 and 6.92 from the upper

bound 6.90, we Vnd that that upper bound is too large by 𝑚2+24
12 for even 𝑚, and by

𝑚2+27
12 for odd 𝑚.

Next consider a near-symmetric boundary (2(23)𝑚+1)32(23)𝑚 and add the re-

striction that the two pentagons share an edge with the boundary. This corresponds

to an initial patch with parameters 𝑙 and 𝑘 (𝑙 > 𝑘), such that 𝑙 − 𝑘 mod 3 = 1

and 𝑚 = 2𝑙+𝑘−2
3 . Again the number of hexagons in the initial patch is equal to

(𝑙 + 1)(𝑘 + 1) − 2. To both sides of length 𝑙 we add 𝑖 = 𝑙−𝑘−1
3 times a side of

hexagons and we Vnish by adding an extra side of hexagons to one of these sides.

This corresponds to a total of 2
∑︀𝑖

𝑗=1(𝑙 − 𝑗 + 1) + 𝑚 + 1 hexagons. Putting this

together, we Vnd that the cone patch contains ℎ hexagons with

ℎ = (𝑙 + 1)(𝑘 + 1) − 2 + 2

𝑖∑︁
𝑗=1

(𝑙 − 𝑗 + 1) +𝑚+ 1

= 𝑘𝑙 + 𝑙 + 𝑘 − 1 + 𝑖(𝑙 + 𝑙 − 𝑖+ 1) +𝑚+ 1

=
5𝑚2 + 16𝑚+ 4 − 𝑘2

4
.

The last equality is due to 𝑙 = 3𝑚−𝑘+2
2 and 𝑖 = 𝑚−𝑘

2 . Again this is maximal when

𝑘2 is minimal. For 𝑚 even this means 𝑘 = 0 which gives us

ℎ =
5𝑚2 + 16𝑚+ 4

4
, (6.93)

and for 𝑚 odd this means 𝑘 = 1 which gives us

ℎ =
5𝑚2 + 16𝑚+ 3

4
. (6.94)

When we apply formula 6.89 for this case, we have that 𝑏 = 8𝑠 + 12, 𝑘 = 2 and

𝑝 = 2, and we Vnd

ℎ ≤ 16𝑚2 + 48𝑚+ 15

12
.
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By subtracting the actual maxima for this case in 6.93 and 6.94 from this upper bound

we Vnd that this upper bound is too large by 𝑚2+3
12 for even 𝑚, and by 𝑚2+4

12 for odd

𝑚.

For a near-symmetric boundary we also have the possibility that only one pen-

tagon shares an edge with the boundary. Assume this is the case and the boundary

is (2(23)𝑚+1)32(23)𝑚. This corresponds to an initial patch with parameters 𝑙 and 𝑘

(𝑙 > 𝑘), such that 𝑙−𝑘 mod 3 = 2 and 𝑚 = 2𝑙+𝑘−1
3 . The number of hexagons in the

initial patch is equal to (𝑙+1)(𝑘+1)−2. To both sides of length 𝑙 we add 𝑖 = 𝑙−𝑘+1
3

times a side of hexagons and we Vnish by adding one side of hexagons to one of the

other sides. This corresponds to a total of 2
∑︀𝑖

𝑗=1(𝑙 − 𝑗 + 1) + 𝑚 + 1 hexagons.

Putting this together, we Vnd that the cone patch contains ℎ hexagons with

ℎ = (𝑙 + 1)(𝑘 + 1) − 2 + 2

𝑖∑︁
𝑗=1

(𝑙 − 𝑗 + 1) +𝑚+ 1

= 𝑘𝑙 + 𝑙 + 𝑘 − 1 + 𝑖(𝑙 + 𝑙 − 𝑖+ 1) +𝑚+ 1

=
5𝑚2 + 18𝑚+ 5 − 𝑘2

4
.

The last equality is due to 𝑙 = 3𝑚−𝑘+1
2 and 𝑖 = 𝑚−𝑘+1

2 . This also is maximal when

𝑘2 is minimal. For 𝑚 even this means 𝑘 = 0 which gives us

ℎ =
5𝑚2 + 18𝑚+ 5

4
, (6.95)

and for 𝑚 odd this means 𝑘 = 1 which gives us

ℎ =
5𝑚2 + 18𝑚+ 4

4
. (6.96)

By subtracting the actual maxima for this case in 6.95 and 6.96 from the upper

bound in Table 6.11 we Vnd that that upper bound is too large by 7𝑚2−2𝑚+3
20 for even

𝑚, and by 7𝑚2−2𝑚+8
20 for odd 𝑚.

It is easy to verify that for a near-symmetric boundary the maximum number of

hexagons for the case with two pentagons that share an edge with the boundary is

always smaller than the maximum for the case with only one pentagon that shares an
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edge with the boundary. This means that we Vnd the following sharp upper bounds

for the number of hexagons in a symmetric patch with two pentagons

ℎ ≤
⌊︂

5𝑚2 + 8𝑚− 4

4

⌋︂
and for the number of hexagons in a near-symmetric patch with two pentagons

ℎ ≤
⌊︂

5𝑚2 + 18𝑚+ 5

4

⌋︂
.
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Option Function

-o Output the tilings of 𝑂𝑇

-a Output the tilings of 𝐴𝑇

-t Output the tilings of 𝐴𝑇 with only translational symmetry
-c Output the translation-only covers of the tilings
-m Output minimal symbols
-p Output periodic graphs instead of Delaney-Dress symbols
-h Print a detailed help message

Table A.1: The options available when running the program azul.

