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Abstract

The enormous increase in technology advancement and the need to secure information

effectively has led to the development and implementation of iris image acquisition tech-

nologies for automated iris recognition systems. The iris biometric is gaining popularity

and is becoming a reliable and a robust modality for future biometric security. Its wide

application can be extended to biometric security areas such as national ID cards, bank-

ing systems such as ATM, e-commerce, biometric passports but not applicable in forensic

investigations. Iris recognition has gained valuable attention in biometric research due

to the uniqueness of its textures and its high recognition rates when employed on high

biometric security areas. Identity verification for individuals becomes a challenging task

when it has to be automated with a high accuracy and robustness against spoofing at-

tacks and repudiation. Current recognition systems are highly affected by noise as a

result of segmentation failure, and this noise factors increase the biometric error rates

such as; the FAR and the FRR. This dissertation reports an investigation of score level

fusion methods which can be used to enhance iris matching performance. The fusion

methods implemented in this project includes, simple sum rule, weighted sum rule fu-

sion, minimum score and an adaptive weighted sum rule. The proposed approach uses

an adaptive fusion which maps feature quality scores with the matcher. The fused scores

were generated from four various iris matchers namely; the NHD matcher, the WED

matcher, the WHD matcher and the POC matcher. To ensure homogeneity of match-

ing scores before fusion, raw scores were normalized using the tanh-estimators method,

because it is efficient and robust against outliers. The results were tested against two

publicly available databases; namely, CASIA and UBIRIS using two statistical and bio-

metric system measurements namely the AUC and the EER. The results of these two

measures gives the AUC = 99.36% for CASIA left images, the AUC = 99.18% for CA-

SIA right images, the AUC = 99.59% for UBIRIS database and the Equal Error Rate

(EER) of 0.041 for CASIA left images, the EER = 0.087 for CASIA right images and

with the EER = 0.038 for UBIRIS images.
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Chapter 1

Introduction

This dissertation is devoted to developing an advanced score level fusion model for

multiple iris matching algorithms. In this chapter, the motivation and objectives of this

work, proposed approach and focus, and the dissertation outline are presented in detail.

1.1 Background

Biometric security systems exploits physiological or biological human features which can

be collected and processed by electronic means and used to identify individuals. Various

biometric modalities have been explored and identified as possible measures of robustly

and effectively securing information with iris particularly gaining more popularity due

to its reliability as a strong future biometric security [1, 2, 3]. Amongst the widely

used modalities, such as face, fingerprint, finger veins, hand geometry, retina, iris and

voice, iris is growing more popular due to its distinctive unique features that are known to

remain stable throughout life. These features are so distinctive such that even the mono-

zygotic twins can be subtly identified [4, 5, 6]. Iris features are known to contain more

than 400 statistical distinguishing features (unique patterns) or degrees of freedom which

can be quantified and used for personal identification [7]. Approximately 260 degrees

of freedom from 400 identifiable characteristics, can be computed for identification, and

these includes: the collarette, which is the thickest region in the iris which has zigzag

shapes separating the pupillary portion from the ciliary portion, the darkened area of an

iris itself (crypts) which are defined as the series of holes or openings which are located

on either side of the collarette which allows the stroma and the deeper iris tissues to

be bathed in the aqueous humor, contraction of muscles within the iris (radial furrows

and contraction furrows) which are defined as the series of very fine radial folds in the

pupillary portion of the iris extending from the pupillary portion margin to the collarette,

collagenous fibres, filaments, pigments spots, striations, serpentine vasculature, freekles

and some rings. Figure 1.1 clearly shows the iris features from the eye image extracted

from the University of Palack’echo and Olomouc (UPOL) [8] iris images database .

1
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Figure 1.1: Structure of an iris

In [2, 9, 10, 11, 12, 13, 14] it is reported that the iris features have made it to possess six

times more distinctively identifiable unique patterns than the well-known grandparent

modality, fingerprint. The first fundamental scientific study on iris patterns dates back

to ophthalmologist Frank Burch’s discovery in 1936 [15]. In his study he discovered the

potential of an iris to distinguish individuals from each other, and also to distinguish the

left and right irises of the same person. The uniqueness and permanence of iris features

have been well established and its potential to remain stable was confirmed by ophthal-

mologists Flom and Safir [15] in their clinical trials which earned them a patent in 1987.

It was also mentioned in [15] that besides its stability, the iris is also easier to capture,

protected within the interior eye and deformation of its unique patterns is unlikely. From

these discoveries, they proposed that an iris could be used as a biometric if it can be

automated. Daugman [10] introduced iris recognition as a young and active research

by automating the first iris recognition system as proposed [15]. Daugman in his first

automated iris recognition system discovered that its wide application can be extended

to biometric security areas such as national ID cards, banking systems, e-commerce,

biometric passports but with no application in surveillance and forensic investigations

[16]. As computing power advances in technology, iris recognition research also picked
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up speed. The development and implementation of iris imaging technologies, and the

need to secure information effectively using automated iris recognition systems became

more apparent. More public iris image databases were developed to study and enhance

iris recognition performance under various conditions. These advances in technology

since the 1990’s triggered increased need in non-forensic applications of robust iris bio-

metric systems in high security areas. As mentioned in [10], a typical iris recognition

consists of three modules namely; the segmentation module which involves denoising

the input image and separating the iris region from other parts of the eye image, the

feature extraction module which encode the iris information into a digital template and

the feature matching module which classify the encoded templates as either a match or

a non-match. The challenges posed by each module have been identified by various iris

biometric researchers, with noise being the major problem leading to high false matches

and high false rejections [17, 18, 19, 20, 21, 22, 23, 24]. Solutions have been proposed to

overcome these challenges by reducing the amount of noise during segmentation module.

In [25] normalized images were assessed based on the amount of occlusion by eyelashes

and eyelids in order to map image quality measures to improve the recognition accuracy.

Segmentation module is considered the most fundamental stage of iris recognition be-

cause information falsely encoded leads to poor recognition rate and cannot be corrected

during or after feature extraction module. Iris image is highly occluded by natural noise

such as eyelashes and eyelids which need to be removed or accounted for during segmen-

tation. Various techniques and approaches have been proposed to improve segmentation

phase, but segmenting every iris image in the database accurately is still an unresolved

problem [26, 27, 28, 29]. In [10, 24, 30] noise masking techniques were used to reduce

the effect of noise during the feature matching module. In [31], eyelashes and eyelids

detection were avoided by extracting various blocks within the none occluded iris region.

However, the challenge remains in making iris recognition system to be 100% accurate

which has not been achieved yet as a result of occlusion by noise which results from

segmentation failure. This problem is usually posed by occlusions with eyelashes and

eyelids, camera reflections and pupil dilation posing serious effects in recognition per-

formance. An intelligent adaptive algorithms for accurate segmentation is in demand

and has not been established yet, and accounting for these noisy regions during the

matching module is imperative. Different techniques have been proposed to alleviate

this occlusion problem, especially when the acquired image is noisy. Recent research
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[17, 18, 19, 20, 21, 22, 23, 24, 32, 33, 34, 35], have reported different approaches of im-

proving recognition accuracy by managing the effect of noise. In [28], segmentation was

done using Hough transform, histogram-bisection and eccentricity using regularization

of iris boundaries using Fourier series and radial gradients of the iris image. In [29], a

non-circular iris localization method using iris image projection function and gray level

statistics was introduced to enhance the segmentation module. Bachoo and Tapamo

[26] used the grey level co-occurrence matrix to segment the iris image in order to re-

duce the effect of noise posed by eyelashes and eyelids. Li and Ma [36] did a thorough

investigation and develop an algorithm called random sample consensus for segmenting

non-circular iris boundaries, based on iris image captured under non-ideal environments

where the output image is highly invaded with various kinds of noise. The results of this

approach were tested against noisy University of Beira Interior Iris (UBIRIS) database.

De Marsico et al. [37] developed an integration approach which combines linear binary

pattern and discriminable textons to enhance the iris matching performance. This ap-

proach was also based on eliminating the effect of noise factors within an iris image.

Rathgeb et al. [38, 39] used adaptive bloom filters to extract an alignment-free can-

celable iris template which has been tested against Institute of Automation Chinese

Academy of Sciences (CASIA) iris database. However, the error rates reported in the

literature still reports that they evolved from occlusions and reflection from the camera.

Besides these noise reduction failure during segmentation, poor biometric performance

has been also discovered to be deep rooted from feature extraction module. Various

feature extraction techniques have also been proposed in order to implement feature

extraction robust against noise [9, 10, 21, 22, 24, 31]. In [40], investigation was done to

compare the optimal 2D Haar-Hilbert Wavelet Transform and classical Log-Gabor filter

feature extractors, with their results tested on Bath iris database in order to deduce

the efficient algorithm. Besides the comparison of various approaches as done in [40],

other techniques were also introduced such as; block sum method [41] which extracts

iris features using multi-resolution feature extraction and Haar transforms. Ghodrati

et al., [42] used an optimized Gabor filter parameter estimation approach implemented

using Genetic algorithms in order to reduce the length of the feature vector by em-

ploying a robust feature selection strategy. Various iris matching techniques have also

been proposed to reduce the effect of noise and to improve the robustness of iris feature

matching. No single biometric system has proved to be robust against all capturing

environments and attention has been shifted towards combining information in order
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to complement individual modalities. With more attention growing towards fusion; the

effect of noise has not been accounted for during fusion because most fusion approaches

such as reported in [5, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54] use simple sum

rule and weighted sum rule based methods which do not account for noise. Fusion of

information should be able to produce robust results based on the data, information or

type of fusion and the approach taken. This work investigates some feature extraction

techniques, feature matching techniques and fusion methods proposed in the literature

in order to establish the gaps and improve from the current state of iris recognition. An

adaptive fusion method is proposed based on the quality of the features in order to cater

for features extracted from the noisy region. This approach offers potential solution of

solving the poor recognition rates caused by noisy regions as discussed above.

1.2 Problem Statement

State-of-the-art iris recognition systems [17, 18, 19, 20, 21, 22, 23, 24, 28, 29, 32, 33,

34, 35], experience high False Rejection Rate (FRR), False Acceptance Rate (FAR) and

Equal Error Rate (EER). Since Daugman’s system [13, 55] iris biometric research ad-

vanced with technology and begins to pick up speed. Research contribution evolved and

new methods were proposed to challenge and improve Daugman ’s algorithm [11, 17, 22,

24, 31, 33, 56]. Various feature extraction techniques and matching techniques have been

proposed to improve reliability and robustness of iris recognition systems [57]. However,

the target has not been successfully realized as aimed in iris recognition research. The

main objective is to achieve 0% of false rejection and false acceptance in both ideal and

non-ideal conditions of which in an ideal condition and in real world applications seems

to be difficult to achieve and maintain due to noise. Current techniques address this

problem by minimizing the false rejection and false acceptance, including the equal error

rate using combination of iris matching algorithms. Individual matchers always have ef-

ficiency problems and it has been adopted and widely accepted that multiple biometrics

offers added advantage and overcome most challenging problems posed by individual

modalities. Fusion approaches were therefore introduced to enhance the recognition

performance and accuracy of biometric systems based on their FAR and FRR. Multiple

representation of features using multiple biometrics or using multiple feature extrac-

tors and matching techniques has received considerable attention and proved to be a
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promising alternative which is robust against spoofing and repudiation. Within the

proposed fusion methods implemented within the iris recognition parlance, research has

been shifted to simple sum fusion and weighted sum fusion due to their ease of imple-

mentation. Simple sum fusion averages the scores from individual matching algorithms

and produce one fused score. The bias by one matching algorithm as a result of poor

performance also influence the fusion score in a bad way. The weighted fusion approach

on the other hand assigns weights to each matching algorithms based on the recognition

accuracy of each individual matcher. If the individual algorithms have been implemented

without taking noise into effect, the weighted fusion cannot be efficient. For this rea-

son, an adaptive multi-algorithmic fusion was proposed and implemented by combining

matching scores generated from four individual matching techniques to produce a robust

advanced fusion technique. The proposed fusion approach solves the above mentioned

challenges faced with other fusion approaches by devising the optimal fusion strategy

based on the feature quality measures.

1.3 Research Objectives

The key objective in this work was to investigate the effects of varying feature quality

parameters tested against two public databases and then incorporate them into the

proposed adaptive weighted fusion technique of four iris matching algorithms.

1.4 Research Questions

This work investigates the effect of quality parameters measured at the feature level

before feature extraction to enhance recognition performance based on fusion techniques.

For this reason, this work intends to answer the following research questions:

1. Can fusion of multiple matching improves the performance of an iris recognition

system?

2. Can quality parameters based on feature quality measures improves the accuracy

of a fusion algorithm?
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1.5 Research Hypothesis

This work aims to test the following hypothesis based on the known score level fusion

approaches:

1. If fusion of simple sum and weighted sum rule improves the performance of iris

recognition system, then an adaptive weighted fusion should improve the perfor-

mance of the system even more.

2. If image quality parameters improves recognition performance and system accuracy

then quality parameters assigned at feature level can improve performance and

accuracy even more.

