912 research outputs found

    Characterization and digital restauration of XIV-XV centuries written parchments by means of non-destructive techniques. Three case studies

    Get PDF
    Parchment is the primary writing medium of the majority of documents with cultural importance. Unfortunately, this material suffers of several mechanisms of degradation that affect its chemical-physical structure and the readability of text. Due to the unique and delicate character of these objects, the use of nondestructive techniques is mandatory. In this work, three partially degraded handwritten parchments dating back to the XIV-XV centuries were analyzed by means of X-ray fluorescence spectroscopy, µ-ATR Fourier transform infrared spectroscopy, and reflectance and UV-induced fluorescence spectroscopy. 'e elemental and molecular results provided the identification of the inks, pigments, and superficial treatments. In particular, all manuscripts have been written with iron gall inks, while the capital letters have been realized with cinnabar and azurite. Furthermore, multispectral UV fluorescence imaging and multispectral VIS-NIR imaging proved to be a good approach for the digital restoration of manuscripts that suffer from the loss of inked areas or from the presence of brown spotting. Indeed, using ultraviolet radiation and collecting the images at different spectral ranges is possible to enhance the readability of the text, while by illuminating with visible light and by collecting the images at longer wavelengths, the hiding effect of brown spots can be attenuated

    Characterization and digital restauration of XIV-XV centuries written parchments by means of non-destructive techniques. Three case studies

    Get PDF
    Parchment is the primary writing medium of the majority of documents with cultural importance. Unfortunately, this material suffers of several mechanisms of degradation that affect its chemical-physical structure and the readability of text. Due to the unique and delicate character of these objects, the use of nondestructive techniques is mandatory. In this work, three partially degraded handwritten parchments dating back to the XIV-XV centuries were analyzed by means of X-ray fluorescence spectroscopy, µ-ATR Fourier transform infrared spectroscopy, and reflectance and UV-induced fluorescence spectroscopy. 'e elemental and molecular results provided the identification of the inks, pigments, and superficial treatments. In particular, all manuscripts have been written with iron gall inks, while the capital letters have been realized with cinnabar and azurite. Furthermore, multispectral UV fluorescence imaging and multispectral VIS-NIR imaging proved to be a good approach for the digital restoration of manuscripts that suffer from the loss of inked areas or from the presence of brown spotting. Indeed, using ultraviolet radiation and collecting the images at different spectral ranges is possible to enhance the readability of the text, while by illuminating with visible light and by collecting the images at longer wavelengths, the hiding effect of brown spots can be attenuated

    Readability Enhancement and Palimpsest Decipherment of Historical Manuscripts

    Get PDF
    This paper presents image acquisition and readability enhancement techniques for historical manuscripts developed in the interdisciplinary project “The Enigma of the Sinaitic Glagolitic Tradition” (Sinai II Project).1 We are mainly dealing with parchment documents originating from the 10th to the 12th centuries from St. Cather- ine’s Monastery on Mount Sinai. Their contents are being analyzed, fully or partly transcribed and edited in the course of the project. For comparison also other mss. are taken into consideration. The main challenge derives from the fact that some of the manuscripts are in a bad condition due to various damages, e.g. mold, washed out or faded text, etc. or contain palimpsest (=overwritten) parts. Therefore, the manuscripts investigated are imaged with a portable multispectral imaging system. This non-invasive conservation technique has proven extremely useful for the exami- nation and reconstruction of vanished text areas and erased or washed o palimpsest texts. Compared to regular white light, the illumination with speci c wavelengths highlights particular details of the documents, i.e. the writing and writing material, ruling, and underwritten text. In order to further enhance the contrast of the de- graded writings, several Blind Source Separation techniques are applied onto the multispectral images, including Principal Component Analysis (PCA), Independent Component Analysis (ICA) and others. Furthermore, this paper reports on other latest developments in the Sinai II Project, i.e. Document Image Dewarping, Automatic Layout Analysis, the recent result of another project related to our work: the image processing tool Paleo Toolbar, and the launch of the series Glagolitica Sinaitica

