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Abstract

Multispectral Iris Recognition Analysis: Techniques and Evaluation

by

Christopher K. Boyce
Master of Science in Electrical Engineering

West Virginia University

Lawrence Hornak, Ph.D., Chair
Arun Ross, Ph.D. (Co-chair)

This thesis explores the benefits of using multispectral iris information acquired using a
narrow-band multispectral imaging system. Commercial iris recognition systems typically sense
the iridal reflection pertaining to the near-infrared (IR) range of the electromagnetic spectrum.
While near-infrared imaging does give a very reasonable image of the iris texture, it only exploits
a narrow band of spectral information. By incorporating other wavelength ranges (infrared, red,
green, blue) in iris recognition systems, the reflectance and absorbance properties of the iris tissue
can be exploited to enhance recognition performance. Furthermore, the impact of eye color on iris
matching performance can be determined. In this work, a multispectral iris image acquisition
system was assembled in order to procure data from human subjects. Multispectral images
pertaining to 70 different eyes (35 subjects) were acquired using this setup. Three different iris
localization algorithms were developed in order to isolate the iris information from the acquired
images. While the first technique relied on the evidence presented by a single spectral channel
(viz., near-infrared), the other two techniques exploited the information represented in multiple
channels. Experimental results confirm the benefits of utilizing multiple channel information
for iris segmentation. Next, an image enhancement technique using the CIE L*a*b* histogram
equalization method was designed to improve the quality of the multispectral images. Further,
a novel encoding method based on normalized pixel intensities was developed to represent the
segmented iris images. The proposed encoding algorithm, when used in conjunction with the
traditional texture-based scheme, was observed to result in very good matching performance.
The work also explored the matching interoperability of iris images across multiple channels.
This thesis clearly asserts the benefits of multispectral iris processing, and provides a foundation
for further research in this topic.
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1

Chapter 1

Introduction

1.1 Biometrics

Biometrics is the science and technology of measuring and statistically analyzing biological

data [1, 2]. Biometrics pertains to the use of automated methods for uniquely recognizing hu-

mans based upon one or more intrinsic biological or behavioral traits. Any human physiological

or behavioral characteristic could be a biometric provided it has the following desirable proper-

ties: universality, uniqueness, permanence, and collectability [3]. Physical biological biometrics

are the most widely used biometric traits and include unique physical traits of the human body

such as fingerprint, iris, face, hand geometry, palm print, retina, vein structure, etc. Behavioral

biometrics include characteristics such as signature, keystroke dynamics, gait, etc. A biometric

system is an application that is used to authenticate, identify or verify, an individual’s identity

based on processing the individual’s unique biometric trait. The system uses biometric identifiers

to establish the identity of an individual based on pattern recognition techniques [4]. Biometric

applications are intended to determine identity based on “who you are” (fingerprint or iris pat-

tern) rather than “what you possess or know” (ID card or password). This thesis focuses on the

iris as the biometric identifier to authenticate an individual.

1.2 Iris Recognition

The human eye is the only internal organ of the human body that is visible to the outside,

being located behind the transparent cornea, and is therefore easily imaged. The iris has a
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vastly detailed texture that is postulated to be stable throughout an individual’s life span [5].

Its epigenetic formation, being independent of the genetic genotype, depends mainly on the

initial embryonic conditions. The iris’ detailed morphogenesis depends on initial conditions in

the embryonic mesoderm from which it develops [6]. Thus, the iris texture is chaotic and unique

to every individual. Due to its chaotic nature and contactless acquisition, the iris is considered

to be one of the most accurate and reliable biometric traits for the purpose of verification and

identification of individuals ([7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]). Commercial iris

recognition systems operate predominately in the near-infrared (IR) range of the electromagnetic

spectrum. Figure 1.1 shows the optical spectrums of some commercially available infrared iris

recognition systems. Each system’s spectrum was traced on an Advantest optical spectrum

analyzer. The spectrums indicate that current systems are using wavelengths that peak around

850nm (Panasonic and Oki), with a narrow band pass. However, some system traverse into the

range of 750nm (LG) and use multiple wavelength illumination to image the iris. The infrared

light is invisible to the human eye and the intricate textural pattern represented in different

colored irides is revealed under the near-IR range illumination. The texture of the iris in the IR

illumination has been traditionally used as a biometric indicator [6].

Authentication in commercial systems is comprised of taking a digital photograph of the iris

in IR illumination and extracting an iris feature set summarizing the textural content of the iris.

In order to perform feature matching the iris feature set must first be extracted and enrolled

into a database. The enrolled feature set is known as a template. During authentication, the

extracted feature set is then matched with the templates in the database in order to determine

or validate an individual’s identity.

The iris recognition algorithm can be divided into functions of acquisition, extraction, repre-

sentation and comparison of the patterns present on the surface of the iris as seen in Figure 1.2.

The processing system can further be broken down into modules for iris segmentation, normal-

ization (unwrapping), enhancement (in some cases), feature extraction (encoding) and feature

matching.
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Panasonic Authenticam

Oki Irispass

LG IrisAccess

Figure 1.1: Optical spectrum of commercial iris recognition systems.
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Figure 1.2: Flowchart depicting the various stages of an iris recognition system.

1.3 Iris Anatomy and Physiology

To better appreciate the significance of multispectral iris analysis the textural intricacies

of the iris anatomy must be identified in detail. The purpose of this section is to emphasize

individual iris components that may exhibit different reflectance characteristics thereby justifying

a multispectral analysis.

1.3.1 Iris

The iris is the most anterior portion of the eye behind the cornea being placed in the eye’s

frontal plane [20]. It is a thin, contractile, pigmented diaphragm, which is perforated near its

center by a circular aperture, usually slightly off centered, called the pupil. The iris attaches

to the ciliary body at the ciliary margin or iris root and surrounding the pupil is the pupillary

margin of the iris. The average diameter of the iris is approximately 12mm, with an average

thickness of about .5mm, that is thickest at the collarette and thinning radially away from the

pupil. The low truncated cone shape of the iris is formed from the anterior surface of the lens

pressing lightly against the posterior iris causing it to bulge.

Looking at a cross sectional view of the iris, it divides the space between the cornea and the
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lens into two chambers, anterior and posterior, and is bathed in aqueous humor on both sides.

Aqueous humor (a clear water fluid), flowing mainly through the pupil and portions of the iris,

circulates between these two chambers.

The iris’ main function is to regulate the amount of light entering the eye and impinging on

the retina. It does this through dilation and constriction of the pupil. In low light conditions, the

dilator pupillae muscle is triggered through parasympathetic nerve activity and dilates the iris to

allow in more light. The dilation process is also termed as mydriasis. In bright or intensive light

conditions, the constrictor pupillae muscle is triggered through parasympathetic nerve activity

which constricts the pupil. The constriction process is termed as miosis. The actual contribution

of the iris to the control of light is marginal. The retina is only sensitive to six log units of light,

whereas the iris only represents a ten-fold change in the amount of light (1 log unit).

1.3.2 Anterior Iris Structures

The anterior portion of the iris is the foremost visible portion of the eye. Therefore, it is

Pupil Fringe

Collarette

Concentric Furrow

Fruch’s Crypts

Radial Striations

Figure 1.3: Anterior anatomy of a light brown colored iris. The white ring located in the pupil
is the iris light illumination reflection from the moist cornea.

easily imaged and is the focus of most iris recognition systems. The anterior surface of the iris is

separated into two zones: the pupillary zone and the ciliary zone. These two zones are separate

by a circular zigzag ridgeline that is the thickest part of the iris known as the collarette, which

is not well defined in irides with chaotic iris structure. The collarette is typically around 2mm

from the pupillary margin (dependent on the individual) and the region lying closest to the pupil
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Pupillary Zone

Ciliary Zone

Sclera

Pupil

Collarette

Limbic Boundary

Figure 1.4: Sectional anterior anatomy traversing radially across a green/hazil colored iris.

is the pupillary zone. The area on the radial outer portion of the iris beyond the collarette and

inside of the sclera is the ciliary zone. The two regions of the surface of the iris often differ in

color, and many pit like oval structures appear mainly in the zone around the collarette and the

outer edge of the iris. These structures are called crypts (Fruch’s crypts) and they permit fluids

to quickly enter and exit the iris during dilation and contraction of the pupil.

The anterior surface has a velvety appearance showing a series of radial streaks that are

caused by trabeculae or bands of connective tissue that enclose the crypts. These radial steaks

straighten when the pupil is constricted and turn wavy when the pupil is dilated. Near the

outer part of the ciliary zone concentric lines can be seen. These lines become deeper as the

pupil dilates and are called contraction furrows. These lines, caused by the folding of the iris

as the pupil dilates, are similar to the folds in the hand and are easily seen in dark pigmented

irises while almost invisible in the structure of lighter colored irides. At the pupillary margin,

the heavily pigmented epithelium extends around the edge of the pupil. The radial folds of the

epithelium give the pupillary margin a sort of beaded or pearl appearance. This region is termed

the pupillary fringe or ruff and can only be seen in high resolution images of the iris due to its

small size.
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1.3.3 Iris Composition

Taking a cross section of the iris it consists of two layers: the anterior stroma layer and the

posterior epithelial layers.

The stroma, which makes up the anterior visible portion of the iris, is composed of highly

vascular connective tissue containing collagen fibers, fibroblasts, melanocytes, nerve fiber, smooth

muscle, myoepithelial cells, radial vessels, and matrix [21].

In the most anterior region of the stroma there is a compact dense arrangement of fibroblasts,

melanocytes, and collagen fibers. The collagen fibers are loosely arranged with a diameter of the

collagen fibrils at about 60nm, with a periodicity of 50 to 60nm. The fibroblasts have numerous

branching processes that eventually blend with the trabeculae meshwork. Melanocytes also show

branching processes, and the cytoplasm within them contain varying numbers of melanosomes.

Other cells such as mast cells, macrophages, and lymphocytes also make up portions of the

stroma.

Two muscles implement the dilation and constriction functions of the iris. These two muscles

are the sphincter pupillae and the dilator pupillae. The sphincter pupillae is located in the

pupillary zone and it forms a smooth ring of muscle fibers around the pupil. The smooth muscle

cell bundles are separated by connective tissue that contains blood vessels and sensory nerves.

The dilator pupillae muscle is a thin layer of myoepithelium that extends from the iris root

radially inward to the sphincter pupillae. The posterior layer of the iris is composed of two

pigmented epithelial layers, anterior and posterior. The anterior layer lies in contact with the

stroma and is associated with the muscular process of the dilator pupillae. The layer contains

relatively few melanin granules.

The posterior layer cells are larger than the anterior layer and cubical in shape. They are

stacked together in a compact and orderly arrangement and are heavily composed of melanin

granules giving them a darker appearance.

1.3.4 Iris Pigmentation

The iris can vary in color from light blue to dark brown [22]. This variation can be (a) across

the population, (b) between the left and right eyes of an individual, or (c) in different regions of

the iris in the same eye. Impinging light on the iris gives the appearance of color. The iris is a

protection device for the vision process. Longer wavelength light readily penetrates the iris and is
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absorbed. However, some shorter wavelengths (blue light), are reflected back and scattered by the

iris stroma. This gives irides with low pigmentation a blue appearance due to the reflection and

scattering. It is suspected that iris color may not remain constant throughout life [23], unlike

the iris structure. Iris color can be affected by a variety of ocular disorders such as Horner’s

syndrome and Fuchs’ heterochromic iridocyclitis that results in a decrease in iris pigmentation.

However, drugs such as latanoprost, have been found to lead to an increase in iris pigmentation.

The main contributors to the color are the cellular density in the extracellular matrix (vascular

connective tissue containing collagen fibers, fibroblasts, melanocytes, nerve fiber, smooth muscle,

myoepithelial cells, radial vessels, and matrix) of the iris stroma, the pigment contained in the iris

stroma and the pigment contained in the iris pigment epithelium (IPE) layer. Studies indicate

that the amount and distribution of melanin in the IPE is similar in irides of different color [24].

