38 research outputs found

    Investigation of LSTM Based Prediction for Dynamic Energy Management in Chip Multiprocessors

    Get PDF
    In this paper, we investigate the effectiveness of using long short-term memory (LSTM) instead of Kalman filtering to do prediction for the purpose of constructing dynamic energy management (DEM) algorithms in chip multi-processors (CMPs). Either of the two prediction methods is employed to estimate the workload in the next control period for each of the processor cores. These estimates are then used to select voltage-frequency (VF) pairs for each core of the CMP during the next control period as part of a dynamic voltage and frequency scaling (DVFS) technique. The objective of the DVFS technique is to reduce energy consumption under performance constraints that are set by the user. We conduct our investigation using a custom Sniper system simulation framework. Simulation results for 16 and 64 core network-on-chip based CMP architectures and using several benchmarks demonstrate that the LSTM is slightly better than Kalman filtering

    Investigation of LSTM Based Prediction for Dynamic Energy Management in Chip Multiprocessors

    Get PDF
    In this paper, we investigate the effectiveness of using long short-term memory (LSTM) instead of Kalman filtering to do prediction for the purpose of constructing dynamic energy management (DEM) algorithms in chip multi-processors (CMPs). Either of the two prediction methods is employed to estimate the workload in the next control period for each of the processor cores. These estimates are then used to select voltage-frequency (VF) pairs for each core of the CMP during the next control period as part of a dynamic voltage and frequency scaling (DVFS) technique. The objective of the DVFS technique is to reduce energy consumption under performance constraints that are set by the user. We conduct our investigation using a custom Sniper system simulation framework. Simulation results for 16 and 64 core network-on-chip based CMP architectures and using several benchmarks demonstrate that the LSTM is slightly better than Kalman filtering

    Dynamic Lifetime Reliability and Energy Management for Network-on-Chip based Chip Multiprocessors

    Get PDF
    In this dissertation, we study dynamic reliability management (DRM) and dynamic energy management (DEM) techniques for network-on-chip (NoC) based chip multiprocessors (CMPs). In the first part, the proposed DRM algorithm takes both the computational and the communication components of the CMP into consideration and combines thread migration and dynamic voltage and frequency scaling (DVFS) as the two primary techniques to change the CMP operation. The goal is to increase the lifetime reliability of the overall system to the desired target with minimal performance degradation. The simulation results on a variety of benchmarks on 16 and 64 core NoC based CMP architectures demonstrate that lifetime reliability can be improved by 100% for an average performance penalty of 7.7% and 8.7% for the two CMP architectures. In the second part of this dissertation, we first propose novel algorithms that employ Kalman filtering and long short term memory (LSTM) for workload prediction. These predictions are then used as the basis on which voltage/frequency (V/F) pairs are selected for each core by an effective dynamic voltage and frequency scaling algorithm whose objective is to reduce energy consumption but without degrading performance beyond the user set threshold. Secondly, we investigate the use of deep neural network (DNN) models for energy optimization under performance constraints in CMPs. The proposed algorithm is implemented in three phases. The first phase collects the training data by employing Kalman filtering for workload prediction and an efficient heuristic algorithm based on DVFS. The second phase represents the training process of the DNN model and in the last phase, the DNN model is used to directly identify V/F pairs that can achieve lower energy consumption without performance degradation beyond the acceptable threshold set by the user. Simulation results on 16 and 64 core NoC based architectures demonstrate that the proposed approach can achieve up to 55% energy reduction for 10% performance degradation constraints. Simulation experiments compare the proposed algorithm against existing approaches based on reinforcement learning and Kalman filtering and show that the proposed DNN technique provides average improvements in energy-delay-product (EDP) of 6.3% and 6% for the 16 core architecture and of 7.4% and 5.5% for the 64 core architecture

