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Abstract

Indexing Techniques for Fingerprint and Iris Databases

by

Rajiv Mukherjee
Master of Science in Electrical Engineering

West Virginia University

Arun Ross, Ph.D., Chair

This thesis addresses the problem of biometric indexing in the context of fingerprint and iris
databases. In large scale authentication system, the goal is to determine the identity of a subject
from a large set of identities. Indexing is a technique to reduce the number of candidate identities
to be considered by the identification algorithm. The fingerprint indexing technique (for closed set
identification) proposed in this thesis is based on a combination of minutiae and ridge features.
Experiments conducted on the FVC2002 and FVC2004 databases indicate that the inclusion of
ridge features aids in enhancing indexing performance. The thesis also proposes three techniques
for iris indexing (for closed set identification). The first technique is based on iriscodes. The
second technique utilizes local binary patterns in the iris texture. The third technique analyzes
the iris texture based on a pixel-level difference histogram. The ability to perform indexing at
the texture level avoids the computational complexity involved in encoding and is, therefore, more
attractive for iris indexing. Experiments on the CASIA 3.0 database suggest the potential of these
schemes to index large-scale iris databases.
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Chapter 1

Introduction

1.1 Introduction

Biometrics [1] is playing a major role in automated personal identification systems deployed

to enhance security all over the world [2]. The word biometrics is derived from the ancient Greek

words ‘bios’ and ‘metron’ meaning life and measure, respectively. Thus, biometric recognition or

biometrics refers to automatic recognition of individuals based on their behavioral and/or physical

characteristics. Examples of physical characteristics include iris, face, fingerprints, retina, hand

geometry, vascular patterns (in the palm , finger, eye etc.), while behaviorial characteristics

include signature, gait, keystroke dynamics (typing). Voice is a combination of both physical

and behavioral characteristics.

The biometric market segmentation by technology in January 2007, as analyzed by the In-

ternational Biometric Group (IBG [2]) is shown in Figure 1.1. The report estimated the revenue

of Automatic Fingerprint Identification System (AFIS) market to be highest amongst biometric

technologies. It should be noted that AFIS is used in forensic applications. If non-AFIS bio-

metric revenue is considered, fingerprint-based biometric systems continue to lead in terms of

market share (38.1%), followed by face (19.4%) and iris (8.7%) based biometric systems.

The enhanced security provided by a biometric system can be attributed to the fact that

the authentication system is based on pattern recognition of features unique to each individual,

thus obviating the need to remember passwords or carry documents/identification (ID) cards

which can easily be lost, stolen or forged. The change of focus from ‘what I remember or

possess’ to ‘who I am’ has made a huge impact on improving security in applications such as
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Figure 1.1: Biometrics market segmentation by technology. Source: IBG.

airport surveillance [3], corporate time keeping, home security and other personal and group ID

management systems. For example, facial recognition could be used in airports as a surveillance

tool to identify persons of interest (whose biometric information is available in a watch list)

without the subject’s cooperation or knowledge. Biometrics like fingerprint and iris can be used

to perform access control for employees in the corporate sector and the resulting attendance

information can be further used to perform payroll processing. Fingerprint based door locks are

being used to enhance home security1. Hospitals are using biometric technology to strengthen

system security in order to be compliant with data privacy and computer security requirements

of the Health Insurance Portability and Accountability Act (HIPAA [4]).

A biometric system [5,1] is a pattern recognition system that operates by acquiring biometric

data from an individual, extracting a feature set from the data acquired, and comparing this

feature set against the template set stored in the database. A biometric system consists of four

main stages [1].

1. Sensor: It is an acquisition device that captures the biometric data of an individual. For

example, an iris sensor images an individual’s iris texture.

2. Feature extraction: It is responsible for processing the biometric data to extract a set of

1http://www.findbiometrics.com/press-release/3817
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discriminatory features. For example, in a hand based biometric system the geometric

properties of the hand image are extracted.

3. Matcher: It compares the features extracted against stored templates in the database and

generates a matching score. For example, in an iris recognition system, the IrisCodes

(features extracted) are compared with IrisCode templates in the database. Often the

matching stage includes a decision making stage based on the matching score. For example,

a subject’s claimed identity is confirmed or denied (verification) or a subject’s identity is

established (identification).

4. Database: It stores the biometric templates of the enrolled users. The enrollment process

comprises of capturing the biometric data in digital form, checking the quality of the

digital representation and if the quality meets the requirement then the features extracted

are stored in the database as templates (compact representation of features extracted).

A biometric system could be either a verification system or an identification system depend-

ing on the application. A verification system compares the acquired trait with the template of

the claimed identity pre-stored in the system. The verification system will either accept or reject

the claimed identity. A verification system performs one-to-one matching. In contrast, an iden-

tification system identifies an individual by searching potentially, the entire template database

for a match. This kind of a system performs a one-to-many matching. The identification system

can either establish the person’s identity with some level of accuracy or fail if the individual does

not exist in the enrolled database. The enrollment, verification and identification stages of a

biometric system are shown in the Figure 1.2.

In a large scale identification system, the goal is to reduce the number of candidates to be

considered by the identification algorithm. The contribution of this thesis is in the design of such

algorithms for fingerprint and iris. The following section describes fingerprint and iris based

biometric systems in more detail.

1.2 Fingerprint as a biometric

Fingerprints have been widely used in forensic as well as commercial applications for iden-

tification as well as verification. For instance, US-VISIT (United States Visitor and Immigrant
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Figure 1.2: Enrollment, verification and identification stages of a biometric system.
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Status Indicator Technology), a program initiated by the DHS (Department of Homeland Secu-

rity), requires certain non-US citizens to have their two index fingers digitally scanned at the

US port of entry. This helps to instantly check the background of the person seeking entry.

Another application can be seen in the IAFIS (Integrated Automated Fingerprint Identification

System). The IAFIS is a national fingerprint and criminal history system maintained by the

Federal Bureau of Investigation (FBI), Criminal Justice Information Services (CJIS) Division.

The IAFIS uses multiple fingerprint of a person (10 prints) as an additional information in order

to allow for large scale identification invlolving millions of fingerprints [6].

There are several advantages and disadvantages associated with using fingerprint as a bio-

metric.

The advantages can be listed as:

1. Fingerprints are considered to be unique to an individual. This uniqueness allows it to be

used as a biometric trait.

2. Most people are familiar with the use of fingerprint for identification and access control.

Therefore, it is accepted as a technology.

3. Unlike other biometric scanners (e.g., iris and retina scanners), fingerprints scanners are

easy to use and relatively non-intrusive.

4. Most fingerprint scanners today are inexpensive and easy to install. Fingerprint scanners

can be very small (e.g., swipe sensors incorporated in laptops, cell phones etc.).

The disadvantages include the following:

1. Fingerprint often have a negative connotation attached to them because they have been

traditionally been used for criminal investigations.

2. The quality of fingerprint may suffer due to weather conditions, thus degrading recognition

accuracy.

3. Fingerprint spoofing [7] is a major problem in unsupervised, fingerprint based biometric

systems. ‘Liveness detection’ [8] is used to differentiate a true fingerprint from a fake one.
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Figure 1.3: Some common minutiae types.

1.3 Fingerprint Representation

Fingerprints are oriented texture patterns present on the surface of the finger consisting of

interweaved ridges and valleys. At about seven months of prenatal development, fingerprints

are fully formed [5]. The finger ridge configuration of the individual do not naturally change.

However cuts and bruises affect the ridge pattern. In context of digital images of fingerprints, the

dark areas called ridges and the bright areas called valleys are the most important characteristics

of the fingerprint structure. The ridge lines have a high curvature in certain regions when the

fingerprint image is analyzed at a global level, lending the ridge lines a distinct shape. These

regions are called singularities [5]. Such singular regions can be classified into ‘loop’, ‘delta’ and

‘whorl’. Most fingerprint matching techniques align two fingerprints on the basis of a registration

point called the ‘core’, which corresponds to the center point of the north most ‘loop’ type

singularity. For fingerprints that do not contain ‘loop’ singularities, defining the core becomes

difficult. In such cases, the ‘core’ is associated with point of maximum ridge line curvature.

Unfortunately, due to image acquisition issues and large intra class variability of fingerprints, it

is difficult to define the ‘core’ reliably.

When the fingerprint is analyzed at the local level, minutiae (small details) can be found in

the fingerprint pattern. In 1892, Sir Francis Galton introduced the minutiae features for finger-

print matching. Minutia describes the discontinuity in the ridges (e.g., termination, bifurcation,

crossover, spurs etc.). Some common minutiae types are shown in Figure 1.3. However, only

a few of these minutiae types are used in practice due to practical difficulty in identifying the

minutia type reliably. For instance, the FBI minutia model consists of only terminations and

bifurcations [5]. In this model, each minutia is denoted by its location in the spatial domain, and
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Figure 1.4: Fingerprint characteristics.

the angle between the horizontal axis and the tangent to the ridge line at the minutia location.

If a fingerprint image is acquired at higher resolution, it is possible to capture the ‘sweat

pores’ present on the ridge lines. These pores have highly distinctive features like number,

location, shape, etc. but the ability to extract such information is dependent on the availability

of high resolution scanners and good quality fingerprint images. Figure 1.4 shows some important

characteristics of fingerprints.

On the basis of the extracted features from fingerprints, fingerprint matching can be cate-

gorized into three types namely correlation based matching, ridge feature based matching and

minutiae based matching [5].

1. Correlation based matching: The fingerprint images are superimposed on each other

and the correlation between the corresponding pixel intensities is computed for different

alignments.

2. Minutiae based matching: This is the most popular technique whereby minutiae points

are extracted from the two fingerprints to be matched and their location and ridge orienta-
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tions are stored. The matching process comprises of determining the alignment between the

template and input minutiae set that results in the maximum number of minutiae pairings.

For low quality fingerprint images the minutiae extraction process can be difficult.

3. Ridge feature based matching: Since pixel intensities and minutiae locations are fea-

tures of the ridge pattern, they can be considered to be sub-categories of the ridge features.

In ridge feature based matching, the texture information, local orientation, frequency and

ridge pattern are used to match two fingerprints.

1.4 Iris as a biometric

The iris is considered to be a reliable biometric for human identification for several reasons.

These can be listed as follows [9]:

1. The iris is an internal organ of the eye. It is protected from external wear and tear by

the cornea, which is a highly transparent membrane. This makes it more reliable than

fingerprints which is more susceptible to change after an extended period of manual labor.

2. Like fingerprints, iris texture generation is a chaotic process [10] that takes place during the

embryonic gestation period. The human iris structure begins to form in the third month

of gestation and is formed fully by the eighth month. However the color of the eye begins

to form during the first year of birth. The advantage of the chaotic structure of the iris is

that even genetically identical monozygotic twins have unique iris textures, though their

‘DNA fingerprint’ [11] is the same.

3. The iris texture is believed to have long term stability, though some medical conditions or

procedures can affect the shape and color of the iris.

4. The non-contact acquisition system used for iris recognition makes it more acceptable than

fingerprints which mostly use touch based sensors.

5. The geometric configuration of the iris is controlled by the sphincter and the dilator muscles.

Therefore the iris shape is predictable.

However, there are certain issues which hinder the use of iris as a biometric. These include

the following:
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1. The iris acquisition process requires the subject’s cooperation, and it is difficult to capture

useful iris data if the subject is not keeping his head still and looking into the camera.

2. Since iris recognition is based on digital image acquisition, it is susceptible to failure-to-

enroll (FTE) due to poor image quality.

3. Another interesting issue related to iris in particular is the ‘liveness detection’ [12,8,13] or

the ‘live tissue verification’ [14]. This is a concern not so much in supervised iris acquisition

but mainly in unsupervised iris acquisition.

