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Abstract

Deep neural networks are prevalent in supervised learning for large amounts of tasks such as
image classification [Simonyan and Zisserman, 2014], machine translation [Sutskever et al., 2014]
and even scientific discovery [Gilmer et al., 2017]. Their success is often at the sacrifice of
interpretability and generalizability. The increasing complexity of models and involvement of
the pre-training process make the inexplicability more imminent. The outstanding performance
when labeled data are abundant while prone to overfit when labeled data are limited demonstrates
the difficulty of deep neural networks’ generalizability to different datasets.

This thesis aims to improve interpretability and generalizability by restricting representations.
We choose to approach interpretability by focusing on attribution analysis to understand which
features contribute to prediction on BERT [Devlin et al., 2019], and to approach generalizability
by focusing on effective methods in a low-data regime.

We consider two strategies of restricting representations: (1) adding bottleneck, and (2) in-
troducing compression. Given input x, suppose we want to learn y with the latent representation
z (i.e. x → z → y), adding bottleneck means adding function R such that L(R(z)) < L(z) and
introducing compression means adding function R so that L(R(y)) < L(y) where L refers to the
number of bits. In other words, the restriction is added either in the middle of the pipeline or at
the end of it.

We first introduce how adding information bottleneck can help attribution analysis and apply
it to investigate BERT’s behavior on text classification in Chapter 3. We then extend this attribu-
tion method to analyze passage reranking in Chapter 4, where we conduct a detailed analysis to
understand cross-layer and cross-passage behavior.

Adding bottleneck can not only provide insight to understand deep neural networks but can
also be used to increase generalizability. In Chapter 5, we demonstrate the equivalence between
adding bottleneck and doing neural compression. We then leverage this finding with a framework
called Non-Parametric learning by Compression with Latent Variables (NPC-LV), and show how
optimizing neural compressors can be used in the non-parametric image classification with few
labeled data. To further investigate how compression alone helps non-parametric learning with-
out latent variables (NPC), we carry out experiments with a universal compressor gzip on text
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classification in Chapter 6. In Chapter 7, we elucidate methods of adopting the perspective of
doing compression but without the actual process of compression using T5 [Raffel et al., 2020b].
Using experimental results in passage reranking, we show that our method is highly effective
in a low-data regime when only one thousand query-passage pairs are available. In addition to
the weakly supervised scenario, we also extend our method to large language models like GPT
under almost no supervision — in one-shot and zero-shot settings. The experiments show that
without extra parameters or in-context learning, GPT can be used for semantic similarity, text
classification, and text ranking and outperform strong baselines, which is presented in Chapter 8.

The thesis proposes to tackle two big challenges in machine learning — “interpretability” and
“generalizability” through restricting representation. We provide both theoretical derivation and
empirical results to show the effectiveness of using information-theoretic approaches. We not
only design new algorithms but also provide numerous insights on why and how “compression”
is so important in understanding deep neural networks and improving generalizability.
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Chapter 1

Introduction

The start of the deep learning boom can be traced back to 2012, when Krizhevsky et al. [2012]
utilize GPUs to accelerate deep convolutional neural networks [LeCun et al., 1995] and won
ImageNet [Deng et al., 2009] contest by a large margin. Subsequently, researchers have come
to recognize the potency of augmenting the number of layers and parameters [He et al., 2016;
Simonyan and Zisserman, 2014]. Combining hundreds of millions of training parameters with
tens of millions of labeled data, deep neural networks achieve state-of-the-art results on numerous
tasks [Gilmer et al., 2017; Simonyan and Zisserman, 2014; Sutskever et al., 2014]. The landscape
of deep learning is further shifted by pretrained models. By the time BERT [Devlin et al., 2019]
came out, it improved the General Language Understanding Evaluation (GLUE) [Wang et al.,
2018b], a widely used NLP benchmark covering various NLP tasks like natural language inference
and semantic similarity, from 70.0 to 80.5 1. Similarly, ViT [Dosovitskiy et al., 2020] also achieves
the state of art on image classification tasks on seven datasets. Adopting systems embedded with
deep neural networks in the real world is promising, isn’t it?

1https://gluebenchmark.com/leaderboard
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1.1 Challenges

In this thesis, we discuss two major challenges when attempting to adopt deep neural networks to
the real world: interpretability and generalizability.

Interpretability: Both non-pretrained deep neural networks and pretrained ones are black
box models [Shwartz-Ziv and Tishby, 2017] — feeding input to models yields output, while
the underlying mechanisms that facilitate this operation remain undisclosed. This highlights a
concern of untrustworthiness when black-box models are applied to real-world scenarios [Ribeiro
et al., 2016]. Especially in more life-critical domains like medical science, it is hard for people
to trust the decision made by a system that they don’t understand. This problem becomes even
more fatal when the slight manipulation of images [Szegedy et al., 2013] that humans can barely
notice or even the change of one pixel [Su et al., 2019] can fool the neural networks to make
different predictions. Until we can find the universal theory of deep neural networks, we may
assume different deep neural networks have different mechanisms. Without understanding the
mechanism of every single deep neural network, how can we provide trustworthy prediction in a
universal way? We focus on attribution analysis, which answers the question of which features
are most important to prediction.

Generalizability: The success that deep neural networks bring in always requires huge amounts
of labeled data [Marcus, 2018]. Theoretically, the sample complexity theory derived from VC di-
mension [Vapnik, 1999] has set a loose bound on the number of labeled data that are required to
achieve a satisfactory result and it increases with the model complexity. Although the theory is
developed for binary classification models, previous works [Zhang et al., 2021b] have also found
it to hold for non-pretrained deep neural networks. However, labeled datasets are luxurious as they
take a long time to construct. For example, it takes several years to construct ImageNet [Deng
et al., 2009] and it requires a similar time span for constructing Penn Tree Bank [Marcus et al.,
1993]. Fortunately, there are abundant unlabeled data — no matter it is the resources freely ac-
cessible online or the datasets that are waiting to be labeled by the system. Pretrained models like
BERT [Devlin et al., 2019] or GPT [Radford et al., 2018b] utilize the power of self-supervised
learning with unlabeled datasets and enable the downstream tasks to be fine-tuned using only a few
thousand labeled data to achieve the satisfactory result. Promising as this direction is, it still faces
generalizability problems when fine-tuning out-of-distributed (OOD) datasets. For example, Yu
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et al. [2021] have found that when the data distribution in the fine-tuning datasets is substantially
different from any pretrained dataset, the inductive bias hinders fine-tuning and makes the model
less pliable. In order to make as minimum assumption for the dataset as possible, we focus on
Non-Supported Learning (NSL) where we are only given limited labeled data without the help of
labeled support sets in meta-learning-based few-shot learning.

1.2 Restricted Representations

The principle of parsimony has historically been well-known in various domains across ages.
For example, Williams of Ockham in the thirteenth century phrased that “Entities shall not be
multiplied beyond necessity” in the domain of philosophy and theology; a similar gist is expressed
by Albert Einstein, paraphrased later by Roger Sessions as “Everything should be made as simple
as possible, but no simpler” [Robinson, 2018] in the twentieth century in the context of physics.

In machine learning, the principle of parsimony also emerges in different areas: (1) Model Se-
lection. “Ockham’s razor” is often used as the heuristic to choose a simpler model given various
models have the same ability to fit the data, which is formalized by “Minimum Description Length
(MDL)” [Rissanen, 1989]. (2) Data Modeling. Generative models like Auto-Encoders [Rumel-
hart et al., 1985] use latent variables with low dimensions to capture the features that are essential
to reconstruct the input but not more. (3) Representation Learning. PCA [Hotelling, 1933] and
latent representation of VAE [Rolinek et al., 2019] share the similarity of reducing the dimension-
ality of the representation while keeping the expressiveness. The representations then can be used
for downstream tasks like classification. (4) Intelligence emergence hypothesis. Ma et al. [2022]
propose a theoretical framework for explaining the emergence of intelligence and the principle of
parsimony is one of the two principles. It states that identifying low-dimensional structures of the
external world and organizing them in a structured way is the main objective of intelligent systems’
learning. From the above examples, we hypothesize the “restricted representation” is a crucial
part of the principle of parsimony. By “restricted”, we illustrate in Figure 1.1 below to demon-
strate its intuitive meaning. Given any input x, we want to learn f(x). Now suppose we have an
intermediate state z = h(x) and g(z) = f(x) (i.e., f = g ◦ h), the “restriction” can be viewed as
another function R that either makes L(R(f(x))) < L(f(x)) or L(R(h(x))) < L(h(x)), where
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(a) Restrict Information by Inserting Bottleneck (b) Restrict Information by Compression

Figure 1.1: Two Ways to Restrict Information. Figure 1.1a is used in Chapters 3 to 5; Figure 1.1b
is used in Chapters 6 to 8.

L is the bit length. Figure 1.1a shows restricting h(x), the intermediate part, which can be viewed
as inserting a bottleneck while Figure 1.1b shows restricting f(x), which can be viewed as data
compression.

In this thesis, we investigate how “restricted representation” help leverage interpretability and
generalizability. We mainly focus on two ways of restricting representations: (1) adding bot-
tleneck and (2) doing compression. For interpretability, we analyze the attribution in document
classification and passage re-ranking. For generalizability, we specifically investigate effective
methods in a labeled-data-scarce environment.

1.2.1 For Interpretability

Deep neural networks are exceptional at various tasks but those black-box models always remain
inexplicable [Kovaleva et al., 2019]. The lack of interpretability is even severe for pretrained
models in NLP (e.g., BERT). One important question to ask in order to understand the prediction
result is: Which hidden features contribute most to the prediction? Attribution analysis that uses
attribution scores is used to resolve this problem. The definition of attribution scores is as follows:
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Given an m-dimensional instance x ∈ Rm, the numerical score s(xi,y) denotes the relevance
between the i-th feature of x and the prediction y.

Gradient-based methods [Fong and Vedaldi, 2017; Selvaraju et al., 2017; Smilkov et al., 2017]
and probing methods [Clark et al., 2019; Liu et al., 2019] were widely adopted but gradient-based
methods fail to capture all the information associated with the correct prediction [Li et al., 2016];
probing methods fail to capture the inner mechanism like how information flows through the
network [Guan et al., 2019].

We approach the attribution analysis from an information-theoretic perspective where we in-
sert an information bottleneck to restrict the information flowing through the network so that only
the most important information is kept. How much information is still kept about the input fea-
tures indicates the attribution score. The intuition is then applied to attribution analysis for text
classification fine-tuned with BERT, and both qualitative and quantitative analyses are carried out
to show that our method is superior to other attribution analysis methods. This work is explained
in detail in Chapter 3.

We push the attribution analysis further for the passage-reranking task that combines BM25
[Robertson and Jones, 1976] and BERT [Nogueira and Cho, 2019]. Based on the attribution map
obtained from inserting bottleneck, we then can carry out a more detailed analysis to identify both
the similarity and differences between BM25 and BERT with regard to how they rank passages; to
analyze the role that special tokens play in ranking; to test the robustness of the top-ranked passage
and to testify whether BERT has positional bias. We cover this part in detail in Chapter 4.

1.2.2 For Generalizability

Generalizability refers to models’ ability to adapt to unseen data from the same data distribution
as the training set. Deep neural networks with huge amounts of training parameters are expressive
enough to memorize random labels [Zhang et al., 2017] achieving training error etrain = 0 while
test error etest is huge. With scarce labeled data, those deep learning models are even easier to
overfit [Wang et al., 2020b].

In this thesis, we specifically evaluate generalizability under the scenario where both the num-
ber of labeled data and training parameters are reduced. Specifically, we investigate “generalizat-
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bility” in a Non-Supported Learning (NSL) scenario:
Given any target dataset D = (x1,x2, ...,xn) belonging to c classes. For each class, we have k
labeled samples. The remaining n − ck unlabeled samples need to be classified into c classes
without the need for labeled support sets.

Adding a bottleneck in the supervised scenario can help us better understand deep neural
networks’ prediction while adding a bottleneck in an unsupervised scenario can help to learn in
a non-parametric way.

We derive negative evidence lower bound (nELBO) from the perspective of adding bottleneck
in an unsupervised scenario and then combining a distance metric based on Kolmogorov com-
plexity [Kolmogorov, 1963] to show how nELBO can be used to do classification in a parameter-
free way. Townsend et al. [2019b] derive nELBO from the “bits-back” argument [Hinton and
Van Camp, 1993], which demonstrates optimizing latent variable models in an unsupervised man-
ner equals optimizing a neural compressor. This connection brings up the question of whether
using neural compression, in general, can enhance the non-parametric learning with traditional
compressors [Cebrián et al., 2005; Chen et al., 1999, 2004; Keogh et al., 2004b]. We show that
using the actual compression with compressor-based distance metric achieves outstanding image
classification in the few-shot scenario. We introduce this work in Chapter 5.

We push this line further by restricting representation by compression only with absolutely
no training, even without unsupervised training. We use a simple compressor gzip together with
a compressor-based distance metric and outperform pretrained models like BERT on five out-of-
distributed datasets and achieve a competitive result with the family of non-pretrained deep neural
networks on six in-distributed datasets for text classification. This line of work is introduced
in Chapter 6.

We also show that with the perspective of compression, we can utilize language models more
effectively without doing the actual compression. We take advantage of the probabilistic distri-
bution captured by pretrained generative models like T5 [Raffel et al., 2020b] without the cost of
applying coding schemes or discretization. Our experiments in passage reranking illustrate the
effectiveness of this method when labeled data are scarce. We introduce this work in Chapter 7.

We finally extend the above method to a more general scenario where GPT-based methods
are used under (almost) no supervision. We demonstrate how can we use this method in various
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NLP tasks including semantic similarity, zero-shot passage reranking and classification without
parameters or doing actual compression. This work is introduced in Chapter 8.

1.3 Contribution

The main contributions of this thesis are summarized as follows:

For interpretability,

• We improved the interpretability of pre-trained models by generating a more trustworthy
attribution map by inserting information bottleneck. Quantitatively, it improves other attri-
bution maps like Integrated Gradient (IG) by up to 150%. This model-agnostic attribution
method can be applied to almost all neural networks. We make code publicly available at
https://github.com/bazingagin/IBA.

• We analyzed the passage reranking at a token-wise level which demonstrated the granularity
that an attribution map can provide. We facilitate the understanding of passage reranking
with BERT by showing BERT’s strength in capturing contextual information, its robustness
to token removal, and its positional bias towards the start of the passages.

For generalizability,

• We unified previous compressor-based methods into a learning framework with replaceable
modules called Non-Parametric learning by Compression (NPC). Based on NPC, we pro-
posed a new framework called Non-Parametric learning by Compression with Latent Vari-
ables (NPC-LV) which leverages the power of neural networks to get a classifier without any
supervised training. Code is publicly available at https://github.com/bazingagin/npc lv.

• We proved the effectiveness of NPC-LV by showing its few-shot image classification per-
formance. Specifically, our method can surpass supervised learning by up to 59% and can
even outperform semi-supervised learning without any label involved in training.
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• We demonstrated how we can use negative evidence lower bound (nELBO) as an estimated
compressed length for classification under NPC-LV by connecting the equivalence between
training a generative model and obtaining a better neural compressor. We further illustrate
the correlation between compression rate and classification accuracy which may indicate
this framework can be further improved with the development of generative models.

• We showed that without any neural networks, NPC with a traditional compressor like gzip
has the potential to achieve the state of the art performance on four low-resource language
text classification tasks, outperforming pre-trained models like BERT, mBERT, and even
KinyaBERT. We also showed that our method can achieve competitive results to deep neural
networks on five out of seven in-distributed (English) datasets with zero training parameters.
The advantage of our method is more obvious under few-shot settings, surpassing BERT by
up to 193.7%. We make code publicly available at https://github.com/bazingagin/npc gzip.

• We further illustrated that equipped with the perspectives of compression, we can better
utilize language models, especially a pre-trained model like T5 in passages reranking. We
showed that our novel method outperforms all previous state of the art models in zero-shot
settings and is extremely effective in low-data regimes, much more effective than encoder-
only models like BERT.

• We show how GPT models can be used with almost no supervision, and no extra parameters
for various NLP tasks like semantic similarity, zero-shot passage reranking, and zero-shot
as well as one-shot text classification. It outperforms fine-tuning and in-context learning
in almost all scenarios when labeled data are extremely limited, which may indicate that
compression-based methods leverage the prior knowledge better than in-context learning
and fine-tuning in cases where there is an exceedingly restricted pool of annotated data.
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Chapter 2

Background

In this chapter, we briefly introduce the background knowledge needed to understand the thesis.
Specifically, we will cover data compression, information bottleneck, Kolmogorov complexity,
and information distance derived from it.

2.1 Information Theory

The field of information theory quantifies information in an algebraic way, drawing the connection
between information and uncertainty [Shannon, 1948].

Entropy: Suppose we have a random variable X , whose finite alphabet is V . Given the
probability distribution p(x) = Prob(X = x), x ∈ V , the entropy of X is defined as:

H(X) ≜ −E log p(X), (2.1)

H(X) measures the average information/uncertainty of a random variable X .

Joint Entropy: Extending entropy to two random variables renders the joint entropy:

H(X, Y ) ≜ −E log p(X, Y ) (2.2)

H(X, Y ) represents the average information we get from observing X and Y .
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Conditional Entropy: Similarly, if we replace the joint distribution with a conditional distri-
bution p(X|Y ), we will have the conditional entropy:

H(X|Y ) ≜ −E log p(X|Y ) (2.3)

H(X|Y ) describes how much information still left in X given the information of Y .

Mutual Information: Given two random variables X, Y , one quantity that’s especially in-
teresting is the mutual information I(X;Y ).

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). (2.4)

It describes how much information gained of X due to knowing Y (i.e., how much reduction of
the uncertainty does knowing Y create).

The most fundamental building blocks of information theory is given above, and based on
which we can now introduce “information bottleneck” and “data compression”.

2.1.1 Information Bottleneck

Information bottleneck was first proposed by Slonim and Tishby [1999] as a clustering algorithm.
It is Tishby and Zaslavsky [2015]; Tishby et al. [2000] and Shwartz-Ziv and Tishby [2017] that
connects the information bottleneck method to explaining deep neural networks. The theoreti-
cal framework of information bottleneck hypothesizes that deep neural networks all go through
two phases: the fitting phase and the compression phase. Essentially, Shwartz-Ziv and Tishby
[2017] argue that as the training proceeds, deep neural networks first encode all the informa-
tion for prediction and then discard that irrelevant information and only keep the most relevant
representation.

The essential idea of information bottleneck is to only keep the information that’s relevant to
the prediction. Concretely, the goal of the information bottleneck is to find a representation Z
that minimizes the mutual information between Z and input X and at the same time maximizes
that mutual information between Z and output Y :

I(Y ;Z)− β · I(X;Z), (2.5)
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where β controls the trade-off between the restriction and reconstruction. In other words, the
larger the β is, the narrower the bottleneck is.

While it’s still unclear whether this principle holds for all deep neural networks1, we do not
rely on the correctness of this principle for our interpretability method. Instead of explaining the
mechanisms of how deep neural networks learn, we just use information bottleneck as inspiration
for the loss function of representation learning and utilize the representation for the attribution
map.

2.1.2 Data Compression

In a compression scenario, suppose we have a sender Alice and a receiver Bob. Alice wants to
send a message that contains a sequence of symbols x = (x1, x2, ..., xn) to Bob. The ultimate
goal of the lossless compressor is to compress x into the minimum amount of bits x′ that can
later be decompressed back to x by Bob. To achieve the shortest compressed length, shorter
codes are assigned to symbols with higher probability. According to Shannon’s Source Coding
Theorem [Shannon, 1948], this length of bits is no shorter than the entropy of the sequence, whose
definition is H(x) ≜ E[− log pdata(x)], where pdata(x) represents the probability distribution of
each symbol in the sequence. However, the “true” probabilistic distribution pdata(x) is unknown
to us. We can only access samples and approximate it with pθ(x). That is:

E[− log pθ(x)] ≥ H(x) ≜ E[− log pdata(x)]. (2.6)

Given an entropy coding scheme, the better pθ(x) approximates pdata(x), the closer we can get
to the minimum code length. Besides, in order to convert the message into a sequence of bits, a
coding scheme is needed.

One of the most famous coding schemes is Huffman Coding [Huffman, 1952]. The main
idea is to build a tree according to the probability of each symbol and encode symbols one by
another. As each symbol is assigned a variable-length code (i.e., a binary string), the number
of bits required to code a message is always an integer. It’s proved that Huffman coding is the
optimal symbol coding with an overhead of one bit per symbol [Cover, 1999]. However, the

1For controversial perspective and discussion, see: https://openreview.net/forum?id=ry WPG-A-
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accumulation of one bit per symbol can still be large. In order to push the coding length closer
to the entropy, stream coding schemes like Arithmetic Coding (AC) [Witten et al., 1987b] and
Asymmetric Numeral Systems (ANS) [Duda, 2009] are proposed. Stream coding schemes, as
the name suggests, treat the whole message as a sequence and encode them together. It is able to
shrink the code length of the whole sequence with additional two bits of overhead. Both AC and
ANS share a similar gist of converting sequences into numeral systems. We will introduce ANS
as it is a relatively new and the state of the art coding scheme.

ANS: The essence of ANS is to encode one or more data points into a single natural number,
called state s ∈ N. Depending on different vocabularies and manipulations, there are different
variations of ANS (details in Duda et al. [2015]). We introduce one of them — rANS (range
ANS), which is the variant we use in this thesis. The notation we use here is unconventional in
order to be consistent with the main part of the thesis.

Let’s notate our state at timestamp t as st ∈ N, and notate our symbol/message at t as xt,
xt ∈ V , where V = {0, 1} is the vocabulary set. We have two simple methods to encode a
binary sequence into a natural number bit by bit — st = 2st−1 + xt or st = st−1 + 2mxt. The
former means appending information to the least significant position while the latter is adding
information to the most significant position. It’s obvious that encoding a new symbol into the
most significant position requires rememberingmwhile encoding in the least significant position
only needs the previous state st−1 and new information xt. It’s also easy to decode: depending
on whether the current state st is even or odd, we not only know if the last encoded symbol xt is
0 or 1, but we can also decode the state following st−1 =

st
2

or st−1 =
st−1
2

.

The above example illustrates encoding and decoding methods when there are two elements
in the vocabulary with uniform distribution p(0) = p(1) = 1

2
. In this case, it’s optimal to scale up

st to two for both 0 or 1 as we essentially only spend 1 bit per encoded symbol. However, when
the probability is not uniformly distributed, the entropy is smaller, and scaling up by 2 for both
symbols will not be optimal anymore. rANS generalizes the process to any discrete probability
distribution and any size of the vocabulary.

Intuitively, scaling up by a smaller factor for a more probable symbol and scaling up by a
larger factor for a less probable symbol will provide us with a more efficient representation.
Concretely, we have a sequence of messages x = (x1, x2, x3, ..., xn), and a vocabulary V =
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{v1, v2, v3, ..., vk}, with size k, xi ∈ V . We also have probability mass distribution of V : P =

{pv1 , pv2 , pv3 , ..., pvk}. Correspondingly, let’s define frequency countsF = {fv1 , fv2 , fv3 , ..., fvk},
fvi = pvi ×M where M =

∑k
i=1 fvi . M can be viewed as a multiplier, demonstrating the preci-

sion of ANS, which is a predefined variable in the implementation. We can also get cumulative
frequency counts from F as follows B = {bv1 , bv2 , bv3 , ..., bvk} where bvi =

∑i−1
j=1 fvj . Now we

get everything we need to define the encoding function G:

st = G(st−1, xt),

G(st−1, xt) =

⌊
st−1

fxt

⌋
×M + bxt + st−1 mod fxt .

(2.7)

The procedure can be interpreted as follows: We have various M -sized blocks partitioning
natural number N. Encoding can be viewed as finding the exact location of the natural number
that represents the state, by first finding the corresponding block (

⌊
st−1

fxt

⌋
×M ) followed by finding

the sub-range representing that symbol within M (bxt) and finding the exact location within that
sub-range (st−1 mod fxt). The decoding function H(st) is the reverse of the encoding:

st−1, xt = H(st),

xt = argmax {bxt < (st mod M)},

st−1 = fxt

⌊ st
M

⌋
+ st mod M − bxt .

(2.8)

We first find the precise location within the sub-range using the inverse function of cumulative
counts (argmax {bxt < (st mod M)}). With xt we can reverse steps in Equation (2.7) to get the
previous state. As we can see, ANS decodes in the reverse order of encoding (i.e., last in first
out), which makes it compatible with the bits-back argument. From the encoding function, we
know that:

st
st−1

≈ M

fxt

=
1

pxt

. (2.9)

Encoding a sequence of symbols x results in:

sn ≈
s0

px1px2 ...pxn

. (2.10)

13



Thus, the total coding length is:

log sn ≈ log s0 +
n∑

i=1

log
1

pxi

, (2.11)

where s0 refers to the initial state. Dividing by n we will get the average coding length that
approximates the entropy of the data.

Discretization: ANS is defined for symbols in a finite alphabet; bits-back coding works for
discrete latent variables. However, continuous latent variables have proven to be powerful in
many latent variable models. In order to use those latent variable models for lossless compres-
sion, discretizing continuous variables into discrete ones is a necessary step. Townsend et al.
[2019b] shows, based on MacKay [2003] using bits-back coding, continuous latent variables can
be discretized to arbitrary precision without affecting the compression rate. Suppose a probability
density function p is approximated using a number of “buckets” of equal width σz. For any given
bucket j, we can know its probability mass p(z(j))σz where z(j) is some point in the bucket j.
Let’s notate the discrete distribution as P and Q for both prior and posterior distribution. Then
for any given bucket j, P (j) ≈ p(z(j))σz. The expected message length with a discretized latent
variable is:

−EQ(j|x) log
p(x|z(j))p(z(j))σz

q(z(j)|x)σz
. (2.12)

The width of buckets σz is canceled. Therefore, as long as the bins for inference models match
the generative models, continuous latent variables can be discretized up to arbitrary precision.