1.6 Research Contribution

This work contributes to the iris recognition literature by introducing a novel adaptive

score level fusion technique based on weighted minimum fusion rule.

1.7 Delimitation, Limitations and Assumptions

The focus of this study will concentrate mainly on iris matching algorithms, and therefore

the following assumptions are made:

1. This study is limited to CASIA and UBIRIS because images from other databases

have not been accessed.

2. This study is constrained to sum rule and minimum fusion rule only.

3. The segmentation algorithms, iris feature extraction algorithms and the feature

matching algorithms have been adopted from the previous research works.

4. The performance of this work is evaluated only against simple sum rule, non-

adaptive weighted sum rule and minimum rule only.
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1.8 Summary

This chapter gave a full description of the work done in this dissertation. The chapter

started with an introduction to various automated iris recognition system. The intro-

ductory section gave basic concepts about automated iris recognition systems, current

achievements and challenges currently faced by them. The ”research problem statement”

section gave a full description of the problem that this work solves. Research objectives,

research questions, research hypothesis and research contribution followed immediately

after the research problem statement. The objectives of the research are clearly defined

and they are fully described in the methodology section. Research questions that this

work is trying to answer are also given followed by the claims. Research questions and

claims are answered and proved in the methodology and results chapter. The research

contribution section gave new knowledge contributed in the iris recognition field.

1.9 Dissertation Overview

The remainder of this dissertation is arranged as follows: Chapter 2 present a review

of relevant literature about iris recognition systems as unimodal and multi-biometric.

Chapter 3 covers the theory of the general works done in iris fusion and general frame-

works of fusion architectures. Chapter 4 presents the research methodology and design

strategy employed in this research work. Chapter 5 presents results and interpretation

their interpretation. Chapter 6 presents discussion of the overall research and results

obtain in chapter five. Recommendations, based on the analysis of results are also

presented in this chapter. Possible future directions of research in this topic are also

proposed. Finally, concluding remarks are made. The detailed steps for pre-processing,

segmentation, feature extractions and feature matching have been outlined in the ap-

pendices.



Chapter 2

Related Work

This chapter reviews different techniques used to automate iris recognition system. The

literature surveyed in this work exclusively contains more work on uni-modal iris recogni-

tion systems and multi-algorithmic iris recognition systems. Score level fusion techniques

are discussed more than other levels of fusion, and all the gaps are outlined. The gaps

filled in this work have been explicitly explained.

2.1 Related Work in Iris Recognition systems

For the past decade, iris biometric has been showing advances in automated authenti-

cation services. Since the first iris recognition system pioneered by Daugman, research

has grown with immense interest in making iris recognition systems 100% accurate in

both ideal and unconstrained environments. The iris recognition became an interesting

research topic since the fundamental work of Daugman [10] which has attracted iris

biometric researchers from all corners of the globe. Daugman who was approached by

two eye scientists (Ophthalmologists) implemented and documented the first working

iris recognition system detailed in [10, 13] which has been patented and deployed in

many countries. In [10], monochrome CCD iris capturing camera (480× 640) was used

to capture the rich iris features because Near Infra-red (NIR) illumination in the range

of 700nm-900nm was required to capture an iris image which will be visible also to a hu-

man vision. To locate the region of interest from the acquired eye image, the parameters

for capturing the center of iris and pupil were determined by using an integrodifferential

operator discussed in [10, 13] which locates and segments the pupil and the iris regions

with their varying centre coordinates. Equation 2.1 is used in this technique.

max(r,x0,y0)

∣∣∣∣∣∣Gσ(r)
∂

∂r

∮
r,x0,y0

I(x, y)

2πr
ds

∣∣∣∣∣∣ . (2.1)

here Gσ(x, y) is the Gaussian kernel and I(x, y) is the image and (x0, y0) and r are

the center coordinates and radius of the circle respectively. In a survey carried out in

9
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[58], it was discovered that the iris images encounter problem of size variation due to

illuminations, pupil dilation and varying distances from the capturing camera. These

variations need to be covered in all robust iris recognition systems, by implementing iris

image normalization algorithms. Daugman used the Daugman’s rubber sheet model to

carter for image size variations, which assigns to each point within the iris region a pair

of coordinates in polar form (r, θ) where the radial radius is in the interval [0; 1] and θ is

in the interval [0; 2π]. This mapping of an image I(x, y) from its Cartesian coordinates

(x, y) to polar coordinates (r, θ), is represented by a homogeneous rubber sheet model

as shown in the following equation:

I (x(r, θ), y(r, θ))→ I(r, θ). (2.2)

where x(r, θ) and y(r, θ) are the linear combination of the set of pupillary boundary

point, (xp(θ), yp(θ)) and the iris boundary point (xs(θ), ys(θ)) which borders the sclera.

These parameters are detected within the region of interest by computing the maximum

values of the operator in equation 2.1, as:

x (r, θ) = (1− r)xp(θ) + rxs(θ). (2.3)

y (r, θ) = (1− r) yp(θ) + rys(θ). (2.4)

The changes in size of the pupil which causes the iris to have an elastic deformation

is corrected by the radial coordinates during normalization which ranges from 0 to 1,

starting at the inner iris region to its outer region. The diagram in figure 2.1 represent

the process of iris normalization to a rectangular block of equal dimensions. In figure

2.1, the segmented image is transformed into a rectangular block with the radial and

angular parameters expressed in terms of breadth and length respectively. The height

represents the radial direction and the length represents the orientation. To extract the

features from the normalized iris region, the iris patterns were demodulated in order to

get the phase information of the iris using the quadrature 2D complex even and odd

symmetric Gabor wavelets as shown in figure 2.2. The use of Gabor wavelets in image

processing has a long history as evidenced in [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,

70, 71], and their application in iris recognition is expanding, as reported recently in

[72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]. The equation for a 2D Gabor
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Figure 2.1: Daugman ’s Rubber Sheet model for iris image normalization [10, 13]

filter in the image domain as discussed in [65, 70], is shown in equation 2.5 below:

G (x, y) = e−π((x−x0)
2/α2+(y−y0)2/β2).e−2πi(u0(x−x0)+v0(y−y0)). (2.5)

where the parameters, (x0, y0) is the pixel position of the image, α, β are the effective

width and length of the filters respectively, u0, v0 is the modulation parameters with

a spatial frequency given by ω0 =
√(

u20 + v20
)

and their orientation is given by θ0 =

arctan
(
v0
u0

)
. In polar coordinates, equation 2.5 can be written as:

G (r, θ) = e−iω(θ−θ0)e−(r−r0)
2/α2

e−(θ−θ0)
2/β2

. (2.6)

where the parameters α and β co-vary in reverse proportion with the spatial frequency ω

in order to generate the self-similar multi scale 2D wavelet frequency selective quadrature

filters located at θ0 and r0. With this information, the phase quantization identifies in

which quadrant of the complex plane does the resultant phasers lie when an iris image
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Figure 2.2: Even and Odd symmetric Gabor filters

is passed onto complex-valued 2D Gabor wavelets using the equation 2.7

h{Re,Im} = sgn {Re, Im}
∫
ρ

∫
φ

I (ρ, φ) e−iw(θ0−φ).e−(r0−ρ)
2/α2

.e−(θ0−φ)
2/β2

ρdρdφ. (2.7)

where h{Re,Im}, is considered the complex-valued bit whose real and imaginary values are

in {0; 1} depending on the sgn, I (ρ, φ) is a dimensionless polar coordinate system which

is scale and rotation invariant and which can correct the pupil dilation, α and β are the

multi-scale 2D wavelets size parameters ranging from 0.15mm to 1.2mm on the iris, ω is

the wavelet frequency spanning 3 octave inversely proportional to β, (r0, θ0) represents

the polar coordinates of the each iris region computed. The idea of image processing at

multi-scale level dates back to the works of Lindeberg as discussed in [87, 88, 89]. To

classify the extracted phase information, Daugman used Normalized Hamming Distance

(NHD) shown in equation 2.8 to perform 2.9 billion of iris comparisons.

HD =
‖ (CodeA⊕ CodeB) ∩ (MaskA ∩MaskB) ‖

‖MaskA ∩maskB‖
. (2.8)
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where A and B are the two bit patterns and A ⊕ B is the sum of the disagreeing bit

between A and B bit patterns MaskA and MaskB represent the mask bit vectors for

the two bit patterns. Masek [30] prototyped Daugman ’s automated system for research

purposes. In [30], Hough transform was used to locate the region of interests instead

of integrodifferential operator. The Hough transform takes the form shown in equation

2.9:

x2c + y2c − r2 = 0. (2.9)

where the parameters xc, yc and r are the center coordinates of the Hough circle.

Parabolic Hough transform is also a useful tool which can approximate the eyelashes,

top and bottom eyelids using parabolic arcs as represented by equation 2.10.

(− (x− hj) sinθj + (y − kj) cosθj)2 = aj ((x− hj) cosθj + (y − kj) sinθj) . (2.10)

where aj controls the curvature of the circle, (hj , kj) is the point of peak of the parabolic

function and θj is the angle of rotation with respect to the x − axis axis. There are

couple of disadvantages of using the Hough transform because it requires the threshold

value to be assigned before edge detection which may lead to removal of useful edge

points, which poses enormous challenges when it fails to detect both the pupil circle

and the iris circle. To extract the rich iris features, [30] used the 1-D log-Gabor wavelet

shown in equation 2.11 instead of 2D Gabor wavelet used in [10, 13]:

G(f) = exp

(
− log (f/f0)

2

2 log (σ/f0)
2

)
(2.11)

where f0 and σ are defined as the central frequency and the bandwidth of the filter

respectively. The extracted features were matched using the NHD matcher in equation

2.8 as used in [10, 13]. The Gabor filter, despite being a valuable texture extractor

has its disadvantages as it assigns similar weights for both fragile and consistent bits

which require different scale measurement. The low frequency components are under

represented by this technique, and each time the even symmetric Gabor filter has a

bandwidth of more than an octave it will have a DC component [90] which suppresses

the significance of low frequency components in the feature vector. These drawbacks

have a serious impact on the recognition of subjects posing serious threats to system

performance. Various iris region extractors have been proposed to challenge the bias

posed by Gabor filters [9, 17, 21, 22, 24, 91, 92]. Various techniques are still under
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review in pursuit of an anticipated iris recognition system especially where the features

have different weights measurements as used in Weighted Euclidean Distance (WED)

and Weighted Hamming Distance (WHD) which are also considered efficient. Tan [9]

proposed a Multi-Channel Gabor Filtering which Zhu et al. [93] and Ma et al. [94]

adopted, modify and reused in their iris recognition system. This technique uses the

same iris preprocessing technique of Hough transform as used in [30] to locate the region

of interest from a captured iris image. The segmented image was then normalized

to compensate for the changes in image sizes caused by illumination changes, pupil

dilation which may seriously affect the template matching stage. The image was then

transformed into a block of fixed size of (64 × 512) which were then subdivided into

eight sub smaller images of block size (64× 64). As normalized images can be prone to

noise and low contrast that may have emerged as a result of non-uniform illumination

due to varying light source positions, the normalized iris image was enhanced using

histograms equalization method, and high frequency noise was removed using a low pass

Gaussian filter. The desired features where extracted by employing the multi channel

Gabor filtering technique shown in equation 2.12.

G(x, y; θ, f) = exp

(
−1

2

(
(xcosθ + ysinθ)2

δ2x
+

(ycosθ − xsinθ)2

δ2y

))
cos (2πfx) . (2.12)

where f is the frequency of the sinusoidal plane wave along the direction θ from the

x − axis, δx and δy are the space constants of the Gaussian envelope along the x and

y axes respectively. The frequency parameter f was chosen to be the power of 2, and

the central frequencies used in [94], where 2, 4, 16, 32 cycles per degree. For each central

frequency f , filtering was done using θ = 0◦, 45◦, 90◦, 135◦. With these set parameters,

twenty Gabor filters were obtained, each with a different frequency and orientation, and

each of the eight sub images where filtered by these twenty Gabor filters leading to 160

output images from which the iris features where extracted. In [93], the features were

extracted without dividing a normalized image into blocks. To upgrade the recognition

system presented in [93], Ma et al. [94] divided the normalized iris image into eight blocks

of equal size. These eight blocks of images were processed separately for the purpose of

obtaining more well distributed features. The features from [93] were expressed in terms

of the mean and the standard deviation and stored in a 24× 2 matrix, while in [94] the

feature vector was calculated as the Average Absolute Deviation (AAD) of each output
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image, and obtained from equation 2.13 :

V =
1

N

(∑
N

|f(x, y)−m|

)
. (2.13)

where, N is the number of pixels in each image, m is the mean of each image, f(x, y)

is the pixel value at position (x, y). The AAD feature was reported in [94] as a statistic

value similar to the variance, but results from [94] demonstrated that it performs better

than variance. The AAD of each filtered image constitute the components of the desired

feature vector arranged to form a 1D feature vector of length 160 for each output image.