    Power Bounded Computing on Current & Emerging HPC Systems

    Get PDF
    Power has become a critical constraint for the evolution of large scale High Performance Computing (HPC) systems and commercial data centers. This constraint spans almost every level of computing technologies, from IC chips all the way up to data centers due to physical, technical, and economic reasons. To cope with this reality, it is necessary to understand how available or permissible power impacts the design and performance of emergent computer systems. For this reason, we propose power bounded computing and corresponding technologies to optimize performance on HPC systems with limited power budgets. We have multiple research objectives in this dissertation. They center on the understanding of the interaction between performance, power bounds, and a hierarchical power management strategy. First, we develop heuristics and application aware power allocation methods to improve application performance on a single node. Second, we develop algorithms to coordinate power across nodes and components based on application characteristic and power budget on a cluster. Third, we investigate performance interference induced by hardware and power contentions, and propose a contention aware job scheduling to maximize system throughput under given power budgets for node sharing system. Fourth, we extend to GPU-accelerated systems and workloads and develop an online dynamic performance & power approach to meet both performance requirement and power efficiency. Power bounded computing improves performance scalability and power efficiency and decreases operation costs of HPC systems and data centers. This dissertation opens up several new ways for research in power bounded computing to address the power challenges in HPC systems. The proposed power and resource management techniques provide new directions and guidelines to green exscale computing and other computing systems

    Ultra low-power, high-performance accelerator for speech recognition

    Get PDF
    Automatic Speech Recognition (ASR) is undoubtedly one of the most important and interesting applications in the cutting-edge era of Deep-learning deployment, especially in the mobile segment. Fast and accurate ASR comes at a high energy cost, requiring huge memory storage and computational power, which is not affordable for the tiny power budget of mobile devices. Hardware acceleration can reduce power consumption of ASR systems as well as reducing its memory pressure, while delivering high-performance. In this thesis, we present a customized accelerator for large-vocabulary, speaker-independent, continuous speech recognition. A state-of-the-art ASR system consists of two major components: acoustic-scoring using DNN and speech-graph decoding using Viterbi search. As the first step, we focus on the Viterbi search algorithm, that represents the main bottleneck in the ASR system. The accelerator includes some innovative techniques to improve the memory subsystem, which is the main bottleneck for performance and power, such as a prefetching scheme and a novel bandwidth saving technique tailored to the needs of ASR. Furthermore, as the speech graph is vast taking more than 1-Gigabyte memory space, we propose to change its representation by partitioning it into several sub-graphs and perform an on-the-fly composition during the Viterbi run-time. This approach together with some simple yet efficient compression techniques result in 31x memory footprint reduction, providing 155x real-time speedup and orders of magnitude power and energy saving compared to CPUs and GPUs. In the next step, we propose a novel hardware-based ASR system that effectively integrates a DNN accelerator for the pruned/quantized models with the Viterbi accelerator. We show that, when either pruning or quantizing the DNN model used for acoustic scoring, ASR accuracy is maintained but the execution time of the ASR system is increased by 33%. Although pruning and quantization improves the efficiency of the DNN, they result in a huge increase of activity in the Viterbi search since the output scores of the pruned model are less reliable. In order to avoid the aforementioned increase in Viterbi search workload, our system loosely selects the N-best hypotheses at every time step, exploring only the N most likely paths. Our final solution manages to efficiently combine both DNN and Viterbi accelerators using all their optimizations, delivering 222x real-time ASR with a small power budget of 1.26 Watt, small memory footprint of 41 MB, and a peak memory bandwidth of 381 MB/s, being amenable for low-power mobile platforms.Los sistemas de reconocimiento automático del habla (ASR por sus siglas en inglés, Automatic Speech Recognition) son sin lugar a dudas una de las aplicaciones más relevantes en el área emergente de aprendizaje profundo (Deep Learning), specialmente en el segmento de los dispositivos móviles. Realizar el reconocimiento del habla de forma rápida y precisa tiene un elevado coste en energía, requiere de gran capacidad de memoria y de cómputo, lo cual no es deseable en sistemas móviles que tienen severas restricciones de consumo energético y disipación de potencia. El uso de arquitecturas específicas en forma de aceleradores hardware permite reducir el consumo energético de los sistemas de reconocimiento del habla, al tiempo que mejora el rendimiento y reduce la presión en el sistema de memoria. En esta tesis presentamos un acelerador específicamente diseñado para sistemas de reconocimiento del habla de gran vocabulario, independientes del orador y que funcionan en tiempo real. Un sistema de reconocimiento del habla estado del arte consiste principalmente en dos componentes: el modelo acústico basado en una red neuronal profunda (DNN, Deep Neural Network) y la búsqueda de Viterbi basada en un grafo que representa el lenguaje. Como primer objetivo nos centramos en la búsqueda de Viterbi, ya que representa el principal cuello de botella en los sistemas ASR. El acelerador para el algoritmo de Viterbi incluye técnicas innovadoras para mejorar el sistema de memoria, que es el mayor cuello de botella en rendimiento y energía, incluyendo técnicas de pre-búsqueda y una nueva técnica de ahorro de ancho de banda a memoria principal específicamente diseñada para sistemas ASR. Además, como el grafo que representa el lenguaje requiere de gran capacidad de almacenamiento en memoria (más de 1 GB), proponemos cambiar su representación y dividirlo en distintos grafos que se componen en tiempo de ejecución durante la búsqueda de Viterbi. De esta forma conseguimos reducir el almacenamiento en memoria principal en un factor de 31x, alcanzar un rendimiento 155 veces superior a tiempo real y reducir el consumo energético y la disipación de potencia en varios órdenes de magnitud comparado con las CPUs y las GPUs. En el siguiente paso, proponemos un novedoso sistema hardware para reconocimiento del habla que integra de forma efectiva un acelerador para DNNs podadas y cuantizadas con el acelerador de Viterbi. Nuestros resultados muestran que podar y/o cuantizar el DNN para el modelo acústico permite mantener la precisión pero causa un incremento en el tiempo de ejecución del sistema completo de hasta el 33%. Aunque podar/cuantizar mejora la eficiencia del DNN, éstas técnicas producen un gran incremento en la carga de trabajo de la búsqueda de Viterbi ya que las probabilidades calculadas por el DNN son menos fiables, es decir, se reduce la confianza en las predicciones del modelo acústico. Con el fin de evitar un incremento inaceptable en la carga de trabajo de la búsqueda de Viterbi, nuestro sistema restringe la búsqueda a las N hipótesis más probables en cada paso de la búsqueda. Nuestra solución permite combinar de forma efectiva un acelerador de DNNs con un acelerador de Viterbi incluyendo todas las optimizaciones de poda/cuantización. Nuestro resultados experimentales muestran que dicho sistema alcanza un rendimiento 222 veces superior a tiempo real con una disipación de potencia de 1.26 vatios, unos requisitos de memoria modestos de 41 MB y un uso de ancho de banda a memoria principal de, como máximo, 381 MB/s, ofreciendo una solución adecuada para dispositivos móviles