1.5 Structure of the iris

Iris [15] is the most visible part of the human eye. The iris is characterized by pigmented

fibrovascular tissue known as stroma. The stroma consists of sphincter and dilator muscles,

responsible for the contraction and dilation of the pupil that controls the amount of light entering

the pupil. The outer boundary of the iris, attached to the sclera and the anterior ciliary body, is

known as the root. The iris and the ciliary body are together called the anterior uvea. The iris

can be divided into two regions, namely the pupillary zone and the ciliary zone. The pupillary

zone is the inner region that forms the boundary of the pupil. The rest of the iris forms the ciliary

zone. The region separating the pupillary zone from the ciliary zone is called the collarette and

it is region where the sphincter and dilator muscles overlap. The anatomy of the iris is shown in

Figure 1.5. The anterior layer of the iris has interesting features like pupillary ruff, contraction

furrows and crypts [15]. The posterior layer features include the circular contraction fold, radial

contraction fold and structural fold.

Anterior Layer Features

1. Pupillary ruff : It is a series of ridges in the pupillary region formed due to the continuation

of pigmented epithelium from the posterior surface.

2. Contraction furrows: They are a series of circular folds formed between the iris origin

and the collarette. The formation of these folds is due to the change in iris surface caused

by contraction and dilation.

3. Crypts: There are two places where crypts are observed in the iris. The Crypts of Fuchs

are crater like openings found on either side of the collarette, that allows iris tissues to be
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Figure 1.5: Anatomy of the iris. The white blobs on the pupil are specular reflections due to
imaging device.

bathed in aqueous humour (thick watery substance present in the eye). Crypts are also

observed at the base of the iris, close to the outer boundary of the ciliary region.

Posterior Layer Features

1. Circular contraction fold: They are circular ridge patterns over the posterior surface.

2. Radial Contraction folds of Schwalbe: They are radial folds observed from the pupil-

lary boundary to the collarette.

3. Structural folds of Schwalbe: They are broader and more widely spaced radial folds.

1.6 Iris Recognition System

The goal of an iris recognition system is to extract, represent and compare textural infor-

mation present on the iris surface [16]. The main modules of such a system are segmentation,

enhancement, feature extraction and matching. During enrollment the features are extracted

and stored in the database as templates. The authentication phase encompasses image pre-

processing followed by feature extraction for a given iris image. This feature set is then com-

pared with the templates in the database in order to perform identification or verification of

an individual’s identity. Depending on the technique used to represent iris texture information,

iris recognition algorithms [16] can be categorized into a) appearance based [17, 18], b) filter
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Figure 1.6: A typical iris recognition system

based [9, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 17] and c) feature based tech-

niques [35, 36, 37]. The first iris recognition algorithm proposed by Daugman used a texture

based technique to encode iris into a 256 byte IrisCode using a multi scale 2D Gabor-Wavelet

transform.

1.7 Challenges faced by biometric systems

Biometric systems face certain limitations which must be considered before any large scale

deployment of such systems.

Some of the challenges are listed below:

1. Noisy data: A poorly illuminated face image, fingerprint image with scar are examples of

noisy data. Noisy data could be the result of defective or ill maintained sensors (e.g., dirt

accumulation on a fingerprint sensor) or undesirable ambient conditions. Nosy biometric

data may lead to a genuine user being incorrectly rejected [6].

2. Intra-class variations: Intra-class variations is the changes in the biometric trait over

time (e.g., facial changes over the years), variations in psychological conditions of the

individual (e.g., changes in behavioral characteristics like voice, hand writing etc.) due

to stress etc. In order to combat the degrading effect of intra class variation, multiple
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templates can be stored for each individual and these templates can be updated from time

to time [6].

3. Inter-class similarities: The overlap of feature space corresponding to multiple classes2

contribute towards inter-class similarities. In a large scale identification system, the inter-

class similarities will lead to increase in false match rate of the system [6].

4. Lack of universality: Sometimes it is difficult to capture meaningful biometric data for

certain group of users. For example, a fingerprint based biometric system may extract

spurious minutiae points from a fingerprint due to its poor quality of ridges. The lack of

universality of the biometric trait leads to increase in Faliure To Enroll (FTE) rate. This

problem can be solved by using multibiometric systems [6].

5. Interoperability issues: The underlying assumption of most biometric systems is that

the biometric data to be compared comes from the same sensor. Therefore, such com-

parisons cannot be done reliably when using different sensors due to changes in image

resolution, sensor technology and sensing area etc. By addressing the interoperability [38]

issue in feature extraction and matching stages of the biometric system, this problem can

be handled better.

6. Spoofing: Spoofing [7, 12]a biometric system includes manipulating one’s biometric trait

in order to avoid authentication and creating physical replicas of original biometric traits

in order to falsely take the identity of another person. In order to combat the problem of

spoofing for physical traits such as fingerprints and iris, ’liveness detection’ [8,13] schemes

have been proposed.

1.8 Problem Statement

In large scale authentication systems like ABIS (Automatic Biometric Identification System)

and BATS (Biometric Automated Toolset System), the goal is to determine the identity of a

subject from a large set of users already enrolled in the biometric database. The user accessing

the authentication system in order to be identified is known as the query user. There are

three ways to approach the identification problem. The first is the naive method of performing

2The class could be an individual.
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one to one matching of the biometric trait of the query user with all the users enrolled in the

system. This method is not feasible for large databases due to the enormous time complexity

associated with it. The second method is traditional classification (see Figure 2.1) where the

database is divided into a small number of classes (not necessarily mutually exclusive). The

biometric attribute of the query user is assigned to one (or more) of these classes and matching

is performed with all the users in the assigned class until a matching criteria is satisfied. The

third technique is to considerably reduce the number of candidate hypotheses for matching. The

indexing scheme (see Figure 1.8) assigns an index value to the biometric trait of the query user

and matching is performed with respect to users in the database with comparable index values.

Fingerprints and iris are being widely used in large scale authentication systems, making them

attractive for indexing research. The contribution of this thesis is in designing novel indexing

techniques for fingerprint and iris.

It should be noted that indexing can be done using soft biometric traits (like gender, ethnicity,

age, height, eye color etc.) [6, 39]. Such soft biometric traits can be extracted from the user at

the time of enrollment and later used in order to reduce the number of candidates for matching.

However, soft biometrics lacks the distinction and permanence to identify an individual reliably

and uniquely.

1.9 Organization

In Chapter 2, the fingerprint indexing model is discussed and the indexing performance on

the FVC2002 and FVC2004 databases is reported. In Chapter 3, three iris indexing techniques

are proposed and their indexing performances on CASIA 3.0 are discussed. Finally in Chapter 4,

the contributions of this thesis are summarized and future work in the field of biometric indexing

is presented.
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Figure 1.7: Identification using classification technique
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Chapter 2

Fingerprint Indexing

2.1 Introduction

Fingerprint-based identification systems search through a large database of fingerprint entries

for possible matches based on the given query print. Each entry has an associated identity and a

matching function is used in order to determine the similarity between two fingerprints. However,

due to the large number of entries in the database, one to one matching of the query print with

each fingerprint in the database would be computationally infeasible. Therefore, a filtering

process is usually invoked in order to reduce the number of candidate hypotheses for matching

operation. Filtering can be achieved by two different approaches: classification and indexing.

Classification involves partitioning the database into multiple classes1 and comparing the query

print with prints belonging to the class assigned to the query print. In contrast, indexing [40]

assigns an index value2 to each fingerprint and, therefore the query print is compared with those

prints in the database which have comparable index values.

Fingerprint classification schemes based on human defined categories (such as Left Loop,

Right Loop, Arch, Tented Arch and Whorl. See Figure 2.1) have an inherent problem due to the

small number of classes (e.g., 5 - 8) and the uneven distribution of fingerprints across these classes.

Furthermore, most classification schemes [41, 42, 43, 44, 45, 46,47] are based on the configuration

of singular points (i.e., core and delta points) which may not be available in prints acquired

using small-sized sensors. In this work, we focus on indexing techniques for fingerprint filtering.

The proposed approach extends the indexing framework based on minutiae triplets proposed by

1The classes are not necessarily mutually exclusive.
2The index can be a vector entity.
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Bhanu et al. [48], Germain et al. [49], and Bebis et al [50]. The primary contributions of this work

are: (a) the inclusion of ridge curves associated with minutiae triplets in devising the indexing

mechanism; and (b) demonstrating the efficacy of the indexing process across multiple sensors

with comparable resolution.

2.2 Classification vs Indexing

Fingerprint classification is the problem of assigning a fingerprint to a class, generally based on

global features (e.g., ridge structure and singularities), in an efficient and reliable way. However

fingerprint matching is performed according to local features (e.g., minutiae). Thus, the finger-

print matcher is required to compare the query fingerprint (to be identified) to the fingerprints

in its class.

2.2.1 History of Fingerprint classification

In 1823, Purkinje proposed the first fingerprint classification rule. In his classification model,

fingerprints were classified according to their global ridge configuration. Nine classes were pro-

posed, namely, transverse curve, central longitudinal stria, oblique stripe, oblique loop, almond

whorl, ellipse, circle, and double whorl [5].

In 1892, Francis Galton made the first scientific study and proposed a classification model

with three classes, namely, loop, arch and whorl. These classes were further divided into sub

classes. Around the same time, Juan Vucetich proposed a different classification system [5].

In 1899, Edward Henry established the ‘Henry system’ to classify fingerprints. Fingerprint

classification can be considered to be a coarse level matching of fingerprints. Though the classifi-

cation technique cannot identify fingerprints uniquely, it can be used to determine non-matching

fingerprints with considerable accuracy. The fingerprint classes used by most researchers are Left

Loop, Right Loop, Arch, Tented Arch and Whorl. Sometimes a sixth class called Twin Loop

is also used. However, because of its similarity with Whorl, it is often merged with the Whorl

class.
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2.2.2 Fingerprint Classification Techniques

Several different approaches have been adopted by researchers to classify fingerprints. These

approaches can be divided into syntactic [41,42], structure based [43], statistical [44], singularities

based and neural network based methods [45].

1. Syntactic classifier: Traditionally, syntactic classifier was used for fingerprint classifica-

tion. In this approach, the patterns in the fingerprint image are extracted and represented

as symbols. These symbols are parsed and the pattern is allotted to a class according

to a predefined grammar. Due to large variations in fingerprint patterns, a complicated

grammar is required.

2. Structure based classifier: In this approach, the directional image is first segmented

into homogeneous regions using a clustering algorithm which maintains regularity in re-

gion topology by minimizing the regional variance of element direction. Next, a relational

graph is created, which is invariant to translation and rotation. Thereafter, a graph match-

ing technique is used to find out the proximity of a graph derived from the input fingerprint

image, to the graphs representing the distinct classes. In geometry based classifiers, classi-

fication is based on turn detection on the traced curves generated by splines (B spline, T

spline, etc.) that are used to model fingerprint ridge lines.

3. Statistical classifier: The basic idea behind this approach is to derive a fixed length

feature vector from each fingerprint and use a statistical classifier (e.g., K-nearest neigh-

bor) to classify it. However, training a classifier is difficult both in terms of memory and

computation time when the dimensionality of the vector is high. Therefore, dimensional re-

duction techniques are used to reduce the dimension of the feature vector. KLT (Karhunen

Loeve Transform) is a famous dimensionality reduction technique, but it can also be used

for classification. The KLT guarantees a good preservation of Euclidean distance between

vectors [5]. Other variants of this technique like MKLT (Multi-space KLT) have also been

used in the literature.

4. Singularities based classifier: The location and number of singularities are used to per-

form classification. Sometimes additional features such as topology of the ridge curves and

local orientations are used to improve performance. However, due to noise and other issues



CHAPTER 2. FINGERPRINT INDEXING 19

such as partial fingerprints (where singularity points might be missing), the singularity

point detection can be extremely difficult [5].

5. Neural network based classifier: Several multi layer perceptrons are trained to rec-

ognize fingerprints belonging to different classes. Some researchers have also proposed a

multi layer self organizing map for classification [51].