    Understanding multispectral imaging of cultural heritage:Determining best practice in MSI analysis of historical artefacts

    Get PDF
    Although multispectral imaging (MSI) of cultural heritage, such as manuscripts, documents and artwork, is becoming more popular, a variety of approaches are taken and methods are often inconsistently documented. Furthermore, no overview of the process of MSI capture and analysis with current technology has previously been published. This research was undertaken to determine current best practice in the deployment of MSI, highlighting areas that need further research, whilst providing recommendations regarding approach and documentation. An Action Research methodology was used to characterise the current pipeline, including: literature review; unstructured interviews and discussion of results with practitioners; and reflective practice whilst undertaking MSI analysis. The pipeline and recommendations from this research will improve project management by increasing clarity of published outcomes, the reusability of data, and encouraging a more open discussion of process and application within the MSI community. The importance of thorough documentation is emphasised, which will encourage sharing of best practice and results, improving community deployment of the technique. The findings encourage efficient use and reporting of MSI, aiding access to historical analysis. We hope this research will be useful to digitisation professionals, curators and conservators, allowing them to compare and contrast current practices

    Analytical and mathematical methods for revealing hidden details in ancient manuscripts and paintings: A review

    Get PDF
    In this work, a critical review of the current nondestructive probing and image analysis approaches is presented, to revealing otherwise invisible or hardly discernible details in manuscripts and paintings relevant to cultural heritage and archaeology. Multispectral imaging, X-ray fluorescence, Laser-Induced Breakdown Spectroscopy, Raman spectroscopy and Thermography are considered, as techniques for acquiring images and spectral image sets; statistical methods for the analysis of these images are then discussed, including blind separation and false colour techniques. Several case studies are presented, with particular attention dedicated to the approaches that appear most promising for future applications. Some of the techniques described herein are likely to replace, in the near future, classical digital photography in the study of ancient manuscripts and paintings

    Multispectral imaging and analysis of the Archimedes Palimpsest

    Get PDF
    The Archimedes Palimpsest is a manuscript that has been preserved for approximately 1,000 years. Among its pages are some of the few known sources of treatises from the Greek mathematician Archimedes. The writing has been overwritten with prayer text, called the Euchologion, and portions of the faded Archimedes text are difficult to read. This research investigates methods to detect the presence of ink in the Archimedes Palimpsest using state-of-the-art image processing techniques applied to data from X-ray fluorescence (XRF) scans. In an effort to extract more legible text, various methods of imaging have been applied to the Archimedes manuscript. Recent X-ray fluorescence images of the palimpsest suggest the possibility of detecting individual text layers and isolating them from each other. This is encouraging, since many of the pages have also been partially masked by gold-leafed, Byzantine-style artwork, making the Archimedes writing difficult to see with the human eye. The scans measure the X radiation emitted by atoms on the pages that have been excited by other higher energy X rays incident to the parchment. This caused certain elements within the manuscript, such as the iron in the ink, to fluoresce at energies that are specific to the particular material. A total of 2,000 different energy levels, or bands, were recorded. To evaluate the data contained in this large number of bands, a single data set was created that included all bands, referred to as a datacube, which shows the transition of each pixel through the spectrum. Special image processing tools, developed for use in the field of remote sensing to process aerial and satellite data, can be used to detect certain patterns within the datacube. Each tool is then used to segregate the noise from the relevant data in the datacube. The datacube for this thesis research was created from a small portion of one page of the Archimedes Palimpsest, and may inherently be subject to certain noise limitations. This study focuses on two main objectives: Evaluation of X-ray fluorescence data to determine which energy levels contain useful information about the layers of text. Creation of a pseudocolored composite RGB image of a portion of enhanced Archimedes text, similar to previous pseudocolored MSI images. Results from this study show that only a few regions within the datacube contain information relevant to the layers of text. Certain algorithms, such as principal component analysis and minimum noise fraction, showed distinct information about trace elements fluorescing in the ink and parchment. Meaningful data near the spectral line of each trace element was detected after disbanding the datacube into smaller regions. Enough information was obtained as a result to create colorized RGB composite images that enhance the contrast of the Archimedes writing relative to the overwritten text. It is hoped that this research can improve the method for identifying useful bands of information within datacubes. The research may also have created a repeatable method for detecting useful bands of information in similar datacubes. State-of-the-art multispectral imaging applications were specifically applied to detect, extract, and enhance previously illegible writings that are of interest to scholars and museums in particular

