12 research outputs found

    Histogram of Oriented Phase and Gradient (HOPG) Descriptor for Improved Pedestrian Detection

    Get PDF
    This paper presents a new pedestrian detection descriptor named Histogram of Oriented Phase and Gradient (HOPG) based on a combination of the Histogram of Oriented Phase (HOP) features and the Histogram of Oriented Gradient features (HOG). The proposed descriptor extracts the image information using both the gradient and phase congruency concepts. Although the HOG based method has been widely used in the human detection systems, it lacks to deal effectively with the images impacted by the illumination variations and cluttered background. By fusing HOP and HOG features, more structural information can be identified and localized in order to obtain more robust and less sensitive descriptors to lighting variations. The phase congruency information and the gradient of each pixel in the image are extracted with respect to its neighborhood. Histograms of the phase congruency and the gradients of the local segments in the image are computed with respect to its orientations. These histograms are concatenated to construct the HOPG descriptor. The performance evaluation of the proposed descriptor was performed using INRIA and DaimlerChrysler datasets. A linear support vector machine (SVM) classifier is used to train the pedestrians. The experimental results show that the human detection system based on the proposed features has less error rates and better detection performance over a set of state of the art feature extraction methodologies

    Iris feature extraction: a survey

    Get PDF
    Biometric as a technology has been proved to be a reliable means of enforcing constraint in a security sensitiveenvironment. Among the biometric technologies, iris recognition system is highly accurate and reliable becauseof their stable characteristics throughout lifetime. Iris recognition is one of the biometric identification thatemploys pattern recognition technology with the use of high resolution camera. Iris recognition consist of manysections among which feature extraction is an important stage. Extraction of iris features is very important andmust be successfully carried out before iris signature is stored as a template. This paper gives a comprehensivereview of different fundamental iris feature extraction methods, and some other methods available in literatures.It also gives a summarised form of performance accuracy of available algorithms. This establishes a platform onwhich future research on iris feature extraction algorithm(s) as a component of iris recognition system can bebased.Keywords: biometric authentication, false acceptance rate (FAR), false rejection rate (FRR), feature extraction,iris recognition system

    Histogram of Oriented Phase (HOP): A New Descriptor Based on Phase Congruency

    Get PDF
    In this paper we present a low level image descriptor called Histogram of Oriented Phase based on phase congruency concept and the Principal Component Analysis (PCA). Since the phase of the signal conveys more information regarding signal structure than the magnitude, the proposed descriptor can precisely identify and localize image features over the gradient based techniques, especially in the regions affected by illumination changes. The proposed features can be formed by extracting the phase congruency information for each pixel in the image with respect to its neighborhood. Histograms of the phase congruency values of the local regions in the image are computed with respect to its orientation. These histograms are concatenated to construct the Histogram of Oriented Phase (HOP) features. The dimensionality of HOP features is reduced using PCA algorithm to form HOP-PCA descriptor. The dimensionless quantity of the phase congruency leads the HOP-PCA descriptor to be more robust to the image scale variations as well as contrast and illumination changes. Several experiments were performed using INRIA and DaimlerChrysler datasets to evaluate the performance of the HOP-PCA descriptor. The experimental results show that the proposed descriptor has better detection performance and less error rates than a set of the state of the art feature extraction methodologies

    AN EFFECTIVE BLOCK WEIGHTAGE BASED TECHNIQUE FOR IRIS RECOGNITION USING EMPIRICAL MODE DECOMPOSITION

    Get PDF
    with the growing demands in security systems, iris recognition continues to be a significant solution for biometrics-based identification systems. There are several techniques for Iris Recognition such as Phase Based Technique, Non Filter-based Technique, Based on Wavelet Transform, Based on Empirical Mode Decomposition and many more. In this paper, we have developed a block weightage based iris recognition technique using Empirical Mode Decomposition (EMD) taking into consideration the drawbacks of the baseline technique. EMD is an adaptive multiresolution decomposition technique that is used for extracting the features from each block of the iris image. For matching the features of iris images with the test image, we make use of block weightage method that is designed in accordance with the irrelevant pixels contained in the blocks. For experimental evaluation, we have used the CASIA iris image database and the results clearly demonstrated that applying EMD in each block of normalized iris images makes it possible to achieve better accuracy in iris recognition than the baseline technique

    Enhanced iris recognition: Algorithms for segmentation, matching and synthesis

    Get PDF
    This thesis addresses the issues of segmentation, matching, fusion and synthesis in the context of irises and makes a four-fold contribution. The first contribution of this thesis is a post matching algorithm that observes the structure of the differences in feature templates to enhance recognition accuracy. The significance of the scheme is its robustness to inaccuracies in the iris segmentation process. Experimental results on the CASIA database indicate the efficacy of the proposed technique. The second contribution of this thesis is a novel iris segmentation scheme that employs Geodesic Active Contours to extract the iris from the surrounding structures. The proposed scheme elicits the iris texture in an iterative fashion depending upon both the local and global conditions of the image. The performance of an iris recognition algorithm on both the WVU non-ideal and CASIA iris database is observed to improve upon application of the proposed segmentation algorithm. The third contribution of this thesis is the fusion of multiple instances of the same iris and multiple iris units of the eye, i.e., the left and right iris at the match score level. Using simple sum rule, it is demonstrated that both multi-instance and multi-unit fusion of iris can lead to a significant improvement in matching accuracy. The final contribution is a technique to create a large database of digital renditions of iris images that can be used to evaluate the performance of iris recognition algorithms. This scheme is implemented in two stages. In the first stage, a Markov Random Field model is used to generate a background texture representing the global iris appearance. In the next stage a variety of iris features, viz., radial and concentric furrows, collarette and crypts, are generated and embedded in the texture field. Experimental results confirm the validity of the synthetic irises generated using this technique