The IPE is also the posterior portion of the iris, being covered by the stroma. Therefore, it is

less representative of the iris color than the stroma. So, the color of the iris is predominantly

defined by the cellular matrix and the pigmentation of the stroma.

Pigment synthesizing cells called melanocytes produce iris color. Melanocytes store their

melanin in specialized organelles called melanosomes. Melanosomes can vary in number and size,

but melanocytes typically number the same across individuals. Melanosomes produce different

levels of pigmentation (referred to as melanin), which is thought to be the main contributing

factor in producing different colored eyes. Heavy melanin synthesis corresponds to a dark brown

iris, where as light melanin synthesis corresponds to a light blue eye. The melanin can also be

distributed into certain portions of the eye such as the pupillary zone and the ciliary zone giving

rise to a two-toned iris. Sometimes in certain locations of the iris, freckles known as nevi (singular

nevus) shown in Figure 1.5, can occur. These nevi appear as a heavily pigmented area of the

iris. If the melanocytes in the iris are completely devoid of pigmentation, then the hemoglobin

of the underlying blood vessels are revealed and the iris appears as a reddish color.

Melanin’s main biological role is human photoprotection. Melanin is not only present in

the iris of the eye but is also present in the skin, hair, the pigment layer of the retina, and

other internal biological structures. There are two main types of melanin that are produced in

the body, eumelanin that are black to dark brown in color, and pheomelanin that are reddish

brown. The IPE contains the greatest portion of melanin. Different iris colors, blue through

brown, contain comparably the same amount of eumelanin in the IPE. It has also been shown
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Figure 1.5: Heavily pigmented freckles (nevi) localized on different colored irides.

that varying levels of pheomelanin is more prevalent in brown irides when compared to blue [25].

However, pheomelanin makes up a very small portion of the total melanin content.

1.4 Multispectral Iris

Commercial iris recognition systems operate predominately in the near-Infrared (IR) range

of the electromagnetic spectrum. Systems utilize this region because it is an invisible portion of

spectrum when viewed with the sensitive human eye [26], and is thus less intrusive to the subject.

Due to the biological diversity of the composition of the iris, different portions of the electro-

magnetic spectrum may better represent certain physical characteristics of the epigenetic iris

pattern. This thesis explores the possibility of eliciting iridal information from the visible and IR

ranges of the reflected light. The transmission, absorption, and reflection vary within biological

iris composition classes. This thesis concentrates on the imagery of visible (400nm-700nm) and

the near IR (700nm-1000nm) ranges of iridal light reflection. An assessment involving various

eye colors across these ranges is performed. In particular, the role of information represented in

individual spectral channels/wavelengths (i.e., IR, Red, Green, and Blue) on the matching per-

formance of iris recognition is studied. The feasibility of decomposing the structural components

of an iris based on the response of individual channels is also explored.
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1.4.1 Multispectral Imaging

A multispectral image consists of multiple wavelengths or wavelength bands of the electro-

magnetic spectrum captured over the same object, independent of the other wavelengths. It is

typically represented as a matrix of pixels for each 2-Dimensional channel (eg. Red, Green, Blue,

etc.) that are concatenated or stacked on top of each other in the 3rd dimension. These mul-

tispectral images are typically a narrow band over certain wavelengths ranging around 50nm in

bandpass. Some examples of multispectral remote sensors such as the Landsat Thematic Mapper

and SPOT XS produce images with a few relatively broad wavelength bands [27]. Hyperspectral

remote sensors, on the other hand, collect image data simultaneously in dozens or hundreds of

narrow adjacent spectral bands. Both hyperspectral and multispectral imagery have been used

in remote sensing applications. Multispectral imagery is used in aerial photography for military

applications or to identify certain plant species, and for biometric feature analysis (e.g., face [20]

[28] [29], finger [30] [31] [32]).

Through the use of multispectral imagery an iris can be broken down into its own unique

reflection pattern according to its phenotypical traits. For example, the melanin content and the

cellular composition in the iris determine what wavelength of light is reflected back, thus giving

the appearance of a brown, blue, or green colored iris. Through the use of multispectral imagery,

the peak reflection (due mostly to the melanin) and other varying reflection phenotypical iris

traits can be conveyed.

1.4.2 Multispectral Image Acquisition

To capture the different wavelengths being reflected from an iris, the following arrangement

using Redlake’s MS3100 multispectral camera was employed. The camera incorporates three

charge coupled devices (CCD) and three band-pass prisms behind the lens to simultaneously

capture four different wavelength bands (Figure 1.6). The IR and red (R) sensors of the multi-

spectral camera are two separate Sony ICX205AL sensors whose spectral response ranges from

400nm to 1000nm with a peak response at 550nm. The Green (G) and the Blue (B) channels

are recorded on the same Sony RGBICX205 sensor. This sensor is a RGB sensor with a blue

response from 400nm to 550nm (peaking at 460nm) and a green response from 400nm to 650nm

(peaking at 550nm). Each channel is white-balanced to ensure a maximum intensity of 255 by

using the white panel of a color checker chart. It must be pointed out that the resolutions of
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IR and Red Sensor Response

Green Sensor Response

Blue Sensor Response

Blue Green Red and IR  Prism Responses

Figure 1.6: The normalized transmittance of the band-pass prisms and sensor spectral response
of the acquisition device. Filled portions of the graph indicate the actual combined response of
the sensors and prisms.

Channel Sensor Image Size (pixels)
IR Sony ICX205AL 1040x1392
R Sony ICX205AL 1040x1392
G Sony RGBICX205 260x348
B Sony RGBICX205 260x348

Table 1.1: Channel sensor type and resolution.

the images in the multiple spectral channels are not all the same. The channel, sensor type, and

resolution can be seen in Table 1.1. The IR and Red sensors output an image of size 1300x1040.

This represents an average of 56,000 pixels inside the segmented iris. The G and the B images are

recorded on a RGB Bayer pattern sensor and are one-fourth the resolution of the other images.

The G and the B images are extracted and scaled to have the same resolution as the IR and R

images using linear interpolation of the nearest neighbors [33]. The primary advantage of using

a camera that has three CCD sensors/prisms and a single lens is that the resulting images are

all spatially registered. Therefore, no explicit image registration or alignment across multiple

channels is necessary when processing the images.
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This arrangement acquires spectral information as follows: (a) red light at a center wavelength

of 670nm and a band pass of 40nm, (b) green with a center wavelength of 540nm and a band

pass of 50nm, (c) blue with a center wavelength of 475nm and a band pass of 50nm, and (d)

near-IR with a center wavelength of 800nm and a band pass of 60nm as shown in Figure 1.6.

To image the iris accurately and in a convenient fashion the multispectral camera was mounted

onto an ophthalmologist’s slit-lamp mount (Figure 5.1). The mount consisted of a chin rest, to

position the head, and a mobile camera-mount arm that could be easily manipulated to finely

focus on the iris. A broadband light source was employed to illuminate the iris of the eye. The

Figure 1.7: The multispectral iris image acquisition arrangement.

spectral output of the light source ranged from 350nm to 1700nm. The light source’s optical

power spectrum in the cameras region of detection can be seen in Figure 1.8. The illumination was

projected on the eye using a fiber optic light-guide with a ring light attached at the illumination

end. This projects a circular uniform illumination across the eye. However, it does produce a

large ring reflection on the moist cornea of the eye, as opposed to a small point source reflection

from LEDs commonly seen in most iris imaging systems.

1.4.3 Multispectral Data

The optical arrangement described in the previous section was used to acquire 70 eye images

from the left and right eyes of 35 subjects (5 samples per subject). The subject pool used in this

preliminary analysis consisted of individuals having different eye colors as seen in Table 1.2. The

database includes irides ranging in color from greyish blue, greenish hazel, to dark brown. The

’/’ indicated in the color column of the table suggests that the iris has a two-toned appearance
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Figure 1.8: Optical power spectrum of the broadband light source.

radially. The data set also contains distinguishing features such as freckles, moles, and various

colored spots and streaks. Only subjects 9, 10, 13, 17, and 35 of the set have irides with little

or no melanin pigmentation and 15 out of the 35 subjects have some form of multicolored iris.

Thus, the data set is very diverse with respect to the color contained in the irides.

The color of each iris was determined by visual inspection since it is difficult to automatically

elicit the eye color from the images given the rapid variations in texture chromaticity within the

high-resolution image. Figures 1.9, 1.10, and 1.11 show the intensity of iridal reflection across

the four channels for different eye colors. Note that the CIR (color infrared) images are obtained

by dropping the blue channel and including the IR channel (these are false color images). The

graphical plots in these figures indicate the variation in pixel intensity across the four channels

as one moves radially outward from the boundary of the pupil/iris toward the boundary of the

iris/sclera.

1.5 Contributions of this thesis

The work done in this thesis addresses the use of multispectral imaging in order to capture,

segment, extract features, and detect liveness of a human iris. The major contributions of this

thesis are enumerated below.
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User Number Eye Color
Subject 1 Dark Brown
Subject 2 Dark Brown
Subject 3 Dark Brown
Subject 4 Light Brown/Green-Hazel
Subject 5 Light Brown
Subject 6 Brown/Grey-Brown
Subject 7 Light Brown
Subject 8 Dark Brown
Subject 9 Blue(Grey Streaks)
Subject 10 Blue(Grey Streaks)
Subject 11 Light Brown/Blue(Brown Spots)
Subject 12 Light Brown/Green-Hazel
Subject 13 Greenish Grey
Subject 14 Dark Brown
Subject 15 Brown
Subject 16 Dark Brown
Subject 17 Blue Grey
Subject 18 Light Brown
Subject 19 Brown/Grey(Brown Spots)
Subject 20 Light Brown
Subject 21 Brown
Subject 22 Light Brown/Grey
Subject 23 Light Brown
Subject 24 Dark Brown
Subject 25 Brown/Grey
Subject 26 Dark Brown
Subject 27 Brown
Subject 28 Light Brown/Green-Hazel
Subject 29 Brown
Subject 30 Brown
Subject 31 Light Brown
Subject 32 Yellow/Grey
Subject 33 Brown
Subject 34 Light Brown/Green
Subject 35 Blue(Grey Spots)

Table 1.2: Visual classification of iris color.
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Figure 1.9: Example of a dark brown iris. The iris exhibits high iridal reflectance in the IR
channel. The reflectance is observed to decrease significantly with wavelength.
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Figure 1.10: Example of a light-brown/green iris. The iris exhibits high iridal reflectance in the
IR and Red channels. Reflectance decreases significantly with other wavelengths.
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Figure 1.11: Example of a blue iris. The iridal reflection is comparable across all four channels.
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1. A novel infrared and multispectral iris segmentation scheme to extract the iris structures

from an image of the human eye. All commercial iris systems use only the IR channel

to segment the iris. However, by eliciting the information from multiple channels, a more

robust segmentation can be performed.

2. A robust encoding scheme utilizing the reflectance of the channels of a multispectral image.

Most infrared recognition systems are concerned mainly with the texture of the iris. This

texture elastically deforms as the iris constricts and dilates. Also, texture based methods

perform poorly when the size of the image is reduced, resulting in less texture. Utilizing

the intensities of concentric rings in a multispectral image, a more robust feature set can

be extracted.

3. Detecting the presence of various spoof materials by incorporating anti-spoofing techniques

based on the multispectral image. With the addition of multiple wavelengths (IR,R,G, and

B) novel techniques can be used to determine if the eye sample being presented to the system

pertains to a living individual. Spoofs attacks using photographs, video, contacts, and

prosthetics are examined and countermeasures to circumvent these attacks are proposed.