The programs here are listed in alphabetic order.

A.1 azul

The program azul is the implementation of the algorithm described in Chapter 4

and is written in C. This algorithm was developed for a very speciVc goal, and so this

program has few conVguration options. We list the main options in Table A.1.

This program can be downloaded from [63].

A.2 cone

The program cone is the implementation of the algorithm described in Chap-

ter 5, but can only be used to generate cone patches as described in Chapter 6. This

program has been written in C.

This program is available as part of CaGe[57, 61]. CaGe provides a simple graph-

ical interface to specify which cone patches need to be generated. CaGe is written in

Java and C, and is available for Linux and Mac OS X.
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Option Function

-h, –help Print this help and return.
-l, –listVle Vle Only start the generation based on the block lists in Vle.
-o, –output type SpeciVes the export format where type is one of

c, code code (depends on the generated type)
h, human human-readable output
n, none no output: only count (default)

-m, –modulo 𝑟:𝑛 Split the generation in multiple parts. The generation
is split into 𝑛 parts and only part 𝑟 is generated. The
number 𝑛 needs to be an integer larger than 0, and 𝑟
should be a positive integer smaller than n.

–restrictionsonly calculate the restrictions for the Delaney-Dress symbol,
but do not generate any structures.

Table A.2: The general options available when running the pro-
gram ddgraphs.

A.3 ddgraphs

The program ddgraphs is the implementation of the algorithm described in

Chapter 3 and is written in C. This program is currently not yet available online,

but can be obtained from the author.

This program can be used in diUerent ways depending on the desired result.

These are the three ways to call the program from the command line:

∙ ./ddgraphs [options] n

Generate graphs with n vertices.

∙ ./ddgraphs -l file [options]

Generate graphs based on the block lists in file.

∙ ./ddgraphs -s [options]

Generate Delaney-Dress symbols.

We list the main options in Table A.2, Table A.3 and Table A.4.
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Option Function

-L, –lists Generate block lists.
-t, –marked Generate cubic pregraphs with a marked 2-factor where

each component is a quotient of a 4-cycle.
-c, –coloured Generate Delaney-Dress graphs, i.e., graphs that are

the underlying graphs of Delaney-Dress symbols and in
which the edges are coloured with the colours 0, 1 or 2.

-s, –symbols Generate Delaney-Dress symbols.

Table A.3: The options available to specify the type of the gener-
ated structures when running the program ddgraphs. By default,
ddgraphs will generate 𝐶𝑞

4 -markable pregraphs.

A.3.1 Examples
To see how many 𝐶𝑞

4 -markable cubic pregraphs on 8 vertices exist, the following

command can be used.

./ddgraphs 8

The output will then be

Generating cubic pregraphs that have a C4q 2-factor and with 8 vertices.
Found 99 block lists.
Found 105 cubic pregraphs that have a C4q 2-factor.
CPU time: 0.0 seconds.

To know to how many 𝐶𝑞
4 -marked cubic pregraphs on 8 vertices this leads, the

theoretical results from Theorem 3.1.2 can be used, but it can also be done using the

next command.

./ddgraphs -t 8

The output will then be

Generating cubic pregraphs with marked 2-factors and 8 vertices.
Found 103 block lists.
Found 109 cubic pregraphs with marked 2-factors.
CPU time: 0.0 seconds.
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Option Function

-b, –bipartite Only generate Delaney-Dress graphs that are bipartite.
-O, –orientable Only generate Delaney-Dress graphs that (may) corre-

spond to orientable tilings.
-R, –requiredface Add a face size to the list of required faces.
-F, –forbiddenface Add a face size to the list of forbidden faces.
-r, –requiredvertex Add a vertex degree to the list of required vertices.
-f, –forbiddenvertex Add a vertex degree to the list of forbidden vertices.
–maxfacecount Specify the maximum number of face orbits in the tiling.
–minfacecount Specify the minimum number of face orbits in the tiling.
–maxvertexcount Specify the maximum number of vertex orbits in the

tiling.
–minvertexcount Specify the minimum number of vertex orbits in the

tiling.
–minfacesize Specify the minimum size of a face in the tiling.
–maxfacesize Specify the maximum size of a face in the tiling.
–minvertexdegree Specify the minimum degree of a vertex in the tiling.
–maxvertexdegree Specify the maximum degree of a vertex in the tiling.
-n, –minvertices Specify the minimum number of vertices in the Delaney-

Dress graph.
-N, –maxvertices Specify the maximum number of vertices in the

Delaney-Dress graph.

Table A.4: The options available to constraint the generated
structures when running the program ddgraphs.
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The number of Delaney-Dress graph that have 8 vertices, can be enumerated

using the following command.