In this thesis, we only consider basic discretization techniques like dividing continuous dis-
tribution into bins with equal width or equal mass. We discretize the prior (top layer) with equal
mass and all subsequent latent layers with equal width. As Equation (2.12) shows, ideally we
want the discretization to align between inference models and generative models. However, dis-
cretization of zi ∼ pθ(zi|zi+1) relying on zi ∼ qϕ(zi|zi−1) is not possible without sampling. In
the compression stage, when decoding zi, zi+1 is not available and so is pθ(zi|zi+1). In the de-
compression stage, similarly, qϕ(zi|zi−1) is not available for pθ(zi|zi+1) to match with. Therefore,
we need to sample from the training dataset beforehand to get unbiased estimates of the statistics
of the marginal distribution [Kingma et al., 2019a]. This process only needs to be done once and
can be saved for future use.
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2.2 Algorithmic Information Theory

Given a simple binary string, s =
n︷ ︸︸ ︷

00...0, one way to view s is to see it as a list of symbols drawn
from vocabulary Σ = {0, 1}. Suppose the probability of drawing 0 or 1 is uniformly distributed,
according to information theory, we know that n bits are required to encode s, as s is just 1

2n
of all

possible combinations given Σ. If we only focus on this single s, we can see a specific pattern: s
consists of n “0”s. This pattern can be expressed in a simple program U : “for i=1 to n, print(0)”.
Now suppose Alice wants to transmit s to Bob, instead of using n bits, Alice can use only log n

bits to encode n and an extra O(1) bit as the reference of the program, assuming Bob also has the
program. In this way, s can be compressed significantly.

Focusing on “single” objects like a single string without the notion of a probability distribution
is what differentiates Information theory from Algorithmic Information Theory. We introduce
two fundamental concepts in algorithmic information theory: (1) Kolmogorov complexity and
(2) information distance.

2.2.1 Kolmogorov Complexity

Kolmogorov complexity K(x) [Kolmogorov, 1963] is used to describe the length of the shortest
binary program that can produce x on a universal computer. It has been proved that the expected
length of the shortest binary program is approximately equal to entropy. Besides, any program-
ming language can be used to describe x, and according to invariance theorem [Li et al., 2008],
any chosen language is as efficient as the optimal language with constant overhead. Although the
invariance theorem demonstrates that K(x) is language independent, K(x) is incomputable as it
takes infinitely long to find the shortest computer program. Nevertheless, we can still approxi-
mate K(x) using compressors, as intuitively, K(x) can be viewed as the length of x after being
maximally compressed.

2.2.2 Information Distance

With the basic idea of Kolmogorov complexity, we can define an information distance:
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E(x, y) = max{K(x|y), K(y|x)} = K(xy)−min{K(x), K(y)}, (2.13)

where K(x|y) means the length of the binary program that on input y outputs x, K(xy) denotes
the length of the shortest program computing x and y without telling which one is which (i.e., no
separator encoded between x and y).

The idea behind this measurement, on a high level, is that the similarity between two objects
indicates the existence of a simple program that can convert one to another. The simpler the
converting program is, the more similar the objects are. For example, the negative of an image
is very similar to the original one as the transformation can be simply described as “inverting the
color of the image”.

Theorem 1. The function E(x, y) is an admissible distance and a metric. It is minimal in the
sense that for every admissible distance D, we have E(x, y) ≤ D(x, y) +O(1).

Intuitively, admissible distance refers to distances that are meaningful (e.g., excluding metrics
like D(x, y) = 0.3 for any x ̸= y) and computable (formal definition is in Section 5.5). Combin-
ing those definitions, we can see Theorem 1 means E(x, y) is universal in a way that is optimal
and can discover all effective similarities between two objects.

In order to compare the similarity, the relative distance is preferred. Li et al. [2001a] propose
a normalized version of E(x, y) called Normalized Information Distance (NID).

Definition 1 (NID). NID is a function: Ω× Ω→ [0, 1], where Ω is a non-empty set, defined as:

NID(x, y) =
max{K(x|y), K(y|x)}
max{K(x), K(y)}

. (2.14)

Equation (2.14) can be interpreted as follows: Given two sequences x, y, K(y) ≥ K(x):

NID(x, y) =
K(y)− I(x : y)

K(y)
= 1− I(x : y)

K(y)
, (2.15)

where I(x : y) = K(y) − K(y|x) means the mutual algorithmic information. I(x:y)
K(y)

means the
shared information (in bits) per bit of information contained in the most informative sequence,
and Equation (2.15) here is a specific case of Equation (2.14). Theoretically, NID is a desirable
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distance metric as it satisfies the metric (in)equalities up to additive precision O(1/K(·)) where
K(·) is the maximum complexities of objects involved in (in)equalities (proof shown in Li et al.
[2004]).
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Chapter 3

Restrict Representations by Inserting
Information Bottlenecks for Attribution in
Text Classification

In this chapter, we discuss one way to restrict representations — inserting an information bot-
tleneck. The inserted bottleneck helps us to improve interpretability by learning representations
that can generate a veracity attribution map. Specifically, we use our method to interpret BERT
on text classification tasks.

Pretrained transformers achieve the state of the art across tasks in natural language process-
ing [Devlin et al., 2019], motivating researchers to investigate their inner mechanisms. One com-
mon direction is to understand what features are important for prediction. We apply information
bottlenecks to analyze the attribution of each feature for prediction on a black-box model. We use
BERT as an example and evaluate our approach both quantitatively and qualitatively. We show
the effectiveness of our method in terms of attribution and the ability to provide insight into how
information flows through layers by both quantitative and qualitative analysis. The work is based
on our paper:

• Zhiying Jiang, Raphael Tang, Ji Xin, Jimmy Lin. Inserting Information Bottleneck for
Attribution in Transformers. In Proceedings of the 2020 Conference on Empirical Methods
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in Natural Language Processing (EMNLP) Findings, 2020.

3.1 Overview

The urge to interpret deep neural networks is increasingly prominent, with the success of these
black-box models remaining vastly inexplicable both theoretically and empirically. Within natural
language processing (NLP), this desire is particularly true for the pretrained transformer, which
has witnessed an influx of literature on interpretability analysis. Such papers include visualizing
transformer attention mechanisms [Kovaleva et al., 2019], probing the geometry of transformer
representations [Hewitt and Manning, 2019], and explaining the span predictions of question
answering models [van Aken et al., 2019]. While useful these methods are, they are often limited
to specific types of architectures. For example, visualizing attention can only interpret those
models that incorporate attention mechanisms, and numbers of previous works [Alvarez-Melis
and Jaakkola, 2018; Jain and Wallace, 2019] have shown that attention cannot faithfully interpret
predictions made by neural networks.

To interpret deep neural networks regardless of the architectures, we focus on model-agnostic
attribution methods, which only require the input, the output, and the model, regardless of what
type of model it is. The essence of the attribution method is to answer, “Which hidden features
contribute the most toward a prediction?” To resolve this question, a number of methods [Sel-
varaju et al., 2017; Smilkov et al., 2017] generate attribution scores for features, which provide a
human-understandable “explanation” of how a particular prediction is made at the instance level.
Specifically, given an instance, these methods assign a numerical score for each hidden feature
denoting its relevance to the prediction.

Previous papers have demonstrated that gradient-based methods fail to capture all the infor-
mation associated with the correct prediction [Li et al., 2016]. To address this weakness, Schulz
et al. [2020] insert information bottlenecks [Tishby et al., 2000] for attribution, attaining both
stronger empirical performance and a theoretical upper bound on the information used. Addi-
tionally, mutual information is unconstrained by model and task [Guan et al., 2019]. Thus, we
adopt information bottlenecks for attribution (IBA) to interpret transformer models at the instance
level. We apply IBA to BERT [Devlin et al., 2019] across five datasets in sentiment analysis, tex-
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tual entailment, and document classification. We show both qualitatively and quantitatively that
the method capably captures information in the model’s token-level features, as well as insight
into cross-layer behavior.

Our contributions are as follows: First, we are the first to apply information bottlenecks (IB)
for attribution to explain transformers. Second, we conduct quantitative analysis to investigate
the quality of our method compared to other interpretability techniques. Finally, we examine the
consistency of our method across layers in a case study. Across four datasets, our technique out-
performs integrated gradients (IG) and local interpretable model-agnostic explanations (LIME),
two widely adopted prediction attribution approaches.

3.2 Related Work

In terms of scope, interpretability methods can be categorized as model-specific or model-agnostic.
Model-specific methods interpret only one family of models. For example, a prominent line of
work within natural language processing (NLP) endeavors to explain BERT [Devlin et al., 2019]
by probing and visualization [Clark et al., 2019; Kovaleva et al., 2019; Tenney et al., 2019a; van
Aken et al., 2019]. Model-agnostic techniques aim for wide applicability across many families of
parametric models. We can roughly separate model-agnostic methods into three categories: (1)
gradient-based ones [Fong and Vedaldi, 2017; Li et al., 2016; Sundararajan et al., 2017]; (2) prob-
ing [Clark et al., 2019; Liu et al., 2019; Lundberg and Lee, 2017; Ribeiro et al., 2016; Tenney
et al., 2019b]; (3) information-theoretical methods [Bang et al., 2019; Guan et al., 2019; Pimentel
et al., 2020; Schulz et al., 2020] .

Gradient-based methods are limited to models with differentiable neural activations. They
also fail to capture all the information associated with the correct prediction [Li et al., 2016].
Although probing methods provide detailed insight into specific models, they fail to capture inner
mechanisms like how information flows through the network [Guan et al., 2019]. Information-
theoretic methods, in contrast, provide consistent and flexible explanations, as we show in this
chapter.

Guan et al. [2019] use mutual information to interpret NLP models across different tokens,
layers, and neurons, but they lack a quantitative evaluation. Bang et al. [2019] also propose a
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model-agnostic interpretable model using IB; however, they limit the information through the
network by sampling a given number of words at the beginning, which restricts the explanation to
neurons only. Our method is inspired by Schulz et al. [2020], who use IB for attribution in image
classification.

3.3 Information Bottleneck for Attribution

The idea of IBA is to restrict the information flowing through the network for every single instance,
such that only the most useful information is kept. Concretely, given an input X ∈ RN and
output Y ∈ RM , an information bottleneck is an intermediate representation T that maximizes
the following function:

I(Y;T)− β · I(X;T), (3.1)

where I denotes mutual information and β controls the trade-off between reconstruction I(Y;T)

and information restriction I(X;T). The larger the β, the narrower the bottleneck, i.e., less infor-
mation is allowed to flow through the network.

We insert the IB after a given layer l in a pretrained deep neural network. In this case,
X = fl(H) represents the chosen layer’s output, where H is the input of the layer. We restrict
information flow by injecting noise into X:

T = µ⊙X+ (1− µ)⊙ ϵ, (3.2)

where ⊙ denotes element-wise multiplication, ϵ the injected noise, X the latent representation
of the chosen layer, 1 the all-one vector, and µ ∈ RN the weight balancing signal and noise.
For every dimension i, µi ∈ [0, 1], meaning that when µi = 1, there is no noise injected into
the original representation. To simplify the training process, we set µi = σ(αi), where σ is the
sigmoid function and α is a learnable parameter vector that we are optimizing. In the extreme
case, where all the information in T is replaced with noise (T = ϵ), it’s desirable to keep ϵ the
same mean and variance as X in order to preserve the magnitude of the input to the following
layer. Thus, we have ϵ ∼ N (µX, σ

2
X).
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After obtaining T, we evaluate how much information T still contains about X, which is
defined as their mutual information:

I(X;T) = EX[DKL[P (T|X)∥P (T)]], (3.3)

where DKL means Kullback–Leibler (KL) divergence, P (T|X) and P (T) represent their proba-
bility distributions. While P (T|X) can be sampled empirically, P (T) has no analytical solution
since it requires integrating over the feature map P (T) =

∫
P (T|X)P (X)dX. As is standard,

we use the variational approximation Q(T) = N (µX, σ
2
X) to substitute P (T), assuming every

dimension of T is independent and normally distributed. Even though the independence assump-
tion does not hold in general, it only overestimates the mutual information, giving a nice upper
bound of mutual information between X and T:

I(X;T) = EX[DKL[P (T|X)∥P (T)]]

=

∫
X

p(x)(

∫
T

p(t|x) log p(t|x)
p(t)

dt)dx

=

∫
X

∫
T

p(x, t) log
p(t|x)
p(t)

q(t)

q(t)
dtdx

=

∫
X

∫
T

p(x, t) log
p(t|x)
q(t)

dtdx

+

∫
X

∫
T

p(x, t) log
q(t)

p(t)
dtdx

=

∫
X

∫
T

p(x, t) log
p(t|x)
q(t)

dtdx

+

∫
T

p(t)(

∫
X

p(x|t)dx) log q(t)
p(t)

dt

= EX[DKL[P (T|X)∥Q(T)]]

−DKL[Q(T)∥P (T)]

≤ EX[DKL[P (T|X)∥Q(T)]]

Since we expect I(X,T) to be small and mutual information to be always nonnegative, the upper
bound is a desired property.

Intuitively, the purpose of maximizing I(Y;T) is to make accurate predictions. Therefore,
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instead of directly maximizing I(Y;T), we minimize the loss function for the original task, e.g.,
the cross entropy LCE for classification problems after inserting the information bottleneck.

Combining the above two parts, our final loss function L is

L = LCE + β · EX[DKL[P (T|X)∥Q(T)]]. (3.4)

Note that we negate the sign for minimization. The β hyperparameter controls the relative
importance between the two loss components. After the optimization process, we obtain for
every instance a compressed representation T.

In order to get T, we optimize the learning parameter α. At the beginning of the training,
we start with T ≈ X to keep the information of X in T as much as possible. Thus, we initialize
αj = 5 for each dimension j as it results in µj = 0.993, which is close to 1 as desired. During
optimization, we fix the training steps to 10 and repeat a sample 10 times to inject different noise,
which altogether requires 100 total steps to generate an attribution map for a single instance.
Another important hyperparameter is β. We empirically pick β ≈ 10× LCE

LIB
, consistent with what

we found that works the best in the classification experiments.

We then calculate DKL[P (T|X)∥Q(T)], indicating how much information is still kept in T

about X, which suggests the contribution of each token and feature. To generate the attribution
map, we sum over the feature–token axis, obtaining the attribution score of each token.

Overall, we try to learn a compressed hidden representationT that has just enough information
about the input X to predict the output Y. This compression is done by adding noise, which
removes the least relevant feature-level information, with µ controlling how much to remove.

3.4 Experimental Setup

Through experimentation, we analyze IBA both quantitatively and qualitatively to understand how
it interprets deep neural networks across layers.

We compare our method on BERT with two other representative model-agnostic instance-
level methods—LIME [Ribeiro et al., 2016], which explores interpretable models for approxi-
mation and explanation, and integrated gradients (IG) [Sundararajan et al., 2017], a variation on
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computing the gradients of the predicted output with respect to input features. For a simple base-
line, we also compare with “random,” whose attribution scores are assigned randomly to tokens.
On each dataset, we fine-tune BERT and apply these interpretability techniques to the model. We
note the test accuracy and generate an attribution score for each token. Details of all parameters
are attached in Appendix A.

There is no consensus on how to evaluate interpretability methods quantitatively [Molnar,
2019]. LIME’s simulated evaluation leverages the ground truth of already interpretable models
like decision trees, but the ground truth is unavailable for black-box models like neural networks.
Therefore, we follow Ancona et al. [2018] and Hooker et al. [2018] and carry out a degrada-
tion test on IMDB [Maas et al., 2011], AG News [Gulli, 2004], MNLI [Williams et al., 2018],
and RTE [Wang et al., 2018a], covering sentiment analysis, natural language inference, and text
classification.

The degradation test has the following steps:

1. Generate attribution scores s for each interpretability method f : s = f(M, x, y), where x
is the test instance, y is the target label, andM is the model.

2. Sort tokens by their attribution score in descending order.

3. Remove top k tokens to obtain x′, the degraded instance; k can be preset.

4. Test the target class probability p(y|x′) with the original model on the degraded instance.

5. Repeat steps 3 and 4 until all tokens are removed.

For the final visualization, we average all test instances at each degradation step to compute
p̄(y|x′). Then, we normalize the degradation test result p̄(y|x′) to [0, 1] using the normalized prob-
ability drop d̄ = p̄(y|x′)−m

o−m
, where o means the original probability on the nondegraded instance,

and m means the minimum of the fully degraded instance’s probability across all interpretability
models. In this way, the normalized probability drop d̄ will be independent of the original model
quality and easily comparable across models. Note that, for IBA, we perform the degradation test
on the original model, not the one with the inserted bottleneck. Thus, a large β does not directly
cause the probability to drop. An effective attribution map can find the most important tokens,
which means p̄(y|x′) after the degradation step will drop substantially.

24



IMDB MNLI Matched MNLI Mismatched AG News RTE

Original 0.864 0.823 0.828 0.907 0.572
Random (↓) 0.011 0.106 0.106 0.008 0.012
LIME (↓) 0.038 0.244 0.260 0.033 0.014

IG (↓) 0.090 0.226 0.233 0.036 0.043
IBA (↓) 0.229 0.374 0.367 0.029 0.059

Table 3.1: Absolute probability drop for the target class after the top 11% most important tokens
removed. The larger the score, the more effective the method. Here we use β = 1e− 5.

3.5 Results and Analysis

Overall, the results show that our method better identifies the most important tokens compared to
other model-agnostic interpretability methods.

3.5.1 Quantitative Analysis

Table 3.1 shows the absolute probability drop ∥p̄(y|x) − o∥ with the first 11% of the important
tokens removed. We further plot the normalized probability drop after each percentage of the
important tokens is removed, as shown in Figure 3.1, indicating how much important information
is lost for prediction: the steeper the slope, the better the ability to capture important tokens.
For this experiment, we insert the information bottleneck after layer 9, and we see that removing
important tokens that are identified by our method deteriorates the probability the most on IMDB
and MNLI Matched/Mismatched.

Of course, choosing the right layer to insert the information bottleneck is crucial to the re-
sult. It also indicates which layer encodes the most meaningful information for prediction. To
investigate differences in inserting information bottlenecks after different layers, we carry the
degradation test on 1000 random test samples across layers on IMDB, as shown in Figure 3.2a—
see Appendix B for all 12 layers. Insertion after layers 1, 8, and 9 generates more meaningful
attribution scores. At layer 1, the tokens remain distinct (i.e., representations have not been aggre-
gated), and it is likely that the latent representation T is essentially capturing per-token sentiment
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(a) IMDB
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(b) MNLI Matched
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(c) MNLI Mismatched
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(e) RTE

Figure 3.1: Degradation test results comparing IBA, IG, LIME, and random. The steeper the
slope is the better the method is.

values. The big drop of d̄ after layers 8 and 9, on the other hand, is interesting. Recently, Xin
et al. [2020] examined early exit mechanisms in BERT and found that halting inference at layers
8 or 9 produces results not much worse than full inference, which suggests that an abundance of
information is encoded in those layers.

Another important parameter is β, which controls the trade-off between restricting the infor-
mation flow and achieving greater accuracy. A smaller β allows more information through, and
an extremely small β has the same effect of using X as the attribution map. As Figure 3.2b shows,
when β ≤ 1e− 6, the degradation curve is similar to the one using X only.
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(a) IB after different layers.
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Figure 3.2: Analysis of different layers and different β.

3.5.2 Qualitative Analysis
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Figure 3.3: Illustrations from left to right are as follows: The before and after comparison of in-
serting an information bottleneck after layer 6; attribution for an IMDB example with the positive
label; attribution for an MNLI example with the contradiction label.

The first plot in Figure 3.3 shows the before and after comparison of IB insertion, with positive
tokens highlighted. The second and third plots visualize attribution maps for instances across
layers. Consistent with our quantitative analysis in Figure 3.2a, these plots demonstrate that, for
a fully fine-tuned BERT, layers 8 and 9 seem to encode the most important information for the
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(b) β = 10−7

Figure 3.4: Comparison of BERT attribution maps with different values of β.

prediction. For example, in the IMDB instance, liked and intrigued have the highest attribution
scores for the prediction of positive sentiment across most layers—see layer 9 in particular. In the
MNLI example, never is mostly highlighted starting from layer 7 to predict “contradiction.”

Similarly, we can tell the different effects of β on attribution maps qualitatively. Figure 3.4
shows the effects of different β on a specific example. As we can see, when β is as small as 10−7,
most information is allowed to flow through the network and thus most parts are highlighted. In
contrast, when β is larger, the representation is more restricted.

3.6 Summary

In this chapter, we introduce an information-bottleneck-based approach to analyze attribution for
transformers. Our method outperforms two widely used attribution methods across four datasets
in sentiment analysis, document classification, and textual entailment. We also conduct analysis
across 12 layers and have found that layer 8,9 are the most informative ones. To help us better
understand the role β plays in this method, we also analyze the bottleneck representation with
different β both quantitatively and qualitatively.
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Chapter 4

Restrict Representations by Inserting
Information Bottleneck for Attribution in
Passage Reranking

In the previous chapter, we introduce the information bottleneck for attribution method and use
it to interpret classification tasks. It’s unclear how this method can be used to understand other
NLP tasks like passage ranking in depth. In this chapter, we show how this method can be used
to interpret reranking models with detailed token-wise analysis. The work is based on our paper:

• Zhiying Jiang, Raphael Tang, Ji Xin, Jimmy Lin. How Does BERT Rerank Passages? An
Attribution Analysis with Information Bottlenecks. In Proceedings of the Fourth Black-
boxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP 2021.

4.1 Overview

Pretrained language models like BERT [Devlin et al., 2019] have achieved prominent improve-
ments in both information retrieval (IR) and natural language processing (NLP). Concurrently,
researchers have raised wide awareness about the difficulty of explaining such deep learning mod-
els [Fong and Vedaldi, 2017; Guidotti et al., 2018; Robnik-Šikonja and Bohanec, 2018]. Recently,
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many papers scrutinize BERT’s behaviors in various tasks [Clark et al., 2019; MacAvaney et al.,
2020; Qiao et al., 2019; Tenney et al., 2019a; van Aken et al., 2019]. When it comes to token-
wise analysis, most of the previous works focus on intra-layer self-attention and how it relates
to various linguistic characteristics. Although these analyses yield unique insights on layer-local
behavior across pairs of tokens, they do not take a global perspective of how token-wise repre-
sentations exactly relate to the prediction. This is crucial for answering a fundamental question
in interpretability: what hidden features and tokens contribute the most to the prediction?

To faithfully compute such feature–prediction attribution maps, we leverage IBA to analyze
passage reranking for pretrained transformers. We first elaborate on how we use IBA to interpret
passage reranking. We then justify the choice of using IBA for attribution map generation by
comparing it with two other widely adopted attribution methods. We then carry out detailed
analyses of the inner mechanisms of passage reranking.

BERT reranking [Nogueira and Cho, 2019] starts a new chapter in information retrieval, as
it combines the dual advantages of the speed of sparse representation (BM25) and the deep con-
textualization of dense representation. To be specific, given a query q, BM25 returns top-1,000
passagesD. The label r is 1 if a passage d ∈ D is relevant to q, and 0 otherwise. For BERT, the in-
put is [CLS] q [SEP] d [SEP], and the output label is r. After fine-tuning, we rerankD based
on the output probabilities of relevance. This setting is different from most NLP tasks, where
positive and negative labels are provided by the dataset, and only one pair of (input, probability)
is required for the final output.

We use IBA to generate attribution maps for BERT-large [Devlin et al., 2019] fine-tuned on the
MS MARCO dataset [Bajaj et al., 2016b]. With the attribution maps, we investigate the following
questions:

Q1. What are the similarities and differences between BERT and BM25?
For the two-stage pipeline, we wonder how BERT’s ranking mechanism is similar to BM25 and
what it provides that BM25 doesn’t. Through cross-passage examination, we find that BERT still
regards lexical matching as important to some extent, similar to BM25. BERT, furthermore, man-
ages to capture deeper-contextualized relationships between the query and the relevant passage.

Q2. How do special tokens contribute to reranking across layers?
In BERT, only the [CLS] token is designed to factor into prediction. Then how do those special
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tokens collect information across layers to capture a contextualized relationship? We find that
different from what attention analyses show, [CLS] starts to gather the evidence for prediction
primarily after layer 16, especially in layer 24.

Q3. How robust is the top-ranked passage?
One of the special settings of ranking is that we do not care about the absolute score, as long
as the relevant passage ranks higher than the irrelevant ones. We conduct experiments of token
removal for the top-1 positive passage to test the robustness. We find that we can truncate up to
22.5% tokens on average, given reasonable attribution scores, of the top-ranked passage without
affecting its order.

Q4. Does BERT have positional bias?
We then look deeper into what makes those passages rank higher. We find that BERT, after
being fine-tuned on MS MARCO, prefers those passages with inverted pyramid structure—that
is, passages that put important information at the start. We further confirm that it has a positional
bias towards the start of the passage through various experiments.

4.2 Related Work

Generally speaking, interpretability methods are either model specific, applying to only a single
architectural family, or model agnostic, covering a broad spectrum of supervised models. Since
pretrained transformers represent the state of the art in NLP, for model-specific techniques we dis-
cuss those for BERT, the prototypical, most-interpreted transformer model. As this work specif-
ically explores passage reranking, we also provide the necessary literature about recent progress.

4.2.1 BERT specific

A number of works investigate the inner mechanisms of BERT. Clark et al. [2019]; Kovaleva et al.
[2019] carefully analyze BERT’s attention heads, noting a positive correlation between attention
heads and linguistic features, as well as special tokens.
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Looking at attention, Voita et al. [2018] find that BERT captures anaphora and dependence on
position and length in machine translation. Pointing out some shortfalls of these papers, Brunner
et al. [2019]; Jain and Wallace [2019]; Serrano and Smith [2019] argue that attentions often do
not reflect how models make predictions.

Another line of works analyzing BERT use probing classifiers to draw the connection between
vector representation and specific linguistic knowledge [Hewitt and Manning, 2019; Liu et al.,
2019; Tenney et al., 2019a]. Rogers et al. [2020] provide a thorough literature survey about what
we already know about how BERT works and they’ve found different probing methods some-
times lead to contradictory interpretations. A direct remedy is to look into what BERT looks at
during inference time (i.e., identify important features for prediction, also known as “attribution
methods” in general). That’s what our work focuses on.