    Low-power accelerators for cognitive computing

    Get PDF
    Deep Neural Networks (DNNs) have achieved tremendous success for cognitive applications, and are especially efficient in classification and decision making problems such as speech recognition or machine translation. Mobile and embedded devices increasingly rely on DNNs to understand the world. Smartphones, smartwatches and cars perform discriminative tasks, such as face or object recognition, on a daily basis. Despite the increasing popularity of DNNs, running them on mobile and embedded systems comes with several main challenges: delivering high accuracy and performance with a small memory and energy budget. Modern DNN models consist of billions of parameters requiring huge computational and memory resources and, hence, they cannot be directly deployed on low-power systems with limited resources. The objective of this thesis is to address these issues and propose novel solutions in order to design highly efficient custom accelerators for DNN-based cognitive computing systems. In first place, we focus on optimizing the inference of DNNs for sequence processing applications. We perform an analysis of the input similarity between consecutive DNN executions. Then, based on the high degree of input similarity, we propose DISC, a hardware accelerator implementing a Differential Input Similarity Computation technique to reuse the computations of the previous execution, instead of computing the entire DNN. We observe that, on average, more than 60% of the inputs of any neural network layer tested exhibit negligible changes with respect to the previous execution. Avoiding the memory accesses and computations for these inputs results in 63% energy savings on average. In second place, we propose to further optimize the inference of FC-based DNNs. We first analyze the number of unique weights per input neuron of several DNNs. Exploiting common optimizations, such as linear quantization, we observe a very small number of unique weights per input for several FC layers of modern DNNs. Then, to improve the energy-efficiency of FC computation, we present CREW, a hardware accelerator that implements a Computation Reuse and an Efficient Weight Storage mechanism to exploit the large number of repeated weights in FC layers. CREW greatly reduces the number of multiplications and provides significant savings in model memory footprint and memory bandwidth usage. We evaluate CREW on a diverse set of modern DNNs. On average, CREW provides 2.61x speedup and 2.42x energy savings over a TPU-like accelerator. In third place, we propose a mechanism to optimize the inference of RNNs. RNN cells perform element-wise multiplications across the activations of different gates, sigmoid and tanh being the common activation functions. We perform an analysis of the activation function values, and show that a significant fraction are saturated towards zero or one in popular RNNs. Then, we propose CGPA to dynamically prune activations from RNNs at a coarse granularity. CGPA avoids the evaluation of entire neurons whenever the outputs of peer neurons are saturated. CGPA significantly reduces the amount of computations and memory accesses while avoiding sparsity by a large extent, and can be easily implemented on top of conventional accelerators such as TPU with negligible area overhead, resulting in 12% speedup and 12% energy savings on average for a set of widely used RNNs. Finally, in the last contribution of this thesis we focus on static DNN pruning methodologies. DNN pruning reduces memory footprint and computational work by removing connections and/or neurons that are ineffectual. However, we show that prior pruning schemes require an extremely time-consuming iterative process that requires retraining the DNN many times to tune the pruning parameters. Then, we propose a DNN pruning scheme based on Principal Component Analysis and relative importance of each neuron's connection that automatically finds the optimized DNN in one shot.Les xarxes neuronals