./ddgraphs -c 8

The output will then be

Found 103 block lists.
Found 109 cubic pregraphs with marked 2-factors.
Found 315 Delaney-Dress graphs.
CPU time: 0.0 seconds.

To generate all Delaney-Dress symbols for tile-transitive tilings, the usage is a bit

diUerent. One can do this with the following command

./ddgraphs -s --maxfacecount 1

The output will then be

Generating Delaney-Dress symbols with 1 to 12 vertices.

Improved parameter bounds
-------------------------
Number of face orbits lies in [1,1].
Number of vertex orbits lies in [1,12].
Number of edge orbits lies in [1,12].
Face sizes lie in [3,144].
Vertex degrees lie in [3,144].
Required face sizes are [].
Forbidden face sizes are [].
Required vertex degrees are [].
Forbidden vertex degrees are [].

Found 93 Delaney-Dress symbols.
CPU time: 1.8 seconds.

A.4 PGVisualizer

PGVisualizer is closely related with azul in that it is the program used to visu-

alise the periodic graphs that can be output by azul. The main aim of PGVisualizer is
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a straight-forward viewer for Vles in the PG format. It is written in Java and therefore

should be portable across several operating systems.

This program and its manual can be downloaded from [63].

A.5 pregraphs

The program pregraphs is the implementation of the algorithm described in

Chapter 2 and is written in C. This program can be downloaded from [64].

The program pregraphs calculates pregraphs of a given order 𝑛. The value for

𝑛 needs to speciVed on the command line after specifying the options. We list the

main options in Table A.5.

A.5.1 Examples
To count all bipartite multigraphs with 4 vertices, the following command can be

used:

./pregraphs -MB 4

The output will then be:

Generating bipartite multigraphs with 4 vertices.
Found 1 pregraph with 4 vertices.
CPU time: 0.0 seconds.

To view this graph as a simple table, the output option can be used to specify a

human-readable format:

./pregraphs -MB -oh 4

The output will then be:

Generating bipartite multigraphs with 4 vertices.
==============================
| Graph number: 1 |
| Number of vertices: 4 |
==============================
| 1 || 4 | 2 | 2 ||
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Option Function

-h Print help and return.
-i Causes pregraphs to print extra info about the gener-

ated structures.
-L Allow loops.
-S Allow semi-edges.
-M Allow multi-edges.
-C Only generate 3-edge-colourable pregraphs.
-B Only generate bipartite pregraphs.
-q Only generate pregraphs that have a 2-factor where

each component is the quotient of a 4-cycle.
-4 Only generate pregraphs that have a 2-factor where

each component is a 4-cycle.
-P Only generate the corresponding pregraph primitives.
-I Only start the generation from the Vles provided by the

input Vle (see -F).
-f Vle SpeciVes the output Vle. If absent, the output is written

to standard out.
-F Vle SpeciVes the input Vle. If absent, the input is taken from

standard in. This option is only used if -I is used.
-o c SpeciVes the export format where c is one of

c pregraph code (or multicode if -P is used)
h human-readable output in tabular format
n no output : only count (default)

-m 𝑟:𝑚[:𝑑] Split the generation into 𝑚 parts at depth 𝑑 and only
execute part 𝑟. The default for 𝑑 is 0.

Table A.5: The options available when running the program
pregraphs.



A.6. PREGRAPHVIEWER 305

| 2 || 1 | 3 | 1 ||
| 3 || 2 | 4 | 4 ||
| 4 || 3 | 1 | 3 ||
==============================

Found 1 pregraph with 4 vertices.
CPU time: 0.0 seconds.

To store this graph in a Vle named bipartite_multigraph.code, the following

command can be used:

./pregraphs -MB -oc 4 > bipartite_multigraph.code

To check whether this graph has a 2-factor where each component is a quotient of a

4-cycle, the following command can be used:

./pregraphs -MBq -oc 4

The output will then be:

Generating bipartite multigraphs with 4 vertices and filtering
graphs that have a 2-factor where each component is a
quotient of a 4-cycle.
Found 1 pregraph with 4 vertices.
CPU time: 0.0 seconds.

A.6 PregraphViewer

PregraphViewer is a program that can be used to visualise several formats that

can be output by pregraphs and ddgraphs. It is written in Java and therefore should

be portable across several operating systems.

This program and its manual can be downloaded from [64].
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The generators that were implemented in this thesis use a wide range of Vle

formats. We give an overview of the formats used. Some are well established formats,

others are new formats.

B.1 (Pre)graphs

B.1.1 Multi_code
This is a well established format for coding simple graphs. The generator pregraph

is capable of reading and writing multi_code.

The Vle starts with a header. This header is one of >>multi_code<<,

>>multi_code le<< or >>multi_code be<<. The Vrst two headers mean that lit-

tle endian is used, the third that big endian is being used (see later). This code is

binary. Vertices are numbered 1 to 𝑛. To each vertex 𝑥 there is a list of neighbours

with higher numbers than 𝑥, followed by a zero. The last list is always empty (no

neighbours of 𝑛 with a higher number than 𝑛), so the last "list" is not followed by a

zero. After the last byte the next graph follows.