4.2.2 Attribution maps

Although more commonly applied to convolutional neural networks in image classification, most
attribution methods are model agnostic. They aim to assign weights to input features according
to how the model makes predictions, with higher weights corresponding to greater contributions.

The most prevalent methods are gradient-based. Intuitively, gradients reflect how small changes
in the input affect the final prediction to some extent. But previous work shows that raw gradients
are noisy and limited to capturing only the local “importance” [Smilkov et al., 2017]. To remedy
this, some of them [Smilkov et al., 2017; Sundararajan et al., 2017] incorporate global importance
to mitigate this problem, while others [Binder et al., 2016; Kindermans et al., 2018; Shrikumar
et al., 2017] modify or extend the back-propagation algorithms directly to emphasize positive con-
tributions with regard to prediction. However, Sixt et al. [2020] show that most of the modified
back-propagation methods fail a basic sanity check: invariance to parameter randomization and
label randomization.

LIME [Ribeiro et al., 2016] is not limited to differentiable models. They use interpretable
models like decision trees to approximate deep neural networks, and thus can theoretically in-
terpret any classifier. However, empirically, LIME’s high demand on memory may worsen its
quality compared to other methods, as we will see in the later section.
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Information-theoretic methods are often unconstrained by tasks and models as well, while
additionally providing a unified view of how information flows across models. Guan et al. [2019]
use mutual information to estimate tokens’ importance across layers but don’t provide a quanti-
tative evaluation. Bang et al. [2019] also take advantage of information bottlenecks to interpret
predictions, but they restrict the information by sampling tokens, which doesn’t generate a com-
plete attribution map for every token and limits the interpretation to be token-wise only. More
recently, Schulz et al. [2020] propose the information bottleneck method for attribution, which
empirically achieves the best result on multiple evaluation metrics in interpreting images. Jiang
et al. [2020] further leverage this method in NLP and also surpass other model-agnostic methods
on multiple datasets.

4.2.3 Neural IR

BERT is a game changer for information retrieval. Lin et al. [2020] even separate neural reranking
techniques into “pre-BERT” and “post-BERT” eras. Nogueira and Cho [2019] start the post-
BERT era by proposing a two-stage pipeline, using sparse representations like BM25 to generate
candidates and then neural models like BERT to rerank them. More recent work explores merging
the two-stage pipeline into an end-to-end dense retrieval, like DPR [Karpukhin et al., 2020b],
which still uses BERT as the basic building block for neural information retrieval. Therefore,
understanding BERT’s behavior for reranking in the original setting still helps.

Toward this, a few previous works specifically analyze BERT for reranking: Qiao et al. [2019]
analyze attention to see how BERT attends to stop words and regular words across layers. MacA-
vaney et al. [2020] have done a more thorough study of various reranking models, using carefully
designed textual manipulation methods. Different from them, we use a model-agnostic method
to generate a token-wise attribution map, as it provides us with the flexibility to carry out a layer-
wise analysis. Besides, to the best of our knowledge, no previous work has done a cross-passage
analysis to see patterns across the ranks of different passages.
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Figure 4.1: Degradation test on MS MARCO with BERT-large.

4.3 IBA for Passage Reranking: How & Why

4.3.1 How

The procedure of using BERT to rerank passages [Nogueira and Cho, 2019] can be characterized
as follows: Given query q, and a list of passages D, d ∈ D is returned by BM25. BERT then
assigns the relevance score R(q, d), the logits for the probability that the passage is regarded as
relevant, to each pair of q and d. LCE, in this case, is the same as the cross entropy in Nogueira
and Cho [2019]. We use the BERT-large model fine-tuned on the MS MARCO dataset for exper-
iments.

The optimization process of getting the attribution map through an information bottleneck is
similar to Section 3.3.

4.3.2 Why

We first carry out experiments to justify the choice of using IBA for attribution map by showing
the benchmark and examples. To compare the effectiveness of IBA with other attribution methods,
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MS MARCO

Original 0.939
Random (↓) 0.135
LIME (↓) 0.043

IG (↓) 0.265
IBA (↓) 0.565

Table 4.1: Probability drop after removing first 11% important tokens identified by these methods.

we carry out a degradation test. The essential idea of a degradation test is to remove the most
important k% tokens, excluding special tokens, identified by different attribution methods and
measure the drop of the probability with respect to the given label.

The initial value of k is 11 and we increase k until all the tokens are removed, shown as the
x-axis in Figure 4.1a. y-axis means the normalized average probability drop after removing a
certain percentage of tokens: p̄(y|x′)−m

o−m
where x′ represents input with certain tokens removed,

o is the original probability before tokens removal, and m is the minimum of the fully degraded
instance’s probability across all attribution methods. We conduct the experiment across the entire
MS MARCO dev set (6980 queries).

We compare the result with two other popular model-agnostic attribution methods, LIME
[Ribeiro et al., 2016] and Integrated Gradients (IG) [Sundararajan et al., 2017], each representing
a different category of attribution methods: LIME uses interpretable models like decision trees
and linear models to approximate the black box, while IG is a variation of using the gradient
of the predicted output with respect to given input features. To provide a simple baseline, we
also compare the result with “Random,” where tokens are removed randomly. We expect a better
attribution method will have a steeper slope, meaning removing important tokens identified by
the method significantly deteriorates the performance. As shown in Figure 4.1, IBA outperforms
all other three methods with a 61.3% probability drop compared with second-placed IG, which
makes for a 29.0% drop. The absolute probability drop value can be seen in Table 4.1.

Table 4.2 shows a few examples with highlighted important tokens. We can see top-10 most
important tokens across query and passage not only showing the token matching but also captur-
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Query Document

how much did
nr ##a give to
congress

m ##em ##bers of congress pay attention to these numbers , and they
know that in the last election cycle the nr ##a spent $ 18 . 6 million
on various campaigns , a says lee dr ##ut ##man , who has studied the role
of gun money in politics for the sunlight foundation .

is mortgage and
deed of trust the
same document

the mortgage or deed of trust is recorded in the county land records ,
usually shortly after the borrow ##ers sign it . if the loan is fully paid off
, the lend ##er will record a release ( or satisfaction ) of mortgage or a rec
##on ##vey ##ance of deed ( which is used in conjunction with deeds of
trust ) in the county land records .

which is stronger
hydro ##co ##don
##e or ox ##y ##co
##don ##e

dos ##age conversion : hydro ##co ##don ##e vs . ox ##y ##co ##don
##e . in terms of strength , 5 ##mg of ox ##y ##co ##don ##e is roughly
equivalent of 7 . 5 of hydro ##co ##don ##e . that is the conversion
required to bring about the same effects . hydro ##co ##don ##e would
work better if you happen to be a lightweight person with a weak stomach
.

Table 4.2: Top-10 most important tokens identified by IBA in three examples. ‘[CLS]’ and
‘[SEP]’ are ignored.

ing semantic relatedness. For example, “much” in the query of the first example is highlighted.
“number”, “million”, and “$” signs, which are highly related to the concept of “much”, are also
highlighted. Similarly, in the second example, BERT identifies the core of the question – “same
document”. In the corresponding passage, it emphasizes “or” as well as “mortgage” before that
and “trust” after that. In the third example, the query is about “stronger”, which is again, captured
by BERT, and related tokens like “vs” and “roughly equivalent” are highlighted.

4.4 Experimental Setup

Given the attribution maps, we are now able to study which tokens BERT looks at for rerank-
ing. To be specific, we exploit IBA to extract the top-20 most important tokens M for each

36



(q, d), q ∈ Q, d ∈ D, where Q and D represent the query list and the passage list. We carry
out our experiment under two different settings:

1. Q consists of 105 queries from a subset of the MS MARCO passage reranking dev set, provided
by Pyserini [Lin et al., 2021]. D comprises top 50 passages that BERT-large retrieves for each
query. For these experiments, we fix the layer l that we insert the information bottleneck after.

2. Q consists of 1,000 randomly selected queries from the entire MS MARCO passage reranking
dev set. D is composed of the human-annotated relevant passages. We then apply IBA to all
24 layers to get top-20 tokens M for each (q, d).

For setting 1, we perform cross-passage analysis to investigate different patterns between
higher-ranked passages and lower-ranked passages. The choice of the top-50 cutoff is due to
frugality: the recall@50 (0.817) is comparable to the recall@1000 (0.848), with much less com-
putation. For setting 2, we aim at cross-layer analysis for relevant passages. Specifically, we iden-
tify if lower layers show a different focus from higher layers. This setting is similar to GLUE-like
classification tasks [Wang et al., 2018a] where we want to find general patterns about BERT. The
reason for using the top 20 is that, in our sampled instances, the average tokenized query length
is 9.2, and we also want to see the emphasized tokens in passages.

4.5 Results and Analysis

Equipped with the attribution map and appropriate setting to conduct a detailed analysis, we are
now ready to answer those questions.

4.5.1 Cross-Passage Analysis

It’s well known that two-stage ranking pipelines use both exact token matching and semantic re-
latedness [Lin et al., 2020]. As BM25 estimates relevance purely by lexical matching, we wonder
if BERT still relies on exact match and what else BERT provides.
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Figure 4.2: Across top-50 passage analysis.

Q1. What are the similarities and differences between BERT and BM25?

To answer this question, we first study the correlation between higher ranking scores and
higher lexical matching between queries and passages.

To measure the degree of lexical matching, we use the Jaccard index under experimental
setting 1: J =

|ui∩vj |
|ui∪vj | , {ui, vj|ui ∈ q ∩M, vj ∈ d ∩M}, where i ∈ [1, |q|], j ∈ [1, |d|], remember

that M is the top-20 tokens extracted by IBA.

For each query q, we calculate the Jaccard index for every passage di in the top 50 passages.
We then average them across all queries. We choose to insert the information bottleneck after
layer 16, as it is the most informative one according to our degradation test.

As we see in Figure 4.2a, the Jaccard index decreases as the rank of the passages becomes
lower. In general, the higher1 the rank is, the more overlapped the important tokens between
the query and passages are. We also calculate Spearman’s correlation [Spearman, 1961] rs to
gauge the degree of monotonic association. We find that rs = −0.98, indicating a strong mono-
tonic relation between the Jaccard index and passages order. Does this correlation hold among

1“Higher” rank actually means lower order: passages with order 1 have a higher rank than passages with order 2,
etc.
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Query: What is the goal for the child with a cognitive impairment?
BM25 Ranked 1st BERT Reranked 1st
A cognitive impairment is a condition Promoting optimum development. The goal
where your child has some problems with for children with cognitive impairment is
ability to think and learn. Children with the promotion of optimum social, physical,
a cognitive impairment often have trouble cognitive, and adaptive development as
with such school subjects as math and reading. individuals within a family and community.
Cognitive impairment is a condition where Vocational skills are only one part of the goal.
your child has some problems with ability The focus must also be on the family and
to think and learn. other aspects of development.

Table 4.3: Top-1 passage by BM25 and BERT.

all tokens between the query and passage? Figure 4.2b shows the Jaccard index J′ =
|u′

i∩v′j |
|u′

i∪v′j |
,

{u′i, v′j|u′i ∈ q, v′j ∈ d} across passages. We see it shows a similar trend to J, confirming that
even if BM25 returns passages that have higher lexical matching with the query, token matching
between queries and passages still plays an important role when BERT is reranking. But using all
of the tokens between the query and the passage obtains a correlation coefficient of rs = −0.71,
which is lower than using important tokens only. We argue that it’s because IBA interprets in a
way that’s more aligned with the specific tokens that BERT looks at when reranking.

We further investigate what BERT provides that BM25 doesn’t. Specifically, we look into
what dBERT gets right but dBM25 gets wrong. We notice that BERT captures more contextualized
relevance between the query and passage, while the BM25-returned answer has more “superficial”
relevance - dBM25 seems to talk about the topic but doesn’t really answer the question. The example
shown in Table 4.3 demonstrates that the passage returned by BM25 seems highly related to the
topic—“cognitive impairment” but instead of explaining what the goal is, it is explaining what
“cognitive impairment”’s definition is. On the contrary, BERT not only returns the passage related
to “cognitive impairment” but also the goal.

We find that it is hard to quantitatively measure the contextualized relevance between queries
and passages by simply calculating cosine similarity ϕ between query vectors and document vec-
tors as shown in Table 4.4. We encode q, dBERT, dBM25 and don’t find that ϕ(η(q), η(dBERT)) is
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USE sent-bert(p) sent-bert(n)
BM25 top-1 0.540 0.593 0.578
BERT top-1 0.483 0.731 0.563

Table 4.4: Cosine similarity between query and top-1 passage returned by different methods. “p”
refers to pretrained model paraphrase-MiniLM-L6-v2”, “n” refers ‘bert-base-nli-mean-tokens‘

higher than ϕ(η(q), η(dBM25)) when using the Universal Sentence Encoder or Sentence-BERT
[Reimers and Gurevych, 2019b], denoted as η, pretrained on an NLI dataset. However, if we
use a Sentence-BERT pretrained on a paraphrase corpus (specifically the model “paraphrase-
MiniLM-L6-v2”) to measure semantic similarity, ϕ(η(q), η(dBERT)) is significantly higher than
ϕ(η(q), η(dBM25)) as “paraphrase-MiniLM-L6-v2’s” pretrained corpus includes MS MARCO triplet.
Tempting as it is to conclude that BERT has indeed captured semantic similarity that BM25 hasn’t,
it’s unfair to use a pretrained model with prior knowledge of MS MARCO to measure the seman-
tic similarity. Therefore, we think BERT has learned a deeper relevance between the query and
document, but it cannot be simply measured by vaguely defined semantic similarity.

4.5.2 Cross-Layer Analysis

Downstream tasks often rely on BERT’s [CLS] vector at the last layer as input, and that’s also
true for reranking. It’s intriguing to know the layer at which [CLS] starts to learn the relevance.
Clark et al. [2019] thoroughly analyze BERT’s self-attention mechanism for each layer. While
they provide insight into how tokens attend to one another, the attention weights themselves often
do not correlate with measures of feature importance [Jain and Wallace, 2019].

Q2. How do special tokens contribute to reranking across layers?

We insert an information bottleneck after each layer for 24-layer attribution maps. First, we
inspect how the [CLS] token gets emphasized across the layers. Figure 4.3a shows the attribution
score across 24 layers in experimental setting 2, with 95% confidence intervals. Note that the
score is normalized between 0 to 1 for each token but it doesn’t add up to 1 for each instance.
We further normalize the attribution score by dividing the sum of the attribution scores at each
layer to account for different layers’ scales. As we can see in the plot, the attribution score for
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Figure 4.3: Normalized attribution scores of special tokens across layers; dataset statistics under
setting 2.

[CLS] across layers first decreases from layers 1–7, then goes up and fluctuates between layers 7–
16, until finally increasing from layer 16 to 24. This differs from what attention analysis reveals
in Kovaleva et al. [2019] and Clark et al. [2019], where they demonstrate that attention heads
attend to [CLS] in earlier layers but attend to [SEP] in later layers. It’s not contradictory, though,
because we inspect feature importance with respect to the predicted output. Since [CLS] at the
final layer is treated as a summary representation for the whole sentence to perform classification,
it’s intuitive that [CLS] is regarded as an important feature in the final layers.

What about the [SEP] tokens? Figure 4.3b shows the attribution score averaged between the
two present [SEP] tokens—recall that BERT inserts two for every input. They become increas-
ingly important with a certain amount of fluctuation from layer 1 to layer 16, after which [SEP]’s
attribution scores drop, around the point where BERT starts to emphasize [CLS]. We combine
the two [SEP] tokens because we find that both of them behave similarly, with the first [SEP]
having a slightly higher attribution score. The possible explanation is that the first [SEP] is also
responsible for identifying the boundary between the query and the passage, thus more important
for reranking than the final [SEP]. Plots for separate [SEP]’s scores and weights can be seen
in Appendix C.

Combining the above plots and the degradation tests across layers in Figure 4.1b, we con-
jecture that the [CLS] token initially serves as a classification prior to condition the tokens in
the early layers (1–7) with [SEP] increasing participation. Then, BERT gathers more general
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# required % required
(q, d1) 8.9 10.39
(d1) 18.52 22.49

Table 4.5: Truncation test on top-1 pair/passage.

Stats Query Passage
Average Length 9.2 74.8
Medium Length 9.0 69.0

Minimum Length 4.0 16.0
Maximum Length 44.0 214.0

Table 4.6: Stats of 1,000 relevant (q, d)

syntactic information [Hewitt and Manning, 2019], until layer 16, after which the [CLS] token
slowly aggregates class-specific information and at layer 24 becomes the most important token
for classification. Figure 4.1b (the full 24-layer degradation test is shown in Appendix D) echos
the findings from previous work [Liu et al., 2019], demonstrating that the middle layers are the
most informative ones for prediction. To be exact, layer 16 (2

3
of the total number of layers) is the

most informative one in our experiment with BERT-large, the same fraction as what Jiang et al.
[2020] find with BERT-base.

4.5.3 Truncation Test

Recent success in dense representation retrieval has made it possible to merge the two-stage pro-
cess of ranking into an end-to-end single stage. However, the sacrifice of efficiency as well as
the inability of doing term matching brings a flood of work about learning sparse representa-
tions [Bai et al., 2020; Formal et al., 2021] for the first-stage ranking. They learn the weight of
tokens between (q, d) and tokens in the vocabulary for expansion and compression.

Although IBA doesn’t serve as a weighting technique, given the attribution map we can still
evaluate how dropping unimportant tokens affects the result. Empirically, we find that there is
much room for tokens to be removed if the attribution map is reliable. Different from other
downstream tasks, passage reranking usually involves scores for 1,000 passages to generate the
final result. Instead of absolute scores for passages, we only care if relevant passages have higher
scores than irrelevant passages.

Q3. How robust is the top-ranked passage?
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Specifically, we want to know how many unimportant tokens we can remove before the top-1
passage falls to second place. Once again, we use the IBA-generated attribution map and then
remove those tokens with the lowest attribution scores, until the ranking score for the top-1 passage
drops below the second one. As in the reranking setting, the input is always a query–passage pair
(q, d), and we have two experimental settings: (1) removing tokens that appear in both q and d;
and (2) removing tokens that appear in only d. We include the result under both settings and
report the truncated number, as well as the percentage needed in Table 4.5.

Surprisingly, even if BERT assigns an extreme score to the passage, making the score close
to one another [Qiao et al., 2019], it still takes up to 22.5% tokens on average for top-1 passage
to downgrade to the second place.

Obviously, removing tokens from the query quickly deteriorates the ranking score. Passages-
only seems to have more redundant tokens that can be safely removed, even though sentences in
the passage will become incomplete and broken after token removal. Note that this experiment
removes only tokens of the top-1 passage. To further measure the trade-off between compression
and quality, we do a truncation test for all passages. Specifically, given a g% of tokens kept
for every single document, we measure final ranking performance—MRR score. The result is
shown in Figure 4.4. From the result, we can see that truncating doc only is more robust than
truncating both query and doc. Using attribution maps across different layers, on average, we
have MRR = 0.311 with 90% tokens kept. But for the maximum, we can get MRR = 0.392 with
90% tokens, which is very close to the original score.

4.5.4 Positional Bias

Q4. Does BERT have positional bias?
To investigate if BERT has a positional bias, we first plot the position index of xi where {xi|xi ∈
M ∩ d}. Specifically, we insert the bottleneck after every layer under experimental setting 2 —
using 1000 relevant pairs of (q, d) — and then accumulate the count of each position index for
all 24 layers. Statistics about randomly selected (q, d) are shown in Table 4.6. As we show
in Figure 4.5a, tokens at the start of passages (e.g., position index from 0 to 20) have significantly
higher occurrences than tokens appearing later.
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Figure 4.4: Average truncation MRR.
Precision@1 MRR MRR@10 Recall@3 Recall@50 Recall 1000

Original 0.276 0.411 0.403 0.427 0.817 0.848
Swapped 0.219 0.362 0.352 0.408 0.813 0.848

Randomized 0.200 0.343 0.332 0.384 0.803 0.848
Reversed 0.181 0.332 0.321 0.390 0.803 0.848

Table 4.7: Reranking metrics after changing sentence order.

We then conduct three controlled experiments: (1) swapping the first two sentences; (2) re-
versing the order of all sentences; and (3) randomizing the order of sentences. We maintain the
order of within-sentence tokens in order to keep the discourse complete and coherent. The plots
are shown in Figure 4.5. We see that, although changing the order results in more later-appearing
tokens emphasized, the start of the passages still has incomparable dominance. To quantify
the effect of swapping sentences, randomizing sentences, and reversing sentences, we calcu-
late p(relevant|{original, swap, random, reverse}). We find that p(relevant|original) = 0.939,
p(relevant|swap) = 0.920, p(relevant|random) = 0.918, p(relevant|reverse) = 0.897. The prob-
ability drops after every change of sentence order. The more the order changes, the more the
probability drops (i.e., the negative effect is reversed order > randomized > swapped). Given
that BERT assigns extreme reranking scores to most (q, d) pairs (e.g., scores are mostly either

44



0 20 40 60 80 100 120 140 160 180 200 220 240

Position Index
0

2000

4000

6000

8000

C
ou

nt

(a) Original sentence order.

0 20 40 60 80 100 120 140 160 180 200 220 240

Position Index (swapped)
0

2000

4000

6000

8000

C
ou

nt

(b) First two sentences swapped.
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(c) Reversed sentence order.
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(d) Randomized sentence order.

Figure 4.5: Position index of important tokens in passages; stats of tested passages.

close to 0 or close to 1), it’s unclear whether changing the sentence orders affects the final result.

Therefore, we also conduct experiments of changing the order sentence with the subset of
the MS MARCO passage reranking dev set. We present these results in Table 4.7. Swapping
sentences substantially deteriorates the result; randomizing and reversing the sentences further
worsens the result.

The above experiments suggest that the sentence order in the passage carries high importance
in reranking with BERT. Specifically, passages with the inverted pyramid structure would be
preferred, as they present important information at the beginning of the passages.

We find that BERT prefers passages with important information emphasized at the begin-
ning. But is this preference a real “bias”? Will it cause misjudgment because of emphasizing
too much on the start of the passages? To answer this question, we design an experiment to see
if passages with higher reranked scores (than the ground truth passages) also happen to get key
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Figure 4.6: Positional index.

tokens emphasized earlier. Concretely, for those instances that have incorrectly ranked negative
passages higher than the positive ones, we regard each token ui in q as a query, and we find the
position of a corresponding token vj that appears in d where ui = vj . Then, we calculate the
mean reciprocal rank for all vj — MRR = 1

|q∩d|
∑|q∩d|

j=1
1

position(vj)
. We then aggregate the MRR for

all higher-ranked negative passages (HRNPs) and compare it with the MRR for the lower-ranked
positive passages (LRPPs). When we aggregate by the “max” function, we find that, in 86.2% of
cases, HRNPs have higher MRR than LRPPs. Averaging all MRRs for HRNPs gives us 0.191,
while it’s 0.103 for averaging LRPPs. These numbers are 63.8%, 0.129, and 0.103, respectively
if we aggregate by the arithmetic mean. We cannot say that the reason for those negative passages
ranking higher is due to matched tokens appearing earlier, but we do note a correlation between
HRNPs and early-appearing matched tokens.

Driven by this positional bias, we are also curious about how the positional index correlates
with the passages’ ranks. We compute the average positional index pi for each document’s top-20
most important tokens, and then average pi for each query. As we show in Fig. 4.6, higher-
ranked passages do have earlier tokens emphasized, meaning that passages with important tokens
stressed earlier are preferred. When comparing the top-1 document returned by BERT dBERT with
the top-1 document returned by BM25 dBM25, this preference also exists. We compute the MRR
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across all tokens in the query and passages like we do in Section 4.5.4 for those passages that
dBERT ̸= dBM25 and dBERT makes the correct prediction. We find that even BM25 is almost all
about term matching, with J(q, dBERT) = 0.062, J(q, dBM25) = 0.074, considering the position,
MRR(q, dBERT) = 0.127 is still higher than MRR(q, dBM25) = 0.099.

4.6 Summary

In this chapter, we use information bottleneck to examine BERT for reranking. We compare
ranking mechanisms between BM25 and BERT, finding that BERT still values token matching,
and it also learns deeper relevance between queries and passages. We further analyze special
tokens across layers and demonstrate patterns that [CLS] aggregate evidence. We then investigate
the robustness of top-ranked passages. Finally, we find that BERT fine-tuned on MS MARCO
has a positional bias towards the start of the passage. In summary, attribution maps can explain
models’ predictions and serve well as an observation tool that helps us visualize patterns, resulting
in improved hypothesis formulation and experimental design.
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Chapter 5

Restrict Representations for
Non-Parametric Learning by Inserting
Bottleneck / Compression

In this chapter, we explore how to improve generalizability by inserting bottleneck. Most real-
world problems that machine learning algorithms are expected to solve face the situation with
(1) unknown data distribution; (2) little domain-specific knowledge; and (3) datasets with limited
annotation. We approach these challenges by inserting bottleneck, which is indeed equivalent
to doing compression as we will show in the chapter. Specifically, we propose Non-Parametric
learning by Compression with Latent Variables (NPC-LV), a learning framework for any dataset
with abundant unlabeled data but very few labeled ones. By only training a generative model
in an unsupervised way, the framework utilizes the data distribution to build a compressor. Us-
ing a compressor-based distance metric derived from Kolmogorov complexity, together with few
labeled data, NPC-LV classifies without further training. We show that NPC-LV outperforms
supervised methods on all three datasets on image classification in the low data regime and even
outperforms semi-supervised learning methods on CIFAR-10. We demonstrate how and when
negative evidence lower bound (nELBO) can be used as an approximate compressed length for
classification, which reveals the equivalence between inserting bottleneck and doing compression.
By revealing the correlation between compression rate and classification accuracy, we illustrate
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under NPC-LV how the improvement of generative models can enhance downstream classifica-
tion accuracy. This work is presented in:

• Zhiying Jiang, Yiqin Dai, Ji Xin, Ming Li, Jimmy Lin. Few-Shot Non-Parametric Learn-
ing with Deep Latent Variable Model. In Proceedings of the 36th Conference on Neural
Information Processing Systems (NeurIPS) Spotlight, 2022.