The organization of the thesis is as follows. Chapter 2 explains three novel methods to

perform iris segmentation. The first scheme uses only the IR component to localize and segment

the iris structure. The second scheme uses the RGB vector space to perform segmentation using

color. The third scheme utilizes a Bayesian classification scheme in order to do a multispectral

segmentation using all four channels of an eye image. Each scheme is used in order to segment

the pupillary boundary (between the pupil and iris) and the limbic boundary (between the iris

and the sclera). Chapter 3 explores a new technique in which concentric rings of a multispectral

iris image are extracted and used as a feature set. This extracted feature set can be used to

achieve very high performance, and is robust to changes in the image image size. Chapter 4

reconnoiters techniques to spoof and the application of the multispectral information to detect

liveness. Liveness detection is accomplished through the detection of pupil motion, frequency

analysis, or reflection comparison of multispectral images. The final chapter 5 summarizes the

contribution of this thesis and suggests possible extensions to this work.
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Chapter 2

Iris Segmentation

2.1 Motivation

Iris segmentation is the first and perhaps the most important step in the iris recognition pro-

cess. In the absence of proper segmentation the matching performance will inherently suffer due

to inclusion of non-iris details in the encoding and matching process. Since commercial iris sys-

tems image predominantly in the near-infrared portion of the electromagnetic spectrum, the IR

channel has been the focus of most segmentation algorithms. In this chapter we explore iris image

segmentation techniques in the near-infrared channel that are currently used in the literature as

well as techniques using dynamic thresholding to efficiently and robustly segment the iris from

a single channel monochrome image of an eye. Techniques focused on exploiting multispectral

information in eye images are then explored in order to achieve efficient robust iris segmentation

across narrowband wavelengths. The two main segmentation steps of iris extraction are the lo-

calization of the iris’s two main boundaries: the pupil/iris boundary (pupillary boundary) and

the iris/sclera boundary (limbic boundary). Each segmentation technique, infrared as well as

multispectral, will be described in conjunction with these two boundary detection techniques.

2.2 Iris Preprocessing

In order to efficiently and effectively segment the iris certain noisy structures need to be

processed out of the iris. These include the reflections on the moist cornea. The reflections

can be classified into two main categories a) ambient light reflections from sources such as room
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lighting and b) source light reflections from the main source LED, bulb or fiber optic cable that

illuminates the eye. Precautions are typically taken to remove the ambient light reflections using

a filter. However, the source light reflection is difficult to remove from the eye image. Precautions

can be taken to try and center the light inside prespecified portions of the iris (such as the pupil)

in order to minimize the effect of source reflections. During our data collection, a ring light was

used which projected a large reflection on the cornea as can be seen in Figure 2.1.

Figure 2.1: Ring light reflections a) overlapping the pupil and the iris b) infringing on the iris c)
centered inside the pupil.

To overcome these challenges the ringlight was approximately positioned inside the pupil

during the imaging process and the removal of the ambient light was performed by turning off

all room lighting. However, to localize the reflections inside the pupil requires a very cooperative

subject. Since the eye (in its orbit) and the head (attached to the neck) are both mobile the

ring light is very difficult to center inside the pupil. As can be seen in some of the images in

Figure 2.1, occasionally, the ring light falls into the pupillary region or the pupil of the iris.

In order for accurate pupil segmentation at the pupillary boundary, the ring light needs to be

removed. To facilitate this, the pupil and the iris texture are synthesized [34, 35, 36, 37] using

Markov Random Fields. Let I be the iris image to be inpainted and p ∈ I be an unknown pixel

in the iris image. In order to synthesize a value to replace p, an approximation to the conditional

probability distribution P (p | ω(p)) is constructed and sampled,where ω(p) is a square image

patch centered at p. A variation of the nearest neighbor technique is used and the closest match

is found according to

ωbest = argminωd(ω(p), ω) ⊂ Ismp

where Ismp is a finite sample of an image and d(ω(p), ω) is a distance between the two image

patches defined by the normalized sum of squared differences metric, dSSD, convolved with a two
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dimensional Gaussian kernel, G,

d = dSSD ∗G

In order to apply the inpainting scheme, a ringlight mask indicating the areas to be inpainted

must first be constructed. Since the ringlight has the highest intensity (in a 8 bit image the

intensity maximum is equal to 255), each channel is thresholded with a predefined high inten-

sity value resulting in a binary image as seen in Figure 2.2. In order to construct a single

(a) (b) (c) (d)

Figure 2.2: High intensity binary thresholding of the (a) IR, (b) R, (c) G, and (d) B channel
images.

mask image that pertains only to the ring light area across all the channels, each binary image

(IRbinary, Rbinary, Gbinary, andBbinary) is taken and a logical AND (
⋂

) operation is performed to

get a composite ring light mask. The AND operation retains of all the high intensity components

across the four channels as seen in Figure 2.3.

I = IRbinary

⋂
Rbinary

⋂
Gbinary

⋂
Bbinary

The image is then morphologically closed in order to replace unseparated regions of the ring

light and the object with the largest boundary is determined as shown in Figure 2.4. A circle is

fit to the selected object in order to determine the center coordinates and radius of the ring light.

In order to optimize the inpainting time, a rectangular region of interest (ROI) just outside of

the ringlight is extracted in order to sample the ringlight containing portion of the image . A

binary (OR)
⊕

, operation is performed inside the ROI exclusively. This effectively detects all

the ringlight and crosshairs (used to center the image) present in the image of the eye (Figure

2.5).

I = IRbinary

⋃
Rbinary

⋃
Gbinary

⋃
Bbinary

Once the binary image indicating the ringlight (a mask) is determined, the selected region

undergoes texture synthesizing in order to inpaint the ringlight. The light ring is inpainted pixel
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Figure 2.3: Result of the logical AND operation across the four channels.

Figure 2.4: Result of the morphological closing and largest object selection.
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Figure 2.5: Result of the logical OR operation across the four channels in a specified ROI.

by pixel in order to capture the subtle details of the iris structure. The result of the inpainting

across the four channels can be seen in Figure 2.6

IR Red Green Blue

Original

Inpainted

Figure 2.6: Result of the inpainting procedure.

2.3 Infrared Iris Segmentation

All commercial systems use only a single monochrome near-IR channel to image and segment

the iris. So a classical baseline segmentation proposed by Daugman using the near-IR channel is
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first described. Due to the felicitous of the circular geometry of the pupil and iris, the localization

of the pupillary and limbic boundary of the iris in an image I(x, y) can be performed by the

use of Integro-differential operators that search over an image domain (x,y) [6]. Daugman’s

integro-differential operator is defined as

max(r,x0,y0)|Gσ(r) ∗ ∂

∂r

∮

r,x0,y0

I(x, y)

2πr
ds| (2.1)

where Gσ(r) is the Gaussian smoothing function of scale σ and * denotes convolution. (r, x0, y0)

denotes the radius of the pupil or iris and its corresponding center coordinates that define the

path of contour integration. By varying the radius r and center (x0, y0) the operator acts as a

circular edge detector that searches for a maximum blurred partial derivative of the image at

successively finer scales of σ. A binary mask is the result of the circular operator that indicates

the iris and non-iris pixels in the image. The Integro-differential operator could be applied to

the individual channels (IR, R, G, B) or the channels could be fused into one monochrome

image in order to detect a circular ROI. However, since the illumination source is a ringlight it

often confounds the circular edge detector when trying to distinguish the boundaries of the iris,

specifically in the pupil region. Also, certain channels (G and B) image more of the veins and

patterns within the sclera which can also cause segmentation problems when trying to detect the

limbic boundary derivative.

In this chapter we explore two techniques for segmenting the iris. First we explore a segmen-

tation using only the IR channel of an iris image that employs a dynamic thresholding scheme

that accounts for intensity variations when segmenting the iris. Then we explore a segmenta-

tion utilizing multiple channels of a multispectral iris image in order to achieve a more robust

segmentation.

Pupillary Boundary Segmentation

To extract the pupil boundary from the IR channel image the minimum intensity of each

channel is first estimated. A threshold is then selected at a certain pixel intensity above this

minimum in order to segment the dark pupil from the rest of the image. Since the pupil is

often the darkest portion of the iris image, it is detected based on the minimum pixel value

(min). For example, all pixels with intensities less then a gray level value of a ceratin range

min + 0-50 (somewhere between a 0 and 50 intensity level) intensity on a [0 255] intensity scale
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can be first detected. Since every image has a different exposure, due to illumination variations

associated with eye movement and acquisition parameters, the threshold parameter cannot be

determined heuristically. However, there is a difference in the intensity change between the

pupil, the eyelashes, and other dark components of the eye image (with the pupil being the

lowest intensity). Figure 2.7 displays this separation in the intensities between the pupil and

other dark objects (eyelashes) in the image. The minimum pixel value in the original image was

intensity = 16-255 intensity = 16-34 intensity = 40-70

(a) Original Image (b) Pupil Thresholded Image (c) Eyelash thresholded

Figure 2.7: Binary iris images thresholded using a finite range of pixel intensities.

computed and the image was converted to binary by a heuristically determined finite threshold in

the intensity ranges of (a) 16-34 and (b) 40-70. Notice that in (c) the pupillary fringe and parts

of the pupil that are increased in intensity due to the ring light are being detected as the same

intensities as the eyelashes. Since the inter class images in the data set do not have the same

intensity, this heuristically determined finite threshold cannot be used for every subject. Thus,

the threshold is set iteratively based on an expected number of pixels in the iris, depending on the

size of the image and other acquisition parameters. To perform the iterative pupil thresholding

(binary [0 1] conversion) the threshold value is first initialized to zero. The threshold is then

set by making the pixel values of the iris image less than the minimum (min) plus the dynamic

threshold (Dthresh) equal to 1 and the pixels greater than or equal minimum (min) plus the

dynamic threshold (Dthresh) equal to 0 as in

Ithresh(t) =





0 min + Dthresh(t− 1) > Ithresh(t− 1);

1 min + Dthresh <= Ithresh(t− 1);
(2.2)

where Ithresh(t) is the binary image after thresholding and Ithresh(t − 1) is the binary image in

the last iteration. If the sum of the white pixels (value of 1) in the logical Ithresh(t) image is less
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than the expected number the process is repeated by incrementing the dynamic threshold by an

intensity of 5 until the pupil appears as the binary image as in Figure 2.8 where the expected

number of pixels determined heuristically is 13000.

After thresholding, spurious features can still occur in the image. If the expected value of iris

pixels is not set correctly an over segmented image of the pupil is generated as shown in Figure

2.9. If the iterative thresholding results in an over segmented image the eyelashes may be of the

same intensity as the pupil. Also, if the iterative thresholding results in an under segmented

binary image the ring light can create open areas in regions of the pupil. To remove these open

areas in the pupil a morphological closing operation is performed (Figure 2.10). followed by a

filling of all the holes. This creates a solid pupil structure. Since portions of the eyelashes may

be present in the binary image, a check for connectivity is performed next. The pupil is observed

to be longer than the eyelash structure in the y direction or along each column of the image,

whereas the eyelashes are typically longer in the x direction or along each row of the image.

So, each column of the binary image is examined to determine the maximum connectivity or

diameter of the pupil in the vertical direction dy:

dy =
N∑

r=1

Pconnected(r, c) (2.3)

where c and r are rows and columns ,respectively, N is the total number of rows, and Pconnected is

the connected pixel associated with r and c. This value is taken as an approximate diameter of

the pupil and the object with this diameter is deemed to be the segmented pupil (Figure 2.11).

Limbic Boundary Segmentation

A localization of the iris in the IR channel is performed to simplify the final segmentation

application of detecting the limbic boundary. The localization will effectively remove pixels that

are likely to correspond to non-iris pixels, but are only an approximation to the actual iris limbic

boundary. The localization is based on the coordinates of the segmented pupil. Two regions of

interest (ROIs) are selected either side of the segmented pupil as seen in Figure 2.12. The ROIs

are slightly below the center of the pupil and extend radially from the pupil across the iris and

into the sclera on both sides of the pupil as can be seen in Figure 2.15.