Normally the entries in the code are of type “unsigned char”. But if the number

of vertices for one graph is higher than 252, then the code for this graph begins with

a zero (unsigned char) and then each following entry is of type “unsigned short” (2

bytes). In this case it makes a diUerence whether the entry is stored in little endian

or big endian style. If the Vle contains no graphs with more than 252 vertices, then it

is not important if the style is little endian or big endian.

B.1.2 Pregraph_code
The standard output format for the generator pregraph and the related Vlters is

pregraph_code. This code is based upon multi_code. It is a binary code structured as

follows.

The convention is to give the Vlename the extension .code. The Vle starts with

a header. This header is one of >>pregraph_code<<, >>pregraph_code le<< or

>>pregraph_code be<<. The Vrst two headers mean that little endian is used, the

third that big endian is being used (see later). If the graph contains less than 255
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vertices, then the Vrst entry is the order of the graph. The vertices are numbered

from 1 to 𝑛 (where 𝑛 is the order of the graph) and for each vertex 𝑥 there is a list of

neighbours of 𝑥with higher numbers than 𝑥. If a vertex is incident to any semi-edges,

than 𝑛 + 1 is added to the list for each semi-edge that is incident to 𝑥. Each list is

closed by a zero. It is possible that some lists are empty. If the graph contains 255 or

more vertices, then the Vrst entry is a zero. After that the same format as with the

smaller graphs is used, but now each entry consists of two bytes instead of one byte.

These two-byte-numbers are in little endian or big endian depending on the header

of the Vle. After the last entry the following graph follows immediately.

B.1.3 Pregraphcolor_code

The generator ddgraphs outputs coloured cubic pregraphs in the pregraph-

color_code format. This code is based upon pregraph_code. It is a binary code

structured as follows.

The convention is to give the Vlename the extension .code. The Vle starts with a

header which is one of >>pregraphcolor_code<<, >>pregraphcolor_code le<<

or >>pregraphcolor_code be<<. The Vrst two headers mean that little endian is

used, the third that big endian is being used (see later). If the graph contains less than

255 vertices, then the Vrst entry is the order of the graph. The vertices are numbered

from 1 to 𝑛 (where 𝑛 is the order of the graph) and for each vertex 𝑥 there is a list of

neighbours of 𝑥with higher numbers than 𝑥. If a vertex is incident to any semi-edges,

than 𝑛 + 1 is added to the list for each semi-edge that is incident to 𝑥. This list is

closed by a zero. It is possible that some lists are empty. After the list of neighbours

follows a list with colours that has the same length as the list of neighbours. For

each neighbour a colour is given for the corresponding edge. This list is also closed

by a zero. Then the lists for the next vertex follows. If the graph contains 255 or more

vertices, then the Vrst entry is a zero. After that the same format as with the smaller

graphs is used, but now each entry consists of two bytes instead of one byte. These

two-byte-numbers are in little endian or big endian depending on the header of the

Vle. After the last entry the following graph follows immediately.
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B.1.4 Embedded pregraphs
Pregraph Viewer introduces a new Vle format: embedded pregraphs. This is an

XML-based format to store the pregraphs together with an embedding. The default

extension for these Vles is .epxml.

The root element is embeddedpregraphs. This element contains one or more em-

beddedpregraph elements. Each of these contains exactly one vertices element and

one edges element. For each vertex there should be a vertex element in the vertices

element describing the position of the vertex. For each semi-edge there should be a

semiedgevertex element in the vertices element describing the end point of the semi-

edge. For each loop there should be a loopvertex element in the vertices element

describing the tip of the loop. Each of these elements has three attributes: an X at-

tribute giving the horizontal position, an Y attribute giving the vertical position, and

an id attribute giving an unique non-zero number for the vertex. All numbers from 1

to the order of the graph + the number of semi-edges + the number of loops need to

be used. For each edge there should be an edge element in the edges element. Each of

these elements has three attributes: a vertex1 attribute and vertex2 attribute giving

the two vertices incident to this edge (use the id’s to identify the vertices) and a mul-

tiplicity attribute giving the multiplicity of the edge. For loops use the vertex that is

incident to the loop and the loop vertex describing the tip of the loop. For semi-edges

use the vertex incident to the semi-edge and the semi-edge vertex describing the end

point of the semi-edge.

B.2 Planar graphs

Cone patches are planar graphs. The program cone outputs the cone patches in

the Vle format planar_code.

B.2.1 Planar_code
This is a binary code which is a bit similar to multi_code. The Vle starts with a

header. This header is one of >>planar_code<<, >>planar_code le<< or

>>planar_code be<<. The Vrst two headers mean that little endian is used, the
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third that big endian is being used (see later). First the number of vertices of the

graph appears. Vertices are numbered 1 to 𝑛. First the neighbours of vertex 1 are

listed in clockwise direction, followed by a zero. Then the same continues with ver-

tex 2,3,...,𝑛. After the last zero, the next graph follows.

Normally the entries in the code are of type “unsigned char”. But if the number

of vertices for one graph is higher than 252, then the code for this graph begins with

a zero (unsigned char) and then each following entry is of type “unsigned short” (2

bytes). In this case it makes a diUerence whether the entry is stored in little endian

or big endian style. If the Vle contains no graphs with more than 252 vertices, then it

is not important if the style is little endian or big endian.

