308 research outputs found

    Trends in Integration of Knowledge and Large Language Models: A Survey and Taxonomy of Methods, Benchmarks, and Applications

    Full text link
    Large language models (LLMs) exhibit superior performance on various natural language tasks, but they are susceptible to issues stemming from outdated data and domain-specific limitations. In order to address these challenges, researchers have pursued two primary strategies, knowledge editing and retrieval augmentation, to enhance LLMs by incorporating external information from different aspects. Nevertheless, there is still a notable absence of a comprehensive survey. In this paper, we propose a review to discuss the trends in integration of knowledge and large language models, including taxonomy of methods, benchmarks, and applications. In addition, we conduct an in-depth analysis of different methods and point out potential research directions in the future. We hope this survey offers the community quick access and a comprehensive overview of this research area, with the intention of inspiring future research endeavors.Comment: Work in progress; 22 pages. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Knowledge Expansion of a Statistical Machine Translation System using Morphological Resources

    Get PDF
    Translation capability of a Phrase-Based Statistical Machine Translation (PBSMT) system mostly depends on parallel data and phrases that are not present in the training data are not correctly translated. This paper describes a method that efficiently expands the existing knowledge of a PBSMT system without adding more parallel data but using external morphological resources. A set of new phrase associations is added to translation and reordering models; each of them corresponds to a morphological variation of the source/target/both phrases of an existing association. New associations are generated using a string similarity score based on morphosyntactic information. We tested our approach on En-Fr and Fr-En translations and results showed improvements of the performance in terms of automatic scores (BLEU and Meteor) and reduction of out-of-vocabulary (OOV) words. We believe that our knowledge expansion framework is generic and could be used to add different types of information to the model.JRC.G.2-Global security and crisis managemen

    Bringing order into the realm of Transformer-based language models for artificial intelligence and law

    Full text link
    Transformer-based language models (TLMs) have widely been recognized to be a cutting-edge technology for the successful development of deep-learning-based solutions to problems and applications that require natural language processing and understanding. Like for other textual domains, TLMs have indeed pushed the state-of-the-art of AI approaches for many tasks of interest in the legal domain. Despite the first Transformer model being proposed about six years ago, there has been a rapid progress of this technology at an unprecedented rate, whereby BERT and related models represent a major reference, also in the legal domain. This article provides the first systematic overview of TLM-based methods for AI-driven problems and tasks in the legal sphere. A major goal is to highlight research advances in this field so as to understand, on the one hand, how the Transformers have contributed to the success of AI in supporting legal processes, and on the other hand, what are the current limitations and opportunities for further research development.Comment: Please refer to the published version: Greco, C.M., Tagarelli, A. (2023) Bringing order into the realm of Transformer-based language models for artificial intelligence and law. Artif Intell Law, Springer Nature. November 2023. https://doi.org/10.1007/s10506-023-09374-

    Autoregressive Entity Retrieval

    Get PDF
    Entities are at the center of how we represent and aggregate knowledge. For instance, Encyclopedias such as Wikipedia are structured by entities (e.g., one per Wikipedia article). The ability to retrieve such entities given a query is fundamental for knowledge-intensive tasks such as entity linking and open-domain question answering. Current approaches can be understood as classifiers among atomic labels, one for each entity. Their weight vectors are dense entity representations produced by encoding entity meta information such as their descriptions. This approach has several shortcomings: (i) context and entity affinity is mainly captured through a vector dot product, potentially missing fine-grained interactions; (ii) a large memory footprint is needed to store dense representations when considering large entity sets; (iii) an appropriately hard set of negative data has to be subsampled at training time. In this work, we propose GENRE, the first system that retrieves entities by generating their unique names, left to right, token-by-token in an autoregressive fashion. This mitigates the aforementioned technical issues since: (i) the autoregressive formulation directly captures relations between context and entity name, effectively cross encoding both; (ii) the memory footprint is greatly reduced because the parameters of our encoder-decoder architecture scale with vocabulary size, not entity count; (iii) the softmax loss is computed without subsampling negative data. We experiment with more than 20 datasets on entity disambiguation, end-to-end entity linking and document retrieval tasks, achieving new state-of-the-art or very competitive results while using a tiny fraction of the memory footprint of competing systems. Finally, we demonstrate that new entities can be added by simply specifying their names. Code and pre-trained models at https://github.com/facebookresearch/GENRE.Comment: Accepted (spotlight) at International Conference on Learning Representations (ICLR) 2021. Code at https://github.com/facebookresearch/GENRE. 20 pages, 9 figures, 8 table