5.1 Overview

The progress of deep neural networks drives great success of supervised learning with huge la-
beled datasets [Gilmer et al., 2017; Simonyan and Zisserman, 2014; Sutskever et al., 2014]. How-
ever, large labeled datasets are luxurious in many applications and huge amounts of training pa-
rameters make the model easy to overfit and hard to generalize to other datasets. The urge to learn
with a small labeled dataset prompts Few-Shot Learning (FSL). However, most few-shot classifi-
cation settings require either an auxiliary “support set” [Edwards and Storkey, 2016; Snell et al.,
2017a; Sung et al., 2018; Vinyals et al., 2016] that contains c classes, each with k samples (c-way
k-shot); or prior knowledge about the dataset, where data augmentation can be performed within
the same dataset [Hariharan and Girshick, 2017; Kwitt et al., 2016; Schwartz et al., 2018] or from
other weakly-labeled/unlabeled/similar datasets [Douze et al., 2018; Gao et al., 2018; Pfister et al.,
2014]. This setting is not widely applicable to every dataset in practice, as it requires either the
elaborate construction of an additional “support set” or augmentation algorithms tailored to spe-
cific datasets. Pretrained models, on the other hand, do not require ad-hoc “support” and have
proved to be good at few-shot learning [Brown et al., 2020] and even zero-shot learning [Puri and
Catanzaro, 2019]. However, thousands of millions of training parameters make the model hard
to be retrained but only fine-tuned. When the data distribution is substantially different from any
datasets used in pretraining, the inductive bias from pretraining holds up fine-tuning, making the
model less pliable [Yu et al., 2021].

Goals from the above learning paradigms can be summarized as to design algorithms that can
be applied to any dataset and can learn with few labeled data, ideally with no training. “No Free
Lunch” [Wolpert and Macready, 1997] implies that it’s impossible to have an algorithm that is
both “universal” and “best”. But how good can a “universal” algorithm be, especially in the low
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data regime, with no external data resources? Specifically, we are interested in a new setting,
Non-Supported Few-Shot Learning (NS-FSL), defined as follows:
Given any target dataset D = (x1,x2, ...,xn) belonging to c classes. For each class, we have k
labeled samples (1 ≤ k ≤ 10). The remaining n − ck unlabeled samples need to be classified
into c classes without the need of support sets, any other datasets, or training parameters.

This setting is similar to the setting of semi-supervised learning but excludes labeled informa-
tion in training. Ravi and Larochelle [2016] demonstrate that it’s hard to optimize a neural network
when labeled data is scarce. In order to make minimal assumptions about labeled data, we aim
at using parameter-free methods. The goal is to grasp the data-specific distribution p(x), with
minimal premises on the conditional probability distribution p(y|x). Deep generative models
with explicit density estimation are perfect candidates for this goal. The problem then becomes:
given trained generative models, how to take full advantage of the information obtained from
them for classification? Using a latent representation only utilizes p(z|x), which just includes
partial information. Even for those latent generative models that do not suffer from posterior col-
lapse [Bowman et al., 2016], p(z|x)’s insufficiency for classification with non-parametric meth-
ods like k-nearest-neighbor is shown in both previous works [Davidson et al., 2018; Zhao et al.,
2019] and our experiments.

Inspired by previous works that use compressor-based distance metrics for non-parametric
learning [Cebrián et al., 2005; Chen et al., 1999, 2004; Keogh et al., 2004b], we propose Non-
Parametric learning by Compression with Latent Variables (NPC-LV), a learning framework that
consists of deep-generative-model-based compressors and compressor-based distance metrics.
It leverages the power of deep generative models without exploiting any label information in
the probabilistic modeling procedure. With no further training, this framework can be directly
used for classification. By separating probabilistic modeling from downstream tasks that require
labels, we grasp the unique underlying structures of the data in every dataset and further utilize
these structures in downstream tasks with no parameter tuning needed. We view this learning
framework as a baseline in this setting, for any dataset. We argue it is “parameter-free” as there
are no parameters involved in the classification stage for labeled data. Basically, it means training
a generative model as is and getting a classifier for free.

Our contributions are as follows: (1) We frame existing methods into a general learning frame-
work NPC, based on which we derive NPC-LV, a flexible learning framework with replaceable
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Figure 5.1: NPC framework with trainable deep probabilistic models. Replaceable modules are
indicated with dashed lines.

modules. (2) We use NPC-LV as a baseline for a common learning scenario NS-FSL with neither
support sets nor further training. (3) Our method outperforms supervised methods by up to 11.8%
on MNIST, 18.0% on FashionMNIST, and 59% on CIFAR-10 on image classification in the low
data regime. It outperforms non-parametric methods using a latent representation on all three
datasets. It even outperforms semi-supervised learning methods on CIFAR-10. (4) We show how
negative evidence lower bound (nELBO) can be used for classification under this framework. (5)
We find the correlation between bitrate and classification accuracy. This finding suggests how
improvements in the domain of deep-learning-based compressors can further boost classification
accuracy under this framework.

5.2 Non-Parametric learning by Compression with Latent Vari-
ables

Non-Parametric learning by Compression (NPC) consists of three modules — a distance met-
ric, a compressor, and an aggregation method shown in Figure 5.1. NPC-LV leverages NPC by
including neural compressors based on deep generative models. We introduce the equivalence
between inserting bottleneck and doing compression in Section 5.2.1; derivation of compressor-
based distance metrics in Section 5.2.2; an integration of this framework with generative models
in Section 5.2.3.
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5.2.1 Trained Generative Models as Compressors

We approach Non-Supported Few-Shot Learning also through restricting the representation. In Chap-
ter 3 and Chapter 4, we showed that IBA utilizes “noise” to restrict the information flow through
the network. A more straightforward way to restrict the information is to use a representation with
lower dimensions. This essence reflects in the auto-encoders [Rumelhart et al., 1985], where a
“bottleneck” is inserted in the architecture in order to learn a compressed latent representation.
Sharing similar architecture, VAE [Kingma and Welling, 2013] restricts the distribution family of
the latent variable so that it is able to learn the latent representation and do generation at the same
time. The power of explicit density estimation can reveal the underlying structure of the datasets
without exploiting any labeled data. In other words, we grasp the data-specific distribution p(x),
with minimal premises on conditional probability distribution p(y|x).

The relation between VAE and “bits-back” has been revealed in multiple previous works [Chen
et al., 2016; Honkela and Valpola, 2004]. Townsend et al. [2019b] use latent variable models by
connecting Asymmetric Numeral Systems (ANS) [Duda, 2009] to the “bits-back” argument [Frey
and Hinton, 1997] (BB-ANS). In the setting of the “bits-back argument”, we assume Alice has
some extra bits of information to send to Bob alongside x. It’s also assumed that both Alice and
Bob have access to p(z), pθ(x|z) and qϕ(z|x) where z is the latent variable; p(z) is the prior
distribution of z; pθ(x|z) represents a generative network and qϕ(z|x) represents an inference
network. As shown in Figure 5.2, Alice first decodes the extra information according to qϕ(z|x)
to generate a sample z.1 z is further used to encode x with pθ(x|z) and z itself is encoded using
p(z). Bob then reverses this procedure and recovers the extra bits by encoding with qϕ(z|x). For
a single data point, the length of the final bitstream is:

N = nextra + log qϕ(z|x)− log pθ(x|z)− log p(z). (5.1)

We can see the expectation of N − nextra is equal to the negative evidence lower bound
(nELBO):

Eqϕ(z|x)[N − nextra] = −Eqϕ(z|x) log
pθ(x, z)

qϕ(z|x)
= −ELBO (5.2)

1Note that “encoding”, “decoding” here follows data compression’s convention instead of variational autoen-
coder’s.
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Figure 5.2: BB-ANS compress & decompress

ELBO above is derived from the “bits-back argument” in the context of compression. Now,
from the perspective of latent variable models like VAE, the derivation often starts from the fact
that pθ(x) =

∫
pθ(x|z)p(z) is intractable. qϕ(z|x) is then introduced as an inference model

to approximate p(z|x) in order to work around the intractability problem, which brings up the
marginal log-likelihood:

log pθ(x) = Eqϕ(z|x) log
pθ(x, z)

qϕ(z|x)
+ Eqϕ(z|x) log

qϕ(z|x)
p(z|x)

,

ELBO = log pθ(x)−D[qϕ(z|x)∥p(z|x)].
(5.3)

We only need to optimize the lower bound, as minimizing nELBO means maximizing log pθ(x)
— the likelihood of generating real data and minimizing KL divergence between qϕ(z|x) and
p(z|x) at the same time, which is the same objective function from what we derive using “bits-
back”.

This equivalence demonstrates that an optimized latent variable model can be used directly for
compression as, from the data compression perspective, it minimizes the code length attainable by
bits-back coding using the model. With the help of ANS, we can encode symbols into bitstreams
or decode bitstreams back to symbols with trained latent variable models.

Our experiments and discussion are mainly about VAE-based compressors as their architec-
tures can be flexibly changed under the “bits-back” argument. But this doesn’t limit our frame-
work to VAE-based compressors only. We introduce some other possible generative-model-based
neural compressors below.
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ARM: Autoregressive models (ARMs) model p(x) as: p(x) = p(x0)
∏n

i=1 p(xi|xi−1). The
exact likelihood estimation makes it capable of lossless compression. But instead of using ANS,
which is a stack-like coding scheme, queue-like ones (e.g., Arithmetic Coding (AC) [Witten et al.,
1987b]) should be used. Computational inefficiency is the main drawback of ARMs such as
RNN [Rumelhart et al., 1985], but causal convolutions [Van den Oord et al., 2016a,b] can alleviate
the problem.

IDF: Integer Discrete Flow (IDF) [Hoogeboom et al., 2019] can also optimize towards the exact
log-likelihood. Similar to other flow-based models, it utilizes an invertible transformation f , but
works on discrete distributions with additive coupling and rounding operations. For IDF, ANS
can be used as the entropy coder.

5.2.2 Compressor-based Distance Metric

As we introduce in Section 2.2.2, Normalized Information Distance (NID) is a universal metric
that can measure the similarity between two objects. Universal as NID is, the uncomputability
of Kolmogorov complexity renders NID uncomputable. Cilibrasi and Vitányi [2005] propose
Normalized Compression Distance (NCD), a quasi-universal distance metric based on real-world
compressors. In this context, K(x) can be viewed as the length of x after being maximally com-
pressed. Suppose we have C(x) as the length of compressed x produced by a real-world com-
pressor, then NCD is defined as:

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}
. (5.4)

The better the compressor is, the closer NCD approximates NID. With a normal compressor
(discussed in detail in Section 5.5.6), NCD has values in [0,1] and satisfies the distance met-
ric (in)equalities up to O(log n/n) where n means the maximum binary length of a string in-
volved [Vitányi et al., 2009]. NCD is thus computable in that it not only uses compressed length
to approximate K(x) but also replaces conditional Kolmogorov complexity with C(xy) that
only needs a simple concatenation of x, y. Li et al. [2004] simplify NCD by proposing another
compression-based dissimilarity measurement (CDM):

CDM(x, y) =
C(xy)

C(x) + C(y)
. (5.5)

54



Chen et al. [2004] use another variation ranging from 0 to 1:

CLM(x, y) = 1− C(x) + C(y)− C(xy)
C(xy)

. (5.6)

NCD, CDM and CLM are different variations of Kolmogorov-based distance metrics. We empir-
ically evaluate their performance in Section 5.5.1.

5.2.3 NPC-LV

We’ve shown in Section 5.2.1 that we can plug in any trained latent variable model in exchange for
a near-optimal compressor under the framework of BB-ANS. To show that the coding scheme is
replaceable, we introduce a coding scheme variation, Bit-Swap [Kingma et al., 2019a], in the fol-
lowing experiments. The difference between BB-ANS and Bit-Swap is the encoding and decoding
order when there is more than one latent variable. A detailed comparison is shown in Appendix F.
The generative model we use for both BB-ANS and Bit-Swap is a hierarchical latent generative
model (details are in Appendix E), also known as Deep Latent Gaussian Model (DLGM) [Rezende
et al., 2014].

Aggregation: In addition to coding schemes and probabilistic models for compressors, aggrega-
tion methods can also be replaced. Previous works [Cilibrasi and Vitányi, 2005] assume xy in
C(xy) means the “concatenation” of two inputs. We expand this assumption to a more general
case where “aggregation” can be another kind of aggregation function, represented asC(ψ(x, y))
in Figure 5.1. We justify this generalization as changing aggregations methods may make compressor-
based distance metrics not admissible (discussed in Section 5.5.6). More sophisticated strategies
of aggregation are left for future work. We also discuss other replaceable modules in detail in Sec-
tion 5.5.5.

We use BB-ANS with NCD as a concrete instance to demonstrate this framework on a classi-
fication task shown in Algorithm 1. DU

train and DL
train mean the unlabeled and labeled training sets;

predefined functions are in teal. The algorithm can be simplified into four steps: (1) Train a VAE
on the unlabeled training dataset; (2) Apply ANS with discretization on the trained VAE to get
a compressor; (3) Calculate the distance matrix between pairs (xtest,xtrain) with the compressor
and NCD; (4) Run k-Nearest-Neighbor(kNN) classifier with the distance matrix.
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Algorithm 1 NPC-LV (use VAE and NCD as an example)
Input: k, Dtest,Dtrain = {DU

train,D
L
train}, DL

train = {XL, yL}
trained vae = trainVAE(DU

train)
vae compressor = ANS(trained vae)
for xtest in Dtest do

C xtest = len(vae compressor(xtest))
distances = []
for xtrain in XL do

// Calculate NCD distance with C(x), C(y), and C(ψ(x, y))
C xtrain = len(vae compressor(xtrain))
C agg = len(vae compressor( aggregate(xtest, xtrain))
NCD = (C agg − min{C xtest, C xtrain}) / max{C xtest, C xtrain}
distances = push(NCD, distances)

end for
k nearest indicies = argsort(distances)[:k]
ytest = majority({yLi , i ∈ k nearest indicies})

end for

nELBO as estimated compressed length: Specifically for VAE-based compressors, nELBO is
the estimated length of the compressed bitstream as Equation (5.2) shows. Therefore, we can use
it directly without actual compression. This can further simplify our method as we don’t need to
discretize continuous distributions or apply an entropy coder.

The reason why the underlying data distribution can help the classification is based on the
manifold assumption, which is a common assumption in SSL [Van Engelen and Hoos, 2020].
It states that the input space consists of multiple low-dimensional manifolds, and data points
lying on the same manifold have the same labels. This assumption helps alleviate the curse of
dimensionality and may explain the effectiveness of using kNN with few labeled data. Due to
the fact that our training process does not use labeled data, our method does not rely on other
common assumptions in SSL like the smooth assumption and the low-density assumption. The
fact that NPC-LV makes very few assumptions about datasets and that compressors are data-type-
agnostic makes this framework extensible to other data types beyond images. For example, the
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combination of an autoregressive model (e.g., character recursive neural network) and arithmetic
coding [Goyal et al., 2019b] can be used in our framework for sequential data.

5.3 Related Work

5.3.1 Non-parametric learning with Information Distance

Bennett et al. [1998] propose information distance as a universal metric, based on which sev-
eral papers [Grumbach and Tahi, 1994; Yianilos, 2002] propose more fine-grained distance met-
rics. Chen et al. [2004]; Cilibrasi and Vitányi [2005]; Li et al. [2004] derive more practical
distance metrics based on real-world compressors. Empirical results [Cebrián et al., 2005; Chen
et al., 1999, 2004; Keogh et al., 2004b] show that even without any training parameters, those
compressor-based distance metrics can produce an effective distance matrix for clustering and
classification on time series datasets. Cilibrasi and Vitányi [2005] further push this direction to
more types of datasets, including images that are represented in “#” (black pixel) and “.” (white
pixel). We unify previous work in the NPC framework, expand it to real image datasets and
leverage it with neural compressors.

5.3.2 Compression

Shannon [1948] establishes source coding theorems, showing that entropy rate is the limit of code
rate for lossless compression. Huffman Coding [Huffman, 1952] achieves the optimal symbol
code whose length is upper-bounded by H(x) + 1 per symbol. The 1-bit overhead is due to the
fact that − log p(x) is not always an integer. Stream coding techniques like AC [Witten et al.,
1987b] and ANS [Duda, 2009] further optimize by representing the whole message with numeral
systems. These entropy coders then can be combined with probabilistic modeling using neural
networks [Goyal et al., 2019b; Mahoney, 2000; Schmidhuber and Heil, 1996] and used in our
framework.
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5.3.3 Semi-Supervised Learning with VAE

The evaluation paradigm in this chapter is closest to Semi-Supervised Learning (SSL). Kingma
et al. [2014] design two frameworks for utilizing autoencoders in downstream classification tasks.
The first (M1) is to train a tSVM [Vapnik, 1999] with latent representation output by a trained
VAE. The second (M2) is to train a VAE with labels as another latent variable. M1 only requires
a standard VAE but tSVM suffers from optimization difficulty [Collobert et al., 2006], making
it hard to be generally applicable for VAE. More recent VAE-based methods [Joy et al., 2020;
Maaløe et al., 2016] are built on M2. These methods don’t train a generative model in an unsu-
pervised way as we do.

5.3.4 Few-Shot Learning

Similar to our setting, FSL also targets the low-labeled data regime. Many previous papers [Ed-
wards and Storkey, 2016; Snell et al., 2017a; Sung et al., 2018; Vinyals et al., 2016] on FSL are
based on meta-learning, where the model is fed with an extra labeled support set, in addition to
the target dataset. Another line of work [Douze et al., 2018; Gao et al., 2018; Hariharan and
Girshick, 2017; Kwitt et al., 2016; Pfister et al., 2014; Schwartz et al., 2018] utilize data augmen-
tation. Although some of them do not require extra datasets [Hariharan and Girshick, 2017; Kwitt
et al., 2016; Schwartz et al., 2018], the augmentation algorithms can hardly be applied to every
other dataset [Wang et al., 2020b]. Metric-based methods [Koch et al., 2015] utilize distance
metrics for FSL. But instead of modeling the probability distribution of a dataset, they model
the “distance” between any pair of data points with a neural network, which still requires many
labeled data during “pretraining”. Our work is similar to metric-based methods in that both have
the essence of nearest-neighbor. The difference is that in the “pretraining” stage, our model is
not trained to learn the distance but to reconstruct the image as all standard generative models do.
More importantly, we use no labeled data in this stage.
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5.4 Experimental Setup

We compare our method with supervised learning, semi-supervised learning, non-parametric
learning, and traditional Non-Parametric learning by Compression (NPC) on MNIST, FashionM-
NIST, and CIFAR-10 [Krizhevsky et al., 2009; LeCun and Cortes, 2010; Xiao et al., 2017]. For
each dataset, we first train a hierarchical latent generative model with unlabeled training sets. Dur-
ing the stage of calculating the distance metric using compression, we pick 1,000 samples from the
test set, due to the cost of compression and pair-wise computation, together with n = {5, 10, 50}
labeled images per class from the training set. We also report the result for n = 50 although it
is beyond our setting. We keep the selected dataset the same for every method compared. We
use bold to highlight the cases we outperform supervised methods, use underline to highlight the
case we outperform SSL and use italic to highlight the highest accuracy among all methods for
reference. We perform compression with two coding schemes (BB-ANS and Bit-Swap) and also
use nELBO for compressed length directly.

The training details for both our method and other baseline models are as follows. For both
CNN and VGG, we tune hyperparameters on a validation set to obtain the optimized performance.
We use VGG11 instead of VGG16 or VGG19 because VGG11 performs the best in the low data
regime in our experiments. For CNN, we first normalize MNIST, FashionMNIST, and CIFAR-
10. We use batch size = 4, epoch number = 14, Adadelta [Zeiler, 2012] as the optimizer with
learning rate = 1, decaying learning rate by γ = 0.7 every step for MNIST and FashionMNIST.
We use the same hyperparameters as PyTorch’s official MNIST example2 do except we increase
the number of epochs to 20. For VGG11 on MNIST and FashionMNIST, we use epoch number =
20 when given 50 samples per class, and use epoch number = 40 when given less. We use
Adam [Kingma and Ba, 2015] with learning rate = 0.0001 as the optimizer, and batch size = 4.
For CIFAR-10, we use learning rate = 0.00001, epoch number = 80.

For MeanTeacher and VAT, we follow Zhang et al. [2021a]3 and hyperparameter settings. We
use WideResNet [Zagoruyko and Komodakis, 2016] with depth = 28 and widen factor = 2 as
the architecture for all three datasets and iterate 60,000 steps for MNIST and FashionMNIST, and
iterate 200,000 steps for CIFAR-10. SGD with momentum is used for all three datasets, with

2https://github.com/pytorch/examples/tree/master/mnist
3https://github.com/TorchSSL/TorchSSL
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learning rate = 0.03, momentum = 0.9.

For latent variable models used in this chapter, we follow the training procedure and hyper-
parameters in Kingma et al. [2019a] — four ‘Processing’ Residual blocks at the beginning of
the inference model and the end of the generative model; eight ‘Ordinary’ Residual blocks in
total for all latent layers in both inference model and generative model. The Dropout [Srivastava
et al., 2014] rate is 0.2 for MNIST and FashionMNIST, 0.3 for CIFAR-10. The learning rate for
all datasets is 0.002 with the Adam optimizer. The dimension of latent variables for MNIST and
FashionMNIST is 1×16×16 while the dimension of latent variables for CIFAR-10 is 8×16×16.
During kNN, we use k = 2 for MNIST and FashionMNIST and k = 3 for CIFAR-10.

We use one NVIDIA Tesla P40 GPU for training and compression. For pairwise computation
in a 50-shot setting, it takes roughly ten hours to calculate the distance matrix on MNIST and
FashionMNIST; it takes about thirty hours for CIFAR10. But once the distance matrix is calcu-
lated, evaluation on 5-shot or 10-shot just takes seconds. For both CNN and VGG, it takes about
half an hour to train on a 50-shot for one experiment. For VAT and MT, we need to re-train for
every shot setting. For MNIST and FashionMNIST it takes about three hours to run one experi-
ment in a single shot setting and for CIFAR10 it takes about twelve hours. The time that VAT and
MT take positively relates to the number of iterations, which makes them slower than our method
in the 5- and 10-shot setting but faster in the 50-shot setting.

5.5 Results and Analysis

5.5.1 Few-Shot Image Classification

Comparison with Supervised Learning: Supervised models are trained on 10n labeled data.
In Table 5.1, when n = 50, CNN and VGG surpass NPC-LV. In the cases where the number of
labeled data is extremely limited (e.g., 5, 10 labeled data points per class), however, the BB-ANS
variant outperforms all methods in every dataset. For MNIST, both BB-ANS and Bit-Swap pro-
duce more accurate results than supervised methods on 5-shot experiments; BB-ANS performs
slightly better than the supervised methods in the 10-shot scenario. For FashionMNIST, all three
variants outperform in 5-shot, 10-shot, and even 50-shot settings. For CIFAR-10, given 10 la-
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Data MNIST FashionMNIST CIFAR-10
#Shot 5 10 50 5 10 50 5 10 50

Supervised Learning
SVM 69.4±2.2 77.1±1.5 87.6±0.4 67.1±2.1 71.0±1.6 78.4±0.5 21.1±1.9 23.6±0.5 27.2±1.2

#Param 35,280 35,280 105,840

CNN 72.4±3.5 83.7±2.6 93.2±2.8 67.4±1.9 70.6±2.5 80.5±0.7 23.4±2.9 28.3±1.9 38.7±1.9

#Param 1,199,882 1,199,882 1,626,442

VGG 69.4±5.7 83.9±3.2 94.4±0.6 62.8±4.1 70.5±4.5 81.5±1.1 22.2±1.6 29.7±1.8 42.6±1.2

#Param 28,148,362 28,148,362 28,149,514

Semi-Supervised Learning
VAT 97.0±0.3 97.4±0.1 98.4±0.1 74.1±0.8 78.4±0.3 87.1±0.2 25.4±2.0 27.8±4.2 60.9±6.1

#Param 1,469,354 1,469,354 1,469,642

MT 78.4±2.0 82.8±1.9 98.6±0.2 58.1±2.8 70.8±0.8 87.1±0.1 31.7±1.5 35.9±1.1 64.3±1.6

#Param 1,469,354 1,469,354 1,469,642

Non-Parametric Learning
Single 65.6±1.2 76.8±0.8 86.3±0.3 40.2±1.4 53.4±1.1 70.0±0.4 17.3±0.9 19.2±0.7 23.4±0.3

#Param 0 0 0

Hier 73.6±3.1 82.3±2.1 90.4±1.4 69.5±3.5 72.5±1.9 78.7±1.3 22.2±1.6 24.2±4.9 26.2±2.9

#Param 0 0 0

Non-Parametric learning by Compression with Latent Variables (NPC-LV)
nELBO 75.2±1.5 81.4±1.1 91.0±1.0 72.2±2.2 76.7±1.5 85.6±1.1 34.1±1.8 34.6±2.0 35.6±2.5

#Param 0 0 0

Bit-Swap 75.7±3.6 83.3±0.9 90.9±0.2 73.5±3.7 76.0±1.4 82.6±1.2 32.2±3.5 32.8±1.9 35.7±1.1

#Param 0 0 0

BB-ANS 77.6±0.4 84.6±2.1 91.4±0.6 74.1±3.2 77.2±2.2 83.2±0.7 35.3±2.9 36.0±1.8 37.4±1.2

#Param 0 0 0

Table 5.1: Test accuracy of methods with number of learnable parameters for classification. #Shot
refers to the the number of training samples per class. Results report means and the 95% confi-
dence interval over five trials. Note that “#Param” refers to parameters specifically for supervised
training.
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beled data points per class, NPC-LV surpasses the accuracy of CNN by 27.2% and improves the
accuracy of VGG by 21.2%. This enhancement is more significant in the 5-shot setting: NPC-LV
improves the accuracy of CNN by 50.9% and by 59.0% for VGG. In general, we can see as the
labeled data become fewer, NPC-LV becomes more advantageous.