The block ROIs are then decomposed into a 1-D signal (Xblock) by taking the mean radially
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White iris pixels = 2663, Dthresh = 10.

White iris pixels = 7436, Dthresh = 15.

White iris pixels = 11534, Dthresh = 20.

White iris pixels = 13548, Dthresh = 25.

Figure 2.8: Iterative process of thresholding the IR channels to extract the pupil.
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Figure 2.9: Incorrect localization of the pupil due to improper estimation of the pupil pixels.

Figure 2.10: Morphological closing of the thresholded image.
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Figure 2.11: Segmented Pupil.

Figure 2.12: Localization of Regions of Interest (ROIs) in the iris.

Figure 2.13: The left and right ROIs extracted from the iris image.
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across the ROIs columns:

Xblock(c)

∑N
r=1 BROI(r, c)

N

where BROI is the extracted regions, r and c are the rows and columns of the ROI, and N

is the number of pixels located in one column or equivalently the total number of rows. The

decomposition figure shows the average pixel intensities of the iris and sclera and perhaps some

eyelashes. Since the ROIs are arbitrary in size depending on the size of the image they first
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Figure 2.14: 1-D mean intensity decomposition of 2-D ROIs.

must be resized. So, the signal is padded with the last array element on the right side or end

of the signal. The partial derivatives in the horizontal image axis direction are found for each
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Figure 2.15: 1-D mean intensity decomposition of 2-D ROIs.

respective ROI using the finite differences Xfd(x0) across the mean of each block.

Xfd(x0) = Xblock(x0 + ∆x)−Xblock(x0)
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where x0 is the current position along the mean block vector and ∆x is the sampling position a

distance away from x0. A sampling ∆x of a variable rate dependent on the image size was taken

to smooth the partial derivative. Figure 2.16 shows the un-sampled partial derivative plot and

Figure 2.17 shows the sampled plot for each 1-D signal. The maximum of the finite difference
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Figure 2.16: Un-sampled partial derivative finite difference plot.
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Figure 2.17: Sampled partial derivative finite difference plot.

gives an approximation of the iris’s radius on each side of the pupil. This gives an approximate

idea of the greatest intensity changes in the image, and helps in the approximation of an iris

radius. Since we are only concerned with the limbic boundary between the iris and sclera of the

eye (which is a positive derivative across the 1-D signal), the negative portions of the signal can
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be removed as shown in Figure 2.19 and equation 3.4.

Xfd(x0) =





0 (Xblock(x0 + ∆x)−Xblock(x0)) < 0;

(Xblock(x0 + ∆x)−Xblock(x0)) (Xblock(x0 + ∆x)−Xblock(x0)) > 0;
(2.4)
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Figure 2.18: Discarding of the negative portions of the derivative.

The signal is then squared in order to enhance the peaks. The final plots of the 1-D signals

derived from the ROIs in the image are shown in Figure 2.19. The maximum peak in the signal
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Figure 2.19: Removal of the negative portions of the derivative.

is now detected which corresponds to the limbic boundary. It is detected by simply taking the

maximum of the final signal and multiplying it by the rate at which it was downsampled in order

to get the column in the ROI image that corresponds to the limbic boundary ILB.

ILB = (max(Xfd)) ∗∆x
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This is a very good approximation to the radius of the iris. However, since we have two ROIs

we also have two estimates of the radius. Often the pupil is slightly nasal so the iris radius on

the side of the nose is usually shorter than the iris radius on the side away from the nose. So,

the greater of the two estimated radii is taken as an approximate iris boundary.

A circular ROI based on the localization radius is then extracted in order to separate the iris

from the non-iris portions of the image. All the pixels pertaining to non-iris structures are set to

white in order to process only the iris structure (Figure 2.20). Patches inside the circular ROI

(a) Circular localization mask (b) Removal of non-iris pixels

Figure 2.20: Removal of the negative portions of the derivative.

that only contain iris texture are defined as in Figure 2.21. These patches are defined based on

the localization and pupil segmentation. The patches correspond to the actual iris intensities.

The minimum and maximum of the patches are computed and they are used to set minimum and

maximum thresholding values, where the iris intensities corresponds to the intensities between

the min and max. Since the iris contains dark portions corresponding to the crypts and freckles,

which may not fall into the patches, the threshold is slightly negatively weighted by 10 gray levels.

This weighting compensates for any pixel intensities that were not in the predefined patches. This

constitutes a dynamic threshold in the sense that the threshold is defined dynamically for each

individual iris based on an actual patch of iris pixels. This improves the segmentation (Figure

2.22) of the iris in the IR channel. This procedure can be performed across all 4 channels, but

problems often arise in the blue channel of a brown iris, due to more subcutaneous veins showing

up in the sclera in the image that confounds the segmentation. Therefore, this operation is only

performed in the IR channel where no vein patterns are present due to the high reflection from
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Figure 2.21: Portions of the image selected as a representation of the iris pixel intensities.

Figure 2.22: Dynamic thresholded image.
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the sclera.

The dynamically thresholded image still contains many eyelashes as can be seen in the upper

most portion of Figure 2.22. These portions still need to be removed from the image. Therefore,

morphological operations are applied to the image in order to remove the remaining eyelash

structures. First, a weighted hole filling operation is performed (Figure 2.23). The hole filling is

performed to the area (rows and columns) of the image that is below the pupil so that only holes

in the iris are filled and the holes associated with eyelashes remain. The hole filling is followed by

Figure 2.23: Bottom weighted hole filling .

a slight morphological closing operation (Figure 2.24), with a small disk size dependent on the

image size, weighted above the pupil and a second filling below the pupil in order to fill in regions

that may have been left open around the iris. A morphological opening operation, performed on

Figure 2.24: Morphological closing and second filling.

the area of the image above the pupil, can then be performed in order to remove much of the
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eyelashes. The morphological opening’s disk size is much larger than the disk used in the closing,

4 times the disk size of the closing. This removes much of the remaining eyelashes as can be

seen in Figure 2.25. Some eyelashes may still be present so another eroding operation weighted

Figure 2.25: Morphological opening of the area above the pupil.

above the pupil is performed to remove them as shown in Figure 2.26. The largest remaining

Figure 2.26: Morphological eroding of the area above the pupil.

object is selected as the final iris structure. The ensuing boundary boundary is used as the

limbic boundary of the iris. Figure 2.27 shows the final segmentation result of the dynamically

segmented iris in the IR channel overlaid across all channels. This can be used to segment the

other coregistered eye image channels as well.
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Limbic Boundary
Segmentation

Actual Iris
Segmentation

Pupil
Segmentation

Figure 2.27: Final Segmentation Result.

2.4 Multispectral Iris Segmentation

2.4.1 Color Segmentation

Color region based segmentation techniques utilize the RGB color vectors in order to segment

an image. The concept is rather simple. Suppose that you are given a color sample set that

represents a color or set of colors in an image. To segment the color from the rest of the image

the “average” or “mean” of the previously chosen color set is selected and classified as having

a color in that specific range or not in all the RGB pixels. The classification is performed by

taking the similarity measure using the Euclidean of the RGB vector. Let m denote the RGB

column vector and z denote an arbitrary point in the RGB vector space. The Euclidean distance

is then calculated as

D(z,m) = ||z−m|| = [(z−m)T (z−m)]1/2 = [(zR −mR)2 + (zG −mG)2 + (zB −mB)2]1/2

where ‖ • ‖ denotes the norm of the argument and R, G, and B, denotes the RGB component

vectors. In this work the RGB vector is extended to include the IR channel in the multispectral

image. Therefore the image is concatenated, IR channel first, to make the multispectral IR-RGB

image. Thus the Euclidean equation becomes

D(z, m) = [(zIR −mIR)2 + (zR −mR)2 + (zG −mG)2 + (zB −mB)2]1/2
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A threshold is taken around the locus of the points corresponding to the test color so that

D(z,m)≤T is a solid sphere of radius T that isolates the selected color. The points outside the

sphere threshold T are coded as black whereas the points inside the sphere are coded as white

to produce a binary color segmented image.

The Euclidean distance equation is often generalized to the Mahalanobis distance measure of

the form [38]

D(z,m) = [(z−m)TC−1(z−m)]1/2

In the Mahalanobis distance C is the the covariance matrix defined by [39]

C = COV (x1,x2) = E[(x1 −m1)(x2 −m2)]
1/2

where E is the expected value of random variables x1 and x2 and m1 and m2 are the means of

those random variables respectively.

Unlike the circular threshold of the Euclidean distance in the RGB vector space classification

using the Mahalanobis distance, with the locus of points such that D(z,m)≤T, describes a 3-D

elliptical body with the principal axes oriented in the direction of maximum data spread, thus

increasing classification robustness. The Mahalanobis distance can be reduced to the Euclidean

distance by replacing the covariance matrix C with the identity matrix. In this work the IR-RGB

vector space is classified using the elliptical Mahalanobis distance to segment the iris due to its

robust nature.

Pupillary Boundary Segmentation

In order to segment the pupil using the color based Mahalanobis segmentation, the masks

of the pupil must be defined. The masks are generated using the thresholding scheme of the

IR channel previously described in section Infrared Iris Segmentation. Where the pupil is found

through the iterative process, however, it needs to segment a very small portion of iris pixels

in order to perform the classification The binary mask and mask overlaid across a CIR (IR,

R, G composite image) image can be seen in Figure 2.28. The covariance matrix and mean

vectors are then computed from the mask and the Mahalanobis distance is used to classify the

pupil according to the mask image. The result of the Mahalanobis classification is a binary

image which can be seen in Figure 2.29. Like the IR segmented image in the previous section

discontinuities in the image exist therefore it is subjected to the same morphological operators



CHAPTER 2. IRIS SEGMENTATION 37

(a) Color segmentation mask (b) Overlay of mask on a CIR image

Figure 2.28: Pupil masks for color based Mahalanobis pupil segmentation.

Figure 2.29: Color based Mahalanobis pupil segmentation.
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and vertical connectivity selection. The result of the largest object selection after these operations

can be seen in Figure 2.30. The boundary of the object is taken as the pupillary boundary of

Figure 2.30: Color based Mahalanobis pupil segmentation after morphological processing.

the iris.

Limbic Boundary Segmentation

To segment the iris at the limbic boundary and along the top and bottom eyelashes, the

Mahalanobis color-based classification is used. The image is first localized using the IR channel

localization technique to find a portion of the image that only corresponds to the iris color

pattern. Regions of interest that correspond to only the iris’s color pattern are selected as masks

for the Mahalanobis classification. The ROIs can be seen in Figure 2.38 as the dark blocks in the

iris region. Since the iris pattern is typically radial, from the pupil to the limbic boundary, in

nature the intensities contained within the iris patches are a good approximation to the iris color.

The masks are used to compute the covariance matrix and mean vectors for the Mahalanobis

distance classification. The binary image (Figure 2.32) is the result of the color classification.

Due to the fact that some of the crypts have the same dark color associated with the eyelashes,

much of the eyelashes are segmented along with the iris. To combat this, various morphological

and filtering operations are applied to the image to get the final segmented iris (Figure 2.33 (a)).

Figure 2.33 (b) shows the final boundary overlaid on the CIR iris image.
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Figure 2.31: Portions of the image selected as a representation of the iris color class.

Figure 2.32: The Result of the Mahalanobis color classification of the iris. White pixels corre-
spond to areas of the image that are classified by color as iris and black pixels correspond to
areas of the image that are classified as non-iris
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(a) Binary mask indicating the color segmentation (b) Overlay of the iris boundary on a CIR image

Figure 2.33: Final result of the Mahalanobis color classification segmentation of the iris.