    Pretrained Transformers for Text Ranking: BERT and Beyond

    Get PDF
    The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has been responsible for a paradigm shift in natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage architectures and dense retrieval techniques that perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond typical sentence-by-sentence processing in NLP, and techniques for addressing the tradeoff between effectiveness (i.e., result quality) and efficiency (e.g., query latency, model and index size). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading

    Improvements to the complex question answering models

    Get PDF
    x, 128 leaves : ill. ; 29 cmIn recent years the amount of information on the web has increased dramatically. As a result, it has become a challenge for the researchers to find effective ways that can help us query and extract meaning from these large repositories. Standard document search engines try to address the problem by presenting the users a ranked list of relevant documents. In most cases, this is not enough as the end-user has to go through the entire document to find out the answer he is looking for. Question answering, which is the retrieving of answers to natural language questions from a document collection, tries to remove the onus on the end-user by providing direct access to relevant information. This thesis is concerned with open-domain complex question answering. Unlike simple questions, complex questions cannot be answered easily as they often require inferencing and synthesizing information from multiple documents. Hence, we considered the task of complex question answering as query-focused multi-document summarization. In this thesis, to improve complex question answering we experimented with both empirical and machine learning approaches. We extracted several features of different types (i.e. lexical, lexical semantic, syntactic and semantic) for each of the sentences in the document collection in order to measure its relevancy to the user query. We have formulated the task of complex question answering using reinforcement framework, which to our best knowledge has not been applied for this task before and has the potential to improve itself by fine-tuning the feature weights from user feedback. We have also used unsupervised machine learning techniques (random walk, manifold ranking) and augmented semantic and syntactic information to improve them. Finally we experimented with question decomposition where instead of trying to find the answer of the complex question directly, we decomposed the complex question into a set of simple questions and synthesized the answers to get our final result

    Semantic Approaches for Knowledge Discovery and Retrieval in Biomedicine

    Get PDF

    Automatic population of knowledge bases with multimodal data about named entities

    Get PDF
    Knowledge bases are of great importance for Web search, recommendations, and many Information Retrieval tasks. However, maintaining them for not so popular entities is often a bottleneck. Typically, such entities have limited textual coverage and only a few ontological facts. Moreover, these entities are not well populated with multimodal data, such as images, videos, or audio recordings. The goals in this thesis are (1) to populate a given knowledge base with multimodal data about entities, such as images or audio recordings, and (2) to ease the task of maintaining and expanding the textual knowledge about a given entity, by recommending valuable text excerpts to the contributors of knowledge bases. The thesis makes three main contributions. The first two contributions concentrate on finding images of named entities with high precision, high recall, and high visual diversity. Our main focus are less popular entities, for which the image search engines fail to retrieve good results. Our methods utilize background knowledge about the entity, such as ontological facts or a short description, and a visual-based image similarity to rank and diversify a set of candidate images. Our third contribution is an approach for extracting text contents related to a given entity. It leverages a language-model-based similarity between a short description of the entity and the text sources, and solves a budget-constraint optimization program without any assumptions on the text structure. Moreover, our approach is also able to reliably extract entity related audio excerpts from news podcasts. We derive the time boundaries from the usually very noisy audio transcriptions.Wissensbasen wird bei der Websuche, bei Empfehlungsdiensten und vielen anderen Information Retrieval Aufgaben eine große Bedeutung zugeschrieben. Allerdings stellt sich deren Unterhalt für weniger populäre Entitäten als schwierig heraus. Üblicherweise ist die Anzahl an Texten über Entitäten dieser Art begrenzt, und es gibt nur wenige ontologische Fakten. Außerdem sind nicht viele multimediale Daten, wie zum Beispiel Bilder, Videos oder Tonaufnahmen, für diese Entitäten verfügbar. Die Ziele dieser Dissertation sind daher (1) eine gegebene Wissensbasis mit multimedialen Daten, wie Bilder oder Tonaufnahmen, über Entitäten anzureichern und (2) die Erleichterung der Aufgabe Texte über eine gegebene Entität zu verwalten und zu erweitern, indem den Beitragenden einer Wissensbasis nützliche Textausschnitte vorgeschlagen werden. Diese Dissertation leistet drei Hauptbeiträge. Die ersten zwei Beiträge sind im Gebiet des Auffindens von Bildern von benannten Entitäten mit hoher Genauigkeit, hoher Trefferquote, und hoher visueller Vielfalt. Das Hauptaugenmerk liegt auf den weniger populären Entitäten bei denen die Bildersuchmaschinen normalerweise keine guten Ergebnisse liefern. Unsere Verfahren benutzen Hintergrundwissen über die Entität, zum Beispiel ontologische Fakten oder eine Kurzbeschreibung, so wie ein visuell-basiertes Bilderähnlichkeitsmaß um die Bilder nach Rang zu ordnen und um eine Menge von Bilderkandidaten zu diversifizieren. Der dritte Beitrag ist ein Ansatz um Textinhalte, die sich auf eine gegebene Entität beziehen, zu extrahieren. Der Ansatz nutzt ein auf einem Sprachmodell basierendes Ähnlichkeitsmaß zwischen einer Kurzbeschreibung der Entität und den Textquellen und löst zudem ein Optimierungsproblem mit Budgetrestriktion, das keine Annahmen an die Textstruktur macht. Darüber hinaus ist der Ansatz in der Lage Tonaufnahmen, welche in Beziehung zu einer Entität stehen, zuverlässig aus Nachrichten-Podcasts zu extrahieren. Dafür werden zeitliche Abgrenzungen aus den normalerweise sehr verrauschten Audiotranskriptionen hergeleitet

