22,713 research outputs found

    Experimental Investigation of Interfacial Tension Measurement and Oil Recovery by Carbonated Water Injection : A Case Study Using Core Samples from an Iranian Carbonate Oil Reservoir

    Get PDF
    The authors would like to gratefully acknowledge and appreciate the Department of Petroleum Engineering, Faculty of Engineering, Marvdasht Islamic Azad University, Marvdasht, 73711-13119, Iran, for the provision of the laboratory facilities necessary for completing this work.Peer reviewedPostprin

    Friction modifier additives

    Get PDF

    Diesel and Gasoline Engines

    Get PDF
    The internal combustion engine was invented around 1790 by various scientists and engineers worldwide. Since then the engines have gone through many modifications and improvements. Today, different applications of engines form a significant technological importance in our everyday lives, leading to the evolution of our modern civilization. The invention of diesel and gasoline engines has definitely changed our lifestyles as well as shaped our priorities. The current engines serve innumerable applications in various types of transportation, in harsh environments, in construction, in diverse industries, and also as back-up power supply systems for hospitals, security departments, and other institutions. However, heavy duty or light duty engines have certain major disadvantages, which are well known to everyone. With the increasing usage of diesel and gasoline engines, and the constantly rising number of vehicles worldwide, the main concern nowadays is engine exhaust emissions. This book looks at basic phenomena related to diesel and gasoline engines, combustion, alternative fuels, exhaust emissions, and mitigations

    Preparation, Proximate Composition and Culinary Properties of Yellow Alkaline Noodles from Wheat and Raw/Pregelatinized Gadung (Dioscorea Hispida Dennst) Composite Flours

    Get PDF
    The steady increase of wheat flour price and noodle consumptions has driven researchers to find substitutes for wheat flour in the noodle making process. In this work, yellow alkaline noodles were prepared from composite flours comprising wheat and raw/pregelatinized gadung (Dioscorea hispida Dennst) flours. The purpose of this work was to investigate the effect of composite flour compositions on the cooking properties (cooking yield, cooking loss and swelling index) of yellow alkaline noodle. In addition, the sensory test and nutrition content of the yellow alkaline noodle were also evaluated for further recommendation. The experimental results showed that a good quality yellow alkaline noodle can be prepared from composite flour containing 20% w/w raw gadung flour. The cooking yield, cooking loss and swelling index of this noodle were 10.32 g, 1.20 and 2.30, respectively. Another good quality yellow alkaline noodle can be made from composite flour containing 40% w/w pregelatinized gadung flour. This noodle had cooking yield 8.93 g, cooking loss 1.20, and swelling index of 1.88. The sensory evaluation suggested that although the color, aroma and firmness of the noodles were significantly different (p ā‰¤ 0.05) from wheat flour noodle, but their flavor remained closely similar. The nutrition content of the noodles also satisfied the Indonesian National Standard for noodle. Therefore, it can be concluded that wheat and raw/pregelatinized gadung composite flours can be used to manufacture yellow alkaline noodle with good quality and suitable for functional food

    An assessment of the use of antimisting fuel in turbofan engines

    Get PDF
    An evaluation was made on the effects of using antimisting kerosene (AMK) on the performance of the components from the fuel system and the combustor of current in service JT8D aircraft engines. The objectives were to identify if there were any problems associated with using antimisting kerosene and to determine the extent of shearing or degradation required to allow the engine components to achieve satisfactory operation. The program consisted of a literature survey and a test program which evaluated the antimisting kerosene fuel in laboratory and bench component testing, and assessed the performance of the combustor in a high pressure facility and in an altitude relight/cold ignition facility

    High performance, high density hydrocarbon fuels

    Get PDF
    The fuels were selected from 77 original candidates on the basis of estimated merit index and cost effectiveness. The ten candidates consisted of 3 pure compounds, 4 chemical plant streams and 3 refinery streams. Critical physical and chemical properties of the candidate fuels were measured including heat of combustion, density, and viscosity as a function of temperature, freezing points, vapor pressure, boiling point, thermal stability. The best all around candidate was found to be a chemical plant olefin stream rich in dicyclopentadiene. This material has a high merit index and is available at low cost. Possible problem areas were identified as low temperature flow properties and thermal stability. An economic analysis was carried out to determine the production costs of top candidates. The chemical plant and refinery streams were all less than 44 cent/kg while the pure compounds were greater than 44 cent/kg. A literature survey was conducted on the state of the art of advanced hydrocarbon fuel technology as applied to high energy propellents. Several areas for additional research were identified