Since different classifiers can misclassify different patterns, there is sufficient motivation for mul-

tiple classifier based approaches. In this approach, the complementary information offered by

different classifiers can be exploited. The selection of the component classifiers can be done in a

variety of ways (e.g., distinct classifiers, distinct training data, distinct features). The combina-

tion strategy could be rule-based, majority voting rule, K nearest neighbor or neural network.

CORE
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(a) (b)

CORE
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(c) (d)

CORE


DELTA
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(e)

Figure 2.1: Fingerprint classification based on singularity points. (a) Left Loop. (b) Right Loop.
(c) Arch. (d) Tented Arch. (e) Whorl.

2.2.3 Fingerprint Indexing Techniques

The problem with fingerprint classification is the small number of classes and the uneven

distribution of fingerprints across these classes. The left loop, right loop and whorl classes

contain more than 90% of the fingerprints. This does not pose much of a problem in a ten print
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identification system because a distinct code can be created from the knowledge of the classes of

the individual fingerprints, thus reducing the number of candidate hypotheses. However, when

the goal is to search a single fingerprint (and not a set of ten prints) in a large database, the

classification scheme is not successful in significantly reducing the search space. The solutions

suggested to address this are sub-classification and continuous classification [5].

1. Sub-Classification: This approach is adopted by fingerprint experts to perform manual

fingerprint matching in forensic applications. However, the rules for such sub-classifications

are quite complicated and are dependent on the finger (thumb, index, middle, etc.) [5].

Implementing an automated fingerprint sub-classification system is much more difficult

than classifying the fingerprints into the traditional classes (left loop, right loop, whorl,

twin loop, arch, tented arch). Therefore this is not practical to be used in automatic

fingerprint classification systems.

2. Continuous Classification: This approach does not partition fingerprints into disjoint

classes, but rather represents them as feature vectors, such that, similar fingerprints are

mapped to close points in a high-dimensional space. Retrieval is performed by matching

the query fingerprint with all fingerprints in the database whose feature vectors lie in it’s

vicinity.

2.2.4 Retrieval strategies

A retrieval strategy is an important consideration for an indexing or a classification scheme.

For a given indexing technique, the following retrieval / search strategies [5] can be used.

1. Search target class only: Target class is defined as the class to which the query finger-

print has been assigned. Only fingerprints belonging to the target class are searched. The

search is stopped when a matching fingerprint is found or the entire target class is visited.

2. Search according to predefined search order: The order in which the classes will be

visited is predefined. Therefore, if the matching fingerprint is not found in the target class,

other classes are searched. Potentially, the entire database may be searched using such a

retrieval strategy.
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3. Search according to variable search order: If a match is not found in the target class,

then other classes are searched according to the class likelihood generated for the query

fingerprint by the classifier. It should be noted that the class likelihood may be different

for different fingerprints, resulting in a variable search order.

4. Fixed radius search: This search strategy is relevant to the continuous classification

scheme for indexing. Only those fingerprints whose corresponding vectors are within a

predefined radius from the vector corresponding to the query fingerprint are searched.

Thus the potential candidates for matching lie within the hyper sphere whose center is

defined by the query fingerprint vector. The search may be stopped as soon as a match is

found, or the part of the database enclosed by the hyper sphere has been explored [5].

5. Incremental search: The search space is expanded in small increments if a matching

fingerprint is not located within the radius specified initially.

The goal of the indexing technique is to significantly reduce the number of candidate hypothe-

ses to be considered by the verification algorithm. In the literature there are predominantly three

prominent approaches for fingerprint indexing proposed by Germain et al. [49], Bhanu et al. [48]

and Bebis et. al. [50]. Germain et al. [49] use minutiae triplet features for indexing using the

FLASH technique (Fast Look up Algorithm for String Homology) [52]. Bhanu et al.’s [48] tech-

nique also uses minutiae triplets. However, the features that they use are quite different from

Germain et al. [49]. Moreover, they use Geometric Hashing [53]. During the feature extraction

process (i.e., minutiae triplets) it is important to note that there can be significant distortion

between different impressions of the same finger. These distortions include (a) translation, ro-

tation and scaling because of downward pressure of the finger; (b) Shear transformation as the

finger might exert a different shear force on the surface during each interaction; (c) Occlusion

and clutter because of scar, dryness, sweat and smudge. Bhanu et al. use geometric constraints

to limit the size of feature space and reduce the number of false correspondences obtained from

querying the lookup table by the index. Bebis et. al. [50] use delaunaization of triangles gener-

ated using minutiae points for fingerprint indexing. All the three methods mentioned above use

transformation parameter clustering [49]. The indexing techniques proposed by [49, 48, 50] have

been summarized in Table 2.1.
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There have been some other attempts as well. Ratha et al. [54] describes a multi level indexing

approach to reduce the search space. They have implemented the search engine on Splash 2 -

a field programmable gate array (FPGA) based processor to obtain near Application Specific

Integrated Circuit (ASIC) level speed of matching. Liang et. al. [55] add bifurcation details as

an additional feature to improve indexing performance of distorted fingerprints.

Table 2.1: Examples of three feature indexing schemes based on minutiae points.

Author Features used Performance
Germain et al. Used triangulation of minutiae points. The False Positive Rate (FPR) on

Length of each side. a 10 person database is 9.5%.
Local Orientations. FPR on a 100 person database is 63%.
Ridge count between two vertices. With 32 disks distributed over an 8 node

IBM SP2 system, could search a database
of 10 million prints in 70 seconds.
Disk parallelism can be used to reduce
query time.
Proprietary database used.

Bhanu et al. Used triangulation of minutiae points. On NIST-4 database the Correct
Maximum length of 3 sides Indexing Performance (CIP) is 85.5%
Median and minimum angles with verification limited to 10% of
Triangle handedness, type the database.
and direction.
Ridge Count
Minutiae Density

Bebis et al. Used Delaunay triangulation of minutiae In case of 3 imprints per person
points. in the training set, average correct
Ratio of minimum to maximum length matching rate is 86.56%
Ratio of median side to maximum and the average false negative
side. matching rate is 13.36%.
Cosine of the angle between two
smallest sides. Proprietary database was used.

2.3 Proposed technique

The proposed technique relies on the creation of a 9-dimensional index space model based on

minutiae triplets and the associated ridge curves. The K-means clustering scheme is invoked to

partition this index space into multiple clusters. Now, each fingerprint is viewed as a collection

of points distributed in the index space with each point characterizing the 9-dimensional feature.

describing a triplet and the associated ridge curves. Each of the points is assigned to one of the



CHAPTER 2. FINGERPRINT INDEXING 23

pre-defined clusters based on the minimum distance rule. Thus, a cluster in index space will

have a listing of all fingerprint identities that have at least one point assigned to that cluster.

When a query print is presented to the system, it is first decomposed into triplets and ridge

curves, and the 9-dimensional collection of points is generated. Next, these points are mapped

to individual clusters in the index space. A set of possible matching identities corresponding to

a small number of clusters is then determined. Thus, the query print is compared against this

reduced set of fingerprints in order to retrieve the best match.

Algorithm to generate index space model

1. Consider a training database (FVC2004 DB4 was considered for experiments). For each

fingerprint in the training database, perform the following.

a. Extract minutiae information from the fingerprint.

b. Perform Delaunay triangulation on minutiae points.

c. Prune any ‘skinny triangles’ thus obtained.

d. For each triangle perform feature extraction. A nine tuple feature vector comprising

of geometric and ridge based features are computed to represent the triangle in the feature

space.

2. Perform unsupervised clustering (K-means) on the feature vectors representing triangles.

Set the number of clusters desired. For our experiments K was set to 600.

3. The index space model stores the centroid information of K clusters.

The index space model generated can be updated either using a different training database

(where the training samples are comprised of the training samples acquired during enrollment)

or it can be incrementally updated as and when a query fingerprint is presented to the indexing

system.

Algorithm to embed a fingerprint identity in the index space model

1. For a fingerprint

a. Extract minutiae information from the fingerprint.

b. Perform Delaunay triangulation on minutiae points.

c. Prune any ‘skinny triangles’ thus obtained.
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d. For each triangle perform feature extraction. A nine tuple feature vector comprising

of geometric and ridge based features are computed to represent the triangle in the feature

space.

e. Allot each triangle to single (or multiple) clusters depending on the distance of the

feature vector representing the triangle in feature space to the cluster centroid.

f. Update the cluster to which the triangle is allotted with the user identity of the

fingerprint from which the triangle was generated.

g. Each fingerprint has a multiple clusters associated with it.

2.3.1 Feature Extraction

The features are extracted by examining the structural information contained in the distribu-

tion of minutiae points using Delaunay triangulation. This allows for choosing more meaningful

minutiae groups during indexing, so that structural information pertaining to a local neighbor-

hood is preserved. The Delaunay triangulation associates a unique topological structure with

the fingerprint minutiae. This process is also computationally efficient since it eliminates the

need to consider all possible minutiae triplets in a fingerprint image.

Given a fingerprint image with minutiae configuration M = {m1,m2, . . . ,mo}, mi = (xi, yi, θi),

where (xi, yi) is the location of minutia mi and θi is its orientation, the process of Delaunay tri-

angulation generates triplets of the form t = (mi,mj,mk), 1 ≤ i, j, k ≤ o. The maximum number

of triplets generated as a result of this triangulation will be 9o+1 [56]. Two sets of features are

extracted from each triplet. The first set of features correspond to the geometry of the triangle

generated by the triplet, while the second set pertains to the shape of the ridges associated with

the three minutiae points constituting the triplet.

Let l1,l2 and l3 represent the length of the three sides of the triangle defining the triplet,

such that l1 ≤ l2 ≤ l3. Let αmax denote the maximum interior angle of the triangle. Then, the

following three features are extracted based on the geometry of the triangle:
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α = cos(αmax), (2.1)

β =
p2

a
, (2.2)

γ =
l3
l1

. (2.3)

where,

p = l1 + l2 + l3,

a =
√

s(s− l1)(s− l2)(s− l3),

s =
p

2
.

The three geometry based features extracted from the triangles are invariant to rotation

and scaling. The reason for choosing α as the cosine of the maximum angle rather than the

angle itself is that the angle is sensitive to noise generated by the minutiae extraction algorithm.

The cosine filter can filter out this noise. The angle considered for α is the maximum angle

of the triangle. However, very large angles correspond to triangles whose points are almost

collinear. Such ‘skinny triangles’ are not desirable and Delaunay triangulization tends to avoid

it. Therefore, triangles whose largest angles are greater than a threshold are rejected. β denotes

the shape factor of the triangle. The shape factor is invariant to rotation and translation. For

instance, for an equilateral triangle, p=3l, where l1=l2=l3=l and a=
√

3∗l2
4

. Therefore, the shape

factor for all equilateral triangles will be s=20.78. γ considers the ratio of the maximum to

the minimum side. This ratio is more robust to noise compared to the lengths alone which are

affected by scaling and shear.

As a final measure to eliminate skinny triangles, a quality factor ρ = 4∗√3∗a
Σ3

i=1l2i
is computed and

the triangle is retained if ρ is above a certain threshold (ρ=0.6 in the experiments). The quality

factor ensures that skinny triangles are eliminated. It should be noted that the orientation

information of the minutiae is not used for feature extraction.

The second set of features is based on fitting a quadratic curve to the ridges associated with

each triplet. For every minutiae point detected in the fingerprint, a ridge tracing algorithm is

invoked that gives a set of points lying on a ridge containing the minutiae point. Since ridge

tracing commences from a minutiae point, it is possible for the algorithm to proceed in more
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than one direction (e.g., in the case of bifurcation points). In such cases, the ridge containing

the maximum number of points is selected. Each ridge curve is represented as a second order

normalized curve parameterized by the coefficients p0, p1 and p2, i.e., a point (x, y) on the

parameterized curve satisfies y = p2x
2 + p1x + p0. The ratio of these coefficients, viz., κ = p2

p1

and λ = p1

p0
, are used as features. Since there are three ridges associated with each triplet a set

of six features are obtained: κ1, κ2, κ3, λ1, λ2, λ3.