    Imaging Cultural Heritage at Different Scales: Part I, the Micro-Scale (Manufacts)

    Get PDF
    Applications of non-invasive sensing techniques to investigate the internal structure and surface of precious and delicate objects represent a very important and consolidated research field in the scientific domain of cultural heritage knowledge and conservation. The present article is the first of three reviews focused on contact and non-contact imaging techniques applied to surveying cultural heritage at micro- (i.e., manufacts), meso- (sites) and macro-scales (landscapes). The capability to infer variations in geometrical and physical properties across the inspected surfaces or volumes is the unifying factor of these techniques, allowing scientists to discover new historical sites or to image their spatial extent and material features at different scales, from landscape to artifact. This first part concentrates on the micro-scale, i.e., inspection, study and characterization of small objects (ancient papers, paintings, statues, archaeological findings, architectural elements, etc.) from surface to internal properties

    Macroscale multimodal imaging reveals ancient painting production technology and the vogue in Greco-Roman Egypt.

    Get PDF
    Macroscale multimodal chemical imaging combining hyperspectral diffuse reflectance (400-2500 nm), luminescence (400-1000 nm), and X-ray fluorescence (XRF, 2 to 25 keV) data, is uniquely equipped for noninvasive characterization of heterogeneous complex systems such as paintings. Here we present the first application of multimodal chemical imaging to analyze the production technology of an 1,800-year-old painting and one of the oldest surviving encaustic ("burned in") paintings in the world. Co-registration of the data cubes from these three hyperspectral imaging modalities enabled the comparison of reflectance, luminescence, and XRF spectra at each pixel in the image for the entire painting. By comparing the molecular and elemental spectral signatures at each pixel, this fusion of the data allowed for a more thorough identification and mapping of the painting's constituent organic and inorganic materials, revealing key information on the selection of raw materials, production sequence and the fashion aesthetics and chemical arts practiced in Egypt in the second century AD

    TECHNART 2017. Non-destructive and microanalytical techniques in art and cultural heritage. Book of abstracts

    Get PDF
    440 p.TECHNART2017 is the international biannual congress on the application of Analytical Techniques in Art and Cultural Heritage. The aim of this European conference is to provide a scientific forum to present and promote the use of analytical spectroscopic techniques in cultural heritage on a worldwide scale to stimulate contacts and exchange experiences, making a bridge between science and art. This conference builds on the momentum of the previous TECHNART editions of Lisbon, Athens, Berlin, Amsterdam and Catania, offering an outstanding and unique opportunity for exchanging knowledge on leading edge developments. Cultural heritage studies are interpreted in a broad sense, including pigments, stones, metal, glass, ceramics, chemometrics on artwork studies, resins, fibers, forensic applications in art, history, archaeology and conservation science. The meeting is focused in different aspects: - X-ray analysis (XRF, PIXE, XRD, SEM-EDX). - Confocal X-ray microscopy (3D Micro-XRF, 3D Micro-PIXE). - Synchrotron, ion beam and neutron based techniques/instrumentation. - FT-IR and Raman spectroscopy. - UV-Vis and NIR absorption/reflectance and fluorescence. - Laser-based analytical techniques (LIBS, etc.). - Magnetic resonance techniques. - Chromatography (GC, HPLC) and mass spectrometry. - Optical imaging and coherence techniques. - Mobile spectrometry and remote sensing
    corecore