2.4.2 Multispectral Segmentation using Bayes classification

Optimum statistical classifiers have been used to classify multispectral (IR-RGB satellite

images [38]) and hyperspectral (sup-pixel classification satellite images [40]) images. The Bayes

function for a 0-1 loss function [38] has a decision function of the form

dj(x) = p(x/ωj)P (ωj) j = 1, 2, ..., W

where p(x/ωj) is the probability density function (PDF) of the pattern vectors of class ωj, and

the probability that class ωj occurs is P (ωj). Given an unknown pattern vector (the image

mask), decision functions W need to be computed. Then we need to assign the pattern to the

class whose decision function yields the largest numerical value based on the computation of a

total of W decision functions. p(x/ωj) is assumed to be Gaussian and so is assumed to be

p(x/ωj) =
1

(2π)n/2|Cj|1/2
e−

1
2
[(x−mj)

T C−1(x−mj)]

where Cj is the covariance matrix, defined earlier, of the selected pattern population class ωj

and |Cj| is the determinate of Cj. Likewise mj is the mean vector of the pattern population

class ωj.

Since the logarithm is increasing monotonically, the largest dj(x) chosen is equivalent to

choosing the the largest ln[dj(x)]. So instead of using 2.4.2 as the decision function we can use

dj(x) = ln[p(x/ωj)P (ωj)] = ln(p(x/ωj)) + ln(P (ωj))
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The logarithm is guaranteed to be real due to the fact that p(x/ωj) and P (ωj) are always

nonnegative. If the Gaussian PDF equation is substituted into (2.4.2) then the equation becomes

dj(x) = ln(p(x/ωj))− n

2
ln(2π)− 1

2
ln(|Cj|)− 1

2
[(x−mj)

TC−1(x−mj)],

where the term (n/2) ln(2π) is the same positive constant for all classes. So it is ignored yielding

the classification equation for the decision function as

dj(x) = ln(p(x/ωj))− 1

2
ln(|Cj|)− 1

2
[(x−mj)

TC−1(x−mj)] j = 1, 2, ..., W

The term inside the brackets is the Mahalanobis distance as in the color classification. The final

derived equation for the Bayes classification of multivariate Gaussian patterns (2.4.2) is used to

segment the iris from the rest of the eye.

Pupillary Boundary Segmentation

The Bayes classification is first applied to extract the pupil. So, a region that corresponds

to the pupil and a region that corresponds to the rest of the image must be identified in order

to deduce the masks for the Bayesian classification. These masks are established using the

same dynamic thresholding technique as the IR pupil segmentation (see section Infrared Iris

Segmentation). However, the initial thresholding of the mask can be more relaxed when compared

to the IR segmentation because only a small portion of the pixels is needed to classify the pupil as

seen in Figure 2.34 (a). The binary pupil image is taken as the approximate mask of the pupil and

(a) Binary pupil mask (b) Complement of pupil mask

Figure 2.34: Binary images of the thresholded multispectral channels.

the complement of the image is taken as a non-pupil mask (2.34 (b)). Classification is performed
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using the Bayes classifier taking the two masks as the pattern classes to be classified. The result

of the Bayes classification for the pupil can be seen in Figure 2.35. After the Bayes classifications

Figure 2.35: Result of the Bayes classification from the two filters.

problems can still occur in the image. The eyelashes are typically the same intensity as the pupil,

and the ring light can create open areas in the region of the pupil. To remove these open areas

in the pupil a morphological closing operation is performed (Figure 2.36) followed by a filling

of all the holes. This creates a solid pupil structure. Occasionally, portions of the eyelashes are

still present in the binary image. Thus, a check for connectivity is performed next. The pupil is

longer than the eyelash structure in the y direction or along each column of the image, whereas

the eyelashes are typically longer in the x direction or along each row of the image. So, each

column of the binary image is checked to find the object with the maximum connectivity. This

value (i.e. the maximum connections) is taken as an approximate diameter of the pupil and the

object with this diameter is the segmented pupil (Figure 2.37).

Limbic Boundary Segmentation

In order to perform the Bayes classification to segment the iris, some preliminary operations

must first be conducted. The IR channel was selected to do these operations due to its abilities

of imaging better across multiple eye colors, particularity the brown eye. The IR channel is taken
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Figure 2.36: Morphological closing of the Bayes classified pupil.

Figure 2.37: Segmented Pupil.
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and a localization (see section Infrared Iris Segmentation) is computed in order to simplify the

segmentation. The localization gives an approximation to the actual radius of the iris.

After the approximate localization the boundary is used as a starting point for the selection

of multispectral portions of the image in order to classify the components of the image using

Bayesian classification. First, samples representative of each pattern class need to be defined to

obtain the mean vectors and covariance matrix. These samples are obtained from a set of iris

images designated as the training set. Examples of iris and non-iris samples are indicated in

Figures 2.38 and 2.39.

Figure 2.38: Portions of the image selected (black mask) as a representation of the iris pattern
class.

All the channels IR, R, G, B are organized into a 3-Dimensional matrix correspondingly

concatenated in the 3rd dimension. Since the images are registered spatially this simplifies the

concatenation and region selections. Thus, every pixel is a combination of the four channels and

can be viewed as a four dimensional pattern vector in the image. These four dimensional vectors

are extracted from the iris and non-iris pattern masks, and the covariance matrices and mean

vectors are computed for each mask. The Bayes classification is computed using the covariance

and mean vectors of the entire image. The classifier can classify according to it input mask.

If more than one representative pattern mask was designed for a class 1) corresponds to iris

texture 2) corresponds to eyelashes 3)corresponds to eyelids and 4) corresponds to the sclera
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Figure 2.39: Portions of the image selected (Black mask) as a representation of the non-iris
pattern class corresponding to the portions of the eye such as the eyelashes, eyelid and sclera.

than the Bays classification would have output a classification for each input. Since it is difficult

to preclassify the components of the eye image, only two masks were selected (iris and non-iris

classes). Thus a binary image is the result of the classification, as can be seen in Figure 2.40.

Notice in the image that due to the fact of structures in the iris such as crypts that the bayes

classification picks up certain features, such as the eyelashes that have a similar pattern as the

crypts in the iris texture. Thus the Bayes classifier does not result in a good segmentation

of the iris, and other image processing techniques must be applied to get a more robust iris

segmentation.

Since the classified binary image gives a better boundary gradient, the localization approxi-

mation is again used to determine a more precise iris radius. The final output of the 1-D signal

for detecting the peaks can be seen in Figure 2.41. The largest radii is selected and circular ROI

is taken from the image (Figure 2.42). This effectively separates all iris texture from any non-iris

patterns. Since the Bayes classification has separated certain portions of the non-iris pattern as

iris pattern, because of the crypts, we now can distinguish it via the circular ROI. Now the clas-

sifier can be used again with 3 classes pertaining to 1) the iris pattern (as previously segmented)

2) non-iris pattern that was classified as iris pattern (mainly patterns of the eyelashes) and 3)

non-iris pattern that was not classified as iris pattern (patterns of the sclera and eyelids). The
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Figure 2.40: Result of Bayesian classification of the non-iris and iris patterns.
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Figure 2.41: Determination of an approximate iris radius via the binary image of the Bayes
classification.
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Figure 2.42: Circular ROI detected from the approximate radius, left circular ROI, right region
segmentred.

three masks are then used to perform a second Bayes classification. The resulting masks can be

seen in Figure 2.43.

(a) Iris mask (b) Eyelash mask (c) Sclera and Eyelid mask

Figure 2.43: Three masks used for the second Bayes classification.

The classification more effectively classifies all iris and non-iris patterns except the regions

where the darker parts of the iris corresponds to patterns of the eyelashes, as can be seen by

the spurious pixels located in the eyelash regions and the holes in the iris region in Figure 2.44.

However, this still yields a better segmentation of the overall iris structure than the previous two

pattern classification technique.

While the second Bayes classification aids in the detection of the eyelashes, it does not detect

the actual limbic boundary as can be seen in Figure 2.45. Therefore, a combinations of the two

classifications will get a better result. So, the portion of the image above the top of the pupil

where the eyelashes are present is composed of the binary image of the second classification,

whereas, the bottom half of the image below the top of the pupil is composed of the binary
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Figure 2.44: Bayes classification of iris pixels with the three masks shown in figure 2.43.

(a) Initial Bayesian Classification (b) Subsequent Bayesian Classification 2

Figure 2.45: Comparison of the two Bays classifications.
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image of the first classification. The split composite image of the two classifications can be seen

in Figure 2.46. Using the circular ROI, the majority of the remaining white pixels of non-iris

Figure 2.46: Split composite image of the Bayes Classification.

patterns outside the ROI are removed. However, there still are some discontinuities in the iris

that need to be processed out. These discontinuities are removed by morphological and filter

operations performed to either the area above the pupil or weighted to the area below the pupil

as in Figure 2.47. The operations include: 1) a below the pupil weighted hole filling followed

by 2) a median filtering, to remove ”salt and pepper” like noise from the binary image, 3) a

weighted closing operation to enclose the pupil, 4) a second hole filling to fill in the pupil and 5)

a median filter to smooth the boundary of the iris binary mask, and 6) a final erosion weighted

above the pupil just in case some eyelashes are still present. The final result, after the erosion,

is taken as the segmented iris. The border of the segmentation is taken as the limbic boundary

of the iris. Figure 2.48 shows the final segmentated result.

2.5 Segmentation Performance Comparison

The segmentation results on 10 different eye images can be seen in Figures 2.49 and 2.50.

A visual glance indicates that the Bayesian classification does well in extracting only the iris

pattern, while not extracting non-iris structures such eyelashes. While the color segmentation
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(a) Hole filling (b) Median filtering (c) Morphological closing

(d) Hole Filling (e) Median filtering for Smoothing (f) Morphological erosion

Figure 2.47: Morphological and filtering operations performed in order to enhance the Bayes
classification.

Figure 2.48: Final segmentation of an iris using Bayesian classification of the multispectral image.
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(a) IR segmentation (b) Color segmentation (c) Bayes segmentation

Figure 2.49: Comparison of iris segmentation across various colored eyes.
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(a) IR segmentation (b) Color segmentation (c) Bayes segmentation

Figure 2.50: Comparison of iris segmentation across various colored eyes.
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scheme appears to perform the worst picking up various portions of the eyelashes across the

image. Color does not seem to be a factor when segmenting the iris. Each color is segmented

appropriately, however, some blurry eyelashes in the image cannot be segmented out, but the

Bayesian segmentation still seems to get the best result on the blurry eyelashes as can be seen

in Figure 2.50 in the second blue eye image.

The entire data set (35 subjects 70 eyes) was used for segmenting and a texture based match-

ing scheme was used in order to perform verification across the different types of segmentations.

Since the same feature extraction and matching scheme was used for each segmentation the

performance of the segmentation only is reflected in the ROC curves.

Texture Based Iris matching

In order to match the structure of the segmented iris a classical baseline texture based match-

ing was used. After the iris segmentation is completed a fixed dimensional feature vector needs

to be generated in order to match the images. Daugman proposed the rubber sheet model which

maps each point in the (x, y) domain to a pair of polar coordinates (r, θ). This requires a circular

or elliptical approximation of the iris structure which is taken from the iris limbic bounadray.

The unwrapping results in a fixed size unwrapped rectangular iris image [6]. The image is also

accompanied by an image mask. The mask is taken as the actual iris boundary as defined by

either of the three segmentation schemes (the green and blue lines in the segmentation images

in Figures 2.49 and 2.50).