The process of extracting the features is explained in equations 2.14-2.19:
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Figure 2.3: Even symmetric Gabor filter

GE(x, y) = e
−
(
x2+y2

2σ2

)
cos(2πf(φ)). (2.14)

and the odd symmetric Gabor filter is expereesed the form shown in equation 2.15

GO(x, y) = e
−
(
x2+y2

2σ2

)
sin(2πf(φ)). (2.15)
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Figure 2.4: Odd symmetric Gabor filter

where the function φ in equations 2.14 and 2.15 is represented as a function of θ in

equation 2.16,

φ = xcosθ + ysinθ. (2.16)

The output of the image was obtained by convolving an input image with a filter, as

shown in the following equation:

PE(x, y) = GE(x, y)∗I(x, y). (2.17)

where PE in equation 2.17 represent the output images of the even Gabor filter

PO(x, y) = GO(x, y)∗I(x, y). (2.18)

where PO in equation 2.18 is the output image of the odd symmetric Gabor filters. The

extracted features are expressed in terms of the mean and standard deviation, using the

following equation;

Q(x, y) =
√
P 2
E(x, y) + P 2

O(x, y). (2.19)
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The features obtained in equation 2.19 are matched using WED, shown in equation 2.20,

which measures how similar the collection of values are, between two given vectors. This

method computes WED between the corresponding extracted feature vectors, and is very

useful when the templates are represented in terms of integers or floating point values.

The variables for the weighting coefficients, number of sub images and the total number

of features extracted from each image are defined as parameters of WED formula defined

in equation 2.20, as used by [9] and [93].

WED(K) =

N∑
i=1

(
fi − f (k)i

)2
(
δ
(k)
i

)2 . (2.20)

where fi represents the ith feature of the unknown iris, f
(k)
i is the ith feature of the iris

k considered as mean of iris k, and δ
(k)
i is the standard deviation of the iris k. When

matching the features, the unknown iris is considered a known iris k, if the WED is a

minimum at iris k. However, with these same conditions, Ma et al., [94] used a different

version of the weighted euclidean distance, in iris recognition, based on the same feature

extraction techniques as used by both [9] and [93]. The formula used by [94] is given in

equation 2.21

WED(K) =

√√√√ B∑
i=1

Ai

N∑
j=1

(
fk(i,j) − f(i,j)

)2
. (2.21)

where the parameters B is the number of sub-images, Ai is the ith weighting coefficient,

N is the total number of features extracted from the image ,fi is the ith feature of

the unknown iris, fki is the ith feature of the kth iris template as used in equation

2.21. The WED compares the features of an unknown iris with the enrolled irises in

the database to get a match. When matching the input feature vectors with the class

templates, the minimum of the five scores is taken as the final matching distance score,

and this minimum is considered the threshold. The WED approach is very useful when

the template is composed of integers [93]. Mitra et al., [95], reported an interesting

result from different of Gaussian employed on correlating illegally packed vehicles in

local patches. Difference of Gaussian has so many fundamental applications in image

processing, some of them have been reported in [96]. Sun et al., [19, 21] and Dong et

al., [24] proposed a Multi-Lobe Differential filter (MLDF) which is a type of a Gaussian

filter with multiple lobes, giving it an advantage over Gaussian filters because it can

capture and encode iris regions ranging from small to large regions. This technique was
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proposed in an attempt to model the iris features in an ordinal scales. They measured

the region of iris as being either dark or light, thereby coding a digital iris template

from the iris regions. The MLDF shares the same properties as the difference off-set

Gaussian, and they all evolved from difference of Gaussian. The difference of Gaussian

takes the following form;

DoG(x, y) = G(x, y, σ1)−G(x, y, σ2). (2.22)

The difference of Gaussian as defined by equation 2.22, has been receiving attention as a

useful tool in image processing research since the works in [97, 98, 99, 100]. The equation

of MLDF as shown in equation 2.23, has its basis grounded on [21, 95, 96, 101, 102, 103];

MLDF = Cp

Np∑
i=1

1√
2πδpi

e

− (X − µpi)2

2δ2pi − CN
Nn∑
j=1

1√
2πδnj

e

− (X − µnj)2

2δ2nj . (2.23)

where the parameters µ denotes the mean of the 2D Gaussian filter, δ denotes the scaling

factor of the 2D Gaussian filter, Np is the total number of positive lobes detected, Nn is

the total number of negative lobes detected. Cp and Cn are the coefficients which ensure

that the total sum of the MLDF is zero, i.e, CpNp = CnNn, as used in equation 2.23. The

features extracted using this technique were digitized based on the ordinal representation

of the iris regions. Despite the ease of computation of ordinal measure, the parameters

involved in MLDF needs major attention when selecting the intra-regions and inter-

regions. The main parameters include the shape of the region, the spatial location of

the region, the spatial configuration of the region, their inter-region distances; details

of these parameters are discussed later in this section. The type of the desired features

in all the chosen regions, should be taken into consideration, such as the average pixels

intensity in each region, the wavelet coefficient of the region and so forth. Figure 2.5

which depicts the odd and the even Gabor filters and their associated ordinal measures

before features are extracted. Figure 2.5, (i) shows the odd Gabor filter and its ordinal

measures designated by positive lobes (+) and negative lobes (-) and (ii) depicts the even

Gabor filters with its ordinal measures. The positive and negative lobes are also called

the excitatory and inhibitory lobes respectively. Figure B.1, in appendix B represents

the process of comparing the regions and how the regions can be encoded into an iris

digital signature. To extract the iris ordinal features, the input image has to be passed
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(i) (ii) 

Figure 2.5: The Even and Odd Gabor filters with their ordinal measures [21]

into an ordinal filters. There are prime parameters that needs to be considered; namely

(i) the scaling parameter (σ = π/2) which controls the shape or the scale of the lobe.

Sigma (σ) was taken as a standard deviation because the lobes were selected as Gaussian

filers, (ii) the parameter d = 4, 8, 12, 16 separates the measures the distance between the

centres of the excitatory and inhibitory lobes and (iii) the orientation of the filters which

is determined by measuring the angle θ ∈ [0; 2π] between the horizontal axis and the

lines which cuts the excitatory and inhibitory lobes, as mentioned above. The features

extracted using this approach were classified using the WHD which is an improved NHD.

The improvement from the hamming distance was done by introducing the weight map

WA in the iris matching function of the registered iris class A, which is denoted by an

n-dimensional vector,

WA = {w1, w2, ..., wn}. (2.24)

shown in the formula below:

DA =
‖(codeA⊕ codeB)×WA‖

‖WA‖
. (2.25)
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The weight map is generated using the following formula:

P =
1

k × k

k∑
a=1

k∑
b=1

codea � codeb. (2.26)

and the parameter,

P = p1, ..., p2. (2.27)

where P is a vector with the same length as the iris codes. Durai and Karnan [31]

argued, that feature-based iris recognition matching performance is highly influenced

by various parameters in the feature extraction process. To overcome this challenging

concern, they proposed a Hierarchical Phase Based (HPB) matching technique adopted

from phase based matching technique introduced in [92]. The technique here is to

bypass some of the phases in template matching algorithm such as image normalization,

specular reflection, eye lashes detection and removal or masking. This algorithm only

masks the bottom eyelid as the top eyelid and eye lashes are avoided from the feature

extraction. To accomplish this task a given image say f(n1, n2) is divided into five

blocks sub-images of equal dimensions. The details of implementation of this process

is shown in appendix D, figure D.1. The feature vectors are created independently for

query images in each block and then compared with the stored database. Based on

the proximity of the features vectors and the templates, each subsystem computes its

individual matching score. These individual matching scores are finally combined into a

total score which is passed to the decision making module, [31]. Matching the features

from each blocks demands the computation of Phase Only Correlation (POC), and then

sum the POC value for each block to contribute into a single match score value, as shown

in the following equations:

F (K1,K2) =

M1∑
−M1

M2∑
M2

f(n1, n2)W
k1n1
N1

W k2n2
N2

. (2.28)

where the variables F (K1,K2) represents the 2D Discrete Fourier Transform (DFT) of

image f(n1, n2), as used in equation 2.28.

G(K1,K2) =

M1∑
−M1

M2∑
−M2

g(n1, n2)W
k1n1
N1

W k2n2
N2

. (2.29)
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where the variables G(K1,K2) represents the 2D DFT of image g(n1, n2), as used in

equation 2.29. simplifying equation 2.28, we get the following equation:

F (K1,K2) = AF (k1, k2) ejθf(k1,k2). (2.30)

where AF is the amplitude phase component as used in equation 2.30. Equation 2.29

can also be simplified and produce the following equation:

G (K1,K2) = AG (k1, k2) ejθf(k1,k2). (2.31)

The cross spectrum of the two 2D DFT images F (k1, k2) and G (k1, k2) is given by

RFG (k1, k2), and is given by the following equation:

RFG (k1, k2) =
F (k1, k2)G (k1, k2)

|F (k1, k2)G (k1, k2)|
. (2.32)

which can be simplified to give the following equation:

RFG (k1, k2) = ejθ(k1,k2). (2.33)

where k1 = −M1, ...,M1 and k2 = −M2, ...,M2, G (k1, k2) is the complex conjugate of

G (k1, k2) and θ(k1, k2) is the phase difference between the two images F (k1, k2) and

G (k1, k2). The location of the peak can be estimated by finding the changes in the

maximum value in (x, y) domain as shown in the equation below:

(∆x,∆y) = arg max
(x,y)
{RFG}. (2.34)

Chaskar and Sutaone [104] presented a novel technique for fast iris recognition using

the match color to detect the rich iris features and generate a stable key from the iris

image. In this approach, color comparison was used to detect color variations within an

image, and use this information to check if the same color pattern variations is avail-

able between the probe image and the reference image. A fuzzy membership weighting

function is applied to the color spectrum between the probe image and the reference

image before the matching process. The matching was computed using the Manhattan

distance measure to generate the similarity scores ranging from 0 to 1000. Khaladkar

and Ganorkar [56] presented another iris recognition system using features extracted
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from the Haar wavelet transform. In [56], the segmentation and normalization of the

segmented iris image followed the Daugman process, using the intergrodifferntial opera-

tor showed in equation 2.1 and the rubber sheet model for normalization. The matching

was done using the same normalized hamming distance, even though the procedure of

getting the features differed between the Gabor filters and Haar Wavelets. The results

reports an improved recognition accuracy of 99.94%, FAR of 0.005 and FRR of 0.01. In

[105, 106], noisy iris images were used to assess improvement in recognition accuracy.

A classification approach was implemented which measures the difference between the

distribution of eyelashes between the right and left eye images. Classification was also

done based on the color of iris region which bests discriminate between the intra class

and inter class variations. The comparison between the iris templates were measured in

terms of the Euclidean distance, NHD and χsquare distances with the color space models

and produce a discriminative index of 1.6398. The effect of noise and failure of feature

extraction techniques is evidenced in [33, 35, 36, 37, 41, 107, 108, 109], where the recog-

nition failure of 21.2% was detected based on images collected over a monthly intervals.

Sibai et al, in [110] used an artificial feed forward network to estimate the parameters

for iris image preprocessing to avoid noisy regions to reduce recognition accuracy. The

recognition accuracy was measured using BrainMaker simulations and report an achieve-

ment of 93.33% regardless of similarity metric used. Durai and Karnan [31], used the

HPB matching technique which uses the approach adopted from phase based match-

ing algorithms. However, even though their matching technique seemed robust, their

method for extracting features is not and cannot be automated. Dong et al. [24], used

the personalized weight map approach which uses features extracted using ordinal mea-

sures extracted using the MLDF. In [111], two methods were used to detect the region

of interests namely; the Canny edge and the circular-Mellin algorithms. The features

were extracted using three feature extractors namely: Haar wavelet, Embedded-tree zero

wavelets and fuzzy neural networks. Classification was done using the normalized ham-

ming distance. A recognition of 99.25% was reported by this method. Although many

techniques have been proposed, identity verification of individuals remains a challenging

task when it has to be automated with a high accuracy and robustness against spoof-

ing attacks and repudiation. To overcome this challenge, robust iris feature extractors

and iris matchers should be implemented. However, within the current iris recogni-

tion systems, iris feature matching has not been exhaustively explored and it remains

a very important module which can reduce the false accept rates FAR and the false
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rejection rates FRR. Ng et al., [23] introduced a Rapid Haar Wavelet decomposition for

extracting the rich iris feature. The features were classified using the hamming distance

matcher and achieved recognition accuracy of 98.45% tested on CASIA-IrisV3-Interval.

Abhyankar and Schuckers [112, 113] used a biorthogonal wavelet which encode the iris

information by lifting technique. The encoded information was classified using the NHD

matcher. The performance of the system was tested against CASIA dataset and pro-

duced a FRR of 0% and FAR of 0.03% at a threshold value of 0.4. Ross [114] stressed the

ongoing research in iris recognition and mentioned the need to increase the accuracy and

robustness of iris recognition systems even on unfavorable imaging environment. It is

also stressed in that research that iris biometric should be extended to template protec-

tion. In [115, 116] a secure iris biometric system is introduced using the local intensity

variations and visual cryptography respectively, within the iris region. In [117], fusion

of information extracted from visible light source and NIR was introduced, based on a

newly established iris images. The proposed study challenges the current iris matching

algorithms by developing a novel approach to improve iris matching performance by

combining selected current iris matchers to produce a robust iris matching technique.