Comparison with Semi-Supervised Learning: The input of NS-FSL is similar to SSL in that
both unlabeled data and labeled data are involved. The difference lies in the fact that (1) our
training doesn’t use any labeled data and is purely unsupervised; (2) we only need to train the
model once, while SSL needs to retrain for different n; (3) we use fewer labeled data points, which
is a more practical setting for real-world problems. We choose strong semi-supervised methods
that make few assumptions about the dataset. We use consistency regularization methods instead
of pseudo-labeling ones as pseudo-labeling methods often assume that the decision boundary
should pass through a low-density region of the input space (e.g., Lee et al. [2013]). Specifically,
we choose MeanTeacher (“MT”) [Tarvainen and Valpola, 2017] and VAT [Miyato et al., 2018].
The core of both is based on the intuition that realistic perturbation of data points shouldn’t affect
the output. We train both models with n labeled samples per class together with an unlabeled
training set. As we can see, NPC-LV achieves higher accuracy for CIFAR-10 in the low data
regime, has a competitive result on FashionMNIST, and is much lower on MNIST. The strength
of our method is more obvious with more complex datasets. It’s a surprising result because we
do not implement any data augmentation implicitly or explicitly unlike consistency regularization
methods, which utilize data perturbation and can be viewed as data augmentation. It’s worth
noting that on all three datasets, our method using BB-ANS always outperforms at least one
semi-supervised methods on the 10-shot setting, indicating that SSL methods trade “universality”
for “performance” while our method is more like a baseline. Speed-wise, NPC-LV only requires
training once for the generative model and can run kNN on different shots (n) with no additional
cost. In contrast, SSL methods require the whole pipeline to be retrained for every n.

Comparison with Non-Parametric Learning: In this experiment, we explore the effectiveness
of using latent representations directly with kNN. We train the same generative model we use in
NPC-LV (“Hier”), as well as a vanilla VAE with a single latent variable (“Single”). Table 5.1
shows that the latent representation of the vanilla one is not as expressive as the hierarchical one.
Although the latent representation using the hierarchical architecture performs reasonably well
and surpasses supervised methods in the 5-shot setting on MNIST and FashionMNIST, it’s still
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MNIST FashionMNIST CIFAR-10
NCD CLM CDM NCD CLM CDM NCD CLM CDM

gzip 86.1 85.6 85.6 81.7 82.6 82.6 31.3 30.3 30.3
bz2 86.8 86.4 86.4 81.7 79.0 79.0 28.0 27.5 27.5
lzma 87.4 88.5 88.5 80.6 82.7 82.7 31.4 30.0 30.0
WebP 86.4 87.9 87.9 69.9 67.3 67.3 33.3 34.2 34.2
PNG 86.8 89.1 89.1 74.8 76.9 76.9 32.2 28.9 28.9

BitSwap 93.2 90.9 93.2 84.3 84.0 84.0 36.9 36.9 36.9
BBANS 93.6 93.4 93.4 84.5 83.6 83.6 40.2 40.8 40.8

Table 5.2: Classification accuracy using different compressors and distance metrics.

significantly lower than NPC-LV in all settings. The result suggests that NPC-LV can utilize
trained latent variable models more effectively than simply utilizing latent representations for
classification.

Comparison with NPC: We investigate how Non-Parametric learning by Compression (NPC)
with non-neural compressors performs with different distance metrics. We evaluate with NCD,
CLM, and CDM as distance metrics, and gzip, bz2, lzma, WebP, and PNG as compressors, us-
ing 1,000 images from the test set and 100 samples per class from the training set. The result
is shown in Table 5.2. For distance metrics, we can see CLM and CDM perform similarly well
but it’s not clear under what circumstances a distance metric is superior to the rest. For compres-
sors, both Bit-Swap and BB-ANS perform much better than other compressors, indicating that
generative-model-based compressors can significantly improve NPC. BB-ANS turns out to be the
best compressor for classification on all three datasets.

5.5.2 nELBO as Compressed Length

As we’ve shown in Section 5.2.1, nELBO can be viewed as the expected length of the compressed
bitstreamN−nextra. Thus, theoretically, it can be used directly to approximate compressed length.
In this way, we don’t need to apply ANS to VAE for the actual compression, which largely sim-
plifies the method and boosts speed. However, as we can see in Table 5.1, using nELBO doesn’t
always perform better than an actual compressor like BB-ANS. This may be because nELBO in a
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5-shot 10-shot 50-shot
MNIST 4.8% 1.9% -0.1%

FashionMNIST 22.4% 12.3% 3.9%
CIFAR-10 55.8% 38.1% 6.3%

Table 5.3: NPC-LV’s excess rate compared with the average of all other methods.

well-trained model regards the aggregation of two images as out-of-distribution data points; while
the discretization in the actual compressor forces close probability with a certain level of preci-
sion to be discretized into the same bin, lowering the sensitivity. Better aggregation strategies
need to be designed to mitigate the gap.

5.5.3 Performance Gain and Task Difficulty

We find that our method is more advantageous on more complex datasets with a lower shot number
in terms of the relative performance. Specifically, we average all methods’ accuracy that NPC-LV
compared across different shot settings and datasets denoted as ā. We then calculate the excess
rate with BB-ANS variant’s accuracy b by b−ā

ā
× 100%. The result is shown in Table 5.3. The

lower left part of the table represents higher task difficulty. As the shot number decreases (from
right to left) and/or as the difficulty of the dataset increases (from top to bottom), our framework’s
performance enhancement gets higher.

5.5.4 Bitrate versus Classification Accuracy

The origin of the NPC framework comes from the intuition that the length of x after being
maximally compressed by a real-world compressor is close to K(x). Theoretically, the closer
this length approximates the minimum length of the expression (C(x) ≈ K(x)), the closer the
compressor-based distance metrics are to the normalized information distance. We investigate,
empirically, whether the bitrate actually reflects the classification accuracy. We plot bitrate versus
classification accuracy for each compressor in Table 5.2 on three datasets as shown in Figure 5.3.
We use the net bitrate, which is (N − nextra)/d, where N is the length of the compressed bit-
stream, nextra is the length of the extra bits, and d is the number of pixels. As we can see, a very
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Figure 5.3: Bitrate versus Classification Accuracy
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Figure 5.4: BB-ANS V.S. Bit-Swap

strong monotonic decreasing correlation between bitrate and accuracy emerges, with Spearman
coefficient [Spearman, 1987] rs = −0.96, meaning the lower the bitrate is, the higher the classi-
fication accuracy is. This means the correlation between bitrate and classification accuracy holds
empirically regardless of datasets. It will be interesting to investigate in the future whether the
correlation remains for lossy compression.
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5.5.5 Ablation Study

Number of Latent Variables: The difference between how BB-ANS [Townsend et al., 2019b]
and Bit-Swap [Kingma et al., 2019a] compress is shown in Figure 5.4. We can see these two com-
pressors are only different when there is more than one latent variable, and by utilizing encoded
bitstreams from previous latent variables, Bit-Swap can reduce the cost of initial bits significantly.
We carry out experiments on CIFAR-10 and keep the aggregation method constant. We can see
in Table 5.5, Bit-Swap performs better with more latent variables. But Bit-Swap with eight latent
variables is still worse than BB-ANS with two.

Aggregation Methods: We also evaluate how different aggregation methods affect the classifica-
tion accuracy, shown in the right-hand side of Table 5.5. We aggregate two images by “average”,
“‘minimum”, “maximum”, “concatenation”, and “greyscale+average”. For “concat”, the actual
operation is that we compress one image after another in a way that the compressed bitstream of
the first image could be used as the “extra” bits for the second image. “gs+avg” means we use
the greyscale of the image and then average pixel values. Obviously, “greyscale” is not a way
of aggregation, but we notate it in the table this way for simplicity and comparison, and also to
stress that this operation is only used during compression. That is, the generative model is trained
on the original images instead of on greyscale images. By applying simple image processing
methods during compression, we find that combining aggregation with image manipulation can
be effective as no compressor needs to be changed, and thus no retraining for generative models
is needed. We also plot their bitrate vs. classification accuracy for various aggregation methods.
Table 5.4 shows “concat” for images is an outlier - lower bitrate with low accuracy. We will show
in Section 5.5.6 that “concat” disqualifies BB-ANS and Bit-Swap from being a normal compres-
sor. Please note the special case of “concat” doesn’t apply to other compressors like gzip which
treat images as bytes in the first place.

Bit-Swap [Kingma et al., 2019a] achieves the new state of the art bitrate but why doesn’t it sur-
pass BB-ANS for classification? One of the reasons that Bit-Swap achieves a better compression
rate than BB-ANS is because Bit-Swap requires fewer initial bits, details shown in Appendix F.
However, initial bits can only be amortized when multiple data points need to be compressed.
But in our application, at most two data points need to be compressed sequentially. This leads
us to choose the net bitrate, which excludes the length of the initial bits, and makes Bit-Swap
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Table 5.4: Bitrate versus Accuracy on CIFAR-10 with various aggregation methods.

less advantageous. Theoretically, the net bitrate should be the same for both methods. However,
empirically we can see in Table 5.4, Bit-Swap uses slightly more net bits than BB-ANS.

Although we cannot draw a definite conclusion, it appears that the more a compressor can
compress, the more accurate of classification NPC can obtain with the compressor. We can see
that given a compressor, there is a correlation between bitrate and accuracy even with different
aggregation methods, except for aggregation methods that alter a compressor to be not normal
(e.g., “concat’).

Other Alternatives: In this work, we don’t go thoroughly through all the state-of-the-art com-
pressors, but only focus on the VAE-based lossless compressors. For this specific category, there
are already numerous important factors: the choice of architectures, the choice of the number of
latent variables, the choice of the hierarchy topology (e.g., asymmetrical tree structure or sym-
metrical one), and the choice of discretization method. Beyond this line of compressors, deep
learning based compressors discussed in Section 5.2.3 can also be used under our framework.

Beyond compressors, aggregation methods also cause diverging differences in the final clas-
sification accuracy. We cover a few basic ones but there are other non-training-required aggre-
gation methods like linear blend operator and even completely different aggregation strategies
(e.g., using conditional VAE). On colored real-world images like CIFAR-10, image manipulation
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# latent variables z 1 2 8
Bit-Swap 0.226 0.339 0.348
BB-ANS 0.226 0.369 0.356

aggregation gs+avg avg min max concat
Bit-Swap 0.369 0.339 0.291 0.233 0.207
BB-ANS 0.408 0.369 0.284 0.283 0.235

Table 5.5: Effects of the number of latent variables and aggregation method.

can be another easy and effective way to improve accuracy. In effect, “greyscale” can be viewed
as “lossy compression” and this opens up the question of how lossy compressors perform under
NPC framework.

5.5.6 Discussion on Normal Compressor

Definition 2 (Normal Compressor). A compressor is normal if it satisfies, up to an additive
O(log n) term, where n means the maximal binary length of an element of Ω:

1. Idempotency: C(xx) = C(x) and C(ϵ) = 0 where ϵ is the empty string

2. Symmetry: C(xy) = C(yx)

3. Monotonicity: C(xy) ≥ C(x)

4. Distributivity: C(xy) + C(z) ≤ C(xz) + C(yz)

Definition 3 (Metric). A distance function D : Ω × Ω → R+ is a metric if it satisfies the
following three criteria for any x, y, z ∈ Ω, where Ω is a non-empty set, R+ represents the set of
non-negative real number:

1. Identity: D(x, y) = 0 iff x = y

2. Symmetry: D(x, y) = D(y, x)

3. Triangle Inequality: D(x, y) ≤ D(x, z) +D(z, y)

Definition 4 (Admissible Distance). A function D : Ω × Ω → R+ is an admissible distance if
for every pair of objects x, y ∈ Ω, the distance D(x, y) is computable, symmetric, and satisfies
the density condition

∑
y 2

−D(x,y) ≤ 1.
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Figure 5.5: BB-ANS Normal Compressor Test for “concatenation”

Cilibrasi and Vitányi [2005] formally prove that if the compressor is normal, NCD is a normal-
ized admissible distance satisfying the metric inequalities, which is shown in Definition 3. Cebrián
et al. [2005] systematically evaluate how far real world compressors like gzip, bz2, PPMZ can
satisfy the idempotency axiom. Here we empirically evaluate all 4 axioms on MNIST with the
BB-ANS compressor. We randomly take 100 samples and plot C(·) on LHS as the x-axis, C(·)
on RHS as the y-axis. For simplicity, we use one latent variable, under which BB-ANS equals
Bit-Swap. As shown in Figure 5.5, BB-ANS satisfies monotonicity, symmetry, and distributivity.
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Figure 5.6: BB-ANS Normal Compressor Test for “average”

However, it fails on the identity axiom, with C(xx) ≈ 1.988C(x). Unlike gzip, bz2, or lzma,
BB-ANS doesn’t treat the concatenation of two images as a sequence of bytes but images, similar
to PNG and WebP, making it hard to satisfy identity axiom. By default, the aggregation method
refers to “concatenation”. But simple concatenation does not perform well. Practically, BB-ANS
fails the identity test when using “concatenation”. Without changing the compressor, is it still
possible to satisfy the above conditions so that NCD can be used as a normalized admissible
distance metric?

We can change the aggregation method. We investigate whether BB-ANS with average can
satisfy the above conditions. Obviously, identity and symmetry axioms can hold, asC(avg(x, x)) =
C(x+x

2
) = C(x). We empirically evaluate monotonicity and distributivity, and find that they are

both satisfied with “average”. Figure 5.6 illustrates thatC(avg(x, y)) ≥ C(x) andC(avg(x, y))+
C(z) ≤ C(avg(x, z))+C(avg(y, z)) always hold. Given the compressor is normal under the “av-
erage” function, we now prove NCD is an admissible distance metric.

Definition 5. Let D be an admissible distance. D+(x) is defined as D+(x) = max{D(x, z) :

C(z) ≤ C(x)}, and D+(x, y) is defined as D+(x, y) = max{D+(x), D+(y)}

Lemma 1. If C is a normal compressor, then Ec(x, y) + O(1) is an admissible distance, where
Ec(x, y) = C(xy)−min{C(x)− C(y)} is the compression distance.
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Lemma 2. If C is a normal compressor, then E+
c (x, y) = max{C(x), C(y)}

Theorem 2. If the compressor is normal, then the NCD is a normalized admissible distance
satisfying the metric (in)equalities.

Proof. Lemma 1 and Lemma 2 show that NCD is a normalized admissible distance. We now
show how NCD satisfies the metric (in)equalities.

1. For identity axiom,

NCD(x, x) =
C(avg(x, x))− C(x)

C(x)
= 0. (5.7)

2. For symmetry axiom,

NCD(x, y) =
C(avg(x, y))−min{C(x), C(y)}

max{C(x), C(y)}
= NCD(y, x). (5.8)

3. For triangle inequality, without loss of generality, we assume C(x) ≤ C(y) ≤ C(z).
As NCD is symmetrical, there are three triangle inequalities that can be expressed by
NCD(x, y),NCD(y, z),NCD(x, z). For simplicity, we prove one of them, NCD(x, y) ≤
NCD(x, z) + NCD(z, y) as the procedure for the other two is similar. Since BB-ANS is a
normal compressor under “avg”, we have distributivity: C(avg(x, y))+C(z) ≤ C(avg(x, z))+
C(avg(z, y)). Subtracting C(x) from both sides and rearraging results in C(avg(x, y)) −
C(x) ≤ C(avg(x, z))−C(x) +C(avg(z, y))−C(z). Dividing by C(y) on both sides, we
have

C(avg(x, y))− C(x)
C(y)

≤ C(avg(x, z))− C(x) + C(avg(z, y))− C(z)
C(y)

. (5.9)

We know LHS≤ 1 and RHS can be ≤ 1 or > 1.

(a) RHS≤ 1: Let C(z) = C(y) + ∆; adding ∆ to both the numerator and denominator
of RHS increases RHS and makes it closer to 1.

C(avg(x, y))− C(x)
C(y)

≤ C(avg(x, z))− C(x)
C(y) + ∆

+
C(avg(z, y))− C(z) + ∆

C(y) + ∆

(5.10)

=
C(avg(x, z))− C(x)

C(z)
+
C(avg(z, y))− C(y)

C(z)
. (5.11)
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(b) RHS> 1: The procedure is similar to the case when RHS≤ 1. The difference is
that adding ∆ to both numerator and denominator makes RHS decrease instead of
increase. But RHS cannot decrease less than 1. Thus, we still have

C(avg(x, y))− C(x)
C(y)

≤ C(avg(x, z))− C(x)
C(z)

+
C(avg(z, y))− C(y)

C(z)
. (5.12)

5.6 Summary

In this chapter, we restrict representation by inserting bottleneck and demonstrate the equiva-
lence between inserting bottleneck and doing compression. We propose a learning framework,
Non-Parametric learning by Compression with Latent Variables (NPC-LV), to address a common
learning scenario, Non-Supported Few-Shot-Learning (NS-FSL). This framework is versatile in
that every module is replaceable, leading to numerous variations. We use image classification as
a case study to demonstrate how to use a trained latent generative model directly for downstream
classification without further training. It outperforms supervised learning and non-parametric
learning on three datasets and semi-supervised learning on CIFAR-10 in the low data regime.
We thus regard it as a baseline in NS-FSL. The equivalence between optimizing latent variable
models and achieving the shortest code length not only shows how nELBO can be used for clas-
sification but also indicates that improvements in latent probabilistic models can benefit neural
compressors. The relationship between compression rate and classification accuracy suggests that
improvements in neural compressors can further benefit classification. Thus, an enhancement of
any module in this chain can boost classification accuracy under this framework.
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Chapter 6

Restrict Representations for
Non-Parametric Learning by Compression
Only

In this chapter, we illustrate how to improve the generalizability of text classification problems by
doing compression only. Non-Parametric learning by Compression with Latent Variables (NPC-
LV) demonstrates that adding a bottleneck in the middle can give us a neural compressor. In other
words, it shows a circumstance when restricting representation in the middle results in cutting the
code length at the end. That inspires us to think whether it’s possible to use a shorter code length
directly, which is equivalent to using a traditional compressor without latent variables. Using
traditional compressors fits our Non-Parametric learning by Compression (NPC) framework.

Deep neural networks (DNNs) are often used for text classification due to their high accuracy.
However, DNNs can be computationally intensive, requiring millions of parameters and large
amounts of labeled data, which can make them expensive to use, optimize, and transfer to out-
of-distributed (OOD) cases in practice. In this chapter, we propose a non-parametric alternative
to DNNs that’s easy, lightweight, and universal in text classification: a combination of a simple
compressor like gzip with a k-nearest-neighbor classifier. Without any training parameters, our
method achieves results that are competitive with non-pretrained deep learning methods on six
in-distributed datasets. It even outperforms BERT on all five OOD datasets, including four low-

73



resource languages. Our method also excels in few-shot settings where labeled data are too scarce
for DNNs to achieve satisfying accuracy. This work is presented in:

• Zhiying Jiang, Matthew Y.R. Yang, Mikhail Tsirlin, Raphael Tang, Yiqin Dai, Jimmy Lin.
“Low-Resource” Text Classification: A Parameter-Free Classification Method with Com-
pressors. In Proceedings of The 61st Annual Meeting of the Association for Computational
Linguistics (ACL) Findings, 2023.

6.1 Overview

Text classification, as one of the most fundamental tasks in natural language processing (NLP),
has improved substantially with the help of neural networks [Li et al., 2022]. However, most
neural networks are data-hungry, the degree of which increases with the number of parameters.
They also have many hyperparameters that must be carefully tuned for different datasets, and the
preprocessing of text data (e.g., tokenization, stop word removal) needs to be tailored to the spe-
cific model and dataset. Despite their ability to capture latent correlations and recognize implicit
patterns [LeCun et al., 2015], complex deep neural networks may be overkill for simple tasks
such as topic classification, and lighter alternatives are usually good enough. For example, Ad-
hikari et al. [2019b] find that a simple long short-term memory network (LSTM; Hochreiter and
Schmidhuber, 1997) with appropriate regularization can achieve competitive results. Shen et al.
[2018] further show that even word-embedding-based methods can achieve results comparable to
convolutional neural networks (CNNs) and recurrent neural networks (RNNs).

Among all the quests for a lighter alternative to DNN methods, one stream of studies focuses
on using compressors for text classification. There have been several studies in this field [Frank
et al., 2000; Teahan and Harper, 2003], and most of them are based on the intuition that the
minimum cross entropy between a document and a language model of a class built by a compressor
indicates the class of the document. However, previous works fail to achieve competitive results
with neural networks.

We propose a text classification method combining a lossless compressor, a compressor-based
distance metric with a k-nearest-neighbor classifier (kNN). It utilizes compressors in capturing
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regularity which then is translated into similarity measurement by a compressor-based distance
metric. With the distance matrix, we use kNN to classify.

We carry out experiments on seven in-distributed datasets and five out-of-distributed ones.
With a simple compressor like gzip, our method achieves competitive results with DNNs on six
out of seven datasets and outperforms all DNNs including BERT on all OOD datasets. It also
surpasses DNNs by a large margin under few-shot settings.

Our method is a simple, lightweight, and universal alternative to DNNs. It’s simple because
it doesn’t require any preprocessing or training. It’s lightweight in that it classifies without the
need for parameters or GPU resources. It’s universal as compressors are data-type agnostic, and
non-parametric methods do not bring inductive bias by the training procedure.

Our contributions are as follows: (1) We propose a parameter-free method that achieves re-
sults comparable to non-pretrained neural network models that have millions of parameters on six
out of seven in-distributed datasets; (2) We show that our method outperforms all methods includ-
ing pretrained models on OOD datasets; (3) We demonstrate that our method excels in few-shot
settings when labeled data are scarce.

6.2 Non-Parametric learning by Compression

Similar to NPC-LV, NPC consists of a lossless compressor, a compressor-based distance metric,
and a k-Nearest-Neighbor classifier. Different from NPC-LV, NPC only requires a regular loss-
less compressor without any pretraining or fine-tuning. Lossless compressors aim to represent
information using as few bits as possible by assigning shorter codes to symbols with higher prob-
ability. The intuition of using compressors for classification is that (1) compressors are good at
capturing regularity; (2) objects from the same category share more regularity than those from
different categories. The intuition can be seen clearly through the text examples below. x1 be-
longs to the same category as x2, but a different category from x3. If we use C(·) to represent
compressed length, we will find C(x1x2) − C(x1) < C(x1x3) − C(x1) where C(x1x2) means
the compressed length of concatenation of x1 and x2. In other words, C(x1x2) − C(x1) can be
interpreted as how many bytes we need to use to encode x2 based on the information of x1:
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x1 = Japan’s Seiko Epson Corp. has developed a 12-gram flying microrobot.

x2 = The latest tiny flying robot has been unveiled in Japan.

x3 = Michael Phelps won the gold medal in the 400 individual medley.

As we’ve covered in Section 2.2.2, this intuition can be formalized as a distance metric derived
from Kolmogorov complexity [Kolmogorov, 1963] and information distance E(x, y). As the
incomputable nature of Kolmogorov complexity renders E(x,y) incomputable, Li et al. [2004]
propose a normalized and computable version of information distance, Normalized Compres-
sion Distance (NCD), utilizing compressed length C(x) to approximate Kolmogorov complexity
K(x), same as the metric we used in our previous experiments in Chapter 5. Recall that it’s
defined as follows:

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}
(6.1)

The intuition behind using compressed length is that the length of x that has been maximally
compressed by a compressor is close toK(x). The higher the compression ratio, the closer C(x)
is to K(x). As our main experiment results use gzip as the compressor, C(x) here means the
length of x after being compressed by gzip. C(xy) is the compressed length of concatenation of
x and y. With the distance matrix NCD provides, we can then use k-nearest-neighbor to classify.

Our method can be implemented with 14 lines of Python code below. The inputs are train-
ing set, test set, both consist of an array of (text, label), and k:

1 import gzip

2 import numpy as np

3 for (x1 , _) in test_set:

4 Cx1 = len(gzip.compress(x1.encode ()))

5 distance_from_x1 = []

6 for (x2 , _) in training_set:

7 Cx2 = len(gzip.compress(x2.encode ())

8 x1x2 = " ".join([x1 , x2])

9 Cx1x2 = len(gzip.compress(x1x2.encode ())

10 ncd = (Cx1x2 - min(Cx1 ,Cx2)) / max(Cx1 , Cx2)

11 distance_from_x1.append(ncd)

12 sorted_idx = np.argsort(np.array(distance_from_x1))

13 top_k_class = training_set[sorted_idx [:k], 1]
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14 predict_class = max(set(top_k_class), key=top_k_class.count)

Listing 6.1: Python Code for Text Classification with Gzip

6.3 Related Work

6.3.1 Compressor-Based Text Classification

Text classification using compressors can be divided into two main approaches: (1) Using a com-
pressor to estimate entropy based on Shannon Information Theory; (2) Using a compressor to
approximate Kolmogorov complexity and information distance.1

The first approach mainly employs a text compression technique called Prediction by Partial
Matching (PPM)2 for topic classification. This approach estimates the cross entropy between the
probability distribution of a specific class c and a given document d: Hc(d) [Frank et al., 2000;
Teahan and Harper, 2003]. The intuition is that the lower the cross entropy is, the more likely that
d belongs to c. Coutinho and Figueiredo [2015]; Kasturi and Markov [2022]; Marton et al. [2005]
further improve the classification accuracy by improving representation to better cope with the
compressor.

Another line of compressor-based methods [Keogh et al., 2004b; Khmelev and Teahan, 2003]
takes advantage of the information distance [Bennett et al., 1998], a distance metric derived from
Kolmogorov complexity. The intuition of information distance is that for two similar objects,
there exists a simple program to convert one to another. However, most previous works focus on
clustering [Vitányi et al., 2009], plagiarism detection [Chen et al., 2004] and time serires data
classification [Keogh et al., 2004b]. Few [Coutinho and Figueiredo, 2015; Marton et al., 2005]
explore its application to topic classification, and none applies the combination of information
distance and k-nearest-neighbor (kNN) classifier when k > 1 to topic classification. Besides, to
the best of our knowledge, all the previous works use relatively small datasets like 20News and

1This doesn’t indicate these two lines of work are completely parallel. In fact, the expected value of Kolmogorov
complexity equals Shannon entropy, up to a constant.