B.3 Delaney-Dress symbols

Both the program azul and the program ddgraphs output Delaney-Dress sym-

bols in a common Vle format [62].

Delaney-Dress symbol Vles use the suXx .ds. Each Delaney-Dress symbol is rep-

resented by a sequence of lines, the Vrst one of which must start with an opening

angular bracket ’<’, whereas the Vnal one must end with a closing bracket ’>’. Here

is a simple example:

<1.1:3 2:1 2 3,3 2,2 3:8 4,3>

Each entry consists of four sections separated by colons. Thus, ignoring the de-

limiting brackets, the example entry consists of the sections

’1.1’, ’3 2’, ’1 2 3,3 2,2 3’ and ’8 4,3’.

The Vrst section is just for bookkeeping. It must consist of two arbitrary positive

integers, separated by a dot. The Vrst number in the second section is the size of

the Delaney-Dress symbol and the second one its dimension 𝑑. If the dimension’s

missing, it’s assumed to be 2.

By convention, vertices (chambers) are numbered from 1 up to the size 𝑛 of the

symbol, while indexes go from 0 to 𝑑.
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The third section consist of 𝑑 + 1 comma-separated parts, each deVning one of

the functions 𝜎0 up to 𝜎𝑑 (in this case, 𝜎2). Here we have the parts

’1 2 3’, ’3 2’ and ’2 3’.

Within the i-th part, the values for the function 𝜎𝑖 are given in order, starting

from 𝜎𝑖(1) and going up to 𝜎𝑖(𝑑). If 𝜎𝑖(𝑎) = 𝑏 for 𝑏 > 𝑎, we omit the speciVcation of

𝜎𝑖(𝑏), because it is already clear that it must be 𝑎. Thus, the Vrst part ’1 2 3’ deVnes

𝜎0(1) = 1, 𝜎0(2) = 2 and 𝜎0(3) = 3. The second part means that 𝜎1(1) = 3 and,

consequently 𝜎1(3) = 1, and 𝜎1(2) = 2. Finally the third part means that 𝜎2(1) = 2

and, consequently 𝜎2(2) = 1, and the second number gives the value for 𝜎2(3), and

not for 𝜎2(2), so we have that 𝜎2(3) = 3.

The fourth section consists of 𝑑 parts, in this case

’8 4’ and ’3’.

These deVne the values of the functions 𝑚01 and 𝑚12. The number 𝑚𝑖𝑗 only

appears once for each 𝑖, 𝑗-component. The vertices 1 and 3 are in the same 01-

component, so 𝑚01(1) = 𝑚01(3) = 8 and 𝑚01(2) = 4. There is only one 12-

component, so 𝑚12 ≡ 3. The complete Delaney-Dress symbol thus looks like this:

2 1 3

𝑚01 𝑚12

1 8 3

2 4 3

3 8 3

B.4 Periodic graphs

The embedded azulenoid tilings are saved in a PG-Vle. A PG-Vle has the extension

.pg and contains at most one periodic graph per line. A line can also consist entirely

of a comment when it starts with a #. A single periodic graph looks like this:

s1 | s2 | s3 | s4 [ | s5 ] [ # info ] [ # info ] . . .
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It consists of four or Vve strings (the Vfth is optional) separated by |’s (pipes). At

the end there is the possibility to add additional information such as comments or

face highlighting.

∙ s1

This string only contains one integer number. This is the order of the repetitive

part of the graph.

∙ s2 = s𝑎2 s𝑏2 [ s𝑐2 ]

This string consists of two or three real numbers separated by spaces. The Vrst

is length of the horizontal side of the domain, the second is the length of the

vertical side of the domain. If there is a third number present then this will be

used as the upper left angle of the domain.

∙ s3 = x1 y1; x2 y2; x3 y3; . . .

This strings contains the coordinates of the vertices. It contains several parts

separated by semicolons. The number of parts has to be equal to the order

given in s1. Each part contains two real numbers separated by a space.

∙ s4 = start1 end1 X1 Y1; start2 end2 X2 Y2; . . .

This string contains an entry for each edge. The entries are separated by semi-

colons and each entry consists of four integer numbers separated by spaces.

The Vrst number gives the start vertex, the second number the end vertex and

the third and fourth number are the X and Y coordinate of the domain to which

the end vertex belongs.

∙ s5 = f1; f2; f3; . . .

This Vfth string is optional and it contains information about the faces. It

contains an entry for each face. The entries are separated by semicolons and

each entry consists of a row of integer numbers separated by spaces. Each

number gives the index of a vertex.

f𝑖 = v𝑖1; v𝑖2; v𝑖3; . . .
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∙ When the Vrst word in one of the additional info string is facehighlight then

the rest of the string is interpreted as face highlighting information and the

string should be formatted as follows

facehighlight 𝐹1 𝑐𝐹1
𝐹2 𝑐𝐹2

. . .

In this 𝐹𝑖 stands for the sequence number of a face in the string 𝑠5 and 𝑐𝐹𝑖

stands for the colour of that face given as an integer in which bits 24-31 are

alpha, 16-23 are red, 8-15 are green and 0-7 are blue, i.e., as deVned by the

function getRGB() of the class Color in Java 5.