2.2 Related Work in Iris Fusion

Score level fusion is considered a very promising approach having greatest potential

of improving biometric system recognition accuracy, system performance and system

robustness against spoofing attacks and repudiation. The problem of feature match-

ing has long been studied, and has led to the introduction of some techniques that

enhance the matching decisions. Various fusion techniques have been introduced with

different fusion levels. However, the process involved in implementation and data col-

lection of some levels of fusion can be a challenging task, and this makes a score level

fusion the best choice because of its use of computation and data collection. Match-

ing scores, have valuable information which describes the performance of both feature

extractors and the feature matchers. Fusion techniques can be implemented at various

levels for various reasons and giving different levels of recognition accuracy and per-

formance. Amongst the fusion techniques with different levels of fusion as discussed

in [43, 45, 49, 53, 54, 118, 119, 120, 121, 122, 123, 124, 125], score level fusion is the

most widely used. This is due to its ease of acquiring data from individual matching
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algorithms both from mono-modal and multi-modal point of view. Score level fusion

has appeared in literature on different view points. A detailed review of iris recogni-

tion systems and various fusion strategies at different fusion level has been presented in

[43, 122]. Challenges may arise in implementing weighted sum fusion in order to opti-

mize the weights. A Genetic Evolutionary Computation (GEC) based score level fusion

was introduced in [126] to optimize the weights in score level fusion. As mentioned

in [47], fusion of information creates robustness against spoofing attacks and improves

recognition performance. A comprehensive evaluation of score level fusion, assessing the

normalization techniques and the score level based fusion techniques is found in [127].

Fusion for single biometric such as iris was introduced in [128, 129, 130, Gawande et al.].

Wang et al., [131] did an interesting research when he integrated the information from

left and right eye irises collected from the phase information and the Discrete Cosine

Transform (DCT) using multi-level fusion, which includes multi-algorithmic and multi

instance fusion. The multi-algorithmic fusion combines the matching scores generated

from the improved phase information and tDCT. The multi instance data was collected

from the left and right irises taken from each subject. The results of this experiment

was tested against the noisy UBIRIS image database and demonstrated improved recog-

nition performance and accuracy over a single database. Zhanga et al., [44] combined

the iris global and local features extracted using the 2D log Gabor filters. The resulting

features were classified using the WED and the NHD. Woodard et al., [132], combined

the periocular and the iris patterns at a matching score level using a simple sum fu-

sion rule. The templates for iris and periocular regions were extracted separately using

different feature extraction techniques. Fusion of scale invariant transform and speed

up robust features has been discussed in [52]. The results of this fusion demonstrated

that a recognition accuracy of 88.70% from CASIA and 98.02% from BATH databases

have been achieved. Tan et al., [133] introduced a multi-modal iris image fusion strategy

based on four matching techniques based on ordinal measures matching, color histogram

matchings, texton representation and matching the semantic information from the im-

age. Colores-Vargas et al., [134] implemented an iris fusion technique based on video

images using Principal Component Analysis (PCA) to enhance the iris recognition ac-

curacy under unconstrained environment. They reported 83% of success on their overall

experiments. Desoky et al., [135] combined the iris information at the base templates at

the feature level fusion using a plain majority rule voting system. Each base template

assigns an input feature vector to various classes which are fused to produce one feature
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vector of fused template. In [48], various factors influencing image noise were estimated

individually based on different forms of occlusions. The estimated factors were then

fused using the Dempster-Shafer theory of evidence. In [136], fusion was done by com-

bining the rotation invariant and rotation compensation iris code based scheme. The

motive was to reduce the computational speed and complexity, which has been reduced

by 20%. In [50], an incremental fusion strategy was implemented in order to reduce the

computational time. The results reports reduction of about 5%. Soltana et al., [120]

used an adaptive feature and score level fusion techniques to select and fuse the most

relevant features and optimize the fused score using genetic algorithms. To measure

the recognition accuracy and performance, a Linear Discriminant Analysis (LDA) was

used to reduce the dimensionality for each feature type. Radu et al., [137] implemented

a score level fusion for combination of images from various scanners and various color

intensities based on unconstrained environments. The images captured were from iris

digital cameras and mobile phones. The development of this method was based on

remedying the matching of noisy iris images.

2.3 Summary

This chapter gave a full review of current automated iris recognition systems, including

their fusion approaches. It was discovered that the discussed approaches face many

challenges posed by noise and they fail to account for noise regions during matching

module. It was also discovered that there is no single biometric system introduced so

far which can produce excellent performance and achieve a 100% recognition accuracy

alone in all the imaging conditions. Migration to multi-algorithmic techniques have been

clearly introduced bridging the gap between individual systems and fusion techniques.

The challenges faced by each method reviewed were identified as failure to map the noise

regions during fusion using feature quality components, which leaves a gap to be filled.

For this reason an adaptive weighted fusion was introduced in this work to bridge the

gap. Accounting for noise using feature quality metrics can reduce the effect of noise

which results from segmentation failure. The details of fusion architecture and their

categories are discussed in the next chapter.
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Theoretical Considerations

This chapter explores widely used fusion approaches and their architectures. The fusion

approach introduced in this work was not discussed but its counter parts namely simple

sum, best linear and minimum fusion are heavily discussed.

3.1 Fusion Architectures

Multiple integration of information has been receiving enormous attention due to its po-

tential to produce large amounts of non-integrated results. It improves biometric recog-

nition performance and offers potential to reduce the failure to enroll rates and failure

to acquire rates. This is accomplished by the weights assigned to different modalities

with varying levels of recognition performance. Modalities which produces low errors

are assigned more weights to compensate for other modalities with potential of produc-

ing high errors. Fusion algorithms enables individual modalities to support each other

which leads to improved recognition performance.

3.2 Categories of Fusion

Fusion can be categorized in three different architectures; namely (i) Serial Fusion:

where features are extracted and matched sequentially, (ii) Parallel Fusion: where the

features from individual modalities are extracted and matched simultaneously and (iii)

Hierarchical Fusion: where serial and parallel fusion techniques are combined together

to produce a more robust fusion results. Hierarchical fusion approach is more flexible

and secure but computationally expensive due to the hardware and processing power

needed. More information about these fusion categories have been detailed in [53, 122,

123, 125]. From each architecture mentioned above, fusion of information occurs in one

of the following five categories. The choice of category depends on the availability of

26
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information to be fused and the application which the system is aimed to be used in.

Table 3.1 and the following item explain these categories:

Table 3.1: Table of categories of fusion [122]

Fusion Category Modality Algorithms Biometric trait Sensors

Multi-Sensor One One One Two or more

Multi-Algorithmic One Two or more One One

Multi-Instance One One Two or more One

Multi-Sample One One Two or more One

Multi-Modal Two or more Two or more Two or more Two or more

(a) Multi-Sensor : A single biometric trait is acquired using various sensors giving

varying levels of input.

(b) Multi-Algorithmic : Single biometric trait is acquired using same sensor but

features are extracted using different features extraction techniques. Extracted

features are matched using different feature matching techniques, leading to non-

homogeneous scores generated from each matching technique.

(c) Multi-Instance : Multiple instances are captured from the same subject using

same sensor and fused together. For iris biometric, instances includes left and right

eye of the same person.

(d) Multi-Sample : Multiple samples of the same biometric modality are acquired

using the same sensor but with varying illumination changes and capturing angles.

(e) Multi-Modal : Multiple modalities are captured using different sensors. These

modalities includes, face and iris, face and fingerprint or iris and fingerprint.

3.3 Levels of Fusion

Fusion of evidence can be done at various levels depending on the purpose and ap-

plication of the proposed system. The development of an architectural fusion struc-

ture depends on the type and level of fusion. The architectural design of a multi-

biometric system gives the fusion approach to be implemented. The choice of architec-

ture highly affects system accuracy and recognition performance [122, 131, 134, 137, 138,
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Gawande et al.]. The choice of a fusion architecture also relies on the type of available

data to be fused. Various levels of fusion are discussed below.

3.3.1 Sensor Level Fusion

Integration of information can be done at the sensor level by combining raw data from

different sensors. This fusion level can be accomplished if the same sensor can produce

multiple reads of the same biometric modality from the same sensor or from different

sensors. Information at this level is rich in content with highest level of noise which

increase complexities. Complexities also arise when the raw data is not compatible to

each other. Raw data from multiple sensors with varying degrees of sample quality may

also impact compatibility. It is imperative to study the raw data and sensors thoroughly

before fusion in this level.

3.3.2 Feature Level Fusion

Features are extracted from different sensors and then fused together using multi-sensor

fusion category. Each sensor computes its own feature vector which will be encoded or

represented in a different approach as compared to other features from other sensors or

scanners. The combination of these feature vectors from various sources will lead to a

high dimensional single feature vector which will demand feature reduction which will

extract the optimal and robust features from the super set of features before further

processing of the feature. This level of fusion is only achieved by incorporating features

from multiple sensors reading a single biometric modality or multiple representation of

the same biometric modality. Information is less rich in content but noise has been

minimized during pre-processing and image normalization. Challenges faced with this

level of fusion includes: (i) Normalization of compatible features can be computationally

expensive, in order to bring all the features to a common scale and location, (ii) Adding

features may fail to improve accuracy and recognition performance as a result of curse

in dimensionality, a robust feature selection algorithm may be required in order to fuse

only the best distinctive features. This level of fusion becomes impractical in many

applications making integration at this level less useful.
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3.3.3 Matching Score Level Fusion

The most widely used level of fusion is the score level fusion because of its ease in

integrating raw scores representing individual modalities. Matching score fusion incor-

porates matching scores generated from different matchers, usually with different feature

extractors. The obtained scores from each matchers represent the similarity or differ-

ence between the templates being matched. There are several approaches used to fuse

the matching scores. The main idea of this type of fusion is to minimize the FAR at a

given FRR [45, 51, 54, 118, 124]. A new score will be used for comparison with a new

threshold. Integration of scores can be done in three main ways:

• Classification Based Approach: In classification approach, a feature vector is

created from individual matching scores. The matching scores are then classified

in terms of ”accept as genuine” or ”reject as impostors” classes using machine

learning techniques such as Support Vector Machines (SVM). Serious challenges

exist in the classification approach which includes; (i) unbalanced training data

sets between the genuine and impostor distribution, (ii) varying costs of misclas-

sification between accepting an impostor and rejecting a genuine user, which also

depends on the type of application and (iii) the choice of classification technique

to be used also creates problems.

• Density Based Approach: Density based approach depends on the likelihood

ratio test which demands explicit of both the genuine and impostor score distri-

butions. If the densities can be accurately estimated, density based approach can

achieve optimal performance at any FAR. However, modelling of scores distribu-

tion can be computationally expensive.

• Combination or Transformation Based Approach: In a combination ap-

proach, the individual scores generated from individual matchers are integrated

to generate one single score vector for use in the final decision. The combination

approach is the most widely used and improved performance of this approach has

been reported by various researchers. Combination approach appears in differ-

ent forms which includes simple sum, min and max score, weighted scores and

user weighting. In this fusion approach, scores need to be transformed into a

homogeneous scale using normalization techniques. The choice of normalization
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depends on the available scores data. An adaptive approach also falls within the

combination approach but it has not been well established within the iris domain.

Examples of combination approach are discussed below:

3.3.3.1 Simple Sum Rule

The scores are combined together and averaged with the idea of producing robust deci-

sion.The simple sum rule takes the following expression:

SS =
N∑
1=1

Si +
N∑
j=1

Sj . (3.1)

3.3.3.2 Weighted Sum Rule

The weighted sum rule is also called the best linear fusion technique, and has been

designed in such a way that, it uses weights to compensate the inefficiencies in the

individual algorithms. The matchers that performs badly are assigned low weights and

the matchers that performs better gets bigger weights. The weighted sum fusion takes

the following form:

WS = Wi

N∑
i=1

Si +Wj

N∑
j=1

Sj . (3.2)

3.3.3.3 Minimum Score

This fusion rule takes the minimum value of the scores amongst the fused matching

scores. The formula for this fusion method is as follows:

MinS = min
(
Si, Si

)
(3.3)

3.3.3.4 Maximum Score

This fusion takes the maximum of the given scores to be fused. The formula used for

this fusion is as follows:
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MaxS = max
(
Si, Si

)
(3.4)

3.3.3.5 Adaptive Sum Rule

An adaptive fusion technique depends on the quality of the image or the quality pa-

rameters of the extracted features. In this work the quality parameters are base on the

extracted features. This type of fusion has not been used on iris recognition systems

before. It includes quality parameters heavily weighted to compensate for the noisy iris

data against the noiseless iris features during iris matching. The weights incorporated

here are different from the weights assigned to the matchers because adaptive weights

weighs the features in terms of the amount of noise detected.

3.3.4 Rank Level Fusion

Rank level fusion is mostly useful in identification rather than verification mode. The

resulting matching score from each system is considered as ranking of reference data.

