9 research outputs found

    Irrational guards are sometimes needed

    Get PDF
    In this paper we study the art gallery problem, which is one of the fundamental problems in computational geometry. The objective is to place a minimum number of guards inside a simple polygon such that the guards together can see the whole polygon. We say that a guard at position xx sees a point yy if the line segment xyxy is fully contained in the polygon. Despite an extensive study of the art gallery problem, it remained an open question whether there are polygons given by integer coordinates that require guard positions with irrational coordinates in any optimal solution. We give a positive answer to this question by constructing a monotone polygon with integer coordinates that can be guarded by three guards only when we allow to place the guards at points with irrational coordinates. Otherwise, four guards are needed. By extending this example, we show that for every nn, there is polygon which can be guarded by 3n3n guards with irrational coordinates but need 4n4n guards if the coordinates have to be rational. Subsequently, we show that there are rectilinear polygons given by integer coordinates that require guards with irrational coordinates in any optimal solution.Comment: 18 pages 10 Figure

    The Complexity of Drawing a Graph in a Polygonal Region

    Full text link
    We prove that the following problem is complete for the existential theory of the reals: Given a planar graph and a polygonal region, with some vertices of the graph assigned to points on the boundary of the region, place the remaining vertices to create a planar straight-line drawing of the graph inside the region. This strengthens an NP-hardness result by Patrignani on extending partial planar graph drawings. Our result is one of the first showing that a problem of drawing planar graphs with straight-line edges is hard for the existential theory of the reals. The complexity of the problem is open in the case of a simply connected region. We also show that, even for integer input coordinates, it is possible that drawing a graph in a polygonal region requires some vertices to be placed at irrational coordinates. By contrast, the coordinates are known to be bounded in the special case of a convex region, or for drawing a path in any polygonal region.Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018

    The Dispersive Art Gallery Problem

    Get PDF
    We introduce a new variant of the art gallery problem that comes from safety issues. In this variant we are not interested in guard sets of smallest cardinality, but in guard sets with largest possible distances between these guards. To the best of our knowledge, this variant has not been considered before. We call it the Dispersive Art Gallery Problem. In particular, in the dispersive art gallery problem we are given a polygon ? and a real number ?, and want to decide whether ? has a guard set such that every pair of guards in this set is at least a distance of ? apart. In this paper, we study the vertex guard variant of this problem for the class of polyominoes. We consider rectangular visibility and distances as geodesics in the L?-metric. Our results are as follows. We give a (simple) thin polyomino such that every guard set has minimum pairwise distances of at most 3. On the positive side, we describe an algorithm that computes guard sets for simple polyominoes that match this upper bound, i.e., the algorithm constructs worst-case optimal solutions. We also study the computational complexity of computing guard sets that maximize the smallest distance between all pairs of guards within the guard sets. We prove that deciding whether there exists a guard set realizing a minimum pairwise distance for all pairs of guards of at least 5 in a given polyomino is NP-complete. We were also able to find an optimal dynamic programming approach that computes a guard set that maximizes the minimum pairwise distance between guards in tree-shaped polyominoes, i.e., computes optimal solutions; due to space constraints, details can be found in the full version of our paper [Christian Rieck and Christian Scheffer, 2022]. Because the shapes constructed in the NP-hardness reduction are thin as well (but have holes), this result completes the case for thin polyominoes

    Parameterized Hardness of Art Gallery Problems

    Get PDF
    International audienceGiven a simple polygon P on n vertices, two points x, y in P are said to be visible to each other if the line 2 segment between x and y is contained in P. The Point Guard Art Gallery problem asks for a minimum set S such that every point in P is visible from a point in S. The Vertex Guard Art Gallery problem asks for such a set S subset of the vertices of P. A point in the set S is referred to as a guard. For both variants, we rule out any f (k)n o(k /log k) algorithm, where k := |S | is the number of guards, for any computable function f , unless the Exponential Time Hypothesis fails. These lower bounds almost match the n O (k) algorithms that exist for both problems

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Metastability-containing circuits, parallel distance problems, and terrain guarding

    Get PDF
    We study three problems. The first is the phenomenon of metastability in digital circuits. This is a state of bistable storage elements, such as registers, that is neither logical 0 nor 1 and breaks the abstraction of Boolean logic. We propose a time- and value-discrete model for metastability in digital circuits and show that it reflects relevant physical properties. Further, we propose the fundamentally new approach of using logical masking to perform meaningful computations despite the presence of metastable upsets and analyze what functions can be computed in our model. Additionally, we show that circuits with masking registers grow computationally more powerful with each available clock cycle. The second topic are parallel algorithms, based on an algebraic abstraction of the Moore-Bellman-Ford algorithm, for solving various distance problems. Our focus are distance approximations that obey the triangle inequality while at the same time achieving polylogarithmic depth and low work. Finally, we study the continuous Terrain Guarding Problem. We show that it has a rational discretization with a quadratic number of guard candidates, establish its membership in NP and the existence of a PTAS, and present an efficient implementation of a solver.Wir betrachten drei Probleme, zunächst das Phänomen von Metastabilität in digitalen Schaltungen. Dabei geht es um einen Zustand in bistabilen Speicherelementen, z.B. Registern, welcher weder logisch 0 noch 1 entspricht und die Abstraktion Boolescher Logik unterwandert. Wir präsentieren ein zeit- und wertdiskretes Modell für Metastabilität in digitalen Schaltungen und zeigen, dass es relevante physikalische Eigenschaften abbildet. Des Weiteren präsentieren wir den grundlegend neuen Ansatz, trotz auftretender Metastabilität mit Hilfe von logischem Maskieren sinnvolle Berechnungen durchzuführen und bestimmen, welche Funktionen in unserem Modell berechenbar sind. Darüber hinaus zeigen wir, dass durch Maskingregister in zusätzlichen Taktzyklen mehr Funktionen berechenbar werden. Das zweite Thema sind parallele Algorithmen die, basierend auf einer Algebraisierung des Moore-Bellman-Ford-Algorithmus, diverse Distanzprobleme lösen. Der Fokus liegt auf Distanzapproximationen unter Einhaltung der Dreiecksungleichung bei polylogarithmischer Tiefe und niedriger Arbeit. Abschließend betrachten wir das kontinuierliche Terrain Guarding Problem. Wir zeigen, dass es eine rationale Diskretisierung mit einer quadratischen Anzahl von Wächterpositionen erlaubt, folgern dass es in NP liegt und ein PTAS existiert und präsentieren eine effiziente Implementierung, die es löst
    corecore