∙ When the Vrst word in one of the additional info string is symbol then the

rest of the string is interpreted as a Delaney-Dress symbol in .ds-format.

∙ When the Vrst word in one of the additional info string is group then the rest

of the string is interpreted as the name of a wallpaper group. The possibilities

are P6MM, P6, P4MM, P4GM, P4, P31M, P3M1, P3, C2MM, P2MM, P2MG,

P2GG, P2, CM, PM, PG, P1, UNKNOWN. Any other value will be interpreted

as UNKNOWN.

B.5 Block lists

The program ddgraphs can read and write block lists in the block list Vle format.

Files in this format are human-readable to a certain extent: the format is text-based

and not binary.

A block list Vle consists of a series of numbers representing the block lists. These

numbers are separated using white spaces. Extra white spaces are ignored, so they

can be used to group logical units of the list for a human reader.

Each list starts with a number that corresponds to the number of vertices in the

diUerent blocks in that list. After that follows diUerent block deVnitions until the

sum of the vertices in the blocks is equal to the speciVed order. After the last block

deVnition the block list is closed by a 0. The next block list can start immediately

after this zero.
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B.5.1 Block deVnitions

Each block deVnition consists of multiple numbers. The Vrst number is always

the type of the block deVnition. There are six types and we will discuss them type

by type. We refer to Chapter 3 for more information on the abbreviations which are

used.

B.5.1.1 Type 1 block deVnitions

Block deVnitions of this type consist of 4 numbers: the type, the family, the pa-

rameter and the count.

Block
Explanation

deVnition

1 0 𝑛 𝑚 𝑚 copies of H(𝑛)

1 1 𝑛 𝑚 𝑚 copies of LH(𝑛)

1 2 𝑛 𝑚 𝑚 copies of DLH(𝑛)

1 3 𝑛 𝑚 𝑚 copies of DC(𝑛)

1 4 𝑛 𝑚 𝑚 copies of DHB(𝑛)

1 5 𝑛 𝑚 𝑚 copies of OHB(𝑛)

1 6 𝑛 𝑚 𝑚 copies of DLB(𝑛)

1 7 𝑛 𝑚 𝑚 copies of OLB(𝑛)

1 8 𝑛 𝑚 𝑚 copies of LDC(𝑛)

1 9 𝑛 𝑚 𝑚 copies of LDHB(𝑛)

1 10 𝑛 𝑚 𝑚 copies of LOHB(𝑛)

1 11 𝑛 𝑚 𝑚 copies of LDLB(𝑛)

B.5.1.2 Type 2 block deVnitions

Block deVnitions of this type consist of 4 numbers: the type, the family, the pa-

rameter and the count.
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Block
Explanation

deVnition

2 0 𝑛 𝑚 𝑚 copies of PC(𝑛)

2 1 𝑛 𝑚 𝑚 copies of LPC(𝑛)

B.5.1.3 Type 3 block deVnitions

Block deVnitions of this type consist of 4 numbers: the type, the family, the pa-

rameter and the count.

Block
Explanation

deVnition

3 0 𝑛 𝑚 𝑚 copies of BW(𝑛)

3 1 𝑛 𝑚 𝑚 copies of LBW(𝑛)

B.5.1.4 Type 4 block deVnitions

Block deVnitions of this type consist of 2 numbers: the type and the count.

Block
Explanation

deVnition

4 𝑚 𝑚 copies of Q4

B.5.1.5 Type 5 block deVnitions

Block deVnitions of this type consist of 3 numbers: the type, the family and the

parameter. If a block list contains this block deVnition, it may only contain one block

deVnition.
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Block
Explanation

deVnition

5 0 0 T

5 1 𝑛 DLPC(𝑛)

5 2 𝑛 PN(𝑛)

B.5.1.6 Type 6 block deVnitions

Block deVnitions of this type consist of 3 numbers: the type, the family and the

parameter. If a block list contains this block deVnition, it may only contain one block

deVnition.

Block
Explanation

deVnition

6 0 𝑛 DLBW(𝑛)

6 1 𝑛 BWN(𝑛)

6 2 𝑛 DLDC(𝑛)

6 3 𝑛 ML(𝑛)

6 4 𝑛 P(𝑛)

6 5 𝑛 DLDLB(𝑛)

6 6 𝑛 CLH(𝑛)

6 7 𝑛 DDHB(𝑛)

6 8 𝑛 DLDHB(𝑛)

B.5.2 Example
The program ddgraphs prints one block list per line and inserts a double space

between the diUerent block deVnitions. We will also use this convention here, since

it makes the Vle more human-readable.

4 3 0 1 1 4 2 0
8 2 0 1 2 3 0 1 2 0
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Figure B.1: The block list that corresponds to the block list Vle
containing 4 3 0 1 1 4 2 0.

Figure B.2: The block list that corresponds to the block list Vle
containing 8 2 0 1 2 3 0 1 2 0.