    Determination of physical and chemical states of lubricants in concentrated contacts, part 3

    Get PDF
    Solid and liquid thin films were analyzed by infrared emission Fourier microspectrophotometry. The apparatus used is a commercial absorption instrument modified to an emission instrument, comprising a rotating polarizing device, a miniature blackbody temperature reference adjustable in temperature and radiant flux and a microscope lens with a high numerical aperture in the entrance system for increased sensitivity and resolution. Studies of lubricant behavior in a simulated ball bearing showed the alignment of the fluid molecules in the Hertzian area. Polyphenyl ether plus 1% 1,1,2-trichloroethane (TCE) required lower shear rates for the same degree of alignment than without TCE. The experiment was run with 440 C stainless steel balls coated with TiN, a chemically inert material. In both cases, the alignment was strongly influenced by the presence of TCE. The results showed (1) the dependence of alignment of fluid molecules on flow and not on adsorption at metallic surfaces, (2) phase separation between lubricant and additive under high pressure which results in two phase flow and (3) reduction in traction of torque transmitting (traction) fluids

    Pyrolysis oil combustion characteristics and exhaust emissions in a swirl-stabilized flame

    Get PDF
    An optically accessible domestic-scale swirl-stabilized combustor has been developed to allow for the investigation of combustion characteristics of biomass derived pyrolysis oils in pressure-atomized and air-atomized spray flames. Pine and corn fiber derived pyrolysis oil have been studied, with light fuel oil (LFO) used as a baseline fuel for comparison. Gaseous and particulate exhaust emissions have been measured, and the particulate samples studied with scanning electron microscopy (SEM) to investigate morphology and composition. In-situ visualization studies have been performed by employing high speed imaging of flame luminosity and several laser diagnostic methods including Mie scattering, hydroxyl radical planar induced fluorescence (OH-PLIF), fuel planar laser-induced fluorescence (Fuel-PLIF), and laser induced incandescence (LII). Spray characteristics have been investigated by employing Mie scattering and phase Doppler particle analysis(PDPA). Particulate emissions in pyrolysis oil have been found to consist predominately of unburned fuel residues (cenospheres), rather than soot, with higher emissions than LFO. Cenosphere emissions have been found to be greater for pressure atomization compared to air atomization, lean conditions relative to rich conditions, and low atomization air flowrates compared to high atomization air flowrates. Variation in combustion air preheat temperature from 100 to 400 yC, variation in water content from 23 to 26%, and variation in fuel fixed carbon content from 15 to 51% did not show significant effects on cenosphere characteristics

    Evaluation of Oxidizer Based Emulsifier for Diesel /Hydrogen Peroxide Blend

    Get PDF
    The emission of pollutants like black smoke, particulate matter (PM), nitrogen oxide (NOx), sulphur oxide (SOx) and carbon monoxide generated by diesel engine poses a threat to the environment and is detrimental to human health. The use of emulsified diesel has been considered to be one of the possible approaches to reduce the production of harmful diesel emissions. This research has studied on the ā€œEvaluation of Oxidizer Based Emulsifier for Diesel /Hydrogen Peroxide Blendā€, which simultaneously improved the fuel economic and increased the cetane number of diesel by using oxygenated chemical. Oxidizer based emulsifier which consists of 85% hydrogen peroxide as diesel oxygenate is introduced to crude diesel by using emulsification technique to form a considerable stable emulsion during the dissociation of different nature of solvents. This paper shown an experimental result carried out to evaluate pour point, cloud point, flash point, pH value, viscosity, cetane number, calorific value and density of emulsified diesel as compare to commercial diesel. On the whole, it is concluded that the diesel consumption, NOx, SOx, CO, PM and black smoke decrease in this emulsified diesel as emulsified diesel produced promote more complete combustion
    • ā€¦
    corecore