2PPM is a text compression scheme utilizing language modeling to estimate cross entropy.
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Reuters-10. There is neither a comparison between compressor-based methods and deep learning
methods nor any comprehensive study on large datasets.

6.3.2 Deep Learning for Text Classification

The deep learning methods used for text classification can be divided into two: transductive learn-
ing, represented by Graph Convolutional Networks (GCN) [Yao et al., 2019], and inductive learn-
ing, dominated by recurrent neural networks (RNN) and convolutional neural networks (CNN).
We focus on inductive learning in this chapter as transductive learning assumes the test dataset is
presented during the training, which is not a common scenario.

Zhang et al. [2015a] use the character-based CNN with millions of parameters for text classifi-
cation. Conneau et al. [2017] extend the idea with more layers. Along the line of RNNs, Kawakami
[2008] introduce a method that uses LSTMs [Hochreiter and Schmidhuber, 1997] to learn the se-
quential information for classification. To better capture the important information regardless
of position, Wang et al. [2016] incorporate the attention mechanism into the relation classifi-
cation. Yang et al. [2016] include a hierarchical structure for sentence-level attention. As the
parameter number and the model complexity increase, Joulin et al. [2017] look for using a simple
linear model with a hidden layer coping with n-gram features and hierarchical softmax to improve
efficiency.

The landscape of classification has been further transformed by the widespread use of pre-
trained models like BERT [Kenton and Toutanova, 2019], with thousands of millions of parame-
ters pretrained on a corpus containing billions of tokens. BERT achieves the state of the art on text
classification [Adhikari et al., 2019a]. Built on BERT, Reimers and Gurevych [2019b] calculate
semantic similarity between pairs of sentences efficiently by using a siamese network architec-
ture and fine-tuning on multiple NLI datasets [Bowman et al., 2015; Williams et al., 2018]. We
compare gzip with these deep learning models.
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Dataset #Training #Test #Classes Avg#Words Avg#Chars #Vocab

AG News 120K 7.6K 4 44 236 128K
DBpedia 560K 70K 14 54 301 1M
YahooAnswers 1.4M 60K 10 107 520 1.5M
20News 11K 7.5K 20 406 1902 277K
ohsumed 3.4K 4K 23 212 1273 55K
R8 5.5K 2.2K 8 102 587 24K
R52 6.5K 2.6K 52 110 631 26K
KinyarwandaNews 17K 4.3K 14 232 1872 240K
KirundiNews 3.7K 923 14 210 1722 63K
DengueFilipino 4K 500 5 10 62.7 13K
SwahiliNews 22.2K 7.3K 6 327 2.2K 570K
SogouNews 450K 60K 5 589 2.8K 611K

Table 6.1: Details of datasets used for evaluation.

6.4 Experimental Setup

We introduce the datasets and baseline models we choose as well as the training details in this
section.

6.4.1 Datasets

We choose a variety of datasets to investigate the effects of the number of training samples, the
number of classes, the length of the text, and the difference in distribution on accuracy. The de-
tails of each dataset are listed in Table 6.1. Previous works on text classification have two disjoint
preferences when choosing evaluation datasets: CNN and RNN-based methods favor large-scale
datasets (AG News, DBpedia, YahooAnswers), whereas transductive methods like graph convo-
lutional neural networks focus on smaller ones (20News, Ohsumed, R8, R52) [Li et al., 2022]. We
include datasets on both sides in order to investigate how our method performs in both situations.
Apart from dataset sizes, we also take the number of classes into account by intentionally includ-
ing datasets like R52 to evaluate the performance on datasets with a large number of classes. We
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also include the text length of each dataset in Table 6.1 as previous works [Marton et al., 2005]
indicate that it affects the accuracy of compressor-based methods.

Generalizing to Out-Of-Distributed datasets has always been a challenge in machine learning.
Even with the success of pretrained models, this problem is not alleviated. In fact, Yu et al. [2021]
have shown that improved in-distributed accuracy on pretrained models may lead to poor OOD
performance in image classification. In order to compare our method with pretrained models
on OOD datasets, we choose five datasets that are unseen in BERT’s pretrained corpus — Kin-
yarwanda news, Kirundi news, Filipino dengue, Swahili news, and Sogou news. Those datasets
are chosen to have Latin script which means they have a very similar alphabet to English. For ex-
ample, Swahili has the same vowels as English but doesn’t have q,x as consonants; Sogou news
is in Pinyin – a phonetic romanization of Chinese. Therefore, those datasets can be viewed as
permutations of English alphabets (see Table G.1 for text examples).

6.4.2 Baselines

We compare our result with (1) neural network methods that require training and (2) non-parametric
methods that use the kNN classifier directly, with or without pretraining on external data. Specif-
ically, we choose mainstream architectures for text classification, like logistic regression, fast-
Text [Joulin et al., 2017], RNNs with or without attention (vanilla LSTM [Hochreiter and Schmid-
huber, 1997], bidirectional LSTMs [Schuster and Paliwal, 1997] with attention [Wang et al.,
2016], hierarchical attention networks [Yang et al., 2016]), CNNs (character CNNs [Zhang et al.,
2015a], recurrent CNNs [Lai et al., 2015], very deep CNNs [Conneau et al., 2017]) and BERT [De-
vlin et al., 2019]. We also include three other non-parametric methods: word2vec (W2V) [Mikolov
et al., 2013], pretrained sentence BERT (SentBERT) [Reimers and Gurevych, 2019b], and the
length of the instance (TextLength), all using a kNN classifier. “TextLength” is a baseline where
the text length of the instance is used as the only input into a kNN classifier, whose result rules
out the impact of text length in classification.

We present details of models in Table 6.2. Here we use AG News as an example to estimate the
model size, as the number of parameters is affected by the number of classes and the vocabulary
size. This dataset has a relatively small vocabulary size and the number of classes, making the
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Model #Param Pretraining Training External Data Pre-Process

TFIDF+LR 260K ✗ ✓ ✗ tok+tfidf+dict (+lower)
LSTM 5.2M ✗ ✓ ✗ tok+dict (+emb+lower+pad)
Bi-LSTM+Attn 8.2M ✗ ✓ ✗ tok+dict (+emb+lower+pad)
HAN 30M ✗ ✓ ✗ tok+dict (+emb+lower+pad)
charCNN 2.7M ✗ ✓ ✗ dict (+lower+pad)
textCNN 31M ✗ ✓ ✗ tok+dict (+emb+lower+pad)
RCNN 19M ✗ ✓ ✗ tok+dict (+emb+lower+pad)
VDCNN 14M ✗ ✓ ✗ dict (+lower+pad)
fastText 8.2M ✗ ✓ ✗ tok+dict (+lower+pad+ngram)
BERT-base 109M ✓ ✓ ✓ tok+dict+pe (+lower+pad)
W2V 0 ✓ ✗ ✗ tok+dict (+lower)
SentBERT 0 ✓ ✗ ✓ tok+dict (+lower)
TextLength 0 ✗ ✗ ✗ ✗

gzip (ours) 0 ✗ ✗ ✗ ✗

Table 6.2: Models with the number of parameters, the training, data augmentation, and pre-
processing details.

estimated number of parameters the lower bound of the studied datasets. Some methods require
pretraining either on the target dataset or on other external datasets.

We also list preprocessing required by these models in Table 6.2, including tokenization
(“tok”), building vocabulary dictionaries and mapping tokens (“dict”), using pretrained word em-
beddings (“emb”), lowercasing the words (“lower”) and padding the sequence to a certain length
(“pad”). Other model-specific preprocessing includes adding an extra bag of n-grams (“ngram”)
for fastText and using positional embedding (“pe”) for BERT. Note that for models that only re-
quire training, we do not use pretrained word embeddings as otherwise the boundary between
pretraining and training will become ambiguous.

2We report results getting from our own implementation. We also provide previously reported results for reference
in Appendix H.
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Model Pretraining Training AGNews DBpedia YahooAnswers 20News Ohsumed R8 R52
TFIDF+LR ✗ ✓ 0.898 0.982 0.715 0.827 0.549 0.949 0.874

LSTM ✗ ✓ 0.861 0.985 0.708 0.657 0.411 0.937 0.855
Bi-LSTM+Attn ✗ ✓ 0.917 0.986 0.732 0.667 0.481 0.943 0.886

HAN ✗ ✓ 0.896 0.986 0.745 0.646 0.462 0.960 0.914
charCNN ✗ ✓ 0.914 0.986 0.712 0.401 0.269 0.823 0.724
textCNN ✗ ✓ 0.817 0.981 0.728 0.751 0.570 0.951 0.895
RCNN ✗ ✓ 0.912 0.984 0.702 0.716 0.472 0.810 0.773

VDCNN ✗ ✓ 0.913 0.987 0.734 0.491 0.237 0.858 0.750
fastText ✗ ✓ 0.911 0.978 0.702 0.690 0.218 0.827 0.571
BERT ✓ ✓ 0.944 0.992 0.768 0.868 0.741 0.982 0.960
W2V ✓ ✗ 0.892 0.961 0.689 0.460 0.284 0.930 0.856

SentBERT ✓ ✗ 0.940 0.937 0.782 0.778 0.719 0.947 0.910
TextLength ✗ ✗ 0.275 0.093 0.105 0.053 0.090 0.455 0.362
gzip (ours) ✗ ✗ 0.937 0.970 0.638 0.685 0.521 0.954 0.896

Table 6.3: Test accuracy compared with gzip, red highlighting the ones outperformed by gzip.3

6.5 Results and Analysis

We conduct experiments using fourteen text classification methods on twelve datasets.

6.5.1 In-Distributed Text Classification

We train all baselines on seven datasets using their full training sets. The results are shown in Ta-
ble 6.3. Our method performs particularly well on AG News, R8, and R52. On the AG News
dataset, fine-tuning BERT yields the highest performance among all methods, while our method,
without any pretraining, achieves competitive results, with only 0.007 points lower than BERT.
On both R8 and R52, the only non-pretrained neural network that outperforms our method is
HAN. For YahooAnswers, the accuracy of gzip is about 7% lower than the average neural meth-
ods. This may be due to the large vocabulary size of YahooAnswers, which makes it hard for the
compressor to compress (detailed discussion is in Section 6.5.4).

Overall, BERT-based models are robust to the size of in-distributed datasets. Character-based
models like charCNN and VDCNN perform badly when the dataset is small and the vocabulary
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Dataset average gzip
AGNews 0.901 0.937
DBpedia 0.978 0.970

YahooAnswers 0.726 0.638
20News 0.678 0.685

Ohsumed 0.470 0.521
R8 0.914 0.954
R52 0.838 0.896

Table 6.4: Test accuracy comparison between the average of all baseline models (excluding
TextLength) and gzip.

size is large (e.g., 20News). Word-based models are better at handling big vocabulary sizes. The
result of TextLength is extremely low, indicating the compressed length used in NCD does not
benefit from the length distribution of different classes.

gzip does not perform well on an extremely large dataset (e.g., YahooAnswers), but is compet-
itive on medium and small datasets. Performance-wise, the only non-preptrained deep learning
model that’s competitive to gzip is HAN, which surpasses gzip on four datasets and still achieves
relatively high accuracy when it’s beaten by gzip, unlike textCNN. The difference is that gzip
doesn’t require training.

We list the average of all baseline models’ test accuracy (except TextLength for its extremely
low accuracy) in Table 6.4. We can see our method is either higher or close to the average on all
but YahooAnswers.

6.5.2 Out-Of-Distributed Text Classification

On five OOD datasets (Kinyarwanda news, Kirundi news, Filipino dengue, Swahili news and So-
gou news), we also select DNNs to make sure we cover a wide range of parameter numbers. We
discard CNN-based methods due to their inferior performance when datasets are small, as shown
in both Section 6.5.1 and Zhang et al. [2015a]. In addition, we also add BERT pretrained on
104 languages (mBERT). We can see in Table 6.5 that on languages that mBERT has not been
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Model/Dataset KinyarwandaNews KirundiNews DengueFilipino SwahiliNews SogouNews
Shot# Full 5-shot Full 5-shot Full 5-shot Full 5-shot Full 5-shot

Bi-LSTM+Attn 0.843 0.253±0.061 0.872 0.254±0.053 0.948 0.369±0.053 0.863 0.357±0.049 0.952 0.534±0.042

HAN 0.820 0.137±0.033 0.881 0.190±0.099 0.981 0.362±0.119 0.887 0.264±0.042 0.957 0.425±0.072

fastText 0.869 0.170±0.057 0.883 0.245±0.242 0.870 0.248±0.108 0.874 0.347±0.255 0.930 0.545±0.053

W2V 0.874 0.281±0.236 0.904 0.288±0.189 0.993 0.481±0.158 0.892 0.373±0.341 0.943 0.141±0.005

SentBERT 0.788 0.292±0.062 0.886 0.314±0.060 0.992 0.629±0.143 0.822 0.436±0.081 0.860 0.485±0.043

BERT 0.838 0.240±0.060 0.879 0.386±0.099 0.979 0.409±0.058 0.897 0.396±0.096 0.952 0.221±0.041

mBERT 0.835 0.229±0.066 0.874 0.324±0.071 0.983 0.465±0.048 0.906 0.558±0.169 0.953 0.282±0.060

gzip (ours) 0.891 0.458±0.065 0.905 0.541±0.056 0.998 0.652±0.048 0.927 0.627±0.072 0.975 0.649±0.061

Table 6.5: Test accuracy on out-of-distributed datasets with 95% confidence interval over five
trials in five-shot setting.

pretrained on (Kinyarwanda, Kirundi, or Pinyin), it has lower accuracy than BERT. Compared
with non-pretrained ones, pretrained models do not hold their advantage on low-resource lan-
guages with smaller data sizes, except for Filipino who shares a large vocabulary with English
words. On large OOD datasets (i.e., SogouNews), BERT achieves competitive results with other
non-pretrained neural networks.

Without any pretraining or fine-tuning, our method outperforms both BERT and mBERT on
all five datasets. In fact, our experiments show that our method excels both pretrained and non-
pretrained deep learning methods on OOD datasets, which back our claim that our method is
universal in terms of dataset distributions. To put it simply, our method is designed to handle
unseen datasets: the compressor is data-type-agnostic by nature and non-parametric methods do
not introduce inductive bias during training.

6.5.3 Few-Shot Text Classification

We further compare our method with deep learning methods under the few-shot setting. We carry
out experiments on AG News, DBpedia, and SogouNews across both non-pretrained deep neural
networks and pretrained ones. We use n-shot labeled examples per class from the training dataset,
where n = {5, 10, 50, 100}. We choose these three datasets as their scale is large enough to cover
a 100-shot setting and they vary in text lengths as well as languages. We choose methods whose
trainable parameters range from zero parameters like word2vec and sentence BERT to hundreds
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Figure 6.1: Comparison among different methods using different shots with 95% confidence
interval over five trials.

of millions of parameters like BERT, covering both word-based models (HAN) and an n-gram
one (fastText).

The result is plotted in Figure 6.1 (detailed numbers are shown in Table I.1). As we can see,
gzip outperforms non-pretrained models with 5, 10, 50 settings on all three datasets. When the
number of shot is as few as n = 5, gzip outperforms non-pretrained models by large margin: the
accuracy of gzip is 115% better than fastText on AG News 5-shot setting. In the 100-shot setting,
gzip also outperforms non-pretrained models on AG News and SogouNews but is a little bit lower
than them on DBpedia.

It’s been investigated in the previous work [Nogueira et al., 2020; Zhang et al., 2021c] that
pretrained models are excellent few-shot learners and this is reflected in the consistently high
accuracy of BERT and SentBERT on in-distribution datasets like AG News and DBpedia under
few-shot settings.4 It’s worth pointing out, though, that gzip outperforms SentBERT under 50 and
100-shot settings. However, as reflected in the results on SogouNews, when the dataset is distinc-
tively different from the pretrained datasets, the inductive bias introduced from the pretraining
data leads to low accuracy of BERT and SentBERT with 10, 50, and 100-shot settings, especially
with the 5-shot setting. In general, when the shot number increases, the accuracy difference be-
tween gzip and deep learning methods becomes smaller. W2V is an exception that has a large
variance in accuracy. This is due to the vectors being trained for a limited set of words, meaning
that numerous tokens in the test set are out-of-vocabulary.

4Note that BERT reaches an almost perfect accuracy on DBpedia probably because DBpedia is extracted from
Wikipedia, which BERT is pretrained on.
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6.5.4 Performance Analysis

To understand the merits and shortcomings of using gzip for classification, we evaluate gzip’s
performance in terms of both the absolute accuracy and the relative performance compared to
the neural methods. An absolute low accuracy with a high relative performance suggests that
the dataset itself is difficult, while a high accuracy with a low relative performance means the
dataset is better solved by a neural network. As our method performs well on OOD datasets,
we are more interested in analyzing ID cases. We carry out on seven in-distributed datasets and
one out-of-distributed dataset across fourteen models to account for different ranks. We analyze
both the relative performance and the absolute accuracy regarding the vocabulary size and the
compression rate of both datasets (i.e., how easily a dataset can be compressed) and compressors
(i.e., how well a compressor can compress).

To represent the relative performance with regard to other methods, we use the normalized
rank percentage, computed as rank of gzip

total#methods ; the lower the score, the better gzip is. We use “bits
per character”(bpc) to evaluate the compression rate. The procedure is to randomly sample a
thousand instances from the training and test set respectively, calculate the compressed length,
and divide by the number of characters. Sampling is to keep the size of the dataset constant.

Relative Performance Combining Table 6.1 and Table 6.3, we see that accuracy is largely un-
affected by the average length of a single sample: with the Spearman coefficient rs = −0.220.
But the relative performance is more correlated with vocabulary size (rs = 0.561) as we can see
in Figure 6.2. SogouNews is an outlier in the first plot: on a fairly large vocabulary-sized dataset,
gzip ranks first. The second plot may provide an explanation for that — the compression ratio
for SogouNews is high which means even with a relatively large vocabulary size, there is also
repetitive information that can be squeezed out. With rs = 0.785 on the correlation between
the normalized rank percentage and the compression rate, we can see when a dataset is easier to
compress, our method may be a strong candidate as a classifier.

Absolute Accuracy Similarly, we evaluate the accuracy of classification with respect to the vo-
cabulary size and we’ve found there is almost no monotonic relation (rs = 0.071). With regard
to bpc, the monotonic relation is not as strong as the one with the rank percentage (rs = −0.56).
Considering the effect that vocabulary size has on the relative performance, our method with gzip
may be more susceptible to the vocabulary size than neural network methods. To distinguish be-
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Figure 6.2: Relative performance v.s. vocabulary size and compression rate.
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Figure 6.3: Comparison among different compressors on three datasets with 95% confidence
interval over five trials.

tween a “hard” dataset and an “easy” one, we average all models’ accuracies. The datasets that
have the lowest accuracies are 20News and Ohsumed, which are two datasets that have the longest
average length of texts.

6.5.5 Comparison among Compressors

As the compressor in our method can actually be replaced by any other compressors, we evaluate
the performance of three other lossless compressors: bz2, lzma, and zstandard. Due to the low
compression speed of lzma, we randomly select 1,000 test samples from the whole test set to
evaluate and conduct our experiments under 5, 10, 50, and 100-shot settings. We repeat the ex-
periments under each setting for five times to calculate the mean and the 95% confidence interval.
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Each of the three compressors that we choose has different underlying algorithms from gzip.
bz2 uses Burrows-Wheeler algorithm [Burrows and Wheeler, 1994] to permute the order of char-
acters in the strings to create more repeated “substrings” that can be compressed, giving it a higher
compression ratio (e.g., it can achieve 2.57 bits-per-character (bpc) on AGNews while gzip can
achieve only 3.38 bpc). lzma is similar to gzip in that they are both based on LZ77 [Ziv and
Lempel, 1977], a dictionary-based compression algorithm using (offset, length) to represent the
n-gram that has previously appeared in the search buffer.5 zstandard (zstd) is a new compres-
sion algorithm that’s built on LZ77, Huffman coding as well as Asymmetric Numeral Systems
(ANS) [Duda, 2009]. We pick zstd because of its high compressing speed and a compression
ratio close to gzip. A competitive result would suggest that zstd might be an alternative to gzip
and speed up the classification.

In Figure 6.4, we plot the test accuracy and compression ratio of each compressor. Com-
pression ratio is calculated by original size

compressed size , so the larger the compression ratio is, the more a
compressor can compress.6 Each marker type represents a dataset and markers of ‘+’ represents
the mean of each compressor’s test accuracy across different shot settings.

In general, gzip achieves relatively high and stable accuracy across three datasets. lzma is
competitive with gzip but the speed is much slower. Despite of its high compression ratio, bz2
performs the worst across AGNews and DBpedia. Normally, a higher compression ratio of a com-
pressor suggests that the NCD based on it approximates the information distance E(x, y) better.
But in bz2’s case, its accuracy is always lower than the regression line (Figure 6.4). We conjec-
ture it may be because the Burrows-Wheeler algorithm used by bz2 dismisses the information of
character order by permuting characters during compression.

We investigate the correlation between accuracy and compression ratio across compressors
and find that they have a moderate monotonic linear correlation as shown in Figure 6.4. As the
shot number increases, the linear correlation becomes more obvious with rs = 0.605 for all
shot settings and Pearson correlation rp = 0.575, 0.638, 0.691, 0.719 respectively on 5, 10, 50,

5gzip uses DEFLATE algorithm, which uses Huffman coding [Huffman, 1952] to further encode (offset, length)
whereas lzma uses range coding to do so, resulting lzma has a higher compression ratio but a slower compression
speed.

6We use compression ratio instead of bpc here as the latter one is too close to each other and cannot be differen-
tiated from one another.
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Figure 6.4: Compression ratio V.S. Test Accuracy across different compressors on three datasets
under different shot settings

and 100-shot settings across four compressors. We have also found that for a single compressor,
the easier a dataset can be compressed, the higher the accuracy gzip can achieve (details are
in Section 6.5.4). Combining our findings, we can see that a compressor performs best when it
has a high compression ratio on datasets that are highly compressible unless crucial information
is disregarded by its compression algorithm.

6.5.6 Comparison with Other Compressor-based Methods

A majority of previous compressor-based text classification is built on estimating cross entropy
between the probability distribution built on class c and the document d: Hc(d), as we mention
in Section 6.3.1. Summarized in Russell [2010], the procedure of using compressor to estimate
Hc(d) is: (1) for each class c, concatenate all samples dc in the training set belonging to c; (2)
compress dc as one long document to get the compressed length C(dc); (3) concatenate the given
test sample du with dc and compress to getC(dcdu); (4) the predicted class is argmincC(dcdu)−
C(dc). The distance metric used by previous work [Marton et al., 2005; Russell, 2010] is mainly
C(dcdu) − C(dc). Although using this distance metric is faster than pair-wise distance matrix
computation on small datasets, it has several drawbacks: (1) Most compressors have a limited
“size”, for gzip it’s the sliding window size that can be used to search back of the repeated string
while for lzma it’s the dictionary size it can keep a record of. This means that even if there are a
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Method AGNews SogouNews DBpedia YahooAnswers
gzip(ce) 0.739±0.046 0.741±0.076 0.880±0.010 0.408±0.012

gzip(kNN) 0.752±0.041 0.862±0.033 0.852±0.008 0.352±0.014

Table 6.6: Comparison with other compressor-based methods under the 100-shot setting.

large number of training samples, the compressor cannot take full advantage of those samples; (2)
When dc is large, compressing dcdu can be really slow, which cannot be solved by parallelization.
These two main drawbacks stop this method from being applied to a really large dataset. Thus,
we limit the size of the dataset to 1,000 randomly picked test samples and 100-shot from each
class in the training set to compare our method with this method.

In Table 6.6, “gzip (ce)” means using the cross entropy C(dcdu)−C(dc) while “gzip (kNN)”
refers to our method. We carry out each experiment five times and calculate the mean and 95%
confidence interval. Our method outperforms the cross-entropy method on AGNews and So-
gouNews. The reason for the large accuracy gap between the two methods on SogouNews is
probably because each instance in SogouNews is very long, and the size of each sample can be
11.2K, which, when concatenated, makes dc larger than 1,000K under 100-shot setting, while
gzip typically has 32K window size only. When the search space is tremendously smaller than
the size of dc, the compressor fails to take advantage of all the information from the training set,
which renders the compression ineffective. The cross-entropy method does perform very well on
YahooAnswers. This might be because on a divergent dataset like YahooAnswers, which is cre-
ated by numerous online users, concatenating all the samples in a class allows the cross-entropy
method to take full advantage of all the information from a single class.

We also test the performance of the compressor-based cross-entropy method on full AGNews
dataset, as it is a relatively smaller one with a shorter single instance. The accuracy is 0.745, not
much higher than the 100-shot setting, which further confirms that using C(dcdu) − C(dc) as a
distance metric cannot take full advantage of the large datasets. In general, the result suggests
that the compressor-based cross-entropy method is not as advantageous as ours on large datasets
while cross-entropy method is faster. To mitigate the computational efficiency problem of NCD,
Raff and Nicholas [2017] propose an alternative distance metric that is the order of magnitude
faster than NCD.
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6.6 Summary

In this chapter, we restrict representation by doing compression directly. Specifically, we use
gzip with a compressor-based distance metric to do text classification. Our method achieves an
accuracy comparable to non-pretrained neural network classifiers on in-distributed datasets and
outperforms both pretrained and non-pretrained models on out-of-distributed datasets. We even
achieve the state-of-the-art performance on four low-resource language classification datasets.
We also find that our method has greater advantages under few-shot settings, which echoes our
mission of Non-Supported Few-Shot Learning (NS-FSL).
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Chapter 7

Restrict Representations by Compression
without Actual Compression under Weak
Supervision

In Chapter 5, we show that nELBO can be used directly as an estimated compressed length for
downstream classification. Chapter 6 further shows the potential of using compressors for NLP
tasks. The idea of using estimated compressed for NLP tasks instead of doing actual compres-
sion is intriguing as it not only indicates a new way to utilize the probability distribution captured
in pretrained models but also releases the potential of using it without overheads about the dis-
cretization or coding schemes. In this chapter, we introduce a way to utilize pretrained language
models with the idea of doing compression but without the actual process of compression on
passage ranking tasks.