To extract the textural information from the unwrapped rectangular image Gabor filters are

used. A 2-D Gabor filter over an image domain (x, y) is given by

G(x, y) = e−π[(x−x0)2/α2+(y−y0)2/β2]e−2πi[u0(x−x0)+ν0(y−y0)]

where (x0, y0) specifies the center of the Gaussian filter, α and β are the width and length

of the filter, (u0, ν0) specify the modulation with frequency ω0 =
√

u2
0 + ν2

0 and orientation

θ = arctan(ν0/u0). Radially, as you move from the pupil to the outer portions of the iris, the

texture features of the iris change prominently. Thus, a set of three Gabor filters, orientated

the same (0o), but with different scales and frequency are applied to specific regions of the

“normalized” iris as shown in Figure 2.51[41]. Complex-valued phase information of the image

is the result of the Gabor filters. A quantization of the phase information is done into four
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Figure 2.51: Real part of 2-D Gabor wavelet filters.

quadrants in the complex plane resulting in a complex-valued bit whose real and complex parts

can be either 0 or 1. An “iriscode”, a binary feature vector containing the 0s and 1s, is the final

result. The Hamming distance, a measure of the difference in bits, is used to compute the final

matching scores to determine how different two template iriscodes are. The Hamming distance is

a dissimilarity score and is calculated using the bits corresponding to the iris pixels by utilizing

the binary masks generated in the segmentation process. Let I1 and I2 be the two iriscodes to be

compared, and M1 and M2 be their relative masks. The Hamming distance (HD) is calculated

as follows:

HD =
||(I1

⊗
I2)

⋂
M1

⋂
M2||

||M1

⋂
M2||

where the XOR operator,
⊗

, detects the disagreement between the corresponding bits in the

iriscodes, the AND operator,
⋂

, ensures that the Hamming distance is calculated using only

the bits generated from the true iris region and the || . || operator computes the norm of the bit

vector. When comparing the genuine and imposter scores in an ideal population, the Hamming

distance between two images of the same iris will be 0 (genuine score) and that between two

images of different irises will be (0.5) (impostor score). However, due to occlusions and other

factors affecting image quality the typical system will have a threshold between the imposter and

genuine distributions as 0.3.

The result of the texture based matching can be seen in the receiver operating characteristic

(ROC) curves in Figure 2.52 for both the left and right eye, matched independently, of images

that are downsampled by 40%. The downsampling is performed by lowpass filtering and then

applying bilinear interpolation to construct a image that has 40% less pixels than the original

image. The ROC curves indicated that all three methods can achieve a very high performance.
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However, the feature lacking blue channel performs better in the Bayesian segmentation scheme

when compared to the IR and color based.

Also, an experiment was preformed to access the possibility of matching iris images across

multiple wavelengths [42]. Thus, the following comparisons were performed: IR vs. R, IR vs. G,

IR vs. B, R vs. G, R vs. B, and G vs. B (Figure 2.53). The bar graph in Figure 2.54 suggests

that the cross matching performance decreases as a function of the differences in wavelength

of the participating images. For example, the IR (850nm) and the Blue (475nm) channels are

separated by the greatest range across the electromagnetic spectrum. Therefore, the reflective

texture response varies the greatest across this range. When matching images in these two ranges,

significant variations in texture response results in inferior performance. This can be seen across

the other spectral ranges as well. On the other hand, spectral channels whose differences in

wavelength are relatively small do not exhibit such a drastic decrease in matching performance.

For example, the ROC curve corresponding to G vs. B is observed to be better than that cor-

responding to IR vs. B. This phenomenon indicates that different wavelengths highlight various

textural components of the iris, further underscoring the importance of conducting multispectral

iris analysis.

2.6 Summary

A pivotal part of an iris recognition system is the segmentation of the iris from other compo-

nents of an eye image. Commercial systems operated in the near-IR range due to its unperceived

nature to the human eye. This chapter explored segmentation in an individual IR channel as

well as across multiple channels (IR, red, green and blue) of a multispectral eye image. Due to

the increase of information associated with an increase in the number of channels a multispec-

tral segmentation scheme utilizing a Bayesian classification is shown to have a slightly increased

performance. While a scheme based on color alone does not achieve as high of a performance.

However, Each segmentation scheme described shows potential to be implemented into a recog-

nition system in order to segment the iris from an image of the eye.

A second experiment to evaluate the performance of multispectral diversity across multiple

wavelength channels of an iris was performed. The experiment indicated that cross channel

matching performance degrades as the wavelength increases. Since the matching is performed
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Figure 2.52: Texture Based Segmentation using Bayesian classification, the IR channel, and color
segmented images.
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Figure 2.53: ROC curves indicating the cross channel matching performance

Figure 2.54: Plotting the Genuine Accept Rate (GAR) as a function of difference in wavelengths
of participating images.
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based on texture, this decrease in performance indicates that some structures in the iris are

being represented differently by different wavelengths. Thus a further exploration of this texture

deviation needs to be done.
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Chapter 3

Multispectral Recognition

This chapter explores alternate techniques, apart from the classical texture based recognition,

in order to perform recognition using multispectral information. The feature extraction is per-

formed so that the result is a unique one Dimensional (1-D) signal, derived from concentric iris

circles, for each channel. Due to the robustness of the extracted signal, the difference between

the channels is used as a feature vector. This results in a 6 dimensional feature vector, one for

each combination (IR-R, IR-G, IR-B, R-G, R-B, G-B). The matching of this feature vector is

performed using the Euclidean distance and the sum fusion rule. The feature vector achieves a

very high matching performance that is comparable to texture based methods (and superior to

texture based methods at low resolutions). Also, since the 1-D decomposition is radial in nature

it is not affected by motions of the iris or head shifting unlike the textural matching. Therefore,

no circular shifting has to be performed to register the feature vectors.

3.1 Feature Extraction

In order to extract features from the iris, the segmented normalized image Figure 3.1) must

first be determined. The normalized or unwrapped iris can be seen in Figure 3.2 (See section 2.5).

The localized iris corresponds to the area between the blue and red segmentation boundaries in

Figure 3.1. The ring light as well as portions of the pupil can be seen in the unwrapped image.

Since the ring light is not always contained within the pupil of the unwrapped image it must be

removed. Therefore, the ring light is located using a high intensity thresholding and the rows
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corresponding to the high intensities are removed.





r = 0 nr <= max(nr)− t;

r = 1 nr > 0max(nr)− t;
(3.1)

where n is the current pixel, t is a specified ringlight threshold and r is the current row. Rows

corresponding to the high intensities of the ring light are consequently removed.

Figure 3.1: Original CIR Segmented image.

(a) CIR image of the normalized iris (b) Normalized mask

Figure 3.2: Normalized iris CIR texture and normalized mask.

The result of the ring light removal process across the four channels is shown in Figure 3.3.

Once the ring light is removed, the image is reduced into a 1 dimensional signal. To facilitate

this, apriori knowledge of the iris structure is needed. Typically, the iris structure, traversing

from the pupil to the limbic boundary, is similar in composition. The pupillary section of the iris

is thin and discloses the heavily pigmented posterior layer 3.4, and thus a darker intensity. While
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(a) IR channel (b) Red channel

(a) Green channel (b) Blue channel

Figure 3.3: Normalized iris channels with the ring light removed.

Pupillary Zone

Ciliary Zone

Sclera

Pupil

Collarette

Limbic Boundary

Figure 3.4: Sectional anterior anatomy traversing radially across a green/hazil colored iris.
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the ciliary region contains contraction furrows, striations, and less melanin. The collarette is a

concentric circle of the iris and is typically the thickest part, containing the same composition.

So, concentrically the collarette displays a constant intensity or reflectance. Hence, the pixels in

a single channel corresponding to concentric circles have very similar intensities. To prove this

the mean and variance of the concentric rings shown in Figure 3.5 are computed. The variance

Figure 3.5: Concentric rings of an iris.
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Figure 3.6: Mean of concentric rings of an iris.

(Figure 3.7) of the concentric circle for all channels is less than .016. While the mean (Figure 3.6)
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Figure 3.7: Variance of concentric rings of an iris.

of the 4 channels is below .35. The small variance value when compared to the mean indicates

that the mean is a good estimate of the concentric circles of the iris.

In the unwrapped images (Figure 3.3) the concentric circles correspond to the rows of the

iris. The unwrapped image in each channel is taken and the average of the pixel intensities along

the rows(r) is computed in order to generate a 1-D signal, S.

S(i) =
1

Nc(i)

∑
j=1

I[ri, cj]

where S(i) is the average intensity in row i, Nc(i) is the number of columns in row ri, and I[ri, cj]

is the pixel intensities in row ’r’ and column ’c’. Figure 3.8 shows the one dimensional reduction

using the mean along the concentric circles of an unwrapped image. Since the 1-D representation

is radial in nature it is unaffected by motions of the iris or head shifting unlike the textural 2-D

matching. Therefore, no circular shifting has to be performed to analyze the feature vectors. Due

to its radial extraction, it is pre-aligned according to the particular row. Also, note that the mean

pixel intensity across the 4 channels are very diverse (for the green colored eye 3.1) when there

is a very large difference in the wavelengths, e.g., in Figure 3.8 the IR and the R patterns are

more similar in linear description than the IR and B channels, and the G and B channels are also

similar. However, some eyes exhibit the same type of linear pattern across the four channels as in

the blue iris in Figure 3.9 (four channels plotted in the same graph per eye image). The intensity

can be directly used as a feature vector. However, the reflection will vary greatly with changes

in lighting conditions. Figure 3.10 shows the radial intensity of a green/hazel iris across multiple
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Figure 3.8: Unwrapped iris decomposition.
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(a) Brown Eye (b) Greenish Hazel Eye (b) Blue Eye

Figure 3.9: Radial mean intensity plots across multiple channels of an iris image.
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uniform illumination intensities, i.e., the iris was captured with the ringlight being supplied

different power ratings or the ringlight was at the same intensity but at a different distance away

from the iris. In Figure 3.10 the intensity of the illumination source was scaled from a current of

800mA down to a current of 700mA in steps of 100mA. From the figure it can be seen that the

(a)800mA (b)700mA (c) 600mA

Figure 3.10: (row 1) Original iris image (row 2) radial mean intensity plots across multiple
illumination intensities, and (row 3) La*b* adaptive histogram equalization .

radial intensities are sensitive to intensity changes. This results in inferior matching performance.

However, pre-processing steps can be taken to normalize the image across varying illumination

patterns. As an example the reflectance plot of a La*b* adaptive histogram equalization over

the unwrapped iris block is shown in Figure 3.10 third row. The adaptive histogram equalization

was performed in the CIE L*a*b* color space to enhance the structural components across the

various spectral channels of the iris. In the L*a*b* space, the intensity values are represented by

the L* parameter, the colors between green and magenta are represented by the a* parameter

and the colors between blue and yellow by the b* parameter. Thus, histogram equalization can

be performed on the L* component without affecting the original color of the image. This color
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space is used to moderate the intensity values without perturbing the color components. The

effect of this transformation, and the subsequent equalization, is the retention of the original

color information, with certain iris components being emphasized in the individual spectral

channels. In order to facilitate transformation from the original color space to L*a*b*, the

following two mappings were examined: (a) the IR-R-G (false color or CIR) information was

converted to the L*a*b* space; and (b) the R-G-B information was converted to the L*a*b*

space. In both these cases, after histogram equalization, the information was converted back

to the CIR/RGB space (Figure 3.11). Once converted back, the 1-D reflectance (Figure 3.10,

IR,R,G  R,G,B 

Original  

Histogram  

Equalized  

IR,R,G  R,G,B 

Original  

Histogram  

Equalized  

Figure 3.11: The CIR (IR-R-G) and RGB color images before (top) and after (bottom) L*a*b*
color space image adaptive histogram equalization.

third row) has a more uniform shape with the curvature information being constant across the

channels. Thus, through the La*b* equalization one-dimensional feature becomes more robust to

intensity variations. However, the data set used had a constant illumination across all subjects,

so no normalization was required.

