13 research outputs found

    Laser welding of dissimilar carbon steel to stainless steel 316L

    Get PDF
    Laser welding of metals and alloys is extensively used in industry due to its advantages of controlled heating, narrow weld bead, low heat affected zone (HAZ) and its ability to weld a wide range of metals and dissimilar metals. Laser welding of dissimilar metals such as carbon steels and stainless steel is still a challenging task, particularly due to the formation of brittle phases in the weld, martensitic formation in the HAZ and solidification cracking in the fusion zone. These issues can significantly deteriorate the strength of the welded joint. The aim of this work is to investigate the fundamental phenomena that occur inside the dissimilar weld zone and their effect on weld quality. In order to establish the key process variables, an initial study concentrated on the effect of different laser process parameters on dissimilar weld quality. In the second part of the work, a comprehensive study was performed to understand and subsequently control the alloying composition in laser dissimilar welding of austenitic stainless steel and low carbon steel. A dissimilar weld that is predominantly austenitic and homogeneous was obtained by controlling the melt pool dynamics through specific point energy and beam alignment. The significance of dilution and alloying elements on joint strength was established. A coupled CFD and FEM numerical model was developed to assist in understanding the melt pool dynamics and transportation processes of alloying elements. The model has been validated by a series of laser welding experiments using various levels of specific point energy. The laser welding characteristics in terms of geometric dimensions, surface morphology, alloying concentration, and dilution, were compared, and it is concluded that the specific point energy and laser beam position are the key parameters that can be controlled to obtain a weld bead with characteristics most suitable for industrial applications. In the third part of the work, a comparative study was performed to understand the significance of cooling rate, and alloying composition on the microstructure and phase structure of the dissimilar weld zone. Results show that the HAZ within the high carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A new heat treatment strategy was proposed based on the results of the numerical simulation, and it is shown to control the brittle phase formation in HAZ of high carbon steel. A series of experiments was performed to verify the developed thermo-metallurgical FEA model and a good qualitative agreement of the predicted martensitic phase distribution is shown to exist. Although this work is presented in the context of dissimilar laser welding of mild steel to stainless steel, the concept is applicable to any dissimilar fusion welding process

    ESARDA 39th Annual Meeting: 2017 Symposium

    Get PDF
    The 39th ESARDA symposium on Safeguards and Nuclear Non-Proliferation was held in Düsseldorf, Germany from 16-18 May, 2017. The Symposium has been preceded by meetings of the ESARDA Working Groups on 15 May 2017. The event has once again been an opportunity for research organisations, safeguards authorities and nuclear plant operators to exchange information on new aspects of international safeguards and non-proliferation, as well as recent developments in nuclear safeguards and non-proliferation related research activities and their implications for the safeguards community.JRC.G.II.7-Nuclear securit

    The source of the building stones from the Sagunto Castle archaeological area and its surroundings

    Get PDF
    A multidisciplinary study was carried out on the building stones of the masonries belonging to the Castle of Sagunto (Valencia, Spain), an important historical and archeological complex, characterized by several construction phases from the Roman Period to the Modern Ages. For the first time, the stones of the Sagunto Castle have been analysed to determine their chemical, mineralogical and petrographic features, the main physical and mechanical properties, and to understand their decay, use and recycling dynamics in the different building during the entire occupational period. Geochemical and mineralogical analyses employing X-ray fluorescence (XRF), inductively coupled plasma mass spectrometry (ICP-MS) and X-ray diffraction (XRD) were carried out together with optical and electronic microscope analysis to observe the stone macro- and micro-structures. The collected data were processed by Principal Component Analysis (PCA) to highlight differences among the studied structures. The results show that the stones employed to build Sagunto`s structures during the different historical periods are related to a specific quarried area located nearby Sagunto Castle hill and differences between the studied samples are mostly related to the conservation state of the buildings. Therefore, geochemical analyses confirm the origin of the raw materials, while petrographic and physical analyses have been useful to evaluate the conservation state of the studied Sagunto Castle structures

    Rare Earth Elements analysis to identify anthropogenic signatures at Valle del Serpis (Spain) Neolithic settlements

    Get PDF
    Due to their particular geochemical properties and stability Rare Earth Elements (REE) can act as a ‘fingerprint’ for soils, and as a consequence have been employed in a variety of different archaeological scenarios in order to identify past human activities.In this study, for the first time, we apply REE signatures in different Spanish Neolithic settlements, all located in the Valle del Serpis region. More than 100 Neolithic settlements have been identified in this area, and most of these open sites are characterised by dark brown strata that are in contrast with the light brown soils of the valley. These dark brown deposits are usually covered by paleosols and have been interpreted as markers of anthropogenic activities. However, in order to demonstrate whether these strata are anthropogenic or natural features requires a better understand-ing of soil development processes. A total of fifty samples were taken across six different sites, and from each site the sam-pling was carried out at different depths through 3m deep sections. Four sites are clearly associated with archaeological findings (sites BF, LP, PB and AC); another one is from a natural section near the Neolithic site of Mas d’Is (MD) and has been radiocarbon dated to the beginning of the Holocene (7751-7611 cal BC); and the last corresponds to a place of uncertain attribution (BK). Major, minor and trace elements including REE were determined using XRF and ICP- MS, with Principal Components Analysis (PCA) used to statistically analyze these data. Results were then compared with the strata soil properties analysed by XRD and particle size analysis, and cross-referenced with archaeological data to aid interpretation. The results demonstrate that REE analyses provide significant details regarding anthropogenic activities and strata development history, and in this instance confirm and elaborate on the archaeological interpretation that these dark brown deposits are evidence of a region-wide agricultural system in the Neolithic Valle del Serpis