The objective in the rank level fusion is to integrate the ranks from the biometric systems

to establish a consensus rank for each identity. The outputs of these ranks from multiple

biometric modalities are compared for identification without using the matching scores.

3.3.5 Decision Level Fusion

This type of fusion incorporates decisions (accept genuine or reject impostor) from var-

ious systems which mostly uses different sensors. The final decision is done mainly by

implementing a majority voting systems which determines the majority of votes which

selects decisions, either accept genuine or reject impostor. At the decision level fu-

sion, authentication results are produced from each biometric system. Combination

techniques like majority rule voting are applied to integrate the decisions from various

authentication results. Integration occurs at the accept as genuine or reject as impos-

tors decision levels. Integration at this level has been used by various researchers and is

reported as being too simple due to limited information during fusion.
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3.4 Summary

This chapter discussed the categories and fusion architectures implemented in iris recog-

nition. Score level fusion was discussed more than the other levels of fusion because it

is the choice of fusion in this work due to its ease of data acquisition in terms of match-

ing scores and its performance reliability. An increase in interest of score level fusion

research is evidenced by the cited literature in this chapter. For this reason, this work

has also adopted the score level fusion because it gives more information about the level

of discrimination between the genuine users and the impostor users. The score from

different matching algorithms provides detailed information about the performance and

accuracy of the matching algorithm. The information about the genuine and impostor

users can also be easily established.



Chapter 4

Methodology

This chapter presents the research design of the proposed approach taken to solve the

problem mentioned in chapter 1. The research instruments and techniques implemented

are presented in detail.

4.1 Introduction

A quantitative research based on four iris matching algorithms was adopted to measure

the acquired features extracted from each algorithm. The algorithms selected are NHD,

WED, WHD and POC. The matching scores generated from each matching algorithm

were analyzed and classified as either genuine and impostor based on the produced

score. The procedure for assessing the quality scores and matching scores has been

clearly attributed. The results reported in chapter 5 in terms of table and ROC curves

were generated using MATLAB.

4.2 Research Design

This research was designed to be implemented from the iris matching level in order

to get the matching scores. However, the need to conduct the research from the pre-

processing stage was considered crucial in order to implement the existing segmentation

algorithms, feature extraction and the matching algorithms all together. The main idea

was to implement four iris feature extraction techniques in each of the two iris databases

chosen, namely the CASIA [cas] and the UBIRIS [139] image databases. Each technique

has its associated matcher believed to perform better using the features extracted using

the desired feature extractor. From this phase, each matcher has to generate its own

matching scores, and then the scores where normalized using the tanh estimators nor-

malization technique, because it is robust and efficient against outliers. The algorithms

selected in this work uses different approaches of minimizing the effect of noise within

33
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the image before and after segmentation. Normalized images where used to compute the

global quality score from each image before feature extraction. The fusion experiment

was done using various methods of score level fusion; namely the (i) sum rule which

includes the simple sum and the weighted sum rule (also known as best linear fusion),

(ii) minimum score level fusion and an adaptive fusion which is also a form of sum rule

based score level fusion. From the four matching algorithms mentioned above, deeper

probing was done when pairs of matchers were investigated so that an informed decision

can be made based on the performance of fused matchers. The fusion of all the four

algorithms were lastly implemented and investigated over the fusion approaches outlined

above. Details of the results has been reported and documented on the experimental

results and discussions in chapter 5.

4.3 Research Instruments

This work used two publicly available iris image databases as shown in table 4.1. The

images were selected based on the instances of each images as detailed in the next section.

For each image in each database five instances were desired in order to set the threshold

for each matching algorithm based on the amount of information from both genuine

users and impostor users. Images which failed to segment properly were discarded in

order to avoid recognition failure as a result of segmentation failure.

4.4 Data

The data used in this work include two publicly iris databases, namely CASIA and

UBIRIS. The data has various images, but for this work, images have been selected based

on the availability of five instances from each image so that informed decision can be

made when setting a threshold value. After segmentation images which were accurately

segmented were selected, and images which failed segmentation were removed from test

data. Remaining test images were 275 images selected from the CASIA left eye images

and 815 images from the CASIA right eye images, see table 4.1. Each image is an 8 bit

grey-level JPEG format of size 320 × 280. These images were captured in two sessions

with extremely clear and rich texture details. For UBIRIS, 1200 images where selected

from the right eye images. These images were captured in a constraint environment
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to cater for noise and huge variation in illumination, defocus and pupil dilation. Each

image was captured at a resolution of 300 dpi, with pixel sizes of 2560×1704, in a JPEG

format.

Table 4.1: Table of iris images used

Name of Database Number of Left Images Number of Right Images

CASIA 275 815

UBIRIS 000 1200

4.5 Proposed Method

The proposed method combines four iris matching algorithms, namely: NHD, WED,

POC and WHD as shown in figure 4.1, which demonstrates the processes from the

segmentation phase. The segmented image was then passed into the feature extractor

and the extracted features were matched using a iris matcher related to the feature

extractor. The scores were normalized using tanh estimator normalization technique.

Fusion was implemented after numerous experiments on the performance of the four iris

matchers with various parameters were conducted. The fusion approach exhibited in

figure 4.1-, can be summarized by means of a proposed algorithm explained in algorithm

3. Only the major steps in the following algorithm has been included, some of the less

important stages have been left out. To conduct the fusion experiment, data from the

scores files where loaded. There were two iris databases with different capacity for each

features extractor used.

4.6 Iris Image Pre-Processing and Iris Segmentation

Image pre-processing includes locating the region of interest and isolating this region

from the rest of the eye image. Locating the region of interest and identifying the noisy

regions are the most crucial step within the iris recognition, and it is called iris image

segmentation. In this work, segmentation of iris images was done using the method

proposed in [10, 13]. The procedure followed in pre-processing and segmenting an iris

image has been detailed in appendix A.
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The Structure of the Proposed Fusion Approach

Iris Image acquisition

Image Preprocessing/Segmentation

Gabor Filters Hierarchical Phase Based
Multi-Lobe Different 

Filters
Multi Channel Gabor 

Filtering

Normalized 
Hamming Distance

Weighted Hamming 
Distance

Weighted Euclidean 
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Phase Only Correlation

Fusion Fusion 

Fusion 

Accept or Reject

Figure 4.1: The Structure of the proposed fusion approach.

4.7 Iris Feature Extraction

Four iris features extraction were considered in this work which includes, phases of

2D complex Gabor filters [10, 13], Multi-Channel Gabor filtering [9, 93, 94], MLDF

[19, 21, 24] and HPB [31]. The selected feature extractors have been explained in detail in

the reviewed literature in chapter 2, for the purpose of their implementation. The choice

of algorithms depends on the type of features extraction and type of features extracted in

order to complement each algorithm. All implementations were done using MATLAB,

and using built-in functions where appropriate. The phase information features were

extracted using the 2D complex Gabor filters shown in equation 2.7. To extract these

features, the following conditions as shown in algorithm 1 where implemented:

The parameter h represent the one bit either 0 or 1 which results from a sign of both the

real and the imaginary parts of the phase quadrature image projection which is produced

from a convolution between a normalized iris image and 2D complex Gabor filter. The

encoded template is stored in a database and ready for comparison. The second set of

features were extracted using the Multi-Channel Gabor filters. The procedure has been
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Algorithm 1: An algorithm to encode iris information using 2D Complex Gabor filter

1 Algorithm: Extracting the phase information using 2D complex Gabor filter
input : A normalized iris image I(ρ, φ)
output: An iris template

2 —Get the normalized iris image and convolve it with the feature extractor—

3 if Re
∫
ρ

∫
φ

e−iw(θ0−φ).e−(r0−ρ)
2/α2

.e−(θ0−φ)
2/β2

I (ρ, φ) ρdρdφ ≥ o then

4 hRe ← 1

5 else

6 hRe ← 0

7 if Im
∫
ρ

∫
φ

e−iw(θ0−φ).e−(r0−ρ)
2/α2

.e−(θ0−φ)
2/β2

I (ρ, φ) ρdρdφ ≥ o then

8 hIm ← 1

9 else

10 hIm ← 0

11 return Template

explained in detail in appendix B. The procedure for extracting the features using the

MLDF and HPB has been explained in appendix C and appendix D, respectively.

4.8 Iris Feature Matching

The extracted features were matched using different feature matching algorithms due

to the type of features extracted. Different matching algorithms were used to match

templates generated from different feature extractors. For the phase information, the

templates were matched using NHD shown in equation 2.8. This matching algorithm

weighs all the bits equally and uses masked bits to reduce the effect of noise during

matching. The templates generated using Multi-Channel Gabor filters were stored in

a 24 × 2 matrix. The matching algorithm efficient for this type of data was the WED

shown in equation 2.20. The details has been explained in chapter 2 and appendix B.

The templates generated using MLDF takes the same form as the templates created

using phase information. To improve the matching performance an advanced version

of NHD called WHD as shown in equation 2.25 was used to match the templates. The

2.25, assigns different weights to different bits giving improved matching results. To

match the block based generated templates extracted using HPB, POC was used and

this process proceeds as a tree traversal starting the matching at the root node until to
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the leaves. The matching process used the phase only correlation method to assess phase

values from each individual block. The procedure for the matching process is shown in

algorithm 2:

Algorithm 2: Algorithm for Matching the blocks of sub-images

Input: A root Image Si
Output: Matching Score

1 for ∀ L ∈ Leaf do
2 if f(L)← i then
3 marknodeSelect(L)
4 return marknodeSelect(L) for matching score calculation
5 if Score ← Genuine then
6 return GenuineScore
7 back to leaf

8

9 else
10 topDownEvaluates

11 return Match Score

4.9 Scores Normalization

Since the matching scores produces non-homogeneous scale, it was necessary to trans-

form the matching scores into a homogeneous scale using score normalization techniques.

The choice of normalization was based on robustness and efficiency of normalization tech-

nique. There are challenges involved in score level fusion, due to the metrics used to

measure the templates similarities. Scores output in different scales, and these poses

serious challenges over the system performance and robustness of the system based on

the recognition accuracy. To solve this problem, all the scores needs to be converted

to homogeneous scale. Various techniques such as detailed in Ribaric et al., [140] and

He et al., [127] can be implemented to normalize the scores. These normalization tech-

niques suffers from some lack of robustness against outliers. The normalization technique

adopted in this report is the tanh estimators which is a hyperbolic tangent. The tanh

estimators is robust against outliers and is highly efficient. The formula for hyperbolic

tangent is as follows:

SNormalized =
1

2

{
tanh

(
0.01

(
Si − S
σ

))}
(4.1)
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This normalization depends on Hampel parameters [141], which is a challenging task

to estimate those parameters. Below is an influence function which estimates Hampel

parameters:

H(Y ) =



y, o ≤ |y| < a

a ∗ sign(y), a ≤ |y| < b

a ∗ sign(y) ∗
(
c−|y|
c−b

)
b ≤ |y| < c

0 |y| ≥ c

(4.2)

These three parameters were chosen based on the tuple (α = 80, β = 90, γ = 95) that

produced high recognition performance in terms of Area Under Curve (AUC) and EER.

From this tuple, the parameters (a, b, c) where chosen in such a way that α% of all the

genuine scores should at least fall within the range of (m− a), (m+ a), β% of the all

the genuine scores should at least lie within the range of (m− b), (m+ b) and γ% of all

the genuine scores should at least fall within the range of (m− c), (m+ c), where the

parameters (a, b, c) are as they appear in equation 4.2 for estimating the parameters of

the influence functions.

4.10 Score Level Fusion Implementation

As discussed in chapter 2, this dissertation presents different approaches of sum rule

based fusion. The approach introduced here uses feature quality measures to map the

quality value with each matching algorithm during the fusion process. In every biometric

system, noise is the major source of poor recognition performance and poor recognition

accuracy. Various methods handle noise regions differently, but as discussed in chapter

2, within an iris region, not every noise can be catered for during masking especially

the eyelashes. Removing eyelashes using thresholding techniques cannot eliminate or

detect every eyelash in different eye images. The reason being that, the eyelashes vary

in pixel intensities due to the imaging conditions, leaving the light eyelashes not detected

and not masked during noise masking. To cater for these challenges during matching,

an adaptive fusion which assigns quality value for each algorithm is introduced using

relative entropy which measure the amount of none-corrupted features available in each
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normalized iris image. The approach adopted here for mapping iris feature quality using

relative entropy was proposed in [142]. The issue of measuring iris feature quality has

attracted many iris biometric researchers, and various methods have been proposed such

as reported in [143]. The relative entropy or the Kullback-Leibler divergence between

two probability density function can be approximated using equation 4.3 below:

D (z ‖ w) =

∫
X
z(x) log2

z(x)

w(x)
(4.3)

where the functions z(x) and w(x) represents the probability mass functions for intra-

class distribution and inter-class distribution respectively, over the iris feature dimension

X. From each feature dimension within the normalized iris image, the mean intensity

for each distribution z(x) and w(x) of an image can be measured using equations 4.4

and 4.5 below:

Ez (X) =
1

Nz

Nz∑
i=1

Xi (4.4)

Ew (X) =
1

Nw

Nw∑
i=1

Xi (4.5)

The co-variances for the two distributions can be computed using equations 4.6 and 4.7

below: ∑
z

= Ez

(
(X − Ez)t (X − Ew)

)
(4.6)

∑
w

= Ew

(
(X − Ew)t (X − Ez)

)
(4.7)

The two equations for z(x) and w(x) can be rewritten in terms of equations 4.8 and 4.9

as below:

z (x) =
1√
|2π
∑

z |
exp
(
− 1

2
(X − Ez)t

−1∑
z

(X − Ez)
)

(4.8)

w (x) =
1√

|2π
∑

w |
exp
(
− 1

2
(X − Ew)t

−1∑
w

(X − Ew)
)

(4.9)

From equations 4.8 and 4.9, the relative entropy measure can now be computed using

equation 4.10 below:

D (z ‖ w) =

∫
z(x)

(
log2 z(x)− log2w(x)

)
dx (4.10)
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After computing the quality score based on the relative entropy of the features, the

fusion approach was implemented as shown in figure 4.2. The procedure to implement

this flow diagram shown in figure 4.2 has been detailed in algorithm 3. To ease the

process, the weighting parameters were determined after the EER, because the weights

were calculated from the EER, using equation 4.11:

wm =
Ee

m

em
(4.11)

where E = 1∑ 1
em

. The parameters used in the equation are defined as, w is the estimated

weight, m is an individual matcher and the EER produced using that matcher is defined

as e.

