1,037 research outputs found

    High-Performance Bus-Based Architectures - Guest Editorial

    Get PDF
    (First paragrapg) This special issue of VLSI Design presents a collection of seven papers selected out of more than 35 submissions received following the Call for Papers. Each submission was sent to three referees, all of them experts in the area of bus-based architectures. The result is impressive. The papers featured in this Special Issue cover a wide range of topics from sorting to string matching, to load balancing, to simulation, matrix operations, to robotics, to the design of high-performance scalable architectures

    Quarc: an architecture for efficient on-chip communication

    Get PDF
    The exponential downscaling of the feature size has enforced a paradigm shift from computation-based design to communication-based design in system on chip development. Buses, the traditional communication architecture in systems on chip, are incapable of addressing the increasing bandwidth requirements of future large systems. Networks on chip have emerged as an interconnection architecture offering unique solutions to the technological and design issues related to communication in future systems on chip. The transition from buses as a shared medium to networks on chip as a segmented medium has given rise to new challenges in system on chip realm. By leveraging the shared nature of the communication medium, buses have been highly efficient in delivering multicast communication. The segmented nature of networks, however, inhibits the multicast messages to be delivered as efficiently by networks on chip. Relying on extensive research on multicast communication in parallel computers, several network on chip architectures have offered mechanisms to perform the operation, while conforming to resource constraints of the network on chip paradigm. Multicast communication in majority of these networks on chip is implemented by establishing a connection between source and all multicast destinations before the message transmission commences. Establishing the connections incurs an overhead and, therefore, is not desirable; in particular in latency sensitive services such as cache coherence. To address high performance multicast communication, this research presents Quarc, a novel network on chip architecture. The Quarc architecture targets an area-efficient, low power, high performance implementation. The thesis covers a detailed representation of the building blocks of the architecture, including topology, router and network interface. The cost and performance comparison of the Quarc architecture against other network on chip architectures reveals that the Quarc architecture is a highly efficient architecture. Moreover, the thesis introduces novel performance models of complex traffic patterns, including multicast and quality of service-aware communication

    Computer vision algorithms on reconfigurable logic arrays

    Full text link

    Design of an FPGA-based parallel SIMD machine for power flow analysis

    Get PDF
    Power flow analysis consists of computationally intensive calculations on large matrices, consumes several hours of computational time, and has shown the need for the implementation of application-specific parallel machines. The potential of Single-Instruction stream Multiple-Data stream (SIMD) parallel architectures for efficient operations on large matrices has been demonstrated as seen in the case of many existing supercomputers. The unsuitability of existing parallel machines for low-cost power system applications, their long design cycles, and the difficulty in using them show the need for application-specific SIMI) machines. Advances in VLSI technology and Field-Programmable Gate-Arrays (FPGAs) enable the implementation of Custom Computing Machines (CCMs) which can yield better performance for specific applications. The advent of SoftCore processors made it possible to integrate reconfigurable logic as a slave to a peripheral bus and has demonstrated the ability in the rapid prototyping of complete systems on programmable chips. This thesis aims at designing and implementing an FPGA-based SIMI) machine for power flow analysis. It presents the architecture of an SIMI) machine that consists of an array of processing elements with mesh interconnection and a Soft-Core processor; the latter is used as the host. The FPGAbased SIMI) machine is implemented on the Annapolis Microsystems Wildstar-II board that contains multiple Virtex-II FPGAs. The Soft-Core processor used is the Xilinx Microblaze and the application targeted is matrix multiplication

    System data communication structures for active-control transport aircraft, volume 2

    Get PDF
    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems
    corecore