The set of geometric and ridge curve features that are extracted from a triplet arrangement

of minutiae points are shown in Figure 2.2. The feature extractor stage is shown in Figure 2.3.
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Figure 2.2: Feature extraction from triplet arrangement of minutiae points.

Besides their small number, the minutiae triangles obtained for indexing using delaunay

triangulation have good discrimination power, because they satisfy the properties of delaunay

triangulation [56]. Figure 2.4 shows the effect of intra-class3 variability on delaunay triangulation

of fingerprint resulting in non matching triangles due to insertion of spurious minutiae points.

3The Class is the same as user in this case.
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Figure 2.3: Extracting features for creating the index space model. The extracted features are a
collection of 9-dimensional entities.

Let ς be a set of k points (or sites) in a 2D plane, ς = ς1, ς2, ..., ςk. The Voronoi diagram of ς

is the subdivision of the plane into k regions, one for each site in ς. The Voronoi diagram of ς,

denoted by V OR(ς) is shown in Figure 2.5. The region of site ς is called the Voronoi cell, denoted

by V (ς). The graph G has a node for every Voronoi cell and it has an arc between two nodes

if corresponding cells share an edge. Thus G has an arc for every edge of V (ς). If we consider

the straight line embedding of G, where the node corresponding to the voronoi cell V (ς1) is the

point ς1, and the arc connecting the nodes of V (ς1) and V (ς2) is the segment ς1ς2. This is called

‘embedding the Delaunay4 graph of ς’ and is denoted by DG(ς). Delaunay triangulation [56] is

defined to be any triangulation obtained by adding the edges to the Delaunay graph as shown in

Figure 2.5. Since all faces of DG(ς) are convex, obtaining such a triangulation is easy. Delaunay

triangulation of ς is unique if and only if DG(ς) is a triangulation. This uniqueness makes it

ideal for indexing.

Delaunay triangulation has the following properties [50]:

1. If T is the Delaunay triangulation of ς, then the circumcircle of any triangle T does not

4Named after the mathematician Boris Nikolaevich Delone
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Figure 2.4: Effect of intra class variability on Delaunay triangulation of fingerprints. The red
dot denotes a matching triangle in all the three prints of the subject. However, due to insertion
of spurious minutiae points (in case of poor quality fingerprints), the triangle denoted by a blue
dot, finds a match in two of the three prints only.
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contain a point of ς inside it.

2. Delaunay triangulation maximizes the minimum angle over all triangulations of ς, therefore

avoiding skinny triangles. However it does not eliminate all skinny triangles.

3. Delaunay triangulation of a set ς of k points can be computed in O(k log(k)) expected

time, using O(k) expected storage.

4. The upper bound on the number of triangles created by Delaunay triangulation is 9k+1 [56].

The delaunization of minutiae points of different quality fingerprints from the same user is

shown in Figure 2.5.
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Figure 2.5: Delaunay Triangulation (a) The dual graph of V OR(ς). (b) The Delaunay Graph
DG(ς). (c) Delaunization of good quality fingerprint of the same user. (d) Delaunization of
varying quality fingerprint of the same user.

2.3.2 Delaunay Triangulation Algorithms

There are several Delaunay triangulation algorithms in literature. The algorithms can be

divided into the following categories:
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1. Point distribution algorithm.

2. Plane sweep algorithm proposed by Fortune [57].

3. Incremental algorithm proposed by Lee and Schachter [58].

4. Divide and conquer algorithm proposed by Lawson [59].

It has been shown by Shewchuk [60], that in terms of computation time, the divide and con-

quer algorithm is more efficient than the plane sweep algorithm, which in turn performs better

than the incremental algorithm. The divide and conquer algorithm itself can be implemented in

three ways, namely, the horizontal cut technique, the vertical cut technique and the alternating

cut technique. The alternating cut technique partitions the vertices with alternating horizontal

and vertical cuts. Alternating cuts enahance the speed of the algorithm. The Matlab implemen-

tation of Delaunay triangulation is based on a Quick Hull algorithm for convex hulls. It performs

a randomized incremental algorithm and is sensitive to the number of vertices generated. The

Quickhull [61] algorithm performs faster than randomized incremental algorithm and executes

faster for inputs with non-extreme points. If there are n input points in Rd and v is the number

of output vertices, the worst case complexity of Quickhull is O(nlogv) for d ≤ 3.

2.3.3 Creating and populating the index space model

Each fingerprint image can be represented as a set of Delaunay triangles T = {~t1, ~t2, . . . ~t3}
that is generated from its minutiae distribution. Each triplet, ~ti is further characterized by

a nonuple consisting of an agglomeration of geometric and ridge curve features, i.e., ~ti =

{αi, βi, γi, κi
1, κ

i
2, κ

i
3, λ

i
1, λ

i
2, λ

i
3}. This 9-dimensional entity can be viewed as a single point in

hyperspace; thus, each fingerprint image will have a collection of points (pertaining to all Delau-

nay triplets) residing in this 9-dimensional space. Given a set of training fingerprint images, an

index space model is first created by performing unsupervised clustering (K-means clustering)

on the set of all 9-dimensional entities generated from these images. This results in K clusters,

c1, c2, . . . cK with cluster, cj, represented by its centroid, ~µj.

When a fingerprint corresponding to an identity, y, is input to the system, it is first decom-

posed into its constituent triplets, ~t1, ~t2, . . . ~tr, which are then mapped into the 9-dimensional
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index space. Each ~ti, i = 1, 2, . . . , r, will be assigned to exactly one cluster, cj, j = 1, 2, . . . , K

according to the minimum distance rule, i.e., assign ti → cj and y → cj if

j = arg
K

min
k=1

||~ti − ~µk||, (2.4)

where ||.|| is the L2 norm. This process is repeated for every print in the database. Thus,

each cluster, cj, will have a listing of all fingerprint identities, {yj,1, yj,2, . . . yj,nj
}, which have at

least one triplet assigned to that cluster.

The procedure for index space population is shown in Figure 2.6.
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Figure 2.6: Mapping fingerprints in a database to the proposed index space by using the 9-
dimensional points extracted from each image.

2.3.4 K-means Data Clustering

Clustering is the classification or partitioning of data into subsets or clusters, so that data in

each subset share certain properties. Data clustering is a common statistical analysis tool used

in different fields like image analysis, pattern recognition and machine learning.
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If the training samples used to design a classifier are labeled by their class membership,

the partitioning technique is called supervised clustering. However, if a collection of unlabeled

samples have to be partitioned, the partitioning technique is called unsupervised clustering.

K-means algorithm is an unsupervised clustering algorithm to cluster objects into K parti-

tions based on their attributes. The goal is to determine the K means of data generated from

Gaussian distributions. K-means algorithm tries to minimize the total intra class variance or the

squared error function E (refer to equation 2.5), where there are K clusters Ci, i = 1, 2, ...K and

µi is the centroid of all the points xj in cluster Ci.

E = ΣK
i=1Σxj∈Ci

||~xj − ~µi||. (2.5)

K-means Algorithm

1. The input data set is partitioned into K initial sets.

2. The centroid of each set is calculated.

3. Further partitioning is performed by attributing each point to the closest centroid.

4. Centroids are recalculated for the new clusters.

5. The creation of new partitions and recalculation of centroids is continued until convergence

is achieved. Convergence is achieved when the centroids are stable and do not switch

clusters.

The K-means [62] is quite popular because it converges quite quickly in practice. However,

the final solution is dependent on the initial set of clusters, therefore the algorithm could be

run several times in order to return the best clustering of the data set. Another problem of the

algorithm is that the number of clusters to be formed has to be pre-specified. This might lead

to undesirable results for data sets which are not naturally clustered.

2.3.5 Fingerprint retrieval

Single target cluster: When a query print, q, is presented to the system, it is first decom-

posed into its constituent triplets and ridge curves. The set of 9-dimensional points, ~t1, ~t2, . . . ~tr,

corresponding to the extracted features are then generated. Next, each point, ~ti, is mapped onto
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a cluster, cπi
(πi ∈ {1, 2, . . . , K}) in index space using the minimum distance rule (equation 2.4).

This process identifies r (possibly) non-unique target clusters, cπ1 , cπ2 , . . . cπr , associated with the

query print. Those identities occurring frequently in the target clusters (i.e, the top-N identities)

are retrieved for further matching.

Multiple target clusters: The algorithm for fingerprint retrieval can be slightly modified by

associating more than one cluster (the top m nearest centroids) with every ~ti of the query print,

i.e., assign ~ti → {cπi,1, cπi,2, . . . cπi,m} such that ||~ti − ~µπi,1|| ≤ ||~ti − ~µπi,2|| ≤ . . . ≤ ||~ti − ~µπi,m||
and ||~ti − ~µπi,k|| ≥ ||~ti − ~µπi,m|| ∀k /∈ {1, 2, . . .m}. The retrieval procedure is not affected by

this modification. However, using multiple target clusters results in increased computational

complexity.

The retrieval process is shown in Figure 2.7.
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Figure 2.7: Retrieving the top few identities corresponding to the given query fingerprint.

2.4 Experimental evaluation

The performance of the proposed indexing mechanism is summarized using two measures

namely the penetration rate and the hit rate. The penetration rate defines the fraction of user

identities retrieved from the database upon presentation of the query print. The hit rate is

defined as the probability that the correct user identity is retrieved. In the context of our

experiments the following procedure was adopted to compute these measures. Suppose that a
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database has n fingerprints and there are s query fingerprints. For query print, qi, we define pi

to be the minimum number of fingerprints that have to be retrieved from the database (based on

the retrieval technique described in the previous section) in order to guarantee a hit. Further,

without loss of generality let us assume that p1 ≥ p2 ≥ p3 . . . ≥ ps. Thus, the value
Σz

i=1pi

n
will

be the penetration rate corresponding to a hit rate of z
s

since the entries, pi, are sorted.

Experiments were conducted using the Fingerprint Verification Competition 2004 (FVC2004)

database that is partitioned into four (DB1, DB2, DB3, DB4).5 Each partition has fingerprint

images acquired using a particular sensor (see Table 2.7). There are 880 images in each partition

corresponding to 110 fingers (with 8 images per finger). There is no correspondence indicated

between fingers across these four databases.

1. The index space was first generated using the minutiae points and ridge curves extracted

from the images in the synthetic database (DB4). Note that true fingerprint images are

not required to create the index space model. This is, perhaps, an interesting characteristic

of the proposed approach. A total of 600 clusters (i.e., K = 600) were created in the index

space. This number may be arbitrarily increased for larger databases.

2. The FVC2004 DB1 database was partitioned into two sets, DB1-S1 and DB1-S2. The first

three samples of each of the 110 fingers were used to create DB1-S1; the remaining five

samples of each of the 110 fingers were used to create DB1-S2. All images in DB1-S1 were

then projected onto the clusters in the index space. The images in DB1-S2 were used as

query prints to test the efficacy of the indexing model. The performance of the indexing

model can be seen in Table 2.2.

3. The above experiment was repeated using the FVC2004 DB2 and DB3 databases also. The

resulting performance can be seen in Table 2.2.

4. In order to demonstrate the significance of incorporating ridge curve features (κ1, κ2, κ3, λ1, λ2, λ3)

in addition to the geometric features of the triplet (i.e., α, β, γ), the performance with and

without using the ridge curve features is presented in Table 2.3.