To be specific, this work proposes a novel adaptation of a pretrained sequence-to-sequence
model to the task of passage ranking. By taking advantage of the underlying probability of “tar-
get” words, we utilize the probabilistic distribution captured by pretrained generative models.
Our approach is fundamentally different from a commonly-adopted discriminative formulation
of ranking, which relies on encoder-only pretrained transformer architectures such as BERT. On
the popular MS MARCO passage ranking task, experimental results show that our approach is
at least on par with previous classification-based models and can surpass them with larger gen-
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erative models. On the test collection from the TREC 2004 Robust Track, we demonstrate a
zero-shot transfer-based approach that outperforms previous state-of-the-art models requiring in-
dataset cross-validation. Furthermore, we find that our approach significantly outperforms an
encoder-only model in a low-data regime.

This work is presented in:

• Rodrigo Nogueira*, Zhiying Jiang*, Ronak Pradeep, Jimmy Lin. Document Ranking with
a Pretrained Sequence-to-Sequence Model. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP) Findings, 2020.

7.1 Overview

Given a query q, the objective of passage ranking is to return a ranked list of passages from a
large corpus that maximizes certain types of ranking metrics such as average precision or nDCG.
The task of ranking is often converted into a classification problem. The formulation is straight-
forward: rank based on the probability that a candidate passage belongs to the desired class.

Pretrained language models, exemplified by BERT [Devlin et al., 2019], have proven highly
effective in a variety of classification and sequence labeling tasks in NLP. Nogueira and Cho
[2019] were the first to demonstrate its effectiveness in ranking tasks. Since it is impractical to
apply inference to every passage in a corpus with respect to a query, these techniques are typically
applied to rerank a list of candidates. In a typical end-to-end system, these candidates are from
the results of a keyword search based on a “classic” IR scoring function such as BM25 [Robertson
et al., 1995]. This gives rise to the standard multi-stage pipeline architecture of keyword retrieval
followed by reranking using one or more machine learning models [Asadi and Lin, 2013; Nogueira
et al., 2019a].

In this work, we adapt a pretrained generative model, specifically sequence-to-sequence model
(in our case, T5 [Raffel et al., 2020b]), to the task of passage reranking. To our knowledge, this
is a novel use of this class of models that has not been previously described in the literature. In a
data-rich regime, with lots of training examples, our method can outperform a pure classification-
based encoder-only approach. More importantly, the generative model appears to be far more
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data-efficient: in a data-poor regime, our approach significantly outperforms BERT with limited
training examples.

Echoing to the effectiveness shown in Chapter 5, the result in this work also demonstrates
that the rich latent knowledge has been captured in probabilistic modeling during pretraining and
how can it be utilized for downstream tasks efficiently with small amounts of labeled data. By
“connecting” fine-tuned latent representations of relevance to related output “target words”, we
can exploit the model’s latent knowledge (e.g., of semantics, linguistic relations, etc.) that has been
honed through pretraining. We describe probing experiments that attempt to verify our intuitions
by deliberately altering the target words to capture different aspects of “semantic relatedness”.

7.2 Passage Reranking with Generative Models

7.2.1 Method Overview

Our reranking method is based on T5 [Raffel et al., 2020b], which is a sequence-to-sequence
model that uses a similar masked language modeling objective as BERT to pretrain its encoder–
decoder architecture. In this model, all target tasks are cast as sequence-to-sequence tasks. For
our task, the input sequence is:

Query: q Document: d Relevant: , (7.1)

where q and d are the query and passage texts respectively. The model is fine-tuned to produce
the words “true” or “false” depending on whether the passage is relevant or not to the query. That
is, “true” and “false” are the “target words” (i.e., ground truth predictions in the sequence-to-
sequence transformation).

At inference time, to compute probabilities for each query–passage pair (in a reranking set-
ting), we apply a softmax only on the logits of the “true” and “false” tokens. Hence, we rerank
the passages according to the probabilities assigned to the “true” token.

Note that T5 tokenizes sequences using the SentencePiece model [Kudo and Richardson,
2018], which might split a word into subwords. We choose target words (“true” and “false”)
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that are represented as single tokens; thus each class is represented by a single logit. In the case
where target words are split in multiple subwords, we would need a method to aggregate their
logits into a single score; it is best to avoid this complexity in the design of the reranking setup.

7.2.2 Reformulate through Information Distance

Recall that in Chapter 6, we introduce the intuition of information distance between x1 and x2
represents how many bits of information we need for x2 given x1. In the passage reranking setting,
the intuition corresponds to that a less relevant passage needs more bits compared to a relevant
passage, given the same query:

C(qdr)− C(q) < C(qdn)− C(q), (7.2)

where dr means a relevant passage and dn refers to a non-relevant passage.

Typically, if we want to calculate the compressed length of qd of autoregressive model, we can
apply entropy coding. As briefly introduced in Section 5.2.1, autoregressive models are generative
models with explicit density estimation, p(x) = p(x0)

∏n
i=1 p(xi|xi−1), making it capable of

lossless compression. Applying a queue-like coding scheme (e.g., Arithmetic Coding [Witten
et al., 1987b]) we have a neural compression algorithm. In practice, we can set a sliding window
size, and use the probability distribution of the next predicted token as input to the coding scheme
like Goyal et al. [2019b] do.

But the fact that we only need the compressed length makes actual compression unnecessary.
In fact, we can use − log p(x) to represent the estimated compressed length. Furthermore, to
avoid unfair comparison between passages with different lengths, we only use the probability
distribution of the last token for the estimated code length. In our case, it’s the target token “true”.
As C(q) is the same for every passage given one query, we can sort C(qd) directly to generate
the ranking list of passages.
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7.3 Related Work

The advent of deep learning has transformed the information retrieval community. Prior to deep
learning, researchers and practitioners mostly adopt the paradigm known as “learning to rank”,
which is heavily driven by manual feature engineering [Li, 2011; Liu, 2009]. For example, com-
mercial web search engines are known to incorporate thousands of features (or more) in their
models. The introduction of continuous vector space representations coupled with neural models
was exciting as it provides a potential path away from the need for handcrafted features. Well-
known early neural ranking models include DRMM [Guo et al., 2016], DUET [Mitra et al., 2017],
KNRM [Xiong et al., 2017], and Co-PACRR [Hui et al., 2018]; the literature is too vast for an
exhaustive review here, and thus we refer readers to past overviews [Mitra and Craswell, 2019;
Onal et al., 2018]. Interestingly, however, a meta-analysis by Yang et al. [2019] finds that with-
out sufficient training data, these neural models still perform worse than well-tuned bag-of-words
query expansion baselines.

However, in recent years, we have witnessed a dramatic shift to ranking models based on
BERT [Dai and Callan, 2019; Li et al., 2020; Yilmaz et al., 2019], starting with Nogueira and Cho
[2019]. Our work belongs to this large family of models based on transformers, although our ex-
ploration of a sequence-to-sequence ranking formulation based on encoder–decoder architectures
sets us apart from previous classification-based formulations using encoder-only architectures.

7.4 Experimental Setup

7.4.1 Datasets

Datasets used in our experiments are listed below:

MS MARCO passage [Bajaj et al., 2016a] is a dataset with about 1M natural language queries and
8.8M passages obtained from Bing search engine results. The training set contains approximately
530K (query, relevant passage) pairs, with on average one relevant passage per unique query;
non-relevant passages are also provided as part of the training set. The development and test sets
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contain approximately 6,900 queries each, but relevance labels are only publicly available for the
development set.

Robust04 [Voorhees, 2004] is the test collection from the TREC 2004 Robust Track. It comprises
249 topics, with relevance judgments on a collection of aroudn 528K passages (TREC Disks 4
and 5).

Core17 [Allan et al., 2017] is the test collection from the TREC 2017 Common Core Track, with
relevance judgments for 50 topics on about 1.86M articles from the New York Times Annotated
Corpus.

Core18 [Allan et al., 2018] is the test collection from the TREC 2018 Common Core Track, with
relevance judgments for 50 topics on ∼600K articles from the TREC Washington Post Corpus.

For Robust04, Core17, and Core18, we use the topic “titles” (i.e., short keyword phrases) as
queries to our bag-of-words retrieval methods and the topic “descriptions” (i.e., sentence-length
statements) as input to our sequence-to-sequence models. These topic descriptions are more sim-
ilar to MS MARCO’s natural language questions, and others have found that using well-formed
questions improves the effectiveness of pretrained reranking models [Dai and Callan, 2019].

It’s worth reemphasizing that our models are not trained on Robust04, Core17, or Core18
data. We use their queries and relevance judgments only as held-out test sets; thus, for those
collections, our evaluation adopts a zero-shot transfer setting.

7.4.2 Training and Inference

We follow Raffel et al. [2020b] and use the cross-entropy to fine-tune T5 models with various
sizes (base, large, and 3B) using a constant learning rate of 10−3 for 100K iterations (approx.
ten epochs) with class-balanced batches of size 128. To simplify our training procedure (and
related hyperparameters) as well as to eliminate the need for convergence checks, we simply train
for a fixed number of iterations, selected based on the computational demands of our largest
model and the (self-allotted) time for running experiments. We report results using the model
state at the final checkpoint. This procedure is consistent with the advice of Kaplan et al. [2020]
and recommendations by Dodge et al. [2019], since we quantify effectiveness for a particular
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computational budget. We use a maximum of 512 input tokens and two output tokens (one for the
target token and another for the end-of-sequence token). In the MS MARCO passage dataset, none
of the inputs exceed this length limitation. Training T5 base, large, and 3B take approximately
12, 48, and 160 hours overall, respectively, on a single Google TPU v3-8.

For inference, we adopt greedy decoding. Since we only use the logits of the first decoding
step, beam search and top-k random sampling [Fan et al., 2018] would give the same results.

Because Robust04, Core17, and Core18 contain full-length documents, during inference it is
not possible to directly feed the entire text at once to our model due to length restrictions. To
address this issue, we first segment each document into passages by applying a sliding window of
10 sentences with a stride of 5. We then obtain a relevance probability for each passage by clas-
sifying it independently. We select the highest probability among these passages as the relevance
probability of the document; that is, we do not use the original (BM25) retrieval scores.1 This
procedure is the same as the MaxP technique of Dai and Callan [2019] although our definition of
passages differs.

7.4.3 Baselines

We compare against the following baselines:

BM25: For a baseline bag-of-words retrieval method, we use the BM25 implementation in the
Anserini open-source IR toolkit [Yang et al., 2017],2 which is based on Lucene. We adopt all the
default settings. At inference time, we retrieve the top 1000 passages per query.

BM25+RM3: To examine the effects of query expansion, we apply the BM25+RM3 model as
described in Yang et al. [2019], where it is shown to be a competitive baseline for pre-BERT
neural ranking models. We use the implementation in Anserini, with all default settings.

BM25+BERT-large: We additionally compare our method against the BERT-large from Nogueira
et al. [2019a], which is a two-stage pipeline with bag-of-words retrieval (BM25) followed by a

1We also examined the alternative of interpolating model scores with retrieval scores, but this did not improve
effectiveness and additionally introduces an extra parameter to tune.

2http://anserini.io/
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BERT reranker. Architecturally, it is the same as our method, the only difference being BERT
vs. T5 as the reranking model. Nogueira et al. [2019a] can be characterized as the baseline of the
best methods from the official MS MARCO passage leaderboard; all higher-ranked submissions
can be described as improvements upon this basic approach, and thus it represents a competitive
comparison point. Note that we do not apply reranking on top of BM25+RM3 because RM3 is
known to reduce effectiveness when evaluated using these relevance judgments [Nogueira et al.,
2019b].

Our T5 rerankers are applied directly to the output of BM25 (and BM25+RM3) from Anserini
(1000 hits), thus providing a contrastive setup that isolates the impact of our method.

7.5 Results and Analysis

7.5.1 Ranking Results on Full Datasets

Main results on the MS MARCO passage retrieval task are shown in Table 7.1, comparing BERT-
large [Nogueira et al., 2019a] to T5 models of different sizes. MRR@10 is the official metric
for the task. Based on the Student’s paired t-test, the effectiveness of T5-3B (bolded) on the
development set is significantly better (p < 0.01) than BERT-large. Effectiveness increasing with
larger models is an expected trend [Brown et al., 2020], and with T5-11B we might obtain an
even higher MRR@10; unfortunately, we are not able to run these experiments due to their high
computational costs.

Results on Robust04, Core17, and Core18 are shown in Table 7.2, where we apply our T5
reranker on top of retrieval results from BM25 and BM25+RM3 (see Section 7.4.2). The T5-3B
results in bold are significantly better (p < 0.05) than BERT-large, T5-base, and the correspond-
ing baseline (BM25 or BM25+RM3), based on the Student’s paired t-test with Bonferroni cor-
rections. We compare our model with Birch [Yilmaz et al., 2019], BERT–MaxP [Dai and Callan,
2019], and PARADE [Li et al., 2020], which are BERT-based models that represent the state of
the art. BERT–MaxP and PARADE results are from fine-tuning on the MS MARCO data and
then fine-tuning again on Robust04 (via cross-validation).3 Birch uses Robust04, Core17, and

3MaxP numbers are from the reimplementation by Li et al. [2020], which are higher than the original paper due
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MS MARCO Passage

# Params Dev Test

BM25 - 0.184 0.186
+ BERT-large 340 M 0.372 0.365
+ T5-base 220 M 0.381 -
+ T5-large 770 M 0.393 -
+ T5-3B 3 B 0.398 0.388

Table 7.1: MRR@10 figures on the MS MARCO passage, with BERT-large figures from
Nogueira et al. [2019a]. Model sizes are also shown.

Core18 for tuning weighting parameters. In contrast, we apply inference directly using our model
trained on the MS MARCO passage data; Robust04, Core17, and Core18 relevance judgments are
only used as a test set, which makes our results zero-shot. To our knowledge, our T5-3B model
produces the highest known scores reported on these test collections.

Note that results from our T5 models have lower proportions of judged passages in the top-
20 (Jdg@20) than BM25 and BM25+RM3. In other words, our models are retrieving passages
that have never been evaluated, for which we have no relevance labels. Since standard evaluation
tools such as trec eval treat “unknown” as non-relevant, the results for our models represent a
lower bound on true effectiveness. This finding confirms recent observations that test collections
built before the advent of BERT-based rerankers place transformer-based models at a disadvan-
tage [Yilmaz et al., 2020].

As we expect, effectiveness increases with larger models, but in all cases T5 improves over
both a bag-of-words as well as a query expansion baseline. Note that the latter is considered to be
a strong baseline, even for pre-BERT neural ranking models [Yang et al., 2019]. In many cases,
we notice that the effectiveness improvement of T5-large over T5-base is small; we investigate
this curious finding further in Section 7.5.3.

to additional fine-tuning on MS MARCO.
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Robust04 Core17 Core18

Model AP P@20 nDCG@20 Jdg@20 AP P@20 nDCG@20 Jdg@20 AP P@20 nDCG@20 Jdg@20

Birch 0.3697 0.4669 0.5325 - 0.3323 0.6200 0.5092 - 0.3522 0.4920 0.4953 -
BERT–MaxP - - 0.5453 - - - - - - - - -
PARADE - - 0.5713 - - - - - - - - -

BM25 0.2531 0.3631 0.4240 0.9770 0.2087 0.4620 0.3877 0.9550 0.2495 0.4000 0.4100 0.9620
+ T5-base 0.3279 0.4464 0.5298 0.9158 0.2758 0.6070 0.5180 0.8840 0.3125 0.4700 0.4741 0.8020
+ T5-large 0.3288 0.4448 0.5345 0.8906 0.2799 0.6210 0.5356 0.9090 0.3330 0.5070 0.5057 0.8200
+ T5-3B 0.3876 0.5165 0.6091 0.9632 0.3193 0.6530 0.5629 0.9260 0.3749 0.5410 0.5493 0.8600

BM25 + RM3 0.2903 0.3821 0.4407 0.9764 0.2823 0.5500 0.4467 0.9620 0.3135 0.4700 0.4604 0.9390
+ T5-base 0.3340 0.4440 0.5532 0.9058 0.3067 0.6010 0.5203 0.8840 0.3364 0.4620 0.4698 0.7990
+ T5-large 0.3382 0.4446 0.5287 0.8840 0.3109 0.6070 0.5299 0.8880 0.3557 0.4900 0.5007 0.8070
+ T5-3B 0.4062 0.5223 0.6122 0.9588 0.3564 0.6470 0.5612 0.9100 0.3998 0.5330 0.5492 0.8540

Table 7.2: Results on Robust04, Core17, and Core18. The T5 models are trained only on MS
MARCO passage data and thus represent zero-shot transfer. Jdg@20 is the percentage of top-20
retrieved passages that were judged.

7.5.2 Effect of Model Size and Training Data

Results from the MS MARCO passage ranking task in Table 7.1 represent a direct comparison
between BERT and T5 as the retrieval pipeline is otherwise the same. For Robust04, Core17,
and Core18, we adopt a different architecture than PARADE, BERT–MaxP, and Birch, but effec-
tiveness clearly improves as the size of the T5 model increases, as shown in Table 7.2. While
T5 achieves better results, it is possible that the improvements come from simply having a big-
ger model, as opposed to any intrinsic advantages over an encoder-only architecture. Since we
do not have pretrained T5 and BERT models of comparable sizes, it is difficult to conduct a fair
empirical comparison. However, we do note from Table 7.1 that T5-base outperforms the larger
BERT-large model.

Another important dimension of size is the amount of training data available, as it is often
expensive to annotate high-quality data for information retrieval. In Figure 7.1, we report the
results of experiments fine-tuning BERT-base and T5-base with 1K, 2.5K, and 10K positive in-
stances (and an equal number of negative instances) sampled from the full MS MARCO passage
dataset. We select these two “base” models due to their more modest computational demands for
fine-tuning. We train them using a batch size of 32 for three epochs. For BERT, we use a learning
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Figure 7.1: Comparisons between T5-base and BERT-base trained with different numbers of
training instances (note the log scale in the x-axis). Results report means and 95% confidence
intervals over five trials.

rate 10−6 and no warm-up step. For T5, we use a learning rate of 10−3. Note that these differences
in experimental methodology render the results not directly comparable to those in Table 7.1. For
all conditions (2K, 5K, and 20K samples in total), we repeat the experiment five times, drawing
different samples each time; the 95% confidence intervals are shown in Figure 7.1. We run the
setting with 530K training instances only once due to its high computational cost.

As we expect, effectiveness improves as we fine-tune both models with more data. Interest-
ingly, in a data-poor setting with only a modest amount of training data, T5 can learn far more
effectively than BERT. We see clearly that with the same amount of limited training data (10K
positive instances is only about 2% of the entire dataset), T5 is significantly more effective than
BM25. In fact, with only 1K positive and 1K negative training instances, BERT performs worse
than the BM25 baseline (i.e., worse than just exact term matching), while T5 is 7 points better
than the BM25 baseline. With 10K training instances, BERT is able to modestly improve upon
BM25, but remains nine points behind T5 fine-tuned on the same amount of data. It is also in-
triguing that T5 is able to achieve roughly 10 points above the BM25 baseline, which accounts
for nearly 60% of its total gain, with only 2% of the training data.
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Figure 7.2: (a) MRR@10 vs. number of training epochs on MS MARCO. (b) MAP on Robust04
vs. number of training epochs on MS MARCO.

7.5.3 Effect of Checkpoint Selection

The application of our T5 approach to Robust04, Core17, and Core18 is zero shot since the model
is never exposed to labeled training data from those collections.4 We apply the fine-tuning proce-
dure described in Section 7.4.2 and directly evaluate on those test collections. Results in Table 7.2,
however, revealed an oddity: the effectiveness of T5-large is not substantially better than T5-base,
contrary to our expectations. Further investigation reveals this to be an issue of “how much to
fine-tune”.

In Figure 7.2(a), we show MRR@10 vs. number of training epochs on MS MARCO, and in
Figure 7.2(b), a similar graph for MAP on Robust04 (reranking BM25 results). On MS MARCO,
effectiveness increases overall as we fine-tune the model for more epochs, with the exception
of T5-base, which exhibits signs of over-training. These findings are expected. On Robust04,
however, exhibits signs of over-training for all model sizes. It makes sense that fine-tuning more
and more on a specific dataset would reduce the model’s ability to generalize to other domains.
This observation also suggests that we can obtain even better results than those in Table 7.2 if we
apply our model on an earlier checkpoint.

4It is possible, however, that during pretraining the model was exposed to passages from the target corpus.
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Proper checkpoint selection, however, requires in-domain validation data, which no longer
qualifies as zero shot. We emphasize that this diagnostic experiment was conducted after obtain-
ing the zero-shot results reported in Table 7.2 and thus does not invalidate our zero-shot claims.
We are unsure if our observations are merely idiosyncrasies of passages ranking, or a more gen-
eral problem with transfer learning using transformers. Nevertheless, this is an issue deserving
further exploration.

7.5.4 Effect of Logit Normalization

As we mentioned in Section 7.2.2, calculating the probability of the target token can be viewed
as a way of estimating compressed length. But there are still different ways of choosing the
vocabulary — that is, whether we normalize through softmax over all the possible tokens or
over “true” and “false” only. Both of them can be viewed from information distance perspective,
as Section 7.2.2 shows, just with different vocabulary. Another possible alternative is to use the
logit of the target token “true” directly. But this alternative doesn’t have interpretable meaning
through the information distance lens. Here, we investigate the effectiveness of these alternative
normalization techniques.

In Table 7.3, we show T5-base results on the development set of the MS MARCO passage
dataset. In the first row, we simply use the logit of the “true” token as the score of the passage.
This method performs poorly, with an MRR@10 close to zero. Normalizing with a softmax
over either all logits (row 2) or only the “true” and “false” logits (row 3) yields similarly high
MRR@10 figures. These results demonstrate that the logits of a particular token (in this case, the
“true” token) are not comparable across different examples, but they become comparable once
normalized appropriately. The method in row 3 is the default method throughout the chapter
because it gives slightly better results.

7.5.5 Target Token Probing Experiments

The experimental results above immediately raise two questions:
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Logit Normalization Technique MRR@10

(1) None (“true” logit only) 0.026
(2) Softmax on all logits 0.379
(3) Softmax on “true”/“false” logits only 0.381

Table 7.3: T5-base results on the development set of the MS MARCO passage dataset comparing
different logit normalization techniques.

1. Why is our approach more data-efficient than BERT? That is, why does T5 significantly out-
perform BERT when fine-tuned with far fewer training examples?

2. How is our approach fundamentally different from classification with an encoder-only model,
given that the softmax in our case reduces the model to a binary classifier?

We believe these two issues are closely related. Let’s consider the second question first: At a
high level, both neural models are learning latent representations important to the task at hand
(in this case, relevance classification), starting from a pretrained model, and then mapping these
latent representations into task-specific decisions. Thus, end-to-end effectiveness depends on
a combination of the knowledge imparted via pretraining (already present at the start) and the
knowledge gained via fine-tuning on task-specific data. In the classification-based approach using
BERT proposed by Nogueira and Cho [2019], the model relies on a single fully-connected layer to
map the latent representation (i.e., the [CLS] token) into this binary decision. While the approach
can exploit pretrained knowledge when fine-tuning the latent representations, the final mapping
(i.e., the fully-connected layer) needs to be learned from scratch (since it is randomly initialized).5

In contrast, T5 can exploit both pretrained knowledge and knowledge gleaned from fine-tuning
in learning task-specific latent representations as well as the mapping to relevance decisions;
specifically, we note that T5 is pretrained with tasks whose outputs are “true” and “false”. Unlike
the fully-connected layer in the encoder-only approach, T5 can exploit the part of the network
used for generating output tokens. Embedded in that neural machinery is latent knowledge about

5While other models such as PARADE [Li et al., 2020] layer additional neural components on top of BERT, our
basic argument still holds since these additional parts of the model are also randomly initialized.
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Target Token Training Size (query-relevant doc pairs)

Type Relevant Non-Relevant 1K 10K 530K (all)

Baseline true false 0.254 ±0.014 0.294 ±0.002 0.374

Alternate yes no 0.218 ±0.040 0.301 ±0.004 0.378
Reverse false true 0.243 ±0.025 0.282 ±0.006 0.374
Antonyms hot cold 0.240 ±0.021 0.246 ±0.005 0.375
Related Words apple orange 0.206 ±0.026 0.260 ±0.003 0.376
Unrelated Words hot orange 0.194 ±0.018 0.242 ±0.005 0.377
Subwords ab de 0.179 ±0.014 0.228 ±0.005 0.377

Table 7.4: Results with T5-base on the development set of the MS MARCO passage dataset
comparing different target token manipulations.

semantics, linguistic relations, and lexical features that are necessary to generate fluent text. In
other words, T5 has access to an additional source of knowledge that BERT does not.

This explanation, we believe, also answers the first question. With plenty of training data,
BERT has no trouble learning the final fully-connected layer (mapping latent representations to
decisions), even from scratch (i.e., random initialization). However, faced with few training exam-
ples, BERT still must learn the classification layer, but without any benefit from pretraining—and
the experiments in Figure 7.1 show that it is unable to do so effectively. In contrast, in a low-data
setting, T5 can “fall back” on pretrained neural machinery for generating fluent textual output. In
other words, the pretraining objective in T5 seems to transfer well to generating relevance labels,
which resonates with the main findings in Chapter 5.