The Vle above contains two block lists. The Vrst list has a total of four vertices

and the second list has eight vertices. The block lists are shown in Figure B.1 and

Figure B.2.
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Met structuurgeneratie bedoelen we het opstellen, implementeren (en uitvoeren)

van een algoritme om objecten uit een bepaalde klasse te construeren. Structuurge-

neratie heeft verschillende toepassingen binnen de theoretische chemie en de wis-

kunde. In de theoretische chemie vormt het een belangrijk gereedschap om structu-

ren te voorspellen en hypotheses te testen. In de wiskunde wordt het gebruikt bij

de classiVcatie van structuren en bij het zoeken naar tegenvoorbeelden voor vermoe-

dens. We maken een onderscheid tussen random generatiealgoritmen en exhaustieve

generatiealgoritmen. De eerste groep heeft als doel een willekeurige, gelijk verdeelde

deelverzameling van alle structuren binnen een bepaalde klasse te genereren. De

tweede groep heeft als doel een bepaalde klasse volledig te genereren. In deze the-

sis hebben we het enkel over exhaustieve generatiealgoritmen. Meer speciVek gaat

het hier steeds om isomorfvrije, exhaustieve generatiealgoritmen. Dit wil zeggen dat

we niet alleen alle structuren uit een bepaalde klasse genereren, maar dat we ook

garanderen dat slechts één structuur per isomorVeklasse wordt gegenereerd.

In het eerste hoofdstuk introduceren we de concepten die in de rest van de

thesis gebruikt worden. De twee voornaamste concepten zijn graaf en betegeling.

Een graaf 𝐺(𝑉,𝐸) is een structuur die bestaat uit twee verzamelingen. De eerste

verzameling 𝑉 noemen we de toppen van de graaf. De tweede verzameling𝐸 bestaat

uit deelverzamelingen van grootte 2 van 𝑉 en noemen we de bogen van de graaf. De

klassieke manier om een graaf voor te stellen is om de toppen als punten te tekenen

en de bogen als lijnen die deze punten verbinden. Een graaf is kubisch als elke top

incident is met exact 3 bogen.

Een betegeling is een opdeling van het vlak in tegels. Wij beschouwen enkel

betegelingen waarbij alle tegels eindig zijn en waarbij elke eindige omgeving een

eindig aantal tegels bevat. De plaatsen waar meer dan twee tegels elkaar ontmoeten,

noemen we de toppen van de betegeling en de plaatsen waar exact twee tegels elkaar

ontmoeten, noemen we de bogen van de betegeling.

We spreken van een periodieke betegeling als de symmetriegroep van de betege-

ling twee onafhankelijke verschuivingen bevat.

Een equivariante betegeling is een paar (𝑇,𝐺) waarbij 𝑇 een betegeling is en 𝐺

de symmetriegroep van de betegeling.
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We introduceren in dit hoofdstuk ook Delaney-Dress symbolen [25]. Deze struc-

turen bestaan uit een kubische multigraaf met eventueel semi-bogen (i.e. bogen met

slechts één top) waarvan de bogen met drie kleuren zijn gekleurd, en twee functies

die de toppen afbeelden op natuurlijke getallen. Deze Delaney-Dress symbolen en-

coderen equivariante, periodieke betegelingen en een Delaney-Dress symbool vormt

dus een combinatorische, eindige voorstelling van een equivariante, periodieke bete-

geling. De graaf in een Delaney-Dress symbool noemen we een Delaney-Dress graaf.

De rest van deze thesis is opgedeeld in twee delen. Het eerste deel handelt over

structuurgeneratie in de wiskunde.

In het tweede hoofdstuk stellen we een generatiealgoritme voor voor veralge-

meende, kubische grafen. Kubische grafen vormen een goedbestudeerde klasse van

grafen binnen de grafentheorie en er bestaan verschillende eXciënte programma’s

voor de generatie van kubische, simpele grafen. We veralgemenen het begrip graaf

door ook multibogen, semi-bogen en lussen toe te laten en ook elke combinatie van

deze. De verzamelnaam voor al deze klassen van grafen is pregrafen.

We splitsen het probleem op door het eerst te herleiden naar de generatie van

kubische pregraafprimitieven. Dit zijn multigrafen met graden 1 en 3. We beschrij-

ven een generatiealgoritme, gebaseerd op McKay’s ‘canonical construction path’-

methode [43], dat op basis van kubische, simpele grafen deze kubische pregraaf-

primitieven genereert. Daarna gebruiken we het homomorVsmeprincipe [32] om de

kubische pregrafen te genereren op basis van de kubische pregraafprimitieven.

We besluiten dit hoofdstuk met enkele wijzigingen aan het generatiealgoritme

die toelaten om op een eXciënte wijze de gegenereerde structuren te beperken tot

enkel degene die 3-boog-kleurbaar zijn of tot enkel degene die bipartiet zijn. Ten

slotte vermelden we ook een algoritme waarmee in lineaire tijd bepaald kan wor-

den of een gegeven kubische pregraaf een 2-factor heeft waarbij elke component een

quotiënt van 𝐶4 is. Deze klasse is bijzonder interessant omdat ze de onderliggende,

ongekleurde grafen vormen voor de Delaney-Dress grafen.

