2,786 research outputs found

    Viewfinder: final activity report

    Get PDF
    The VIEW-FINDER project (2006-2009) is an 'Advanced Robotics' project that seeks to apply a semi-autonomous robotic system to inspect ground safety in the event of a fire. Its primary aim is to gather data (visual and chemical) in order to assist rescue personnel. A base station combines the gathered information with information retrieved from off-site sources. The project addresses key issues related to map building and reconstruction, interfacing local command information with external sources, human-robot interfaces and semi-autonomous robot navigation. The VIEW-FINDER system is a semi-autonomous; the individual robot-sensors operate autonomously within the limits of the task assigned to them, that is, they will autonomously navigate through and inspect an area. Human operators monitor their operations and send high level task requests as well as low level commands through the interface to any nodes in the entire system. The human interface has to ensure the human supervisor and human interveners are provided a reduced but good and relevant overview of the ground and the robots and human rescue workers therein

    On Semantic Segmentation and Path Planning for Autonomous Vehicles within Off-Road Environments

    Get PDF
    There are many challenges involved in creating a fully autonomous vehicle capable of safely navigating through off-road environments. In this work we focus on two of the most prominent such challenges, namely scene understanding and path planning. Scene understanding is a challenging computer vision task with recent advances in convolutional neural networks (CNN) achieving results that notably surpass prior traditional feature driven approaches. Here, we build on recent work in urban road-scene understanding, training a state of the art CNN architecture towards the task of classifying off-road scenes. We analyse the effects of transfer learning and training data set size on CNN performance, evaluating multiple configurations of the network at multiple points during the training cycle, investigating in depth how the training process is affected. We compare this CNN to a more traditional feature-driven approach with Support Vector Machine (SVM) classifier and demonstrate state-of-the-art results in this particularly challenging problem of off-road scene understanding. We then expand on this with the addition of multi-channel RGBD data, which we encode in multiple configurations for CNN input. We evaluate each of these configuration over our own off-road RGBD data set and compare performance to that of the network model trained using RGB data. Next, we investigate end-to-end navigation, whereby a machine learning algorithm optimises to predict the vehicle control inputs of a human driver. After evaluating such a technique in an off-road environment and identifying several limitations, we propose a new approach in which a CNN learns to predict vehicle path visually, combining a novel approach to automatic training data creation with state of the art CNN architecture to map a predicted route directly onto image pixels. We then evaluate this approach using our off-road data set, and demonstrate effectiveness surpassing existing end-to-end methods

    Depth Sensing Planar Structures: Detection of Office Furniture Configurations

    Get PDF
    Handheld devices with depth sensors have the potential to aid low-vision users in performing tasks that are difficult with traditional modes of assistance. Heuristic studies have revealed that tables have a key functional role in indoor scene descriptions. The research question addressed in this thesis is: how can we robustly and efficiently detect tables in indoor office environments? This thesis presents a solution that utilizes a functional approach to robustly detect rectangular tables in depth images generated from a Kinect sensor. Perhaps the most significant function of a table is to provide its users with a supporting plane. This demands that the table’s surface is orthogonal to the scene’s gravity vector. In order to fully take advantage of this functional property in the detection process, the scene must be properly oriented. A planar model fitting procedure is used to detect the scene’s floor, which is utilized to properly orient the scene. The scene is then sliced at average table height, using a small buffer. The height component is removed from the 3-dimensional slice by projecting it into a two-dimensional plane. Next, an iterative labeling procedure is used to separate the image into independent blobs, allowing for 2-dimensional shape detection. Sufficiently large blobs are then subjected to a cleaning process in order to remove any extraneous features. Several features of the cleaned blobs are calculated and used in a supervised classification process. The coordinates of blobs that are classified as tables are translated back to 3-dimensions, allowing for the segmentation of all detected tables in the scene

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    Generation and Rendering of Interactive Ground Vegetation for Real-Time Testing and Validation of Computer Vision Algorithms

    Get PDF
    During the development process of new algorithms for computer vision applications, testing and evaluation in real outdoor environments is time-consuming and often difficult to realize. Thus, the use of artificial testing environments is a flexible and cost-efficient alternative. As a result, the development of new techniques for simulating natural, dynamic environments is essential for real-time virtual reality applications, which are commonly known as Virtual Testbeds. Since the first basic usage of Virtual Testbeds several years ago, the image quality of virtual environments has almost reached a level close to photorealism even in real-time due to new rendering approaches and increasing processing power of current graphics hardware. Because of that, Virtual Testbeds can recently be applied in application areas like computer vision, that strongly rely on realistic scene representations. The realistic rendering of natural outdoor scenes has become increasingly important in many application areas, but computer simulated scenes often differ considerably from real-world environments, especially regarding interactive ground vegetation. In this article, we introduce a novel ground vegetation rendering approach, that is capable of generating large scenes with realistic appearance and excellent performance. Our approach features wind animation, as well as object-to-grass interaction and delivers realistically appearing grass and shrubs at all distances and from all viewing angles. This greatly improves immersion, as well as acceptance, especially in virtual training applications. Nevertheless, the rendered results also fulfill important requirements for the computer vision aspect, like plausible geometry representation of the vegetation, as well as its consistence during the entire simulation. Feature detection and matching algorithms are applied to our approach in localization scenarios of mobile robots in natural outdoor environments. We will show how the quality of computer vision algorithms is influenced by highly detailed, dynamic environments, like observed in unstructured, real-world outdoor scenes with wind and object-to-vegetation interaction

    Sensor Technologies for Intelligent Transportation Systems

    Get PDF
    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment

    A CSI-Based Human Activity Recognition Using Deep Learning

    Get PDF
    The Internet of Things (IoT) has become quite popular due to advancements in Information and Communications technologies and has revolutionized the entire research area in Human Activity Recognition (HAR). For the HAR task, vision-based and sensor-based methods can present better data but at the cost of users’ inconvenience and social constraints such as privacy issues. Due to the ubiquity of WiFi devices, the use of WiFi in intelligent daily activity monitoring for elderly persons has gained popularity in modern healthcare applications. Channel State Information (CSI) as one of the characteristics ofWiFi signals, can be utilized to recognize different human activities. We have employed a Raspberry Pi 4 to collect CSI data for seven different human daily activities, and converted CSI data to images and then used these images as inputs of a 2D Convolutional Neural Network (CNN) classifier. Our experiments have shown that the proposed CSI-based HAR outperforms other competitor methods including 1D-CNN, Long Short-Term Memory (LSTM), and Bi-directional LSTM, and achieves an accuracy of around 95% for seven activities
    corecore