NHD WHD WED POC 

M1 M2 M4 M3 

F4 F1 F4 F4 

F1+F2 F3+F4 

F_SCORE 

DECISION 

W3 
W4 W1 W3 W2 W3 W3 

W4 

Figure 4.2: Structure of the proposed fusion method
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Algorithm 3: Proposed algorithm

1 Algorithm: Adaptive Fusion Approach
input : A matrix of scores from individual matching algorithms (A(i, j) )
output: A vector of fused scores

2 —Get the quality score for each normalized image and set the quality value for each
matcher based on its recognition performance—;

3 —Set a threshold value, TQ—

4 if Q ≥ TQ then
5 1. M1 ← min(NHD,WHD)
6 2. M2 ← min(WED,POC)

7 else

8 3. M3 ← min(NHD,WED)
9 4. M4 ← min(WHD,POC)

10 5. Save M(i,j)

11 —Combine the minimum scores using the EER fro each matching algorithm use—;
12 if EERNHD ≥ EERWED & EERWHD ≥ EERPOC then
13 6. F1 ← w1 ×M1 + w2 ×M3

14 7. F2 ← w2 ×M2 + w3 ×M4

15 else

16 8. F3 ← w3 ×M3 + w4 ×M4

17 9. F4 ← w3 ×M1 + w4 ×M2

18 10. Fs ← min
(

(F1 + F2) , (F3 + F4)
)

;

19 return Fs

4.11 Summary

In this section, the proposed approach has been presented in detail from each feature

extraction to matching module, error rates were computed together with the quality

score for each normalized image. Information from quality score and noise control in each

image were analyzed in order to quantify the quality scores and the weights depending

on how each algorithm employs the noise masking techniques to minimize noise. The

results for the proposed fusion have been presented in terms of tables and ROC curves

in chapter 5. The choice of using the minimum rule for adaptive weighted fusion was

deduced from the performance of minimum fusion rule prior feature qualities parameters.

It was discovered that weighted minimum rule performs better than weighted sum rule

if error rates and feature quality score are mapped with the fusion parameters as seen

in table of results in terms of AUC and EER in chapter 5.



Chapter 5

Experimental Results and Discussion

This chapter reports the details of results from the experiment conducted in this work.

The results are presented in terms of tables and ROC curves. All the tables and figures

are discussed and analyzed in the discussions and informed conclusion is drawn from the

discussed results.

5.1 Introduction

The score based fusion has been proposed and implemented in this work. The results

have been analyzed based on the performance of various fusion techniques implemented

and tested on different iris image databases. Results have been classified based on

different metrics designed only for the purpose of this work. The experiment was tested

against two iris databases as mentioned in chapter 4. The CASIA has two separate

image databases for left and right eyes, which reports different performance, with left

eyes having high recognition performance than right eye images. The fusion approaches

implemented here includes (i) the simple sum rule which takes the average of the four

matching scores, (ii) the minimum rule, which takes the minimum of the four matching

scores, (iii) the weighted sum fusion which incorporates the weights generated from the

EER from each matching algorithm. Different weights have been tested and the best

combination with low EER and AUC were used and (iv) Adaptive fusion which has been

proposed in this work, which uses both the quality scores generated from each feature

vector and the value of EER generated by each matching algorithm.

5.2 Iris Feature Quality

From the results of the experiment it was discovered that the quality of the extracted

features play an important role in the matching decision, especially when an adaptive

fusion has to be implemented. This work has demonstrated that the adaptive fusion

43
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technique is robust over various changes in illumination, pupil dilation and noise in

captured images, because these anomalies can be cleaned using the generated and as-

signed weights, which compensate for the loss from noise and illuminations changes.

This is however only possible if the quality of the features can be measured so that

the amount of noise that cannot be masked can be assigned low weights during fusion

process. The error rates reported from each individual matcher also plays an important

role in assigning the weights for each matcher during fusion.

5.3 Performance Comparison

The performance and accuracy of a biometric system can be measured using the AUC

and the system errors, such as EER. In this work, the AUC and the EER were used to

measure the system performance and accuracy. The proposed fusion uses weighted sum

of results from minimum fusion approach. The results from minimum approach were

fused using weights assigned based on the recognition accuracy from each individual

matcher. Below are the results which demonstrate the performance of each algorithm

in terms of their error rates. In sections, the following measures were used to draw the

depicted Receiver Operating Characteristic (ROC):

• True Positive (TP): The measure of the total number of genuine subjects who were

correctly classified as genuine subjects. This measure leads to a True Positive Rate

(TPR) which is computed using equation 5.1 below :

TPR =
TP

P
(5.1)

where the numerator in the fraction represents the number of TP and the denom-

inator, P , represents the total number of genuine users in the specified biometric

system.

• False Negative (FN): The measure of the total number of genuine subjects who

were classified as impostor subjects. This measure leads to the False Negative

Rates (FPR) which is computed using equation 5.2 below :

TPR =
FN

P
(5.2)
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where the numerator in the fraction which represents the number of genuine users

classified as impostors and the denominator, P , is the total number of all the

genuine users in the biometric system.

• True Negative (TN): The measure of total number of impostor users who were

correctly classified in the system as impostor users. This measure leads to True

Negative Rates (TNR) which can be computed using equation 5.3 below :

TPR =
TN

N
(5.3)

where the numerator in the fraction represents the total number of subjects who

were correctly classified as impostors and where the denominator represents the

total number of impostor users in a biometric system.

• False Positive (FP): The measure of total number of impostor users who where

incorrectly classified as genuine users. This measure leads to a False Positive Rates

(FPR), which can be computed using equation 5.4 below:

TPR =
FP

N
(5.4)

where the numerator in the fraction representing the total number of impostor

users who were incorrectly classified as genuine users, where the denominator rep-

resents the total number of impostor users in the system.

• Equal Error Rate (EER): This is the measure of a point where the False None

Match Rate (FNMR) is equal to the False Match Rate (FMR) in the ROC curve.

Every biometric system assigns a threshold prior to matching, which will determine

its FAR and FRR. The systems performance increases when the EER becomes zero

or grows very close to zero. Excellent performance and accuracy occurs when EER

is 0.

• Area under the ROC Curve (AUC): This is the measure which shows the perfor-

mance and accuracy of a biometric system. These measure can be explained in

terms of the table 5.1 below:
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Table 5.1: Table of performance measures

Area under ROC Curve Performance

90.0− 1.0 Excellent Performance

80.0− 90.0 Good Performance

70.0− 80.0 Fair Performance

60.0− 70.0 Poor Performance

The AUC was computed from Gini coefficient relations, which can be written mathe-

matically as:

G = 2 ∗AUC − 1 (5.5)

where G is the Gini coefficient given by:

G = 1−
n∑
k=1

(
Vk − Vk−1

)(
Uk + Uk−1

)
(5.6)

Table 5.2 shows the performance comparison of traditional techniques and the proposed

approach used in this work. As shown in the table below, the multi-channel Gabor

filtering is the least performing algorithm with FRR of 0.0086% at a specified FAR of

0%. The MLDF gives significant results with low FRR of 0.0063% at a specified FAR

of 0%. The HPB performed better than Phase information with FRR of 0.0065% as

compared to FRR of 0.0082% produced by phase information at a specified FAR of 0%.

Table 5.2: Table of error rates for individual matchers

Algorithm FAR(%) FRR (%)

Phases of 2D Gabor Filters 0.00 0.0082

Multi Channel Gabor Filtering 0.00 0.0086

Hierarchical Phase Based 0.00 0.0065

Multi Lobe Differential Filter 0.00 0.0063
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5.4 Fusion Experimental Results

Results presented here were tested against two iris databases namely: CASIA and

UBIRIS, with CASIA having the left and right eye images tested separately. The im-

ages from each database where chosen based on the number of instances desired for

each image. Five instances for each image where chosen from each database, so that a

sensible threshold value can be easily determined when more instances are used for each

subject. Images with less than five instances were left out before segmentation. Images

which were not segmented accurately were discarded to avoid recognition failure. This

will ensure that the results are not affected by segmentation failure because all the iris

images will undergo accurate segmentation. The results for each matching algorithm

implemented were analysed before fusion and various thresholds were investigated for

each matching technique implemented as shown in table 5.2. During fusion, various

weights for each matcher and EER, were investigated and the best combination which

produces best results in terms of low error rates was chosen. Various approaches of

score level fusion namely: simple sum, weighted sum and minimum fusion were also

implemented and comparison was done against the proposed approach. The proposed

method outperforms all sum rule based and minimum rule fusion techniques when tested

against all the data sets as shown in all the tables and ROC curves. The performance of

the proposed approach was based on two measures namely; the AUC and the EER. For

each ROC curve databases were compared, and table of results appears after each ROC

curve. The score before and after normalization are depicted in figures before their as-

sociated ROC curves and table of results, figure 5.1, shows the relationship between the

scores frmr CASIA left eye images before and after normalization, figure 5.3, depicts the

relationship for CAISA right eye images and figure 5.5 depicts the relationship for scores

from UBIRIS images. The distribution of scores in all these three figures demonstrates

the range of scores which also predict their performance as shown by their respective

ROC curves for each database. The experimental results tested against the CASIA left

eye images using the ROC curves are presented in figure 5.2. From the figure it shows

that the CASIA left eye images performs better than the CASIA right images depicted

in figure 5.4. However the images used in this work have been extracted from various

subjects, due to the condition of five instances desired for each image. The weights

incorporated in the adaptive fusion process were (0.4, 0.6) or (0.6, 0.4) as rounded to the

nearest integer; which produced the best results in terms of low EER and high AUC. For
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the weighted sum the best results were achieved with weight of (0.7, 0.3) and (0.3, 0.7)

when fusing the four scores from four iris matching algorithms. The distribution of

scores of normalized scores and ROC curve in figure 5.1 and 5.2, below demonstrates

the fusion performance from four fusion techniques implemented using the CASIA left

images database.
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Figure 5.1: Scores before and after normalization using CASIA left images

The performance of the proposed approach was analyzed based on the error rates and

the AUC as depicted in table 5.3: The variations in performance between the three

databases demonstrates the significance of the statistical measures used to assess the

system performance in this work.

Table 5.3: Table of simulation results using CASIA left images

Fusion Approach AUC % EER %

Simple Sum Rule 98.32 0.092

Minimum Score Rule 98.61 0.074

Weighted Sum Rule 98.93 0.066

Adaptive Sum Rule 99.36 0.041
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Figure 5.2: ROC Curve for proposed fusion using CASIA left images

The same comparisons were done on all the databases, for both the ROC and tables

of results. From the fusion experiment it can be clearly seen that weighting of quality

parameters can improve the recognition performance even on images which are highly

occluded. This is evidenced in all the results presented in all the ROC curves and the

tables. The UBIRIS databases outperformed the CASIA. However, this was the case

even before fusion was implemented, but incorporating quality weights improved the

performance of single biometric system. The comparison of the scores before and after

normalization and the ROC curve for the the CASIAR are presented in figures 5.3 and

figure 5.4.
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Figure 5.3: Scores before and after normalization using CASIA right images
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Figure 5.4: ROC Curve for proposed fusion using CASIA right images

The table of performance measures is presented in table 5.4 based on the performance

measures discussed above:
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Table 5.4: Table of simulation results using CASIA right images

Fusion Approach AUC % EER %

Simple Sum Rule 97.97 0.17

Minimum Score Rule 98.43 0.12

Weighted Sum Rule 98.81 0.096

Adaptive Sum Rule 99.18 0.087

In figure 5.5, the comparison of scores before and after normalization is presented. From

the figure it can be clearly seen that the UBIRIS scores has a high discrimination as

compared to the CASIA databases.
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Figure 5.5: Scores before and after normalization using UBIRIS images

Figure 5.6 shows the ROC curve for test images from the UBIRIS database. The results

of this experiment showed that even the noisy iris images can offer an improvement if

quality parameters are not influenced by noise. This is evidenced by the performance of

the UBIRIS data as depicted in figure 5.6. The error rates and the AUC measuring the

accuracy and recognition performance are given in table 5.5.
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Figure 5.6: ROC Curve for proposed fusion using UBIRIS images

In table 5.5, analysis are presented showing the significance of the biometric measures

used in this work. From the table the proposed fusion method possesses the highest

AUC which implies highest accuracy and the EER is the lowest, which means improved

recognition performance.