5. The importance of assigning a triplet to multiple target clusters is borne out in Table 2.4

where the indexing performance is observed to improve upon the consideration of multiple

clusters.
5http://bias.csr.unibo.it/fvc2004/
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In order to test the performance of the indexing space model generated using FVC2004 DB4

on other databases, experiments were conducted using the FVC2002 database that is partitioned

into four (DB1, DB2, DB3, DB4) sets.6 Each partition has fingerprint images acquired using a

particular sensor (see Table 2.7). There are 880 images in each partition corresponding to 110

fingers (with 8 images per finger).

1. The FVC2002 DB1 database was partitioned into two sets, DB1-S1 and DB1-S2. The first

three samples of each of the 110 fingers were used to create DB1-S1; the remaining five

samples of each of the 110 fingers were used to create DB1-S2. All images in DB1-S1 were

then projected onto the clusters in the index space. The images in DB1-S2 were used as

query prints to test the efficacy of the indexing model. The performance of the indexing

model can be seen in Table 2.5.

2. The above experiment was repeated using the FVC2002 DB2, DB3 and DB4 databases

also. The resulting performance can be seen in Table 2.5.

3. The effect of considering multiple clusters is shown in Table 2.6.

Computation Time: Creating and populating the index space model are both off-line

processes. When a query print is presented for indexing, the retrieval includes feature ex-

traction (geometric and ridge based) followed by identification of target users (for match-

ing). In MATLAB environment (on a 2.3 GHz Intel Processor with 512MB RAM), the

average retrieval time for fingerprints in FVC2002 and FVC2004 databases, is 3.4 seconds

(0.7 seconds for geometric feature extraction, 2.5 seconds for ridge feature extraction and

0.2 seconds to identify the target users).

2.5 Analysis of Cluster Population in the Index Space

Model

The entities of the fingerprints (triangles) are allotted to clusters. Therefore, each cluster

is associated with user identities. Such cluster-user association for FVC2002 is shown in the

6http://bias.csr.unibo.it/fvc2002/
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Table 2.2: Performance of the proposed indexing model on the DB1, DB2 and DB3 partitions of
the FVC2004 database. The index space model was created using the DB4 partition in all three
cases

Database Hit Rate (%) Penetration Rate (%)
1 Target Cluster

FVC2004DB1 100 51.40
FVC2004DB1 95 48.75
FVC2004DB1 90 45.97
FVC2004DB1 85 43.03
FVC2004DB1 80 40.04

FVC2004DB2 100 52.00
FVC2004DB2 95 49.34
FVC2004DB2 90 46.45
FVC2004DB2 85 43.61
FVC2004DB2 80 40.79

FVC2004DB3 100 52.41
FVC2004DB3 95 49.83
FVC2004DB3 90 46.68
FVC2004DB3 85 44.43
FVC2004DB3 80 41.68

Table 2.3: Indexing performance improvement due to inclusion of ridge features.

Database Hit Rate (%) Penetration Rate (%) Penetration Rate (%)
Geometric Features Geometric+Ridge Features

FVC2004DB1 100 54.0 51.40
FVC2004DB1 95 51.43 48.75
FVC2004DB1 90 48.72 45.97
FVC2004DB1 85 45.99 43.03
FVC2004DB1 80 43.25 40.04

Table 2.4: Indexing performance when multiple target clusters are identified for each Delaunay
triplet. Using more than two clusters does not seem to have any benefit.

Database Hit Penetration Penetration Penetration
Rate (%) Rate (%) Rate (%) Rate (%)

1 Target Cluster 2 Target Clusters 3 Target Clusters
FVC2004DB2 100 52.00 47.05 46.97
FVC2004DB2 95 49.34 44.22 44.17
FVC2004DB2 90 46.45 41.36 41.33
FVC2004DB2 85 43.61 38.54 38.53
FVC2004DB2 80 40.79 35.78 35.66
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Table 2.5: Performance of the proposed indexing model on the DB1, DB2, DB3 and DB4 parti-
tions of the FVC2002 database. The index space model was created using the FVC2004 DB4 in
all four cases.

Database Hit Rate (%) Penetration Rate (%)
FVC2002DB1 100 47.32
FVC2002DB1 95 44.22
FVC2002DB1 90 41.11
FVC2002DB1 85 38.11
FVC2002DB1 80 35.10

FVC2002DB2 100 47.07
FVC2002DB2 95 44.28
FVC2002DB2 90 41.54
FVC2002DB2 85 38.83
FVC2002DB2 80 36.12

FVC2002DB3 100 50.27
FVC2002DB3 95 47.54
FVC2002DB3 90 44.69
FVC2002DB3 85 41.81
FVC2002DB3 80 38.93

FVC2002DB4 100 45.39
FVC2002DB4 95 42.46
FVC2002DB4 90 39.61
FVC2002DB4 85 36.79
FVC2002DB4 80 33.93

Table 2.6: Indexing performance on FVC2004 DB4 and FVC2002 DB4 when varying number of
target clusters are considered.

Database Hit Penetration Penetration Penetration
Rate (%) Rate (%) Rate (%) Rate (%)

1 Target Cluster 2 Target Clusters 3 Target Clusters
FVC2002DB4 100 51.46 45.39 45.41
FVC2002DB4 95 48.76 42.46 42.51
FVC2002DB4 90 45.63 39.61 39.62
FVC2002DB4 85 42.57 36.79 36.75
FVC2002DB4 80 39.53 33.93 33.95

FVC2004DB4 100 51.42 48.00 47.86
FVC2004DB4 95 48.72 45.19 45.08
FVC2004DB4 90 45.68 42.29 42.30
FVC2004DB4 85 42.60 39.54 39.54
FVC2004DB4 80 39.52 36.87 36.78
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Table 2.7: Sensor Characteristics.

Database Sensor Type Image Size Resolution
FVC2004DB1 Optical 640x480 500 dpi
FVC2004DB2 Optical 328x364 500 dpi
FVC2004DB3 Thermal Sweep 300x480 512 dpi
FVC2004DB4 Synthetic 288x384 about 500 dpi
FVC2002DB1 Optical 388x374 500 dpi
FVC2002DB2 Optical 296x560 569 dpi
FVC2002DB3 Capacitive 300x300 500 dpi
FVC2002DB4 Synthetic 288x384 about 500 dpi

Table 2.8: Indexing Performance: FVC2002

Database Hit Penetration Penetration Penetration
Rate (%) Rate (%) Rate (%) Rate (%)

1 Target Cluster 2 Target Clusters 3 Target Clusters
FVC2002DB1 100 51.19 47.32 51.36
FVC2002DB1 95 48.22 44.22 48.65
FVC2002DB1 90 45.09 41.11 45.58
FVC2002DB1 85 41.92 38.11 42.84
FVC2002DB1 80 38.74 35.10 40.09

FVC2002DB2 100 48.14 47.07 46.68
FVC2002DB2 95 45.32 44.28 43.88
FVC2002DB2 90 42.40 41.54 41.08
FVC2002DB2 85 39.55 38.83 38.31
FVC2002DB2 80 36.87 36.12 35.59

FVC2002DB3 100 58.19 50.27 47.58
FVC2002DB3 95 55.86 47.54 44.85
FVC2002DB3 90 53.16 44.69 42.09
FVC2002DB3 85 50.12 41.81 39.38
FVC2002DB3 80 46.88 38.93 36.66

FVC2002DB4 100 51.46 45.39 45.41
FVC2002DB4 95 48.76 42.46 42.51
FVC2002DB4 90 45.63 39.61 39.62
FVC2002DB4 85 42.57 36.79 36.75
FVC2002DB4 80 39.53 33.93 33.95
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Table 2.9: Indexing Performance: FVC2004

Database Hit Penetration Penetration Penetration
Rate (%) Rate (%) Rate (%) Rate (%)

1 Target Cluster 2 Target Clusters 3 Target Clusters
FVC2004DB1 100 51.40 50.17 49.98
FVC2004DB1 95 48.75 47.52 47.34
FVC2004DB1 90 45.97 44.74 44.58
FVC2004DB1 85 43.03 41.90 41.82
FVC2004DB1 80 40.04 39.05 39.11

FVC2004DB2 100 52.00 47.05 46.97
FVC2004DB2 95 49.34 44.22 44.17
FVC2004DB2 90 46.45 41.36 41.33
FVC2004DB2 85 43.61 38.54 38.53
FVC2004DB2 80 40.79 35.78 35.66

FVC2004DB3 100 52.41 50.24 50.11
FVC2004DB3 95 49.83 47.56 47.40
FVC2004DB3 90 46.68 44.80 44.60
FVC2004DB3 85 44.43 42.04 41.87
FVC2004DB3 80 41.68 39.27 39.13

FVC2004DB4 100 51.42 48.00 47.86
FVC2004DB4 95 48.72 45.19 45.08
FVC2004DB4 90 45.68 42.29 42.30
FVC2004DB4 85 42.60 39.54 39.54
FVC2004DB4 80 39.52 36.87 36.78
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Figures 2.8,2.9,2.10,2.11.On an average, the percentage of users allotted to each cluster is 11%

for FVC2002 DB1, 13.6% for FVC2002 DB2, 7.2% for FVC2002 DB3 and 9% for FVC2002 DB4.

Figures 2.12,2.13,2.14,2.15 depict the cluster-user association for FVC2004 database. On an

average, the percentage of users allotted to each cluster is 13.6% for FVC2004 DB1, 12.7% for

FVC2004 DB2, 9% for FVC2004 DB3 and 11% for FVC2004 DB4.
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Figure 2.8: User distribution in clusters for FVC2002 DB1.
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Figure 2.9: User distribution in clusters for FVC2002 DB2.

The number of cluster allotted to each user would depend on the clusters allotted to each

entity (triangle) of the given user. The distributions of the number of clusters for users in the

FVC2002 and FVC2004 database are shown in the Figures 2.16,2.17,2.18,2.19,2.20,2.22,2.23.
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Figure 2.10: User distribution in clusters for FVC2002 DB3.
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Figure 2.11: User distribution in clusters for FVC2002 DB4.
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Figure 2.12: User distribution in clusters for FVC2004 DB1.
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Figure 2.13: User distribution in clusters for FVC2004 DB2.
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Figure 2.14: User distribution in clusters for FVC2004 DB3.
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Figure 2.15: User distribution in clusters for FVC2004 DB4.
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On an average, the percentage of distinct clusters containing each user is 12.5% for FVC2002

DB1, 14.2% for FVC2002 DB2, 7.3% for FVC2002 DB3, 8.6% for FVC2002 DB4, 14% for

FVC2004 DB1, 12.5% for FVC2004 DB2, 18.5% for FVC2004 DB3 and 11.3% for FVC2004

DB4.
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Figure 2.16: Variation in clusters allotted for users in FVC2002 DB1.
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Figure 2.17: Variation in clusters allotted for users in FVC2002 DB2.
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Figure 2.18: Variation in clusters allotted for users in FVC2002 DB3.
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Figure 2.19: Variation in clusters allotted for users in FVC2002 DB4.
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Figure 2.20: Variation in clusters allotted for users in FVC2004 DB1.
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Figure 2.21: Variation in clusters allotted for users in FVC2004 DB2.
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Figure 2.22: Variation in clusters allotted for users in FVC2004 DB3.
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Figure 2.23: Variation in clusters allotted for users in FVC2004 DB4.
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2.6 Summary and Future Work

The purpose of this paper was to highlight the improvement in indexing performance whilst

augmenting the minutiae-triplet based features with the associated ridge curve information. Since

the features used for indexing can be computed efficiently and do not depend on singularities in

the fingerprint, the proposed indexing scheme is robust to noise and distortion. Furthermore, the

ability to use the index space model designed using a synthetic database for indexing images cap-

tured using different imaging devices having different characteristics underscores the significance

of the proposed technique. However, it should be noted that the resolutions of these sensing

devices are comparable. If they were not, the ridge based feature extraction would require a

scaling factor. It will be interesting to observe the performance of this scheme across databases

where the users remain the same but the imaging device characteristic changes. Future work

might include analyzing the improvement in the efficiency of the indexing scheme by using par-

allel computing. The effect of varying the total number of clusters on the indexing performance

could also be analyzed. In order to obtain meaningful data regarding the computation time and

real-time performance, the indexing algorithm could be implemented on a field programmable

gate array (FPGA) based array processor [54].
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Chapter 3

Iris Indexing

3.1 Introduction

Iris is considered to be a highly reliable biometric for personal identification. The iris is an

internal organ of the eye and is located behind the cornea and in front of the lens. It is the

annular region between the pupil (inner boundary) and the sclera (outer boundary). This region

is rich in texture and has several features such as crypts, furrows, freckles, corona, stripes, moles

etc. Thus iris texture is chaotic and unique to each individual.