    Multispectral iris recognition analysis: Techniques and evaluation

    Get PDF
    This thesis explores the benefits of using multispectral iris information acquired using a narrow-band multispectral imaging system. Commercial iris recognition systems typically sense the iridal reflection pertaining to the near-infrared (IR) range of the electromagnetic spectrum. While near-infrared imaging does give a very reasonable image of the iris texture, it only exploits a narrow band of spectral information. By incorporating other wavelength ranges (infrared, red, green, blue) in iris recognition systems, the reflectance and absorbance properties of the iris tissue can be exploited to enhance recognition performance. Furthermore, the impact of eye color on iris matching performance can be determined. In this work, a multispectral iris image acquisition system was assembled in order to procure data from human subjects. Multispectral images pertaining to 70 different eyes (35 subjects) were acquired using this setup. Three different iris localization algorithms were developed in order to isolate the iris information from the acquired images. While the first technique relied on the evidence presented by a single spectral channel (viz., near-infrared), the other two techniques exploited the information represented in multiple channels. Experimental results confirm the benefits of utilizing multiple channel information for iris segmentation. Next, an image enhancement technique using the CIE L*a*b* histogram equalization method was designed to improve the quality of the multispectral images. Further, a novel encoding method based on normalized pixel intensities was developed to represent the segmented iris images. The proposed encoding algorithm, when used in conjunction with the traditional texture-based scheme, was observed to result in very good matching performance. The work also explored the matching interoperability of iris images across multiple channels. This thesis clearly asserts the benefits of multispectral iris processing, and provides a foundation for further research in this topic

    Indexing techniques for fingerprint and iris databases

    Get PDF
    This thesis addresses the problem of biometric indexing in the context of fingerprint and iris databases. In large scale authentication system, the goal is to determine the identity of a subject from a large set of identities. Indexing is a technique to reduce the number of candidate identities to be considered by the identification algorithm. The fingerprint indexing technique (for closed set identification) proposed in this thesis is based on a combination of minutiae and ridge features. Experiments conducted on the FVC2002 and FVC2004 databases indicate that the inclusion of ridge features aids in enhancing indexing performance. The thesis also proposes three techniques for iris indexing (for closed set identification). The first technique is based on iriscodes. The second technique utilizes local binary patterns in the iris texture. The third technique analyzes the iris texture based on a pixel-level difference histogram. The ability to perform indexing at the texture level avoids the computational complexity involved in encoding and is, therefore, more attractive for iris indexing. Experiments on the CASIA 3.0 database suggest the potential of these schemes to index large-scale iris databases

    Combining multiple Iris matchers using advanced fusion techniques to enhance Iris matching performance

    Get PDF
    M.Phil. (Electrical And Electronic Engineering)The enormous increase in technology advancement and the need to secure information e ectively has led to the development and implementation of iris image acquisition technologies for automated iris recognition systems. The iris biometric is gaining popularity and is becoming a reliable and a robust modality for future biometric security. Its wide application can be extended to biometric security areas such as national ID cards, banking systems such as ATM, e-commerce, biometric passports but not applicable in forensic investigations. Iris recognition has gained valuable attention in biometric research due to the uniqueness of its textures and its high recognition rates when employed on high biometric security areas. Identity veri cation for individuals becomes a challenging task when it has to be automated with a high accuracy and robustness against spoo ng attacks and repudiation. Current recognition systems are highly a ected by noise as a result of segmentation failure, and this noise factors increase the biometric error rates such as; the FAR and the FRR. This dissertation reports an investigation of score level fusion methods which can be used to enhance iris matching performance. The fusion methods implemented in this project includes, simple sum rule, weighted sum rule fusion, minimum score and an adaptive weighted sum rule. The proposed approach uses an adaptive fusion which maps feature quality scores with the matcher. The fused scores were generated from four various iris matchers namely; the NHD matcher, the WED matcher, the WHD matcher and the POC matcher. To ensure homogeneity of matching scores before fusion, raw scores were normalized using the tanh-estimators method, because it is e cient and robust against outliers. The results were tested against two publicly available databases; namely, CASIA and UBIRIS using two statistical and biometric system measurements namely the AUC and the EER. The results of these two measures gives the AUC = 99:36% for CASIA left images, the AUC = 99:18% for CASIA right images, the AUC = 99:59% for UBIRIS database and the Equal Error Rate (EER) of 0.041 for CASIA left images, the EER = 0:087 for CASIA right images and with the EER = 0:038 for UBIRIS images
    corecore