Table 5.5: Table of simulation results using UBIRIS images

Fusion Approach AUC % EER %

Simple Sum Rule 98.19 0.063

Minimum Score Rule 98.26 0.069

Weighted Sum Rule 98.53 0.074

Adaptive Sum Rule 99.59 0.038

5.5 Summary

From this experiment, it was discovered that the simple sum rule based fusion is the

least performing when tested against all the databases used in this work. This is because
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the simple sum rule averages the scores from individual matchers without incorporating

the weights from either EER or the quality map. The minimum rule based on the other

hand outperforms the simple sum rule, this is because most of the genuine subjects in

all the five instances for each subject posses low scores in NHD,WHD and WED, but

for the POC scores for genuine has high correlation than the impostors scores. There

is also some variation between the minimum scores of genuine and minimum scores

of the impostors leading to better performance if measured against simple sum rule.

The results from weighted sum implies that incorporating the EER during fusion offers

improved recognition rate, because the EER defines the accuracy of the system in terms

of these error rates. Mapping the EER with the feature quality parameters, improves the

fusion approach even more, as shown in all the ROC curves for all the databases. It is

also convenient to use the weights generated from the EER of each matcher to avoid bias

of results by using a specified user weightings which did not originate from the system

error rates. Fusion of scores using adaptive fusion based rule proved to be an advanced

fusion techniques which incorporates weights from feature quality based on noise that

cannot be removed during segmentation and masking. As seen in tables ??, the adaptive

fusion gives improved results as compared to other fusion methods and state-of-the-art

iris recognition systems. This improvement demonstrates excellent results when feature

quality parameters are accounted for during matching. It is highly encouraged to map

the noise parameters during matching or fusion in order to account for the noise which

remains during segmentation. In table 5.3, the proposed method achieved a recognition

accuracy of 99.36% with an EER of 0.041% as compared to the weighted sum with 98.93

recognition accuracy and an EER of 0.066%. Table 5.4 demonstrates that the proposed

methods achieved a recognition accuracy of 99.18 with an EER of 0.087% as compared

to the weighted fusion with recognition accuracy of 98.81 and an EER of 0.096%. Table

5.5 shows that the proposed methods works best even against a very noisy iris image

database by achieving a recognition accuracy of 99.59 and an EER of 0.038%.



Chapter 6

Conclusion and Future Work

This chapter reports the conclusion drawn from the entire work discussed in the previous

chapters. Future work related to the continuation of this work is also proposed at the

end of this chapter.

6.1 Conclusion

A novel approach to iris fusion has been presented in this work. During this experiment,

various score level fusion techniques were investigated; which includes simple sum fu-

sion, minimum rule fusion, weighted sum fusion and an adaptive rule based fusion. It

was discovered from the experiments, that the simple sum fusion was the least perform-

ing fusion technique. The minimum fusion outperformed the simple sum fusion. The

weighted sum, performed better than the minimum rule fusion. It was assumed that

this happened because of the weights assigned to each matching algorithm to compen-

sate for the least performing in terms of accuracy. The idea of developing an adaptive

fusion using weighted sum of minimum scores evolve from this results. The evidence

from two publicly iris database demonstrates that an improved performance is gained

when weighted sum of the minimum scores gets weights assigned from both the feature

quality scores and the error rates values. A shown in chapter 5, the proposed method

showed significant results with high recognition accuracy and very low EER against two

different iris databases. This improvement demonstrates that an adaptive fusion method

reduces the effect of noise during matching process and improves recognition rates. The

following hypothesis as claimed in chapter 1 has been proven:

1. Combination of multiple matching techniques improves performance, as demon-

strated by the results achieved using the proposed adaptive fusion method

54
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2. Score level fusion produces more robust results than the other levels of fusion. Even

though the other methods of fusion where not implemented, this work demon-

strated the potential of score level fusion and its ease of computation and resource

expenses.

3. It was also showed that if weighted sum rule based fusion can produce better accu-

racy, adaptive rule based fusion can produce excellent results which outperforms

weighted sum rule which only use error rates to compute the weights. This is

evident in all the tables of results and figures showed in chapter 5. The results

achieved using the proposed method offers improved recognition accuracy with

significant power as discussed in chapter 5.

6.2 Future Work

From the conducted experiments, it was identified that segmentation algorithms are not

robust enough to segment accurately all the images in a database without tuning the

parameters. As a future work, it is intended to develop a learning based parameter

estimation for iris segmentation. Dividing an image into blocks , and assign a weight

which measures the block quality to be incorporated in an adaptive fusion that uses

image and feature quality is also intended to be implemented, instead of using the entire

normalized image to measure the feature quality.
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Appendix A

Iris Recognition based on Phase
Information

The details of iris recognition based on phase information extracted using 2D complex

Gabor wavelets are presented. Each and every typical iris recognition systems has (i)

Preprocessing stage which includes segmentation (ii) feature extraction module which ex-

tracts iris information and compute a template for matching and (iii) template matching

module which produces a matching score which determines whether the user is genuine

or impostor. Each and every stage has been explained in detail below as implemented

in this work.

Figure A.1: Phae Informantion Flowchart [10, 55]

71
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A.1 Iris image pre-processing

The most common way of pre-processing the image is to convert the image into gray

scale level. The images in CASIA and UBIRIS are all in gray scale level. There is no

need to convert the input images into gray level: Pre-processing an input image involves

reducing the amount of noise in image using filtering techniques. The choice of filter

used in this work was a Gaussian filter with a kernel size of 5 × 5 and with a σ = 1.4.

The following steps were followed during pre-processing:

Step 1 : The first step is to denoise an input image using image filtering techniques. A

5× 5, Gaussian filter was used to denoise the image with a standard deviation of

σ = 1.4. The filter has the form shown below:

M =
1

159
×



2 4 5 4 2

4 9 12 9 4

5 12 15 12 5

4 9 12 9 4

2 4 5 4 2


(A.1)

Step 2 : The second step is to compute the magnitude of the gradient and the angle of

the gradient. To compute the gradient of the input image, the derivatives of the

image along the x and y directions should be computed as Dx (x, y) and Dy (x, y)

respectively. To accomplish this task a 3×3 kernel is used to compute the gradients

along x and y directions. The gradient along the x direction is computed using

the kernel shown in equation A.2:

KGX =


−1 0 +1

−2 0 +2

−1 0 +1

 (A.2)

The gradient along the y direction is computed using the kernel in equation A.2:

KGY =


+1 +2 +1

0 0 0

−1 −2 −1

 (A.3)
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The gradient D, can be computed using equation:

D =
√
D2
x(x, y) +D2

y(x, y) (A.4)

and the angle of the gradient can be computed using the following equation:

θ = arctan

(
Dx(x, y)

Dy(x, y)

)
(A.5)

Step 3 : The next step is to convert blurred edges which are detected from the gradient

magnitudes into sharp edges by preserving local maxima and ignoring the rest

of the gradient image. To achieve that, for each pixel in the gradient image,

the angle of the gradient θ, should be rounded to the nearest 45◦. The current

edge strength is then compared with the neighboring pixels along the positive and

negative directions. For every large value of the edge strength in each pixel and

gradient direction, preserve the value of the edge strength and suppress the value

of the edge strength if otherwise (i.e. if the value of the edge strength is less).

Step 4 : The last step is to eliminate all the edges that may have resulted due to noise,

which are considered invalid edges. Hysteresis thresholding technique is used to

remove all the edges resulting from the noise that remains during noise reduction.

To accomplish this, hysteresis thresholding demands that two threshold values

should be predefined as low threshold, TL and high threshold, TH . The pixels whose

gradient magnitude GM falls below the threshold value, TL are not considered as

edges and should be removed, that is when TL > GM . Some edges may fall within

the range of TL ≤ GM < TH , which are only preserved if they are continuous edges,

and if not they are also removed. The edges with gradient magnitude falling above

the threshold value TH , the edge is preserved as true edge.

The results of these pre-processing stage as discussed above are depicted in figure A.2

below with CASIA image in the first column and UBIRIS in the second column. Note

that the value of sigma which produced this edges were set to (σ = 1.4). Most of the

valuable edges can be preserved in this value, and most of the image features can be lost

even when the value of sigma is increased as explained in figure A.3.
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  CASIA UBIRIS 𝝈 = 𝟏. 𝟒 𝝈 = 𝟏. 𝟒 

Figure A.2: Results of canny edge detection for CASIA and UBIRIS images

Increasing the value of sigma σ reduces the number of edges with lower magnitude

values even though they are true edges. It is important to preserve all the edges needed

because suppressing some of the edges may lead to valuable features being ignored. The

effect of increasing sigma σ is shown in figure A.3. In this figure, first column shows

the effect of increasing sigma to (σ = 6, 12) using CASIA image and second column

depict the same effect using UBIRIS image. Preserving all the essential information

is of primary importance because the number of stable features needed for template

formation depends on the segmented regions and for iris, not every information can be

computed to contribute into template formation, as discussed in chapter 2.
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CASIA IMAGE UBIRIS IMAGE 

𝝈 = 𝟔 

𝝈 = 𝟏𝟐 

𝝈 = 𝟔 

𝝈 = 𝟏𝟐 

Figure A.3: Effect of increasing value of σ during canny edge detection for CASIA
and UBIRIS images

A.2 Iris image segmentation

Segmentation is the process of isolating the non iris region from the iris region. To seg-

ment the images in this work, procedure taken from Daugman in [10, 13] were followed.

Since the mentioned databases contains images of different sizes and different captur-

ing devices and environmental conditions, segmentation parameters has been tuned per

database. The process of iris image segmentation is illustrated in figure A.4, and details

of steps has been explained.

A.2.1 Locating the iris and pupil region

The integrodifferential operator as shown in equation 2.1, was used to search for the

center coordinates of the iris and the pupil circles. The operator searches for param-

eters of the iris circle (x0, y0, r0) and then uses the same parameters to search for the

pupil boundary. The circle is found by searching for a point where the gradient of the

edge image is maximum, which indicates an edge. It is difficult to segment the entire
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No 

Yes 

YES 

NO

Segmentation flow diagram

START

Initialize iris circle center (x,y) and 
radius (r)

Draw circle with radius and center 
coordinates

Compute gradient of the iris circle

Compare if gradient>maximum Maximum gradient of circle

Change circle cordinates

Is it the end of image?

Repeat for pupil circle END

Figure A.4: Flow diagram of iris image segmentation

database due to segmentation parameters that are set like the scaling parameter σ. The

segmentation parameters which segmented greater number of images accurately for the

two iris image databases are tabled in table A.1 below:

Table A.1: Table of segmentation parameters

Range of pupil and iris radius CASIA UBIRIS

Lower Pupil Radius 27 5

Upper Pupil Radius 76 11

Lower Iris Radius 80 39

Upper Iris Radius 150 49

The success of the segmentation algorithm implemented in this work using these pa-

rameters are depicted in figure A.5. Images which failed the implemented segmentation

algorithm as a result of illumination have been discarded from the analysis of this ex-

periment.

The segmentation illustrated in figure A.5, illustrates how the region of interest is located
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(i) (iii) (ii) (iv)   CASIA IMAGES UBIRIS IMAGES 

Figure A.5: Segmentation of CASIA and UBIRIS iris images

from the raw image using the CASIA and UBIRIS iris databases. This is the most

important stage in the preprocessing stage of iris recognition system. In figure A.5,

the column marked (i) and (ii) depicts images extracted from CASIA database while

columns marked (iii) and (iv) depicts images taken from UBIRIS database. Column (i)

shows an image which has not been badly occluded by eyelashes but some iris regions

are occluded by the top and bottom eyelids. The second column marked (ii) have been

badly occluded by top eyelashes and both top and bottom eyelids. From the UBIRIS

images in column marked (iii), the image is badly occluded by top eyelashes and both

top and bottom eyelids, whereas the column marked (iv) depicts the image occluded by

top eyelashes and top eyelids but less occluded by bottom eyelid.

A.2.2 Eyelash and eyelids detection

To address the areas affected by noise either eyelids, eyelashes, or specular reflection the

identified noised area should be masked to enhance the matching performance. Masking

of eyelashes in this work, was done by employing an adaptive threshold analysis to detect
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areas occluded by eyelashes. However, not all the eyelashes can be identified, so only

eyelashes which will have serious effect (those which are darker than the iris region) on

the template generation will be masked. Noise regions within the iris were also detected

and masked as shown in a masked image in column (ii) of figure A.6.