The goal of an iris recognition system is to extract features representing the textural infor-

mation present in the iris and thus authenticate (verify or identify) an individual, on the basis of

such features. The main modules of such a system are segmentation, enhancement, feature ex-

traction and matching. During enrollment the features are extracted and stored in the database

as templates. The authentication phase encompasses image preprocessing followed by feature

extraction for a given iris image. This feature set is then compared with the templates in the

database in order to perform identification or verification of an individual’s identity.

An iris indexing technique would reduce the number of candidate hypotheses to be considered

by the iris matching algorithm. Currently, the iris algorithms perform exhaustive matching

based on the hamming distance between IrisCodes [9], which is the encoded form of the features

extracted from the iris texture. Analyzing the iris texture itself would be useful in exploiting

the individual properties of the user, that is crucial for designing user-specific matchers and iris

indexing for large databases.

This chapter investigates three iris indexing techniques. The first is based on the Principal
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Component Analysis (PCA) of IrisCode [9] which is a feature vector extracted from the iris

texture. The last two techniques examines the textural content of the image. The second

technique is based on the Local Binary Pattern (LBP) analysis of iris texture. The third technique

is based on Signed Pixel Level Difference Histogram of the raw pixel intensities.

Most iris recognition algorithms effectively extract relevant features from iris and use them

for identification/verification. However, none of these algorithms explicitly characterize the iris

texture. The iris texture analysis problem can be handled in a better way if we answer two

fundamental questions : What is texture (texture definition) and how is that texture distributed

(texture location)? Traditionally, Markov Random Field (MRF) models of images have used

predefined pairs of interacting neighbors and therefore, is not the ideal choice for iris which

has non-uniform texture. In the proposed work, a statistical analysis of the Signed Pixel Level

Difference Histogram (SPLDH) of block pairs is considered to define texture, and multiple block-

wise1 interaction is used to define the significant texture location. It should be noted that

texture properties also vary with the resolution of the acquired image: global properties are more

prominent at lower resolutions and local properties are more prominent at higher resolutions.

3.2 Iris Indexing

The problem of automatic iris identification involves comparing a query iris image, q, with iris

entries, D = {d1, d2, d3, ....dn}, in a database in order to determine the identity y of the iris. Each

entry dj, j = 1, 2, . . . n, is assumed to be associated with an identity, yj and, hence, y = yk where

k = arg maxn
j=1{S(q, dj)} and S is the matching function that assesses the similarity between

two irides. The computational complexity of the identification process is primarily dictated by

the number of entries, | D |= n, in the database. In order to reduce the number of matching

operations, a filtering procedure is usually invoked to identify a subset R of irides (R ⊂ D) such

that |R| = m << n. Filtering can be accomplished using two distinct approaches: classification

and indexing.

Most iris recognition algorithms used today are able to perform fast one to many matching.

Therefore, the need to delve into iris classification or indexing may not be immediately appealing.

With increasing database size and non-ideal iris processing (which takes more time), the increase

1Block is a localized group of pixels
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in computation cost could be shared by additional hardware to facilitate the parallel search for

a given query iris image. However, hardware alone cannot solve the problem. The search can

be guided more effectively by employing iris classification or indexing techniques. With the

widespread acceptance of iris recognition as a reliable biometric, the future may see many iris

recognition systems deployed all over the world implementing different iris recognition algorithms

and using different acquisition devices. If the need arises to search for identities amongst such a

large and diverse collection of irides, an indexing scheme becomes imperative.

3.2.1 Approach to the problem

Most of the commercially used iris recognition systems use IrisCodes- a binary representation

of information extracted from the iris. Therefore the fundamental way to approach the problem

is to analyze the possibility of indexing iris on the basis of IrisCodes. However, considering

the original motivation of the problem, whereby the indexing scheme should be able to handle

multiple algorithms and acquisition devices, the result of the analysis on IrisCodes should be

considered as a benchmark for further analysis. The next level of analysis should delve into the

more fundamental iris texture. Therefore, in order to research into the problem of iris indexing,

the analysis can be categorized into two parts - IrisCode analysis and iris texture analysis.

3.3 IrisCode Analysis

Before discussing the proposed technique to perform indexing based on IrisCodes. The

IrisCode generation is discussed below.

3.3.1 IrisCode Generation:

Gabor filtering is an important part of IrisCode generation. Gabor wavelets are formed from

two components, a complex sinusoidal carrier (c(x, y) see equation 3.1) and a gaussian envelope

(g(x, y) see equation 3.4), where x and y are spatial coordinates. The complex carrier takes the

form as shown in equation(3.1). The real part of the function is given by equation(3.2) and the

imaginary part is given by equation(3.3). The parameters u0 and v0 represent the frequency of
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the horizontal and vertical sinusoid respectively. φ represents an arbitrary phase shift.

c(x, y) = ej(2π(u0x+v0y)+φ), (3.1)

Re[c(x, y)] = cos(2π(u0x + v0y) + φ), (3.2)

Im[c(x, y)] = sin(2π(u0x + v0y) + φ), (3.3)

The envelope is the other important component of a Gabor wavelet. The envelope has a

Gaussian profile and is described in equation (3.4), where κ is a scaling constant, a and b are

envelope axis scaling constants, the subscript r denotes the rotation operation, θ is the envelope

rotation constant, and x0 and y0 are coordinates of the Gaussian envelope peak.

g(x, y) = κ(e−π(a2(x−x0)r
2+b2(y−y0)r

2)), (3.4)

(x− x0)r = (x− x0) cos θ + (y − y0) sin θ, (3.5)

(y − y0)r = −(x− x0) sin θ + (y − y0) cos θ (3.6)

Finally, a 2-D Gabor wavelet is derived by multiplying c(x, y) by g(x, y).

In the context of iris recognition, once we have the Gabor wavelet, we can extract a set of

unique features [9] and store them. This set of features is known as the IrisCode. Thus when

an unknown iris is presented to the iris recognition system, the IrisCodes can be compared to

search for a possible match.

Gabor filters are good at detecting patterns in images, thus making them ideal for iris images

which have a unique texture generated through a chaotic process. The Gabor filtering is per-

formed on the segmented iris which is unwrapped (mapped onto cartesian coordinate). A fixed

frequency 2-D Gabor filter looks for patterns in the unwrapped image. The convolution of the

image with the 2-D Gabor filter generate a complex result having real and imaginary parts which

are treated separately. In order to reduce storage space, quantization is performed on the real

and imaginary parts. If a the resultant value is positive it is stored as 1 otherwise it is stored as

0. The resultant real and imaginary binary images are called IrisCodes. The prominence of iris

texture changes with increasing distance from the pupil. Therefore a set of three Gabor filters
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with different scales and frequency, but with the same orientation (0◦) are applied to different

regions of the ‘normalized’ iris as shown in Figure 3.1.

Figure 3.1: Real part of 2-D Gabor wavelet filters with different scales and frequency but same
orientation (0◦).

In theory, two IrisCodes independently generated from a unique iris will be the same. However

due to issues in acquisition systems, illumination and head rotation (non-ideal iris) two IrisCodes

of the same individual are in reality not the same. Since the iris generation process itself is

believed to be random, two IrisCodes from different individuals will be statistically independent

(having a hamming distance larger than a particular threshold). Therefore only IrisCodes from

the same eye will fail the test of statistical independence [9]. The IrisCode generation procedure

is summarized in Figure 3.2.

3.3.2 Analysis of IrisCodes

An indexing technique could be based on Principal Component Analysis (PCA) of the

IrisCodes. PCA [63] or Hotelling transform is a useful statistical technique that has been adopted

in the field of face recognition and image compression, in order to find patterns in data of high

dimension.

PCA is a linear transformation that transforms the data to a new coordinate system such

that the first or the principal component has the greatest variance by any projection of data

lying on it. PCA can be used for dimensionality reduction in a dataset while retaining those

characteristics of a dataset that contributes most to its variance. Thus the low order principal

components are retained and the higher order ones are ignored. Unlike other linear transforms
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Figure 3.2: IrisCode generation procedure: IrisCodes are generated by convolution of Gabor
wavelets with enhanced iris image. The enhancement is performed on the localized and normal-
ized iris image.

like Discrete Cosine Transform (DCT), PCA does not have a fixed set of basis vectors. Its basis

vectors depend on the dataset.

In the first proposed technique for iris indexing, PCA is performed on the IrisCodes of a

training set of data. Thereafter an unsupervised clustering (K-means) is performed on the

reduced dimension vector. The feature set extracted (refer to Section 3.5), number of principal

components and clusters are varied and the result is reported (refer to Experimental Evaluation

Section).

The motivation behind PCA analysis of IrisCodes is that, in databases where the IrisCode is

already generated and stored, it will be easier to reduce the number of candidate hypothesis by

clustering such features extracted from the IrisCodes.

3.4 Iris Texture Analysis

The human mind is easily able to perceive and distinguish between different types of tex-

ture. However, in the field of computer vision making a computer understand texture is still a
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challenging task.

A texture can be defined as a measure of the variation of a surface intensity, quantifying

properties such as smoothness, coarseness and regularity. Texture is often used as a region

descriptor in computer vision and image analysis.

There are certain properties that a texture can possess [64].

1. Texture is a region descriptor, it cannot be defined for a single point alone.

2. Texture is a property of the gray scale value of an image. Even if the color information is

lost, the human mind can still correlate texture from a colored image to the corresponding

gray scale image.

3. Any statistical tool used to describe the gray scale variation in an image can be used to

describe the texture of the image.

4. Texture can be ‘felt’ in terms of fineness, coarseness, regularity, contrast, density, homo-

geneity, directionality, etc.

5. Texture properties differ at various resolutions. While lower resolutions are better for

capturing global texture properties, the local texture properties are well represented at the

higher resolutions.

Texture can be described using primarily three approaches - statistical, structural and spec-

tral. Statistical techniques use statistical properties of the gray levels of the points comprising

a surface. Generally such properties are computed from the gray level histogram or the gray

level co-occurrence matrix of the surface. The motivation behind this approach is the statis-

tical analysis of pixel intensities and position. Statistical techniques are well suited for micro

structures. The structural approach relies on the concept of texture primitives, called ‘texels’

or ‘textons’. The texture is described using a ‘texel’ vocabulary and inter ‘texel’ relationship.

Structural techniques are well suited for macro structures. Spectral techniques are based on the

properties of the Fourier spectrum. They are well suited to describe global periodicity of the

gray levels of a surface by detecting high energy peaks in the spectrum.

Texture analysis has been an area of intense research for almost half a century now. However,

due to problems like varying illumination, changes in surface shape and lack of homogeneity in

real world textures, analyzing them has proved to be difficult. Gabor filtering is by far the most
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elegant texture analysis tool. Its good performance can be attributed to fact that it encompasses

both local edge and spatial frequency information. However, it is affected by varying illumination

conditions and is computationally expensive for large mask sizes. For the purpose of iris indexing,

a texture analysis tool is required which can analyze macro as well as micro structure, thus

taking advantage of both statistical and structural approaches simultaneously. Thus, the second

proposed technique for iris indexing is based on local binary pattern, which serves this purpose.