    ESARDA 37th Annual Meeting Proceedings

    Get PDF
    The 37th ESARDA symposium on Safeguards and Nuclear Non-Proliferation was held in Manchester, United Kingdom from 19-21 May, 2015. The Symposium has been preceded by meetings of the ESARDA Working Groups on 18 May 2015. The event has once again been an opportunity for research organisations, safeguards authorities and nuclear plant operators to exchange information on new aspects of international safeguards and non-proliferation, as well as recent developments in nuclear safeguards and non-proliferation related research activities and their implications for the safeguards community. The Proceedings contains the papers (118) submitted according to deadlines.JRC.E.8-Nuclear securit

    Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period Phase 2

    Get PDF
    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR) and Stanford University, executed a 19 month program responsive to the NASA sponsored "N+2 Supersonic Validation: Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period" contract. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies necessary to realize a supersonic vehicle capable of meeting the N+2 environmental and performance goals. The N+2 program is aligned with NASA's Supersonic Project and is focused on providing system level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight. The N+2 environmental and performance goals are outlined in the technical paper, AIAA-2014-2138 (Ref. 1) along with the validated N+2 Phase 2 results. Our Phase 2 efforts built upon our Phase 1 studies (Ref. 2) and successfully demonstrated the ability to design and test realistic configurations capable of shaped sonic booms over the width of the sonic boom carpet. Developing a shaped boom configuration capable of meeting the N+2 shaped boom targets is a key goal for the N+2 program. During the LM Phase 1 effort, LM successfully designed and tested a shaped boom trijet configuration (1021) capable of achieving 85 PLdB under track (forward and aft shock) and up to 28 deg off-track at Mach 1.6. In Phase 2 we developed a refined configuration (1044-2) that extended the under 85 PLdB sonic boom level over the entire carpet of 52 deg off-track at a cruise Mach number of 1.7. Further, the loudness level of the configuration throughout operational conditions calculates to an average of 79 PLdB. These calculations rely on propagation employing Burger's (sBOOM) rounding methodology, and there are indications that the configuration average loudness would actually be 75 PLdB. We also added significant fidelity to the design of the configuration in this phase by performing a low speed wind tunnel test at our LTWT facility in Palmdale, by more complete modelling of propulsion effects in our sonic boom analysis, and by refining our configuration packaging and performance assessments. Working with General Electric, LM performed an assessment of the impact of inlet and nozzle effects on the sonic boom signature of the LM N+2 configurations. Our results indicate that inlet/exhaust streamtube boundary conditions are adequate for conceptual design studies, but realistic propulsion modeling at similar stream-tube conditions does have a small but measurable impact on the sonic boom signature. Previous supersonic transport studies have identified aeroelastic effects as one of the major challenges associated with the long, slender vehicles particularly common with shaped boom aircraft (Ref. 3). Under the Phase 2 effort, we have developed a detailed structural analysis model to evaluate the impact of flexibility and structural considerations on the feasibility of future quiet supersonic transports. We looked in particular at dynamic structural modes and flutter as a failure that must be avoided. We found that for our N+2 design in particular, adequate flutter margin existed. Our flutter margin is large enough to cover uncertainties like large increases in engine weight and the margin is relatively easy to increase with additional stiffening mass. The lack of major aeroelastic problems probably derives somewhat from an early design bias. While shaped boom aircraft require long length, they are not required to be thin. We intentionally developed our structural depths to avoid major flexibility problems. So at the end of Phase 2, we have validated that aeroelastic problems are not necessarily endemic to shaped boom designs. Experimental validation of sonic boom design and analysis techniques was the primary objective of the N+2 Supersonic Validations contract; and in this Phase, LM participated in four high speed wind tunnel tests. The first so-called Parametric Test in the Ames 9x7 tunnel did an exhaustive look at variation effects of the parameters: humidity, total pressure, sample time, spatial averaging distance and number of measurement locations, and more. From the results we learned to obtain data faster and more accurately, and made test condition tolerances easy to meet (eliminating earlier 60 percent wasted time when condition tolerances could not be held). The next two tests used different tunnels. The Ames 11 ft tunnel was used to test lower Mach numbers of 1.2 and 1.4. There were several difficulties using this tunnel for the first time for sonic boom including having to shift the measurement Mach numbers to 1.15 and 1.3 to avoid flow problems. It is believed that the 11 ft could be used successfully to measure sonic boom but there are likely to be a number of test condition restrictions. The Glenn 8x6 ft tunnel was used next and the tunnel has a number of desirable features for sonic boom measurement. While the Ames 9x7 can only test Mach 1.55 to 2.55 and the 11 ft can only test Mach 1.3 and lower, the Glenn 8x6 can test continuously from Mach 0.3 to 2.0. Unfortunately test measurement accuracy was compromised by a reference pressure drift. Post-test analysis revealed that the drift occurred when Mach number drifted slightly. Test measurements indicated that if Mach number drift is eliminated, results from the 8x6 would be more accurate, especially at longer distances, than results from the 9x7. The fourth test in the 9x7, called LM4, used everything we learned to comprehensively and accurately measure our new 1044-02 configuration with a full-carpet shaped signature design. Productivity was 8 times greater than our Phase 1 LM3 test. Measurement accuracy and repeatability was excellent out to 42 in. However, measurements at greater distances require the rail in the aft position and become substantially less accurate. Further signature processing or measurement improvements are needed for beyond near-field signature validation
    corecore