Since a typical close range iris system has little illumination variations, the 1-D intensities

suffer only slight perturbations. As the illumination and intensities vary over time due to slight

eye movements or light fluctuations, the 1-D signal can fluctuate. However, the fluctuations

are somewhat similar across the four channels. So, in order to extract a robust feature set, the

distances between the radial patterns are taken as the feature vector. The distance between
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the channels are more stable than the reflectance values alone. All possible combinations of the

distances between the channels (viz., IR-R, IR-G, IR-B, R-G, R-B and G-B) are used to create a

6-dimensional feature vector. Figure 3.12 shows an example of three sample reflectance difference

plots over time range of 100 frames captured at 7.5 frames per second.

3.2 Matching

Matching of the radial feature vectors is performed using the Euclidean distance. Each

difference signal is represented as a feature vector in the the form S = (s1, s2, ..., sn). Two feature

S1 = (s11, s12, ..., s1n) and S2 = (s21, s22, ..., s2n) vectors are compared using the Euclidean

distance (D),

D =

√√√√
n∑

i=1

(s1i − s2i) (3.2)

where s1 and s2 are the two different difference signals and n is the number of rows in the

unwrapped iris image. The distance score gives a good indication if the 6-D feature corresponds

to the same iris.

The data-set contains 35 subjects with 5 samples per subject. Each signal is matched by

computing the Euclidean distance of all the signal channel combinations. Since radially, the left

and the right iris are similar in color and, therefore, similar in reflection, the left and right eye of

each subject is observed to be very similar unlike in a texture based system. The receiver oper-

ating characteristic (ROC) in Figure 3.16 shows the matching performance when each subject’s

left eye is matched with the right. The fused result of all the channels (using the sum score fusion

described below) result gives a 45% genuine accept rate (GAR) at a false accept rate (FAR) of

.1%. This high value indicates that their is some similarity in the features. To further detect

similarity a correlation of the genuine scores is computed between left and the right eye 3.1. The

correlations indicates that the genuine scores are slightly correlated and the imposter scores are

highly correlated. Thus, the 1-D intensity feature vectors cannot be matched independently.

To evaluate the irides at different resolutions the images were downsampled in size to scales of

60, 40, 25, 20, 10, and 5 percent of the original size resulting in image sizes of 624x835, 520x696,

260x348, 208x278, 104x139 and 52x69, respectively. Figure 3.15 shows the matching result of

the downsampled images for both the left and right eyes.

Each feature vector alone does not achieve very high recognition performance. However, the
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Figure 3.12: 6-D feature vector (column 2) created from all the combinations of the difference of
the radial reflectance (column 1) across time.



CHAPTER 3. MULTISPECTRAL RECOGNITION 69

Figure 3.13: Subject’s left eye matched with their right eye.

Left Vs. Right Genuine Correlation Imposter Correlation
Fused .11 .89
IR-R .22 .95
IR-G .12 .90
IR-B .10 .86
R-G .18 .87
R-B .12 .84
G-B .35 .83

Table 3.1: Genuine and imposters scores correlations between the left and right iris of the 1-D
intensity based matching.
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Figure 3.14: ROC curves of downsampled iris images.
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Figure 3.15: ROC curves of downsampled iris images.
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Image Sampling Image Size 1-D EER 1-D d-prime T EER T d-prime
60% 624x835 1.09 2.84 0 7.27
40% 416x556 1.14 2.84 .11 7.18
25% 260x278 1.6 2.83 0 6.86
20% 208x278 1.06 2.83 0 6.86
10% 104x139 1.66 2.83 4.3 3.14
5% 52x69 2.26 2.83 22.69 1.22

Table 3.2: Feature matching comparisons: 1-D intensity (1-D) Vs. Texture (T).

result of fusing the scores of each feature vector using the sum rule gives an average score based

on the 6-D feature vector that results in a very high performance. This improved performance

comes from the fact that the sum rule is more effective than the product rule when the input

tends to be noisy [43]. Thus the rule helps to account for slight variations in intensities that are

associated with noise. The sum rule for the genuine and imposter scores is simply the average

of the six match scores, i.e.,

Score =
(DIR−R) + (DIR−G) + (DIR−B) + (DR−G) + (DR−B) + (DG−B)

6
(3.3)

where D is the Euclidean distance of each feature vector. This fused score is taken as the eventual

output score of the multispectral recognition system.

A comparison between the left eye matching comparing the performance of the 1D intensity

based scheme against the texture based approach can be seen in Table 3.2 and Figure . The equal

error rate (EER) and d-prime values are used to compare the two curves. The EER specifies

the intersection of the False Accept rate and false reject rate (FAR=FRR), that gives an overall

performance of the matching. Whereas the d-prime value gives an indication of how well the

non-match score probability density and the match score probability density are separated based

on the mean and variance (µm, σm) of the match scores of genuine users and the mean and the

variance of the non-match (imposters) scores (µn, σn) [44] as in

d′ =
µm − µn√
(σm + σn)

(3.4)

To further evaluate the 1-D intensity based matching scheme against the texture based scheme

a correlation of the scores is computed in order to determine score similarity. Table 3.3 displays

the genuine and imposter score correlation between the fused 1-D intensity based matching

and the texture based matching. The genuine score correlation computation results in a high
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Figure 3.16: The IR and 1-D schemes genuine accept rate (GAR) versus image sizes at a false
accept rate (FAR) of 0.1.

1-D Vs. Texture Genuine Correlation Imposter Correlation
Fused-IR .47 -.01
Fused-R .50 .0009
Fused-G .45 -.0009
Fused-B .31 .0960

Table 3.3: Genuine and imposters scores correlations between the 1-D intensity based and texture
based matchings.

correlation score. This indicates that genuine score results are comparable to the texture based

results. While the imposter score correlation results in almost no correlation. The zero correlation

of the imposter scores indicates that the spread and distributions of the imposter scores are not

similar whatsoever.

3.3 Summary

A scheme was proposed that fuses multispectral information based on the intensity of the

radial concentric circles in the segmented iris. The scheme summarizes the intensity information

in concentric circles - by using the mean intensity of each radial circle - thereby reducing it to a

1 dimensional feature vector. The difference between two such vectors corresponding to a pair of

spectral channels is used as a feature vector. Thus, each iris image was represented by a collection

of such vectors pertaining to multiple channel pairs (i.e., IR-R, IR-G, IR-B, R-G, R-B, G-B). The
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fusion technique relies on the match scores generated as a result of comparing the corresponding

feature vectors between two images of the iris. Since the left and the right eye exhibit similar

chromaticity, they appeared to be correlated based on the proposed representation scheme. The

matching performance using the 1D intensity based feature sets was observed to be comparable

to that of a texture-based techniques using Gabor filters. However, the matching performance of

the texture-based method degraded rapidly as the size of the eye image was reduced unlike the 1D

intensity based method. Thus, an integration of the intensity-based and texture-based scheme

can lead to a very robust matching scheme. The intensity scheme is susceptible to fluctuations in

illumination. So, a normalization in the L*a*b* color space was used to enhance and normalize

the iris structure. Alternate color spaces could have been used to perform this normalization

that might facilitate the normalization and enhancement process.
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Chapter 4

Anti-spoofing Techniques

Various types of attacks can be used to fool or spoof an iris recognition systems. Technologies

are emerging that can better replicate the intricate chaotic pattern of the iris. Thus, counter

measures are needed to circumvent these possible attacks. Liveness detection, the act of deter-

mining vitality, has become the focus of detecting these biometric spoofs. It is apparent that

for different attacks, different countermeasures need to be taken [45]. These counter measures

to detect liveness traditionally in biometrics can come in the form of hardware (different sen-

sors) and software [46]. This chapter explores software based techniques that can be used to

exploit information from channels of a multispectral image in order to detect spoof attacks using

pictures, video, printed contacts and prosthetic eyes .

4.1 Spoofing Attacks

4.1.1 Picture

Perhaps the easiest and most effective spoof is the reproduction of the iris via the digital

photograph [47]. A digital still image of an iris is taken and reproduced by printing an image

on a material. Most photographs are replicated by printing only in the visible RGB wavelengths

using ink compounds to form the image on a white paper background. The inks can come in a

variety of types (black, process black, UV, etc.) as well as the paper (matt, glossy, etc.). Once

printed, the static image is then presented to the iris capture device. Certain ink compounds

can be used to replicate the reflection from the color wavelengths of the iris’ structure.

Using a high resolution 700dpi color printer and a multispectral camera, a green colored iris
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was reproduced as in Figure 4.1 using colored ink.

Figure 4.1: Iris spoof image with initial settings of a live eye

Figure 4.2: Iris spoof image with illumination set to the iris image

Using the imaging conditions for a live iris, a digital still image of a green iris is captured,

Figure (4.1). Also, a worst case scenario in which the camera is set to detect the image of the

iris is captured as in Figure (4.2). Each image is scaled to the appropriate iris size when printed.

The images are then presented to the iris system. The images are matched against the original

digital images in order to establish possible verification. Due to the resolution restraints of the

printer and the high resolution of the camera channels the image pixels are easily seen in the

image. Therefore, a matching of the image was not possible with current resolution printers.

However, as printers become higher resolution it is very feasible to spoof an iris system using a

photograph. Thus, there is still a need for a liveness detection measure to circumvent photograph

spoofs.
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The easiest and most effective form of liveness detection for the printed photograph is pupil

motion detection. Since the pupil of the photograph is static a time series capture indicates

that there is no movement. A real iris can potentially have a profound dilation and constriction.

Figure 4.3 shows the extremes of the dilation and constriction effects by shining visible light on

the eye (constriction) and using a drug to trigger the eye muscles (dilation). Also, in a live iris

Figure 4.3: Iris spoof image with illumination set to the iris image

the pupil is always oscillating (known as hippus) at .5 hertz or every half a second, dependent

on the individual. Thus if the pupil is located and tracked over time it is a good indication of

liveness. Figure 4.4 shows a video sequence of an iris sampled every 10 frames from a 100 frame

sequence (7.5fps). The plot in Figure 4.5 is the radius being tracked across a total of 100 frames

of the video sequence. Hippus can be seen in the radius tracking plot by the oscillation of the

radius line as time progresses. Also, notice that as the subject blinks the radius of the pupil

goes to zero indicating that the pupil is no longer present as the eyelid closes. The blinking can

be used in conjunction with the pupil tracking to detect liveness. While the eyelid is closed the

light receptors in the eye are not receiving a signal of light being present. Thus, when the eye

opens it is slightly dilated as can be seen by the radius peak after the eyelid closing in Figure

4.6. This seems also to be dependent on the length of time that the eye is closed, a very fast

blink doesn’t alow the receptors to respond and the eye does not dilate. This can be seen in the

double blink in Figure 4.6. Once the eye is opened and receptors receive a signal of light being

present, the pupil then constricts (shown by the dip after the dilation peak). After the dip the

pupil settles back to its original stable ambient light condition.
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Figure 4.4: Video pupil tracking sequence sampled every 10 frames
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Figure 4.5: Radius tracking across 100 frames
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Figure 4.6: Radius tracking across 100 frames with a double blink

4.1.2 Video Replay

The video replay attack is executed by capturing a digital video sequence of an user’s iris.

The video is then replayed to the digital iris capture device in order to recreate the actual

physiological mechanisms (dilation, constriction, hippus) of the iris. The video can be presented

on any device, (LCD, CRT, Gas-plasma, LED, etc) which replicates the color and intensity of

the actual iris.

Using a RGB video sequence of a green iris acquired with a multispectral camera an attack

is performed on the iris system. Each video is replayed to an iris camera using an LCD screen

and a CRT monitor. The images are selected from the video sequence and matched against the

original captured video images in order to establish possible verification.

LCD and CRT screens operate only in the visible spectrum, matched to the human eye, with

little or no IR radiation as can be seen in Figure 4.7. Thus, currently available screens are not

perceived by current iris recognition systems that detected only IR light. However, a screen could

be constructed to only emit an IR video stream or emit an IR video stream along with the other

visible range wavelengths. So, the detection of the spoof still needs to theorized.