The third iris indexing technique is motivated by statistical analysis of pixel intensities and

positions and is based on Signed Pixel Level Difference Histogram (SPLDH).

3.4.1 Local Binary Pattern (LBP) Analysis of Iris Texture:

The LBP operator was first introduced as a complementary measure for local image contrast

[65]. The operator first worked with eight neighbors of a pixel, using the central pixel as a

threshold. An LBP code was generated by multiplying the thresholded values with corresponding

weights given to the pixels and summing up the result as shown in Figure 3.3. In the context

of iris indexing, the proposed technique suggests applying the invariant LBP operator on the

enhanced iris texture image to form a LBP histogram for each image. Thereafter, the proximity

between LBP histograms is exploited to reduce the number of candidate hypothesis for matching.

The database organization can be done on the basis of unsupervised clustering of LBP histograms

in order to support the indexing technique. This technique was analyzed by varying the number

of neighborhood pixels for calculating the LBP code. The experiments performed are explained

in detail in Section 3.5.

3.4.2 Signed Pixel Level Difference Histogram Analysis of Iris Tex-

ture:

In context of iris indexing, the technique used for iris analysis should capture the inter-pixel

relationship. Thus, the iris indexing scheme should group similar pixels and capture the distri-

bution of such similarities across the iris texture. In order to reduce the complexity, the proposed

scheme delves into evolving an iris indexing technique utilizing inter-block relationship. In order

to extract pixel level difference features of blocks, a Signed Pixel Level Difference Histogram is

generated. Suppose, the iris texture of a user is divided into blocks. SPLDH can be generated
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Figure 3.3: LBP basic operator

from two such blocks within the iris texture - first block being the one that is being analyzed

and the second block is a potential candidate for having textural similarity to the first block.

The SPLDH is computed by taking the histogram of the signed differences of the corresponding

pixel positions of the two blocks. In order to limit the number of bins in the histogram, the pixel

intensity differences are limited from −Qmax to +Qmax. Finally, the entropy of the histogram

is calculated in order to determine the importance of the second block with respect to the first

block. The absolute position of the second block is stored in order to assign an index to the

first block. N such block positions can be identified in order to form an index. Thus, the inter

block relationship is analyzed both in the vicinity of a current block (local inter block relation-

ship) and also at a distance (global inter block relationship). The experiment performed and

the organization of the database utilizing the block based indexing scheme is given in the next

section.

3.5 Experimental Evaluation

This section presents the details regarding the database used, experiments performed and

results observed.
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3.5.1 Database used

CASIA (Chinese Academy of Sciences’ Institute of Automation) Iris Image Database V3.0 [66]

was used for experimental evaluation of the iris indexing techniques proposed. CASIA-IrisV3

is divided into CASIA-IrisV3-Interval, CASIA-IrisV3-Lamp and CASIA-IrisV3-Twins. For

the experimental evaluation of the indexing technique, the CASIA-IrisV3-Interval was used

because this database contained images captured in two sessions, with at least one month interval.

This database contained images with resolution 320×280 pixels captured from 249 subjects. Both

the left and right eye images of a subject are present in the database. However all the users do

not have same number of image samples per eye. Since the left and right eyes are assumed to be

independent, they can be treated as distinct users. Only those users are selected which have at

least six sample images per eye, in order to have three images for training and three images for

testing. Thus, 143 users corresponding to the left eye and 139 users corresponding to the right

eye, were identified. The training and test set each contain (randomly chosen) three samples per

user. Figure 3.4 shows a few images present in the CASIA-IrisV3-Interval database.

3.5.2 Analysis of IrisCodes

The training dataset for analysis contains IrisCodes generated from the training images. Five

experiments are done to analyze the indexing performance based on IrisCodes.

Experiment 1a: PCA is performed on the IrisCode image and dimensionality reduction is

achieved according to the number of significant eigen vectors. An unsupervised clustering (K-

means) is applied on the reduced dimension set and the training dataset is split into K classes.

Each class has user numbers associated with it. For a given query image Q, the IrisCode is

generated and PCA is performed to obtain the reduced dimension feature set. Thereafter, Q is

allotted to a class according to its Euclidian distance from the centroid of the clusters generated

from the training set. The classification result is reported by varying the eigen vectors and

number of clusters. The result is presented in Table 3.1.

PCA Algorithm

The goal of PCA is to reduce the dimensionality of a given data set X of dimension M to a

new data set Y of dimension L, such that L << M .

1. Suppose X is arranged as a set of N data vectors ( ~X1, ~X2 . . . ~XN), where each observation
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Figure 3.4: A snapshot of images present in the CASIA-IrisV3-Interval database. Each row
contains multiple captures of the iris of a user.
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has M variables. X can be written as column vectors ( ~X1, ~X2 . . . ~XN) where each column

has M rows. Thus X is of the dimension M ×N .

2. Calculate the empirical mean along each dimension m = 1 . . . M . The empirical mean

vector ~u is given by
~

u[m] = ΣN
n=1

~X[m, n]/N .

3. Store the mean subtracted data in ~B of dimensions M ×N . ~B = ~X − ~u.h, where h is an

identity matrix of size 1×N .

4. Calculate the M ×M covariance matrix ~C from the outer product of matrix ~B with itself.

5. Find the eigenvectors matrix ~V which diagonalizes the covariance matrix ~C, such that

~V −1 ~CV = ~D, where ~D is the eigenvalues matrix of ~C.

6. Rearrange the eigenvectors by sorting the columns of the eigenvector matrix ~V and eigen-

value matrix ~D in order of decreasing eigenvalue.

7. Select the top L eigenvectors to form the basis of the data. L could be either predefined

or it could be found from the cumulative energy g. The cumulative energy for the mth

eigenvector is given as g(m) = Σm
q=1D(p, q), where p = q and m = 1 . . . m.

Table 3.1: Experiment 1a: PCA Analysis on entire IrisCode by varying the number of principal
axis components (eigen vectors) and number of clusters

Number of Eigen Vectors Number of Clusters (K) Hit Rate(%) Penetration(%)
40 5 82.9 32.2
80 5 84.3 39.6
120 5 80.6 23.8
40 10 74.5 18.1
80 10 78.1 19.6
120 10 77.4 16.3
40 20 71.8 8.6
80 20 71.6 13.4
120 20 68.9 11.0

Experiment 1b: Instead of varying the number of principal components, the 92% rule is

used and the result is reported in Figure 3.5. It was observed that, 92% rule performed slightly
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Figure 3.5: Indexing performance using IrisCodes (a) PCA analysis on IrisCode according to
92% rule. (b) Analysis of row based features extracted from the IrisCode considering only the
target cluster. (c) Analysis of column based features extracted from the IrisCode considering
only the target cluster. (d) PCA analysis of block based features extracted from the IrisCode.
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better. The 92% rule suggests that the smallest value of L (see 3.5.2) is chosen such that the

cumulative energy g(m = L) ≥ 92%.

Experiment 2: The feature extracted is the mean of each row in the IrisCode present in the

training database. Rows of the IrisCode correspond to concentric circles in the iris. The feature

vector size is limited by the number of rows in the IrisCode. Finally, unsupervised clustering

(K-means) is performed on the extracted feature vectors, and the training dataset is split into

K classes. For a given query image, the IrisCode is generated and the row based feature vector

is extracted. The query image is then allotted a class according to its feature vector’s euclidian

distance from the cluster centroid. The user numbers associated with the cluster represent the

reduced candidate set for matching. The indexing result using the row based features of the

IrisCode is reported in Figure 3.5 . The classification accuracy can be improved by extending

the search to the nearest neighboring class at the cost of increased penetration into the database.

Experiment 3: The feature extracted is the mean of each column in the IrisCode present

in the training database. Columns of the IrisCode correspond to radial direction in the iris. The

rest of the procedure is the same as in experiment 2. It is observed that row based features

perform better than column based features.

Experiment 4: Each IrisCode in the training database is split into blocks of size m by m,

where m = 4, 8, 16. The first order statistic (mean) computed for each block serves as a feature.

The feature vector is extracted from all the IrisCode in the training database and unsupervised

clustering (K-means) is performed on the feature vectors, and the training database is split into

K classes. The classification performance is reported by varying values of K and m. The results

for m = 4, 8, 16 with a single target cluster are shown in Figure 3.5. The results indicate that

m = 4 and m = 8 perform better than m = 16. This can be attributed to the fact that as the

block size increases the local information is lost.

3.5.3 Local Binary Pattern Analysis of Iris Texture

The training database for LBP analysis contains 3 normalized iris images per user from the

database.

Experiment 5: Each image in the training database is divided into blocks of size m by

m. A histogram is computed for all the blocks in the given image. The number of bins (b)

in the histogram depends on the radius r, considered to generate the LBP. For example, for
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r = 1, m = 3 and b = 10, for r = 2, m = 5 and b = 18, for r = 3, m = 7 and b = 24. For

a given r, the histogram bin heights for each image in the training database forms the feature

vector. Unsupervised clustering (K-means) is performed on the feature vectors representing the

training images, and an index space model is created which holds the centroid information of the

clusters. For a given query image Q, a similar histogram is generated and the proximity of the

histogram is computed with respect to the cluster centroids (generated in the index space) using

Kullback Leibler distance (KL) distance. The KL distance is a natural distance function from a

probability distribution p to a probability distribution q. For discrete probability distributions,

p = p1, p2, . . . pn and q = q1, q2, . . . qn, the KL distance is defined to be KL(p, q) = Σn
i=1pilog2

pi

qi

The users whose KL distance lies below the threshold α are considered for matching. The

accuracy of this scheme and the fraction of database penetrated by varying the size of the

neighborhood (considered to generate LBP) are shown in Figure 3.6.

3.5.4 SPLDH Analysis of Iris Texture

Experiment 6: For a given segmented and normalized iris image Ii of size mi by ni in the

training database, a cropped part of fixed size say k × l is extracted, where 1 ≤ i ≤ Ntr and

Ntr is the total number of iris images in the training database. Let the cropped iris image be

denoted by Ici. Divide Ici into blocks of size 4 × 4. Assuming k and l to be multiples of 4, the

number of blocks in the cropped image is btot, where btot = (ki ∗ li)/16.

The next step involves finding the SPLDH for each block in Ici corresponding to all other

blocks in Ici. The histogram is calculated for differences ranging from −Qmax to +Qmax, where

Qmax defines the maximum value of pixel level difference defined by the indexing scheme. In

the experiments performed Qmax = 15. Different features can be extracted from the SPLDH

(e.g., entropy, contrast, homogeneity etc.). In the experiments performed, entropy was used

as the feature extracted from SPLDH. Let the feature extracted be represented by µb, where

1 ≤ b ≤ btot. Thereafter the block positions are ranked according to ascending or descending

order of the features (as desirable for a given feature). Finally, each block in Ici corresponds to the

top λ block positions. These block positions represent where the important texture information

lies in the image. This procedure is carried out for all the blocks in the image Ici to generate the

‘intra block statistic’, and for all the images in the training database.

For a given segmented, enhanced and cropped query iris image Q of size k × l, the above
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Figure 3.6: Local Binary Pattern analysis. (a) Indexing performance using original LBP opera-
tor. (b) Indexing performance using LBP operator considering pixels at radius 1. (c) Indexing
performance using LBP operator considering pixels at radius 2. (d) Indexing performance using
LBP operator considering pixels at radius 3.
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procedure is repeated to generate the ’intra block statistic’.

In order to account for head movement while presenting the iris to the system, inherent noise

present in the system (e.g.,sensor noise, modeling error etc.) and external noise (e.g. varying

illumination), the top λ block positions corresponding to each block in the iris image is allowed a

tolerance zone of a 8× 8, i.e., the block position could move by one position in the north, south,

east west, north-east, south-east, north-west or south-west direction.