profundes (DNN) han aconseguit un èxit enorme en aplicacions cognitives, i són especialment eficients en problemes de classificació i presa de decisions com ara reconeixement de veu o traducció automàtica. Els dispositius mòbils depenen cada cop més de les DNNs per entendre el món. Els telèfons i rellotges intel·ligents, o fins i tot els cotxes, realitzen diàriament tasques discriminatòries com ara el reconeixement de rostres o objectes. Malgrat la popularitat creixent de les DNNs, el seu funcionament en sistemes mòbils presenta diversos reptes: proporcionar una alta precisió i rendiment amb un petit pressupost de memòria i energia. Les DNNs modernes consisteixen en milions de paràmetres que requereixen recursos computacionals i de memòria enormes i, per tant, no es poden utilitzar directament en sistemes de baixa potència amb recursos limitats. L'objectiu d'aquesta tesi és abordar aquests problemes i proposar noves solucions per tal de dissenyar acceleradors eficients per a sistemes de computació cognitiva basats en DNNs. En primer lloc, ens centrem en optimitzar la inferència de les DNNs per a aplicacions de processament de seqüències. Realitzem una anàlisi de la similitud de les entrades entre execucions consecutives de les DNNs. A continuació, proposem DISC, un accelerador que implementa una tècnica de càlcul diferencial, basat en l'alt grau de semblança de les entrades, per reutilitzar els càlculs de l'execució anterior, en lloc de computar tota la xarxa. Observem que, de mitjana, més del 60% de les entrades de qualsevol capa de les DNNs utilitzades presenten canvis menors respecte a l'execució anterior. Evitar els accessos de memòria i càlculs d'aquestes entrades comporta un estalvi d'energia del 63% de mitjana. En segon lloc, proposem optimitzar la inferència de les DNNs basades en capes FC. Primer analitzem el nombre de pesos únics per neurona d'entrada en diverses xarxes. Aprofitant optimitzacions comunes com la quantització lineal, observem un nombre molt reduït de pesos únics per entrada en diverses capes FC de DNNs modernes. A continuació, per millorar l'eficiència energètica del càlcul de les capes FC, presentem CREW, un accelerador que implementa un eficient mecanisme de reutilització de càlculs i emmagatzematge dels pesos. CREW redueix el nombre de multiplicacions i proporciona estalvis importants en l'ús de la memòria. Avaluem CREW en un conjunt divers de DNNs modernes. CREW proporciona, de mitjana, una millora en rendiment de 2,61x i un estalvi d'energia de 2,42x. En tercer lloc, proposem un mecanisme per optimitzar la inferència de les RNNs. Les cel·les de les xarxes recurrents realitzen multiplicacions element a element de les activacions de diferents comportes, sigmoides i tanh sent les funcions habituals d'activació. Realitzem una anàlisi dels valors de les funcions d'activació i mostrem que una fracció significativa està saturada cap a zero o un en un conjunto d'RNNs populars. A continuació, proposem CGPA per podar dinàmicament les activacions de les RNNs a una granularitat gruixuda. CGPA evita l'avaluació de neurones senceres cada vegada que les sortides de neurones parelles estan saturades. CGPA redueix significativament la quantitat de càlculs i accessos a la memòria, aconseguint en mitjana un 12% de millora en el rendiment i estalvi d'energia. Finalment, en l'última contribució d'aquesta tesi ens centrem en metodologies de poda estàtica de les DNNs. La poda redueix la petjada de memòria i el treball computacional mitjançant l'eliminació de connexions o neurones redundants. Tanmateix, mostrem que els esquemes de poda previs fan servir un procés iteratiu molt llarg que requereix l'entrenament de les DNNs moltes vegades per ajustar els paràmetres de poda. A continuació, proposem un esquema de poda basat en l'anàlisi de components principals i la importància relativa de les connexions de cada neurona que optimitza automàticament el DNN optimitzat en un sol tret sense necessitat de sintonitzar manualment múltiples paràmetresPostprint (published version