A screen is composed of pixels that typical alternate red, green, and blue pixels. An image

displayed on the screen is a composite image formed by varying these RGB pixels intensities.

Thus, in multiple wavelengths these pixel separations can be detected as in the channel images
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IR Red Green Blue

Figure 4.7: Iris spoof video channel images

(R,G,B) in Figure 4.7. Using the 2D Fourier power spectrum the periodic nature of the image

can be detected. Figure 4.8 shows the power spectrum of the 4 channels and the subsequent

decomposition of the channels by taken the mean of each column. This results in an image with

5 detectable peaks that can be used as a liveness detection measure. When compared to the
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Figure 4.8: 2D Fourier Power Spectrum of an iris video and its decomposed signal

power spectrum of a real iris, as in Figure 4.9, the periodic peaks are not detected.

4.1.3 Printed Contact Lens

The hardest spoof to detect by a iris recognition system that has a guard (an actual person)

standing watch is a printed contact lens. Unless very close to the face of the subject the printed

contact is undetectable. The concept behind the printed contact is that digital image of an

enrolled user is captured and printed or painted onto a colored lens surface that is placed in

front of the eye concealing most of the iris pattern and/or changing the color of the wearer’s

eye. Most over the counter printed contacts function to change the appearance of the wearers
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Figure 4.9: 2D Fourier Power Spectrum of a real iris and its decomposed signal

eyes. Clear contacts come in two main types: soft contacts and rigid gas permeable. Soft contact

lenses are made from oxygen permeable, water-loving plastics that actually become pliable during

manufacturing. Soft contact lenses contain between 30 and 80 per-cent water, depending on the

type of lens. Rigid gas permeable (RGP) lenses combine some of the properties of both hard

and soft lenses. Made of special firmer plastics, which are permeable to oxygen, these lenses

are very durable and usually have a longer life span than soft lenses. Colored contact lens come

in a variety of categories and types. The main types consist of opaque, enhancement tints,

visibility tints, light filtering tints,and Theatrical. Opaque lenses can dramatically change the

natural color of your eyes regardless of how dark your eyes color is. It has a solid colored ’ring’

that covers the iris while leaving a clear hole in the center to let the light passes through. The

majority of colored contact lenses are opaque lenses. Enhancement tints lenses are translucent

and are used to enhance your natural eye color (therefore, it also known as enhancer tints). If

your natural eye color is dark color, enhancement tints lenses will be hard to make the color

change visible. Therefore, enhancement tints lenses are recommended for light colored eyes only.

Visibility tints do not change the eye color at all. It is slighted tinted for handling purpose so

that you can remove and insert the lenses better. Also, it helps to find your contact lenses more

easily if they are dropped or misplaced. Light filtering tints are the latest development in colored

contact lenses. It is designed to be used in sports and outdoor recreation. Light filtering tints can

enhance certain colors while muting other colors. As a result, it is easier to target the balls that

stands out against the background. For example, tennis players wearing light yellow or gold tint

colored contact lenses would track the ball more easily by brightening the background. Theatrical
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contact lenses are a type of cosmetic contact lens that are used primarily in the entertainment

industry to make the eye appear unusual or unnatural in appearance. These contacts completely

alter the appearance of the iris. They can also be specially painted with a replicated iris pattern

in order to conceal iris problems and disease.

The highest risk attack would come from an exact reproduction of the enrolled users iris

pattern printed on the opaque lens in the theatrical sense, covering the entire spoofer’s iris

pattern. The detection of contacts is the focus of many liveness detection applications. Daugman

proposed using the 2-D fourier spectrum to detect the frequency nature of the uniform printed

contact[45]. While this works for the detection of enhancement contacts printed uniformly by

machines it does not account for hand painted iris structure or a machine that could replicate

a iris onto a contact from a digital photograph. Even after detecting the printed contact the

detection could be used to exclude a potential target from a watch list by altering the users iris

structure, rending the iris system ineffective.

A green iris was reproduced by a theatrical painted opaque contact lens.

4.1.4 Artificial Eye

An ocular prosthetic or artificial eye replaces a missing natural eye following an enucleation

or evisceration. The ocular prosthetic typically takes the shape of a convex shell. The prosthetic

fits over an orbital implant and under the eyelids. Most ocular prosthetics today are made of

plastic through a process known as casting [48]. The actual iris of the artificial eye is known as

a button and is cut from a thin cylindrical clear plastic rod on a lathe. The iris and pupil is

then hand painted on the back (flat side) of the button and then seen through the opposite clear

dome end of the button that mimics the cornea of the eye. A white plastic shell is then molded

to the outside of the button in order to replicate the sclera, and vein structures are painted onto

the white plastic. This shell fits the actual eye prosthetic that is molded to fit the inside of the

eye socket.

Three different handpainted iris’s where acquired through doctor Walter Tillman of West Vir-

ginia University’s Eye Institute. The irises did not match any iris current enrolled in the dataset,

therefore, a comparison could not be made. But a check for liveness can still be performed.

Since the prosthetic is static being composed of dense plastic, a check for pupillary motion can

be performed. Also, when Imaging the eye the shape of the iris button causes the reflections to
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be vastly different from a natural iris. However, now subjects in that data set matched eye, so

the reflection could not be validated, but a test for pupil motion can be performed and Figure

4.10 pupil radius tracking indicates that the radius does not change.
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Figure 4.10: Pupil tracking of a prosthetic eye.

4.2 Summary

Attacks on a multispectral iris recognition systems were executed in order to spoof the sys-

tem using a printed photograph, a video replay, a printed contact, and an prosthetic eye. Each

techniques was imaged with a multispectral camera and spoof detection techniques were evalu-

ated. Due to the high resolution of the camera and the low resolution of the printed, painted,

replayed or fabricated artifact, it is difficult to match the spoofs against a living iris. However,

with enhanced fabrication technologies, spoofing the iris will ultimately become more feasible.

Thus, techniques to detect the spoofs are inevitable. Most of the spoofs attacks can be detected

by a check for pupillary motion. By tracking the pupil over time, a spoof image, prosthetic and

perhaps even a opaque contact can be detected. Also, the multispectral intensity of the iris can

be used as measure to detect a real iris from a spoof.
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Chapter 5

Summary and Future work

In this thesis, techniques to enhance the performance of iris recognition through the use

of multispectral information was assessed. By eliciting information from multiple wavelengths

channels, schemes for iris segmentation, feature extraction, and spoof detection were performed.

At the time of writing this thesis, no commercial iris recognition system acquires multispectral

images of the eye. Due to this limitation, a multispectral acquisition setup was first designed in

order to collect eye images from a few subjects. The data set comprised of 70 eyes pertaining to 35

subjects, with 5 image samples per eye. While this data set gives a good indication of performance

the experiments designed in this thesis should be reproduced on data sets of much larger size

to obtain a precise understanding of the performance. Also, in the IR channel the camera only

analyzes a small portion of the near-infrared spectrum. A further exploration of hyperspectral

imaging only in the IR region beyond 800nm should be assessed in order to explore the nature of

iris structures that are revealed at various invisible IR wavelengths. A primitive setup to collect

such type of data has been constructed as seen in Figure 5.1. The setup incorporates a radial

series of light emitting diodes (LEDs) focused on the eye. The LEDs are placed in such a manner

so that four corresponding LEDs contain the same wavelength. Thus, six different wavelengths

are incorporated (5.1) with the peak intensities of IR wavelengths ranging from 700nm to 940nm

(peak intensities 700nm, 760nm, 810nm, 850nm, 890nm, 940nm). Also, a cold mirror is employed

as seen in Figure 5.2. The cold mirror serves a two fold purpose. 1) The reflection of the eye in

the mirror can be used to align the eye with the camera for robust acquisition and 2)the mirror

acts as a filter removing all ambient room light below 700nm as seen in the transmittance curve

in Figure 5.2.
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Figure 5.1: Setup to collect a sequence of iris images in the near infrared region (700-900nm) of
the electromagnetic spectrum.
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Visible IRVisible IR

Figure 5.2: Eye focusing using a cold mirror filter.
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The process of iris segmentation is a crucial part of an iris recognition system. Through the use

of multiple channels (IR, R, G, and B) a classification scheme employing Bayesian probabilities

was used to sperate the iris from other features of an iris image. The scheme is shown to have a

very high performance. The Bayesian classification is shown to outperform both the segmentation

based on only the IR channel and the color vector space-based segmentation of the multispectral

image. Other multispectral schemes could be evaluated to enhance segmentation performance.

A scheme employing color texture-based segmentation may be employed across the channels of a

multispectral image.

An analysis of iris matching across multiple channels using a texture-based scheme shows that

performance decreases as a function of the difference in wavelength between two images. This

indicates that the nature of iris texture exposed varies with a change in the channel wavelength.

Thus, certain iris features are accentuated in different wavelengths of light. A further exploration

of techniques to combine these features could be performed in order to improve the performance

of iris recognition systems. These texture variations could lead to user specific wavelengths based

on the color of the eye.

The matching scheme of an iris recognition system ultimately determines recognition per-

formance. In this thesis, a scheme was used that fuses multispectral information based on the

intensity of the radial concentric circles of an iris. The proposed scheme first generates a 1 di-

mensional vector from these 2 dimensional concentric circles. The difference between two such

vectors corresponding to a pair of channels was used as a feature vector. Thus, each iris image

was represented by a collection of such vectors pertaining to multiple channel pairs (i.e., IR-R,

IR-G, IR-B, R-G, R-B, G-B). The fusion technique relies on the match scores generated as a

result of comparing the corresponding feature vectors between two images of the iris. Since

the left and the right eye exhibit similar chromaticity, they appeared to be correlated based on

the proposed representation scheme. The matching performance using the 1D intensity based

feature sets was observed to be comparable to that of a texture-based techniques using Gabor

filters. However, the matching performance of the texture-based method degraded rapidly as the

size of the eye image was reduced unlike the 1D intensity based method. Thus, an integration

of the intensity-based and texture-based scheme can lead to a very robust matching scheme.

The intensity scheme is susceptible to fluctuations in illumination. So, a normalization in the

L*a*b* color space was used to enhance and normalize the iris structure. Alternate color spaces
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could have been used to perform this normalization that might facilitate the normalization and

enhancement process.

The 1-D matching scheme is robust to image size, so it may be applicable to images of the

face that are captured using a multispectral camera. Typically the iris extracted from images of

a face have very low resolution and, therefore, very little texture. The multispectral intensity-

based scheme could potentially be applied to these images to assess the matching performance.

Other appearance based methods could also be explored to help improve the performance of

multispectral iris recognition. Using the intensity based reflection technique the color of the eye

can also be determined by setting specific thresholds which could aid in developing indexing

schemes.

Like all biometric systems iris recognition systems are susceptible to attacks. In this thesis,

attacks on a multispectral iris recognition system were effected in order to design appropriate

countermeasures. The attacks involved spoofing the iris using a printed photograph, a video

replay, a printed contact lens, and a prosthetic eye. Each spoof artifact was imaged with the

multispectral camera and the spoof detection techniques were evaluated. The high resolution

image acquired using the multispectral set-up made it difficult to match the low-resolution spoofs

with a real iris. However, with enhanced fabrication technologies, spoofing the iris will ultimately

become more feasible. Thus, techniques to detect the spoofs are inevitable. Most of the spoofs

attacks can be detected by a check for pupillary motion. By tracking the pupil over time a spoof

image, prosthetic and, perhaps, even a opaque contact can be detected. Also, the multispectral

intensity of the iris can be used as a measure to distinguish a real iris from a spoof. Other

measures of multispectral information such as texture variations across channels could be used

to perform spoof detection.

Thus, there is plenty of potential in using multispectral information for iris recognition. In

this thesis, we have demonstrated a few of these advantages. It is only a matter of time before

the use of multispectral information in biometrics will become common-place.
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