Database Management and Retrieval:

Since the indexing scheme is based on block statistics, therefore the database management

is done in such a away so as to incorporate indexing at the block level. Finally, the indexing

results at the block level are construed. Accordingly a reduced number of users are identified

for matching. This section explains the database management and the retrieval scheme using a

simple illustration.

In order to explain the retrieval scheme, let us assume that each image can be divided into

16 blocks of equal width and height. Therefore, using the notations introduced in the previous

section, btot = 16. For each of these blocks, the SPLDH is computed, features are extracted and

on the basis of these features, the top λ block positions are identified. For sake of explanation,

let us assume λ = 2. Then for each block an index BIτ can be defined, where τ denotes the

absolute block position in the image and BIτ = p1, .., pλ. Thus in the example being discussed,

BIτ = p1, p2. For each block position, there could be a maximum of eight neighborhood positions

which have to be considered in order to incorporate the ‘tolerance zone’. For instance, in case of

btot = 16, the ‘tolerance zone’ of block position 1 includes block positions 2, 5, 6. Similarly, the

’tolerance zone’ of block position 11 includes 6, 7, 8, 10, 12, 14, 15, 16. Let us assume that for a

given block in the image, the block index is 1, 2, i.e. p1 = 1 and p2 = 2. The first level represented

by squares (ranging from 1 to 16) in the Figure 3.8, denote p1. According to the value of p1,

the first node represented by p1 is further split into all possible block positions according to the

‘tolerance zone’. In the Figure 3.8, such possible block positions are represented by pentagons

at level 1. Therefore, when p1 is 1, the retrieval process will go into the node 1 at level 1 first,

and then it will move into the sub node 1 (shown as hexagons in level 1). This level 1 sub node

is further split according to p2, into level 2 nodes. The level 2 node is represented by pentagons

with index values β1, β2, where β1 represents the level 1 node according to which splitting took
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place and β2 represents the block positions represented by block positions in the tolerance zone

of p2. Since there are only two levels in the given example, the second level sub-nodes can

also be called leaves. The leaves store information regarding user-ID’s having the block index

corresponding to index representing the leaf. In this example since the first level node splitting

takes place according to β1 = 1, therefore the second level splitting results in β2 = 2, 3, 5, 6, 7.

Therefore, for a two level indexing example, for a block with index BIτ = 1, 2 will look into all

nodes with indexes θ1, θ2, where θ1 = 1, 2, 5, 6 and θ2 = 1, 2, 3, 5, 6, 7. Thus a total of 24 sub

leaves have to be searched out of a possible b2
tot = 162 = 256 possible leaves. The information

regarding the user ID’s held by the leaf can be updated either using an incremental procedure,

where there is no training data to begin with or there could be prior information generated from

the training database regarding user id’s embedded in the leaf nodes. The retrieval scheme is

shown in Figure 3.8. An example of possible traversal path in the tree for a given block index

1, 2 is demonstrated by the shaded blocks. After having visited all the possible leaves according

to the block index, a list of user numbers is obtained corresponding to potential candidates for

matching. A voting scheme can be employed to find out which users have a higher probability

of a match.

The retrieval process is an online process. For a given query image the complexity of the

algorithms depends on number of blocks in the iris image (btot) and the number of levels in the

index (λ). The computational complexity of searching for the block positions and the corre-

sponding prospective candidates for matching, in the data structure is O(btot ∗ λ ∗ ti), where ti is

the number of block positions in the tolerance zone of the block being analyzed.

It is observed that on an average 2.3% of the users in the CAISA-3 database occupy each leaf

of the indexing data structure (tree). In the experiment performed btot = 96 and λ = 2.

In the experiment performed on CASIA-3 database, it was found that a hit rate of 84% is

achieved by looking into 30% of the CASIA-3 database.

3.6 Analysis of iris indexing techniques

The first technique analyzes the IrisCode and performs unsupervised clustering on features

extracted from the IrisCode. The hit rate and the penetration rate reported for a fixed num-

ber of cluster specified for unsupervised clustering is the average of all the hit rates and their
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corresponding penetration rates observed. In the PCA based indexing of IrisCode the average

penetration for a 80% hit rate is 17%, whereas for the indexing based on column-based statistics

of the IrisCode, the average penetration rate for 80% hit rate is approximately 21%. However,

when the indexing is based on the block based statistics of the iris code with block size=8x8,

the average penetration for 80% hit rate is only 8%. Thus, it is observed that block based in-

dexing has higher merit over other indexing techniques considered for the IrisCodes. However,

the iris code analysis assumes that for each iris in the database encoding has been performed

and an iris code is available. The first iris texture based indexing scheme uses block based Local

Binary Pattern (LBP) in order to perform indexing. However it is observed that for a hit rate

of 80%, the average penetration rate is around 70%, suggesting that block based LBP does not

represent the iris texture well to be considered as a representative feature for indexing. Moreover

since block based LBP represents the local contrast, it is implied from its poor performance that

the texture based indexing technique has to be not just block based but should also inherently

capture the interblock relationship, thus resulting in the third technique - indexing using block

based SPLDH. It was observed that for a hit rate of 84%, the average penetration rate is 30%.

Though this technique does not perform as well as the indexing technique using block based

features of IrisCode, the performance is far better than the indexing technique based on LBP.

3.7 Summary and Future Work

Three iris indexing algorithms have been proposed based on analysis of IrisCode, LBP analy-

sis of iris texture and SPLDH analysis of iris texture. The ability of the SPLDH based algorithm

to skip the iris enhancement and encoding stages for iris indexing, along with the resulting im-

provement in performance over the LBP based algorithm makes it attractive for future research.

However, it should be noted that the LBP based algorithm performs poorly in its basic imple-

mentation. Other versions of LBP, might lead to better indexing performance [65]. Since the

indexing scheme is block based, there is an inherent sense of parallelism, where each block can

be indexed independently and the result consolidated thereafter. In addition, since the retrieval

scheme is based on block positions, the tree like structure for database management is fixed,

thus making incremental addition of new users to the tree simpler. The future work may include

analysis of features other than entropy from the SPLDH. Since this is the first time iris indexing
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is being addressed, this work attempts to highlight a new direction of research that would be

helpful for large scale authentication systems in the future.
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Chapter 4

Summary and Future Work

In this thesis, indexing techniques have been proposed for fingerprint and iris. While the

fingerprint indexing technique was based on Delaunay triangulation of minutiae points, the iris

indexing techniques were based on the analysis of IrisCodes and iris texture.

4.1 Fingerprint Indexing

In the proposed model for fingerprint indexing, it was demonstrated that augmenting ridge

based features with minutiae based features enhances fingerprint indexing performance. The

proposed model was tested on FVC2002 and FVC2004 databases. The sensors used in these

databases have comparable resolution. Therefore, the impact of ridge based features on the

indexing performance in databases where images have been acquired using sensors of different

resolution, is not known and will constitute future research. It will also be interesting to analyze

the indexing performance where the database contains multiple samples of a user from different

types of sensors. The simple ratios of coefficients in ridge based features improves the perfor-

mance of indexing when used in conjunction with minutiae information. However, such ridge

based features do not perform well when used alone. Thus, the minutiae based features can be

considered as the most discriminating features, whereas the ridge based features further enhance

the discriminating capability of the minutiae based features.

The index space model generated has 600 cluster definitions (the value of K is 600 in the

K-means algorithm). In the scheme is proposed, the number of clusters is fixed. It should be

noted that the K = 600 was chosen after analyzing some other values(e.g.; K = 100, 300 and
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900. It was observed that K = 600 gives better performance over other values. The effect of

varying the number of clusters, on the indexing performance might constitute future work.

4.2 Iris Indexing

The iris indexing, based on Signed Pixel level Difference Histogram (SPLDH) analysis of

iris texture, gave interesting results. The ability of the scheme to identify relevant texture and

extract information regarding distribution of such texture lends to the block based indexing.

The inter-block interaction is used to define an index for the iris database. It is easy to add,

remove or update the information using the block based data structure. However, maintaining

such a data structure might become cumbersome for large databases. The block based model

proposed tries to look at iris indexing from the texture point of view. Though, the present

iris matching techniques are fast and accurate, they typically use IrisCodes for matching. This

means that all images in the database have to undergo localization, enhancement, unwrapping

and encoding. However with the proposed scheme, the localized and normalized iris image itself

can be used for indexing. In future, other indexing techniques should be researched in order

to index unsegmented iris, since segmentation is computationally intensive. In case, the iris

recognition system extracts colored iris images, color can be used as a feature for iris indexing.

It should be noted that the performance of the iris indexing scheme proposed is dependent on

the localization algorithm. The indexing performance would be low for iris image which do not

have prominent iris texture. It will be interesting to observe the performance of the indexing

scheme when images of high resolutions are available.

It should be noted that in both fingerprint and iris indexing schemes, the matcher is given

a list of possible candidates. The features extracted by the matcher or the order in which the

matcher should use the list of candidates can be confirmed only when the matcher is integrated

with the indexing model. In future, research into such integration methodologies will result in

more accurate matchers.

Currently, the indexing scheme considers a closed set identification; the users whose samples

have been used to generate the training database, comprise the test database as well (with

different samples). Thus, a novel user (whose samples do not exist in the training database),

should be ideally rejected. However, the indexing schemes proposed are so designed, that the



CHAPTER 4. SUMMARY AND FUTURE WORK 72

USER 1
 USER 2
 USER N


Enrollment System

(Multi Modal Database)


Figure 4.1: Multimodal enrollment process.

novel user will cause the indexing technique to produce a list of target users. In order to handle

open set identification, the indexing model should incorporate the facility to reject fingerprints.

This can be done depending on the application which the indexing is supposed to serve.

Analysis of the sensitivity and selectivity of the features used for indexing might comprise

future work.

4.3 Multimodal Indexing

With the growing deployment of biometric systems based on fingerprint, face, iris, hand etc.,

there is a trend towards adopting multi-modal biometric systems. The advantage of multibio-

metric [6] system lies not only in the fact that decision making becomes more reliable (due to

decision level or feature level fusion of multiple biometrics), but also that individuals who cannot

use a particular biometric (e.g., loss of hand due to personal injuries or dry skin condition leading

to unacceptable fingerprint image) can still use the system using some other biometric. In the

context of large scale identification, filtering can be performed by indexing sequentially using

different biometrics, thus reducing the number of candidates for matching. This section suggests

a possible design for a multimodal indexing system.

Multimodal boimetric indexing would include the following steps:

1. Multimodal enrollment: In this stage, the user enrolls his biometrics into the system. For

example, in a tri-modal system (see Figure 4.1) based on face, fingerprint and hand geom-
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Figure 4.2: Design of the multimodal index space.

etry, the user will enroll all the three biometrics (unless a preexisting condition prevents

doing so).

2. Designing the multimodal index space model: After enrollment, the user data is arranged

by sequential clustering of the face, fingerprint and hand biometrics. This sequence will be

dictated by how well the indexing scheme performs for individual biometrics. One possible

configuration of the database is shown in the Figure 4.2.

3. Retrieval: When a query user provides his multiple biometrics to the system (face, finger-

print and hand in this case; see Figure 4.3), the indexing system searches the face cluster

first and eliminates certain users based on face indexing (see figure 4.4). Thereafter, finger-

print indexing is performed on the remaining users and certain users are further eliminated

from the list of prospective candidates (see figure 4.5). Finally, in the third and final level

of the tri-modal indexing scheme, the hand geometry index space is analyzed in order to

eliminate users. The final list of prospective candidates is shown in figure 4.6.
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Figure 4.3: Query user presenting the biometrics to the retrieval system.
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Figure 4.4: Indexing system eliminates users based on searching the face index space (clusters).
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Figure 4.5: Indexing system eliminates users based on searching the fingerprint index space
(clusters) of the users left after elimination based on face index space.
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Figure 4.6: Reduced data set after eliminating users sequentially from the face, fingerprint and
hand geometry index space.
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