    Less is More: Restricted Representations for Better Interpretability and Generalizability

    Get PDF
    Deep neural networks are prevalent in supervised learning for large amounts of tasks such as image classification, machine translation and even scientific discovery. Their success is often at the sacrifice of interpretability and generalizability. The increasing complexity of models and involvement of the pre-training process make the inexplicability more imminent. The outstanding performance when labeled data are abundant while prone to overfit when labeled data are limited demonstrates the difficulty of deep neural networks' generalizability to different datasets. This thesis aims to improve interpretability and generalizability by restricting representations. We choose to approach interpretability by focusing on attribution analysis to understand which features contribute to prediction on BERT, and to approach generalizability by focusing on effective methods in a low-data regime. We consider two strategies of restricting representations: (1) adding bottleneck, and (2) introducing compression. Given input x, suppose we want to learn y with the latent representation z (i.e. x→z→y), adding bottleneck means adding function R such that L(R(z)) < L(z) and introducing compression means adding function R so that L(R(y)) < L(y) where L refers to the number of bits. In other words, the restriction is added either in the middle of the pipeline or at the end of it. We first introduce how adding information bottleneck can help attribution analysis and apply it to investigate BERT's behavior on text classification in Chapter 3. We then extend this attribution method to analyze passage reranking in Chapter 4, where we conduct a detailed analysis to understand cross-layer and cross-passage behavior. Adding bottleneck can not only provide insight to understand deep neural networks but can also be used to increase generalizability. In Chapter 5, we demonstrate the equivalence between adding bottleneck and doing neural compression. We then leverage this finding with a framework called Non-Parametric learning by Compression with Latent Variables (NPC-LV), and show how optimizing neural compressors can be used in the non-parametric image classification with few labeled data. To further investigate how compression alone helps non-parametric learning without latent variables (NPC), we carry out experiments with a universal compressor gzip on text classification in Chapter 6. In Chapter 7, we elucidate methods of adopting the perspective of doing compression but without the actual process of compression using T5. Using experimental results in passage reranking, we show that our method is highly effective in a low-data regime when only one thousand query-passage pairs are available. In addition to the weakly supervised scenario, we also extend our method to large language models like GPT under almost no supervision --- in one-shot and zero-shot settings. The experiments show that without extra parameters or in-context learning, GPT can be used for semantic similarity, text classification, and text ranking and outperform strong baselines, which is presented in Chapter 8. The thesis proposes to tackle two big challenges in machine learning --- "interpretability" and "generalizability" through restricting representation. We provide both theoretical derivation and empirical results to show the effectiveness of using information-theoretic approaches. We not only design new algorithms but also provide numerous insights on why and how "compression" is so important in understanding deep neural networks and improving generalizability
    corecore