(i) (iv) (ii) (iii) CASIA IMAGES UBIRIS IMAGES 

Figure A.6: Masking of CASIA and UBIRIS iris images

The images in figure A.6, depicts the masking process of both CASIA and UBIRIS

images. As explained above, columns marked (i) and (ii) are images extracted from

CASIA and (iii) and (iv) are images extracted from UBIRIS. Occlusion by noise such

as eyelashes, eyelids is shown in all the columns (i)-(iv). However, column (ii) explicitly

depicts an instance where an image is heavily affected by large amount of noise such

as eyelashes, eyelids and some specular reflections. Some of the areas inside the iris

region has also been affected with noise, as shown in column (ii) and these may cause

serious effects when this image is matched with its other instances which won’t be highly

affected by the noise within the iris region.
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A.2.3 Iris Normalization

Normalization is the process of transforming a segmented image into a fixed dimensions

to avoid effects from changes in illumination, distance from camera and pupil dilation.

The segmented iris image needs to be transformed into a fixed normalized dimension

of polar coordinates in order to ease the feature extraction and templates matching

process. As discussed in chapter 2, illumination causes the pupil to dilate leading to

inconsistencies in segmented images. Normalization of these images produces an image

of equal dimensions by mapping each point in an image into polar coordinates system.

The procedure adopted in this work uses the famous Daugman rubber sheet model which

has been explained in detail in chapter 2. The equation used to transform the iris region

into a rectangular block of polar coordinates is shown in equation 2.4, in chapter 2.

Results of the Daugman’s normalization method is shown in figure A.7:

(i) (ii) (iii) (iv) 

CASIA IMAGES 

(i) (ii) (iii) (iv) 

UBIRIS IMAGES 

Figure A.7: Results of iris image normalization using both CASIA and UBIRIS images

Figure A.7 depicts the results of iris image normalization. Images numbers (iii) are

showing the transformed rectangular co-ordinates into polar co-ordinates. To make the

iris region more useful and manageable the normalized image is then converted into a
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rectangular block of fixed dimension, to ease the feature extraction and feature matching

processes. After this transformation to rectangular block, features can be extracted using

algorithm 1, and matched using the equation of the NHD shown in equation 2.8. The

results of the NHD matching technique in terms of the ROC are depicted in the figure

A.8 below. These results were tested using both CASIA and UBIRIS images.
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Figure A.8: ROC Curve for the NHD scores



Appendix B

Feature extraction using Multi-Lobe
Differential filter

B.1 Feature Extraction

The procedure for extracting ordinal features involves determining the blobs or dark

and light regions within the rectangular block of a normalized iris region. The basic

idea of ordinal feature extraction as discussed by Sun et al., [21] and Dong et al., [24]

evolved from [19]. This is accomplished by passing the MLDF feature extractor into a

normalized iris region. To get the ordinal features from a normalized image, the image

is divided into overlapping regions or blocks of fixed size of 16 × 64. The ordinal filter

in equation 2.23 is convolved with each block and encode the iris template by capturing

bits that results from the sign of the filter. Because templates were compared from

regions with varying intensity levels, each region was allocated a fixed size of 5× 5, with

a scaling parameter σ = 1.7. The output of the feature extractor is the code determined

by the output value of the equation 2.23 as discussed in chapter 2. Figure B.1 depicts

the pictorial comparison of Gaussian lobes or regions used in this feature extraction

process:

B.2 Weight Map for Matching

The matching algorithm used in this feature extractor is an advanced NHD called the

WHD because it incorporates weights into the matching function. To generate the

weights for each template, the following procedure was followed; based on the explana-

tion found in [24]. If the test database has k training images then their iris templates can

be denoted by a vector of templates as
(
Templates = template1, template2, template3, ..., templatek

)
.

From these templates k× k of intraclass matchings can be used to estimate the average

81
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Figure B.1: The feature extraction using MLDF strategy [21]

matching results using equation B.1.

P =
1

k × k

k∑
a=1

k∑
b=1

templatea � templateb (B.1)

where P is a vector of bits denoted by P = p1, p2, p3, ..., pn, and which represents the

probability of a match resulting to 1. The value of pi also represents the stability of

bits in the templates, and the bigger the value of pi the more the stability of bit i. If

for every given k iris templates given, the value of (pi = 1) for a possible number of

outcomes say q1 times and (pi = 0) for about q0 times, implying that the sum of these

possible outcomes results to the number of training iris templates (i.e q1 + q0 = k), then

the average bit i can be computed using the equation B.2.

pi =
q21 + q20

(q1 + q0)
2 (B.2)

From this equation, the weight map can be computed using equation B.3.

wi = 2
q21 + q20

(q1 + q0)
2 − 1 (B.3)
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This procedure needs to be updated every time when a new template in being matched.

To update the weight map, equation B.4 is used because every template is different and

contains different bits.

Wn+1 =

n2 ×Wn + 2
n∑

m=1
(templaten+1 � templatem − 1)

(n+ 1)2
(B.4)
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The results from this technique is illustrated in figure B.2 below using CASIA and

UBIRIS images.
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Figure B.2: ROC Curve for the WHD scores
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Iris recognition based on Multi-Channel
Gabor filtering

The pre-processig and segmentation stage has been explained in appendix A. This section

will give details of feature extraction implemented in this work using Multi-Channel

Gabor filtering as detailed by Tan [9]. The same approach was adopted by Zhu et al.,

in [93] and Ma et al., in [94]. The procedure followed in this work was adopted in [9].

C.1 Extracting Iris Features using Multi-Channel Gabor

filtering

From the normalized iris image explained in appendix A, we let the even and odd

symmetric Gabor filtering as discussed in chapter 2, equation 2.14 and 2.15 be GE(x, y)

and GO(x, y) respectively. In [9], it was explained that four elemental simple cells can

explain cortical channels which are tuned to a specific band of spatial frequencies and

orientation. If we let I(x, y) to be the input image and J(x, y) be the output image,

then the four cells from the output image can be expressed in terms of Ji(x, y) where

i = 1, 2, 3, 4. Then, for each output image we can have the following equations:

J1(x, y) =
1

2
(|GE(x, y)⊗ I(x, y)|+GE(x, y)⊗ I(x, y)) (C.1)

J2(x, y) =
1

2
(|GO(x, y)⊗ I(x, y)|+GO(x, y)⊗ I(x, y)) (C.2)

J3(x, y) =
1

2
(| −GE(x, y)⊗ I(x, y)| −GE(x, y)⊗ I(x, y)) (C.3)

J4(x, y) =
1

2
(| −GO(x, y)⊗ I(x, y)| −GO(x, y)⊗ I(x, y)) (C.4)

where the symbol ⊗ denotes the convolution of a 2D Gaussian filter in all the equations.

Noting that the four elemental simple cortical cells represent only one visual cortical

channel, the output image with four channels can now be written in terms of the following
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equation:

J(x, y) =

√√√√ 2∑
i=1

(
Ji(x, y) + Ji+2(x, y)

)2
(C.5)

Combining the above equations we produce the new output images which defines a

computational model for visual cortical channels as explained in [9]. The equations for

the new output images follows below:

JE(x, y) = GE(x, y)⊗ I(x, y) (C.6)

JO(x, y) = GO(x, y)⊗ I(x, y) (C.7)

From the two equations above, the features can be produced by using equation C.8, with

parameters as explained in chapter 2.

J(x, y) =
√
J2
E(x, y) + J2

O(x, y) (C.8)

The features extracted using equation C.8 are expressed in terms of mean (µ) and

standard deviation (δ). Twenty four features are extracted as mean and twenty four

features are extracted as standard deviations for each image. The total features becomes

48 and represented in a two column matrix with the first column as mean and the second

column as standard deviation. The extracted features were matched using WED shown

in equation 2.20 in chapter 2.
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The results for this implementation based on the ROC curve is shown in figure C.1

below:
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Figure C.1: ROC Curve for the WED scores



Appendix D

Iris recognition using Hierarchical
Phase-Based Matching

The block based iris image matching is explained by the flow chart below:

Structure of block based POC image matching

Iris
Segmentation 

Iris 
Region Extraction 

CASIA IMAGE UBIRIS IMAGE

Input 
image

2D 
Discrete Fourier Transform  Ir

is
D

at
ab

as
e 

Compute
POC value/score

Decision:
Is score close to zero?

Image
matching

Figure D.1: HPB Flowchart [24]

The process of extracting the blocks is shown in algorithm 17. This method is difficult

to automate when different databases are used. For this reason a MATLAB built-in

function called BLKPROC or blockproc was used to extract the blocks, because in this

work the bottom block above the bottom eyelid was aimed to extract more features than

the rest of the block. To achieve that, one function process four blocks and one function

process the last big block separately. It is also easy and convenient to implement various

function within the BLKPROC, main function.
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Algorithm 4: Block Partition an Image into 5 Blocks of size, S = 45× 25

Input: A segmented image I(x, y)
Output: 5 Blocks of sub-images of equal dimensions 45× 25, where 45 is the height

and 25 is the width of the block
1 We need I(x, y) 6= ∅
2 Take the center of the image to be C = (xc, yc)
3 [45 25] ← Size(S) which is the size of each block
4 for ∀ sub-images Si ∈ I(x, y) do
5 S1 ← ((x1 = xc − 65) , (y1 = yc − 10))
6 S2 ← ((x2 = xc + 70) , (y2 = yc − 10))
7 S3 ← ((x3 = xc − 55) , (y3 = yc + 20))
8 S4 ← ((x4 = xc + 55) , (y4 = yc + 120))
9 S5 ← ((x5 = xc + 20) , (y5 = yc + 30))

10 return Sub-images of I(x, y)
11 —–Compute the Phase Components—–
12 -Compute phase components for each sub-region
13 -Compute match score for each block using equations 2.28 and 2.29
14 if POC for f(ni, nj)← Si then
15 Get matched images

16

17 return Matched Images

The results generated from this approach are presented below. The figures that follows

compares images from the intra-class images and inter-class images for both CASIA and

UBIRIS databases. Figure D.2 depicts the correlation using the between class variations.

The results shown in figure D.2 are for CASIA left images only. Take note that the higher

the correlation value the stronger the relationship, and vice versa.
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Figure D.2: POC for inter-class images using CASIA left eyes images
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The POC for CASIA right eyes images are presented in figure D.3 below:
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Figure D.3: POC for within class variations using CASIA right eyes images
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The POC for images from UBIRIS images are presented in figure D.4 below:
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Figure D.4: POC for the same image using UBIRIS images
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The POC within class variation using UBIRIS images are presented in figure D.5 below:
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Figure D.5: POC for within class variation using UBIRIS images
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The POC between class variation for images extracted from UBIRIS database are pre-

sented in figure D.6 below:
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Figure D.6: POC for between class variation using UBIRIS with images
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The ROC curve for the analysis of this iris recognition system was also implemented.

The results from this technique is illustrated in figure D.7 below using CASIA and

UBIRIS images.
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Figure D.7: ROC Curve for the POC scores


	Declaration
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	1 Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Research Objectives
	1.4 Research Questions
	1.5 Research Hypothesis
	1.6 Research Contribution
	1.7 Delimitation, Limitations and Assumptions
	1.8 Summary
	1.9 Dissertation Overview

	2 Related Work
	2.1 Related Work in Iris Recognition systems
	2.2 Related Work in Iris Fusion
	2.3 Summary

	3 Theoretical Considerations
	3.1 Fusion Architectures
	3.2 Categories of Fusion
	3.3 Levels of Fusion
	3.3.1 Sensor Level Fusion
	3.3.2 Feature Level Fusion
	3.3.3 Matching Score Level Fusion
	3.3.3.1 Simple Sum Rule
	3.3.3.2 Weighted Sum Rule
	3.3.3.3 Minimum Score
	3.3.3.4 Maximum Score
	3.3.3.5 Adaptive Sum Rule

	3.3.4 Rank Level Fusion
	3.3.5 Decision Level Fusion

	3.4 Summary

	4 Methodology
	4.1 Introduction
	4.2 Research Design
	4.3 Research Instruments
	4.4 Data
	4.5 Proposed Method
	4.6 Iris Image Pre-Processing and Iris Segmentation
	4.7 Iris Feature Extraction
	4.8 Iris Feature Matching
	4.9 Scores Normalization
	4.10 Score Level Fusion Implementation
	4.11 Summary

	5 Experimental Results and Discussion
	5.1 Introduction
	5.2 Iris Feature Quality
	5.3 Performance Comparison
	5.4 Fusion Experimental Results
	5.5 Summary

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	A Iris Recognition based on Phase Information
	A.1 Iris image pre-processing
	A.2 Iris image segmentation
	A.2.1 Locating the iris and pupil region
	A.2.2 Eyelash and eyelids detection
	A.2.3 Iris Normalization


	B Feature extraction using Multi-Lobe Differential filter
	B.1 Feature Extraction
	B.2 Weight Map for Matching

	C Iris recognition based on Multi-Channel Gabor filtering
	C.1 Extracting Iris Features using Multi-Channel Gabor filtering

	D Iris recognition using Hierarchical Phase-Based Matching