    From Compute to Data: Across-the-Stack System Design for Intelligent Applications

    Full text link
    Intelligent applications such as Apple Siri, Google Assistant and Amazon Alexa have gained tremendous popularity in recent years. With human-like understanding capabilities and natural language interface, this class of applications is quickly becoming people’s preferred way of interacting with their mobile, wearable and smart home devices. There have been considerable advancement in machine learning research that aim to further enhance the understanding capability of intelligent applications, however there exist significant roadblocks in applying state-of-the-art algorithms and techniques to a real-world use case. First, as machine learning algorithms becomes more sophisticated, it imposes higher computation requirements for the underlying software and hardware system to process intelligent application request efficiently. Second, state-of-the-art algorithms and techniques is not guaranteed to provide the same level of prediction and classification accuracy when applied to tasks required in real-world intelligent applications, which are often different and more complex than what are studied in a research environment. This dissertation addresses these roadblocks by investigating the key challenges across multiple components in an intelligent application system. Specifically, we identify the key compute and data challenges and presents system design and techniques. To improve the computational performance of the hardware and software system, we challenge the status-quo approach of cloud-only intelligent application processing and propose computation partitioning strategies that effectively leverage both the cycles in the cloud and on the mobile device to achieve low latency, low energy consumption and high datacenter throughput. We characterize and taxonomize state-of-the- art deep learning based natural language processing (NLP) applications to identify the algorithmic design elements and computational patterns that render conventional GPU acceleration techniques ineffective on this class of applications. Leveraging their unique characteristics, we design and implement a novel fine-grain cross-input batching techniques for providing GPU acceleration to a number of state-of-the-art NLP applications. For the data component, large scale and effective training data, in addition to algorithm, is necessary to achieve high prediction accuracy. We investigate the challenge of effective large-scale training data collection via crowdsourcing. We propose novel metrics to evaluate the quality of training data for building real-word intelligent application systems. We leverage this methodology to study the trade-off of multiple crowdsourcing methods and provide recommendations on best training data crowdsourcing practices.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145886/1/ypkang_1.pd
    corecore