In het derde hoofdstuk grijpen we terug naar het Vlterprogramma op het einde

van het vorige hoofdstuk. De analyse van de structuur van de kubische pregrafen met

een 2-factor waarbij elke component een quotiënt van 𝐶4 is, wordt gebruikt om deze
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grafen in blokken op te delen. Vervolgens beschrijven we een generatiealgoritme dat

via deze blokken rechtstreeks deze klasse van grafen kan genereren. De snelheids-

winst ten opzichte van de Vltertechniek uit het vorige hoofdstuk is dusdanig dat het

in dit geval ook haalbaar wordt om Delaney-Dress grafen te genereren. Ten slotte

nemen we ook de laatste stap en beschrijven hoe we op basis van deze resultaten

Delaney-Dress symbolen en dus equivariante betegelingen kunnen genereren.

Na het derde hoofdstuk begint het tweede deel van deze thesis dat handelt over

toepassingen in de chemie.

In het vierde hoofdstuk beschrijven we een generatiealgoritme voor een spe-

ciVeke klasse van ‘graVetachtige’ netwerken. Azuleen (C10H8) is een isomeer van

naftaleen. Het bestaat uit een zeven-ring en een vijf-ring die twee atomen en een

binding delen. Dit onderzoek werd gestart naar aanleiding van een vraag van Ed-

ward Kirby. Hij was geïnteresseerd in welke koolstofnetwerken er gevormd konden

worden waarbij er een partitie van de atomen in azulenen mogelijk is. Deze structu-

ren worden azulenoiden genoemd. We modelleren dit aan de hand van betegelingen

en focussen ons op deze netwerken waar er maar één baan van azulenen is onder

de symmetriegroep van de betegeling. We beschrijven in dit hoofdstuk uitvoerig het

algoritme dat ontwikkeld werd om alle Delaney-Dress symbolen te genereren die be-

tegelingen encoderen die corresponderen met zo’n azulenoiden. Daarnaast beschrij-

ven we ook hoe we achteraf deze Delaney-Dress symbolen visualiseren op een voor

chemici bruikbare manier.

Een 1,5-patch is een eindige, bruggeloze, vlakke graaf met drie soorten vlakken:

één “buitenvlak” met een onbeperkte grootte, 1 tot 5 vijfhoeken en een onbeperkt

aantal zeshoeken. Daarnaast heeft elke top graad drie, behalve enkele toppen van

het buitenvlak die graad twee hebben. Als we het aantal toppen van het buitenvlak

met graad twee, respectievelijk graad drie, aanduiden met 𝑏2, respectievelijk 𝑏3, dan

weten we door de Eulerformule dat 𝑏2 − 𝑏3 = 6 − 𝑝 met 𝑝 het aantal vijfhoeken in

de patch. Als het buitenvlak geen opeenvolgende toppen van graad drie bevat, dan

noemen we de patch pseudoconvex. In het vijfde hoofdstuk beschrijven we een

algoritme om alle pseudoconvexe patches met een gegeven randsequentie (i.e. een

opeenvolging van de graden van de toppen van het buitenvlak) te genereren. Dit al-
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goritme is gebaseerd op de encodering van pseudoconvexe patches in [40]. In plaats

van de pseudoconvexe patch rechtstreeks op te bouwen, werken we met operaties die

werken op de randsequentie en een zogehete buitenspiraal (een opeenvolging van de

vlakken als ze spiraalsgewijs overlopen worden vanaf een speciale boog in het buiten-

vlak). Deze hebben als voordeel dat het relatief korte sequenties van getallen blijven,

terwijl de pseudoconvexe patch een zeer grote graaf kan zijn. Hierdoor verkleinen

we de overhead tijdens het genereren enorm.

In het laatste hoofdstuk richten we onze aandacht op nanocones (‘nanokegels’).

Een nanocone is een koolstofnetwerk dat conceptueel te situeren valt tussen enerzijds

graVet en anderzijds de halfopen, oneindige nanotubes (‘nanobuisjes’): naast zeshoe-

ken bevat deze structuur tussen één en vijf vijfhoeken, zodat noch de ‘platte’ vorm

van graVet, noch de buis met constante diameter van een nanotube gevormd kan

worden.

Wij stellen een nanocone voor als een verstoring van een betegeling, meer be-

paald een verstoring van een zeshoekig rooster waarbij alle verstoringen vlakken zijn

die vijfhoeken zijn. We gebruiken een resultaat van Balke [39] dat zegt dat een ver-

storing van een equivariante betegeling volledig bepaald is door de oorspronkelijke,

equivariante betegeling, een windingsgetal en een nevenklasse van een automorVsme

in de symmetriegroep van de betegeling. Op basis hiervan tonen we aan dat er 8 (on-

eindige) klassen van nanocones zijn. Daarna stellen we een verdere classiVcatie op

waarbij we elke klasse opdelen in een oneindig aantal eindige klassen die ook de lo-

calisatie van de vijfhoeken in rekening brengen. Ten slotte beschrijven we hoe het

algoritme voor de generatie van pseudoconvexe patches kan gebruikt worden om een

voorstelling van elke nanocone in zo’n klasse te genereren.
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