To turn our intuition into testable hypotheses, we can vary the target tokens used as the pre-
diction targets and manipulate their “linguistic relatedness”—to deliberately “disrupt” linguistic
knowledge that may be captured in the model. As Puri and Catanzaro [2019] show, the choice of
target tokens impacts effectiveness. Recall that in our baseline, “true” indicates a relevant passage
and “false”, a non-relevant passage. We investigate the following contrastive variants:

• “Alternate”. Instead of “true” and “false”, we use “yes” and “no”, respectively. Here we are
probing with an equally intuitive formulation of the targets, except that these words have not
been used in pretraining, and thus the model is less likely to have strong prior associations.
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• “Reverse”. We swap the target tokens; that is, “false” indicates a relevant passage and “true”,
a non-relevant passage. If the model is indeed exploiting latent knowledge about linguistic re-
lations, then forcing the model to make opposite associations on the same polarity scale should
lower effectiveness with respect to the baseline.

• “Antonyms”. We map a relevant passage to “hot” and a non-relevant passage to “cold”. This
preserves the use of adjectives at opposite ends of a polarity scale, but a scale that is com-
pletely unrelated to relevance. If the model is exploiting latent knowledge, we would expect
effectiveness to be lower than the baseline.

• “Related Words”. We map a relevant passage to “apple” and a non-relevant passage to a related
word “orange”. These words are semantically related, but do not present a polarity contrast as
before. We would expect effectiveness to be lower than the baseline.

• “Unrelated Words”. We map a relevant passage to “hot” and a non-relevant passage to a
completely unrelated word “orange”. Thus, we force the model to build an arbitrary semantic
mapping. We would expect effectiveness to be lower than the baseline and also lower than using
related words.

• “Subwords”. We map a relevant passage to the subword “ ab” and a non-relevant passage to the
subword “ de”. Note that we carefully select single tokens after tokenization by SentencePiece.
Here, we remove all “semantics” from the input–output mapping and thus expect effectiveness
to be lower than the above conditions.

Using these target token configurations, we conduct experiments on T5-base with either 1K (or
10K) positive and 1K (or 10K) negative instances sampled from the full MS MARCO passage
dataset, same as in Section 7.5.2. Once again, for each of the conditions, we repeat the experiment
five times, drawing different samples every time. For reference, we also fine-tune with all available
data. Note that the effectiveness of T5-base is different from the values in Table 7.1 because we
use slightly different (more computationally-efficient) hyperparameters: here, we train for 40K
steps using a batch of size 256. Experimental results are shown in Table 7.4, with means and
95% confidence intervals.

When fine-tuning with all available data, the choice of target tokens has negligible impact on
effectiveness. These small differences can be explained by the stochastic nature of the training
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process. This does appear consistent with our hypothesis that with sufficient training data, T5 is
able to learn arbitrary mappings between passage relevance and target tokens.

In the data-poor setting, the results are also consistent with our hypotheses. With minimal
amounts of training data (the 1K condition), the confidence intervals from different samples
mostly overlap (with the exception of subwords), so we do not have the benefit of greater certainty
that comes with statistical significance. In the 10K condition, our target token manipulations all
significantly reduce effectiveness, except for the “Alternate” condition, which performs slightly
better than the baseline condition. This seems somewhat idiosyncratic, but we suspect that the
prevalence of the target tokens in the data used for pretraining might have an impact: yes/no ap-
pear more often in the pretraining corpus than true/false. Overall, it is clear that the semantics of
the target tokens, even small differences, can affect the overall effectiveness of the model. The
“Unrelated Words” and “Subwords” conditions are clearly less effective. Finally, we note that
the 95% confidence intervals are smaller under the 10K condition, which illustrates the greater
instability in effectiveness when training on smaller datasets (which is expected).

These results support our hypothesis that T5 is exploiting latent knowledge to aid in predicting
relevance. As the strongest piece of evidence, in the 1K condition, “Subwords” performs worse
than the BM25 baseline; i.e., it exhibits difficulty achieving any predictive power at all. There
are at least two potential factors at play: we are removing semantic associations, as the subwords
are token fragments, and furthermore, we are forcing the model to produce tokens in an order
(and context) that it has not encountered during pretraining. We are unable to tease apart these
effects currently, but either explanation is consistent with our intuitions. For all other target token
manipulations, we are at least able to beat the BM25 baseline under the 1K condition.

Finally, our experiments are inconclusive regarding the importance of having a polarity scale
in the low-data setting. Quite clearly, reversing “true” and “false” has a noticeable impact (espe-
cially in the 10K condition), but T5 is more effective learning targets that are semantically related
but do not present a polarity contrast (“apple” and ”orange”) than targets that encode an unre-
lated polarity contrast (“hot” and “cold”). Due to computational limitations (primarily from the
number of trials necessary to obtain confidence intervals), we experiment with only one target
token pair for each category; additional trials with different targets will be required to draw firmer
conclusions.
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7.6 Summary

In this chapter, we restrict representation by doing compression but without the process of ac-
tual compression. We take the advantage of pretrained language model’s exceptional ability in
capturing probabilistic distribution by introducing a novel generation-based approach to passage
reranking. Our models outperform a classification-based encoder-only approach, especially in
the low-data regime with limited training data. We attempt to explain these observations in terms
of hypotheses about the knowledge that a model gains from pretraining vs. fine-tuning on task-
specific data. These hypotheses are operationalized into target token probing experiments, where
we demonstrate that the model appears to exploit knowledge from its ability to generate fluent
natural language text. Overall, leveraging the perspective of compression helps us exploit the
pretrained generative models effectively especially in a low-data regime.
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Chapter 8

Restrict Representations by Compression
without Actual Compression under No
Supervision

In Chapter 7, we show how pretrained language models can be utilized in a generative way for NLP
tasks. However, the requirement of fine-tuning set two major limitations for this method: (1) high
demand for computational resources required; (2) a fair amount of labeled data needed. The heavy
reliance on a single token’s log probability in Chapter 7 creates rigid format requirements that need
to be fine-tuned on about one thousand labeled data in order to unleash the power of pretrained
language models. In this chapter, we introduce how to utilize large language models (LLMs) in a
non-parametric way under one-shot and zero-shot settings, echoing with the possibility of using
log-likelihood as estimated compressed length for autoregressive models proposed in Chapter 5.

To be specific, we present a novel approach that utilizes the Generative Pretrained Transformer
(GPT) to approximate Kolmogorov complexity, to estimate the optimal information distance for
few-shot learning. We first propose using GPT as a prior for lossless text compression, achieving a
noteworthy compression ratio. Experiment with LLAMA2-7B backbone achieves a compression
ratio of 15.5 on enwik9. We justify the pretraining objective of GPT models by demonstrating
its equivalence to the compression length, and, consequently, its ability to approximate the infor-
mation distance for texts. Leveraging the approximated information distance, our method allows
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for the direct application of pretrained GPT models in quantitative text similarity measurements.
Experiment results show that our method in most cases achieves superior performance compared
to fine-tuning and prompt baselines on challenging NLP tasks, including semantic similarity, zero
and one-shot text classification, and zero-shot passage reranking with no parameters.

This work is in submission:

• Cynthia Huang*, Yuqing Xie*, Zhiying Jiang*, Jimmy Lin, Ming Li. Approximating
Human-Like Few-shot Learning with GPT-based Compression. In Submission, 2023.

8.1 Overview

Large labeled datasets are often scarce in the real world where annotation is expensive and time
consuming. This has prompted the development of few-shot learning, where the model is learned
using only a few annotated samples [Finn et al., 2017]. One resort to the few-shot scenario is
to utilize the pretrained models like Generative Pretrained Transformers (GPTs) [Brown et al.,
2020; OpenAI, 2023; Radford et al., 2019] with in-context learning [Brown et al., 2020; Zhao
et al., 2021], fine-tuning [Liu et al., 2022] or the combination [Ben-David et al., 2022]. However,
in-context learning requires heavy engineering to achieve a high accuracy [Liu et al., 2023], and
its ability to generalize to different tasks is constrained by the input size and the need for precise
formatting. On the other hand, fine-tuning also has its limitations, the most notable of which
is its inability to generalize to out-of-distribution datasets when labeled samples are extremely
scarce [Nogueira et al., 2020; Yu et al., 2021].

Extending the work in Chapter 5, Chapter 6, we use information distance to help us utilize the
distribution captured in LLMs and exploit it using as few labeled data as possible without param-
eters. Recall that information distance, consisting of Kolmogorov complexity [Li and Vitányi,
2008], is both data-type-agnostic and distribution-agnostic. Moreover, its capability to be used
without any parameter tuning allows this metric to be generalized across different domains. Build-
ing on this information distance, we propose a novel method that leverages the knowledge that
GPT models learned during pretraining to tasks traditionally challenging for prompt engineer-
ing or fine-tuning, including semantic similarity, zero-shot passage reranking and zero-shot text
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classification. The premise of our method is that pretrained language models can optimize the
compression ratio and thus better approximate Kolmogorov complexity. Specifically, achieving
a higher compression ratio during lossless compression requires a richer prior capable of more
accurate next-token predictions based on preceding content. For example, Huffman Coding em-
ploys shorter bit arrays for higher-frequency elements to yield a shorter compressed sequence.
This can be further enhanced by adopting bi-gram or tri-gram Huffman Coding. Large language
models can then refine the next token distribution accuracy, thereby optimizing the compression
ratio.

Despite the potential of large language model-based compressors, their direct application to
downstream tasks is nearly infeasible due to speed constraints. In addition to the inference speed
required by the language model itself, the overhead of the compressor is even more substantial.
Fortunately, the information distance only requires the compressed length instead of the actual
compression of the text sequence. We demonstrate an equivalence of the compression length
under arithmetic coding to the negative log probability for the text tokens under GPT. This easy-
to-compute compression length enables us to efficiently approximate the information distance
without the overheads of the actual compression. By approximating normalized information dis-
tances [Cilibrasi and Vitányi, 2003; Li et al., 2001b, 2004] using GPT-based compression, we
significantly enhance GPT’s ability to quantitatively capture text similarities, which forms the
foundation for its application in downstream NLP tasks.

Our contributions are as follows: (1) We propose a novel way that utilizes pretrained GPT
models to approximate information distance to solve various downstream NLP tasks, without
fine-tuning or prompt engineering. (2) By connecting arithmetic coding’s compression length
to the cumulative negative log probabilities in GPT models, we efficiently compute and approx-
imate the information distance derived from Kolmogorov complexity. (3) We validate the ef-
fectiveness of our method through experiments in semantic textual similarity, text classification
and re-ranking under zero-shot and one-shot settings, exhibiting notable improvement over fine-
tuning and prompt baselines. (4) We also demonstrate that our lossless text compression method
GPT-AC achieves SOTA compression ratio with Llama2-7B backbone, highlighting the potential
of pre-trained large language models as powerful priors in compression.
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Figure 8.1: Illustration of GPT-based Arithmetic Encoding

8.2 Non-Parametric Learning by Compression with GPT

In Section 6.2 and Section 5.2, we introduce the framework of NPC that uses a compressor to
approximate information distance. We use the same basic component here: a compressor and a
compressor-based distance metric. The major difference is that we use a GPT-based compressor.

8.2.1 GPT-based Compression

In this section, we first introduce GPT-based Arithmetic Coding (GPT-AC) where GPT is inte-
grated into adaptive arithmetic coding, and then demonstrate how to use the compressed length
directly without applying a coding scheme.

GPT as the Entropy Model Consider a text T = (t1, t2, ..., tn), which is composed of a se-
quence of tokens. Let ϕ represent a GPT model, where ϕ(t1:(i−1)) = Pi(ti|t1, t2, ..., ti−1) models
the probability distribution Pi of the next token ti. The function ϕ(T ) outputs all next-token prob-
ability distributions (P2, · · · , Pn+1). To derive the distribution for P1, an EOS (End Of Sentence)
token is added at the start of the text as t0. For each token ti, the associated Pi serves as the
probability distribution of the entropy model for both encoding and decoding in the compressor.

GPT-based Arithmetic Encoding In the encoding phase, under the schema of adaptive arith-
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metic coding, we start with an initial interval I0 = [0, 1). For each token ti in the sequence, we
calculate the cumulative distribution function Fi(ti) and Pi(ti) based on ϕ(t1:(i−1)). Then, the
interval I = [Ilow, Ihigh) is updated according to the range assigned to ti:

I ilow = I i−1
low + (I i−1

high − I i−1
low )× Fi(ti),

I ihigh = I i−1
low + (I i−1

high − I i−1
low )× (Fi(ti) + Pi(ti)).

(8.1)

After updating I for each token in the sequence, we can pick any number, say x, within the final
interval to represent the entire text sequence.

GPT-based Arithmetic Decoding When decoding the encoded message x, the token t1 can be
identified by finding the range [F1(t1), F1(t1) + P1(t1)] that includes x. The value of x is then
updated by normalizing it within the range of t1, using the formula: x ← x−F1(t1)

P1(t1)
. With this

updated x and the next-token probability distribution ϕ(t2), we can decode the next token t2.
This process is repeated until an EOS token is encountered, indicating the end of the text. The
text can be losslessly decoded using x and ϕ alone.

Negative Log Probability as Compression Length During the arithmetic encoding, the length
of the interval I i equals to I i−1 ∗ Pi(ti). From an initial interval of length 1, the entire message’s
encoding results in a final interval with a length of

∏n
i=1 Pi(ti). The number of bits required to rep-

resent this final interval, and thus the message T , is
∑n

i=1− log2 Pi(ti). This reveals a method to
approximate the compression length directly without exactly performing the compression. With
the triangular forward attention masking utilized by GPT, we can pass the full tokenized text
sequence to the model and obtain probability distributions for all tokens.

GPT Pretraining Optimizes for Compression Length The optimization target during pretrain-
ing for auto-regressive models such as GPT is defined as:

L(T |pmodel) = − log pmodel(T ) = − log pmodel(t1, t2, ..., tn) =
n∑

i=1

− log2 Pi(ti).

For entropy coding, H(T ) ≜ E(− log pdata(T )), defining the optimal code length. While pdata is
often unknown, we thus use the observation p ¯data to approximate pdata:

H(T ) = Epdata [− log pmodel(T )] ≃ Ep ¯data
[− log pmodel(T )]
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According to The Shannon–Fano–Elias coding scheme [Cover, 1999], we can construct a prefix-
free code of length− log pmodel(t1, t2, ..., tn)+2 bits. Consequently, the pretraining phase of GPT
models is essentially an exercise in learning a compressor that optimizes the coding length.

The Rank Coding Variant In the method outlined above, we primarily employ arithmetic cod-
ing for text compression. An alternative variant of lossless coding uses rank instead of probabil-
ity [Herrera and Luo, 2021]. After the GPT model predicts the distribution of the next token, we
can rank all tokens according to their probability. The target token is assigned the corresponding
rank index, with tokens of higher probability having a smaller rank index. In this variant, we ap-
proximate the compression length as

∑n
i=1 log2(ranki) where ranki denotes the rank for token

i. We call this variant “Log-Rank”.

8.2.2 Information Distance Approximation and Variation

Having computed the compression length using the GPT-AC method, we can now utilize it to
approximate the information distance. Let x = {x1, · · · , xn} and y = {y1, · · · , ym} denote two
tokenized text sequences, where each xi or yi represents a token in the sequence. We approxi-
mate K(x) using the compression length C(x) =

∑n
i=1− log2 Pi(xi) where Pi represents the

probability distribution for xi based on the GPT model prediction.

In both Section 5.2 and Section 6.2, we approximate K(xy) instead of K(x|y) as concate-
nation provides more flexibility. But autoregressive models make conditioning on input feasible.
We can approximate K(x|y) as follows: let P ′

i = ϕ(y, x1:i−1) denotes the probability distribu-
tion for token xi outputed by the GPT model, given y = (y1, · · · , ym) and previous tokens in x,
K(x|y) can be estimated as C(x|y) =

∑n
i=1− log2 P

′
i (xi). A similar approach can be used to

estimate K(y) and K(y|x). We denote all compressed-based approximations in C(·).

Similar to previous sections, we use Normalized Information Distance (NID). To make the
notation align with other variations, we useMmax to represent it:

Mmax(x, y) = NID =
max{K(x|y), K(y|x)}
max{K(x), K(y)}

(8.2)

To tackle challenges such as partial matching 1 , Bennett et al. [1998] proposed the following
1Partial matching means situations where only portions of two objects match each other.
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variants of the universal distances for broader application scenarios:

Mmin(x, y) =
min{K(x|y), K(y|x)}
min{K(x), K(y)}

. (8.3)

Keogh et al. [2004a] proposed the Compression-Based Dissimilarity Measure (CDM) for data
mining applications, demonstrating its effectiveness in practice. We rescale it to fit within the
range [0, 1):

Mmean(x, y) =
C(x|y) + C(y|x)
C(x) + C(y)

= 2 ∗ CDM − 1, CDM =
C(xy)

C(x) + C(y)
(8.4)

8.3 Related Works

8.3.1 Few-shot Learning

Prior to the emergence of large pretrained models, the majority of previous works on few-shot
learning can be divided into two streams: meta/transfer-learning based methods [Edwards and
Storkey, 2016; Snell et al., 2017b; Sung et al., 2018; Vinyals et al., 2016] and data augmentation
based methods [Douze et al., 2018; Gao et al., 2018; Kwitt et al., 2016; Pfister et al., 2014].
However, the former relies on constraining the hypothesis space by prior knowledge from other
tasks or support datasets while the later depends on the prior knowledge of the datasets, often
accompanied with the smoothness assumption [Van Engelen and Hoos, 2020] (i.e., closeness of
data points in the input space shares the same label). Pretrained models, on the other hand, have
incorporated prior knowledge during the pretraining stage and are proved to be excellent few-shot
learners [Brown et al., 2020]. However, pretrained models suffer from (1) high computational cost
and (2) unsatisfactory performance in out-of-distributed datasets [Yu et al., 2021]. The problem
of computational cost is especially prominent for large language models like GPT-3 where it is
infeasible to fine-tune locally. We utilize pretrained language model for one-shot and zero-shot
classification tasks with no fine-tuning required.
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8.3.2 Kolmogorov Complexity and Compression Distance

Information distance was first proposed by Bennett et al. [1998] as a universal metric. Due to
the problem of incomputability, Chen et al. [2004]; Cilibrasi and Vitányi [2003]; Li et al. [2004]
have derived computable versions of information distances for tasks like clustering and plagia-
rism detection, shedding light on the possibility of using real-world compressors to approximate
Kolmogorov complexity. Recently, Jiang et al. [2022a] propose non-parametric learning by com-
pression with latent variables (NPC-LV) where neural networks are incorporated into information
distance. They demonstrate that trained generative models like variational autoencoders can be
used directly with zero parameters for downstream few-shot image classification. However, it re-
mains open in how to incorporate pretrained language models into this framework, which we aim
to address in this chapter.

8.3.3 Neural Compression

Our GPT-based compressor belongs to the neural compression where neural networks are used
for data compression. Shannon’s source coding theorem [Shannon, 1948] establishes the limit of
the lossless compression on random variables with probability distribution. With the near opti-
mal coding schemes, the bottleneck is the entropy model. Fortunately, deep generative models
with explicit density estimation serve as the entropy model that can learn adaptively. Townsend
et al. [2019a] propose Bits-Back with Asymmetric Numeral Systems (BB-ANS), a lossless com-
pression algorithm based on VAE. Bit-Swap [Kingma et al., 2019b] further improves BB-ANS
by incorporating multiple latent variables and hierarchical networks. In addition to autoencoders,
Flow [Rezende and Mohamed, 2015; Wang et al., 2022]-based lossless compression [Hoogeboom
et al., 2019] outperform Bit-Swap and achieve the state of the art compression ratio. The devel-
opment of deep neural networks also benefit lossless text compression. Goyal et al. [2019b] use
recurrent neural networks [Schuster and Paliwal, 1997] combining with arithmetic coding [Wit-
ten et al., 1987a] to achieve higher compression ratio than gzip. Recent advancements, such as
the fast transformer-based general-purpose lossless compressor TRACE [Mao et al., 2022], have
demonstrated promising results in enhancing compression performance with transformer archi-
tecture.
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8.3.4 Pretrained Models

Pretraining has been adopted in numerous deep learning models with the rise of transformer
[Vaswani et al., 2017] due to its ability of learning task-agnostic representation. In NLP, encoder-
only transformer like BERT [Devlin et al., 2019] has achieved the state of the art performance
on GLUE benchmark [Wang et al., 2018a]including tasks like natural language inference and
sentiment analysis with only MLP and fine-tuning. Decoder-only transformer like GPT [Brown
et al., 2020; Radford et al., 2019] can treat downstream discriminative tasks in a generative way.
However, previous works on few-shot learning using language models are either prompt-based [Li
and Liang, 2021; Perez et al., 2021; Petroni et al., 2019] or fine-tuning-based [Nogueira et al.,
2020; Yamada et al., 2020; Zhao et al., 2021] while we propose a new way to leverage pretrained
language models for few-shot learning without fine-tuning or additional parameters.

8.4 Experimental Setup

Our experimental evaluation consists of four key components: lossless text compression and three
downstream tasks, namely semantic textual similarity, text classification, and passage reranking.
For downstream applications, we mainly conduct experiments with the GPT-2 small (124M)2 and
BERT-base-uncased(110M) models from HuggingFace Hub3.

We now introduce how the distances discussed in Section 8.2.2 can be applied to various
NLP tasks. To calculate the text similarity score between two texts x, y, we first compute their
individual compression lengthsC(x), C(y). We also calculate the joint and conditional compres-
sion lengths C(xy), C(x|y), C(y|x). Subsequently, we use these values to compute the distance
metrics defined in Section 8.2.2 asM. We then apply these distance measures to specific tasks.

• For semantic textual similarity, we treat the two sentences as x and y, and use the metric
M to predict similarity.

2https://huggingface.co/gpt2 We opted for this version mainly due to the lack of complete access to
the token probability distribution in the APIs of newer versions.

3https://huggingface.co/gpt2, https://huggingface.co/bert-base-uncased

118

https://huggingface.co/gpt2
https://huggingface.co/gpt2
https://huggingface.co/bert-base-uncased


Model→ GPT-AC (Ours) gzip 7z DZIP TRACE

Dataset ↓ Llama2-7B L-744M M-355M S-124M

Enwik9 15.56 8.05 7.71 6.53 3.09 4.35 4.47 5.29
BookCorpus 10.55 8.34 7.89 7.22 2.77 3.80 3.95 4.58

Table 8.1: Compression Ratio by Compression Method. Note that the compression ratio equals
to Original text length / Compressed text length. Under GPT-AC, we also list the model’s size
(L,M,S) and its number of parameters.

• For zero-shot text classification, we treat the label descriptions as x and the multiple-choice
options as y. For one-shot text classification, we consider the training sample as x and the
test sample as y. We classify the text sample by comparingM for different classes.

• For passage reranking, we treat the documents as x and the query as y, we perform ranking
according toM.

8.5 Results and Analysis

8.5.1 Lossless Text Compression

In the Lossless Text Compression task, we assess our method on the Enwik9 [Singh et al., 2020]
and BookCorpus [Zhu et al., 2015] datasets. GPT-AC4 is benchmarked against both traditional
methods, such as gzip [Deutsch, 1996], and contemporary neural network-based techniques like
DZIP [Goyal et al., 2019a] and TRACE [Mao et al., 2022].

As shown in Table 8.1, GPT-AC significantly outperforms both conventional compression
methods like gzip and 7z, in terms of the compression ratio. Even with the GPT-2 small model,
GPT-AC achieves a more than 2-fold enhancement in compression ratio compared to the widely-
used GZIP, on both the Enwik9 and Book datasets. On Enwik9, GPT-AC with Llama2-7B records

4In actual implementation, GPT-AC processes every chunk of 2500 characters independently. Though this may
slightly compromise the compression ratio, it enables parallel computing.
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Dataset # Test GPT-AC (Ours) gzip GPT-emb BERT-emb

STS-12 3,108 40.2 50.4 5.4 30.9
STS-13 1,500 66.0 48.4 14.6 59.9
STS-14 3,750 55.3 43.3 10.9 47.7
STS-15 3,000 70.3 59.1 9.6 60.3
STS-16 1,186 69.5 59.4 26.8 60.3
STS-b 1,379 55.0 50.7 12.4 47.3

Table 8.2: Semantic Textual Similarity Performance. Spearman Rank Correlation ρ between the
distance metrics and given labels for the STS datasets. ρ ∗ 100 is reported.

a compression ratio of 15.56, a 67% enhancement over the previous state of the art of 9.33, based
on NNCP [Bellard, 2021] 5. As the language model increases, the compression ratio consistently
improves, suggesting that larger and better-trained language models will further amplify these
results.

8.5.2 Semantic Textual Similarity

For Text Semantic Modeling, we test the models on the Semantic Textual Similarity benchmark
(STS-b) [Cer et al., 2017]. The datasets consist of sentence pairs with labels from 0 to 5 indicating
semantic relatedness. We compare GPT-AC against GPT-2 [Radford et al., 2019], taking the last
token embedding vector, and BERT [Devlin et al., 2019], taking the averaged token embedding
vector6. We then calculate the cosine similarity between these vectors to serve as the distance
measure. For gzip, we follow Section 6.2 and use the normalized compression distance as the
metric.

As shown in Table 8.2, our method substantially outperforms the cosine similarity distance
metrics derived from GPT-2 embeddings and also shows moderate enhancement over those uti-
lizing BERT embeddings. These results demonstrate the effectiveness of the approximated infor-

5http://mattmahoney.net/dc/text.html
6These embeddings have proven to be effective in previous studies [Sheng et al., 2022].
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Model→ GPT-AC gzip GPT-prompt GPT BERT (SBERT)
Dataset↓ # C Domain↓ (Ours)

Zero-shot Multiple Choice
PIQA 2 Reasoning 61.5 53.4 50.5 49.2 50.1 (56.5)
CaseHOLD 5 Legal 58.3 52.4 20.3 19.9 35.0 (50.6)

One-shot
AGNews 4 News 47.8±3.3 30.2±3.0 47.2±2.9 37.7±7.2 45.5±3.1 (45.8±10.2)
Medical 5 Bio-Med 27.9±3.2 25.6±2.8 22.1±1.2 23.7±3.5 23.8±4.8 (39.7±9.1)
SST5 5 Sentiment 26.8±3.1 21.2±2.7 29.8±1.6 22.7±2.8 21.1±3.3 (26.2±2.3)
Banking77 77 Finance 34.0±1.3 20.3±1.5 - 21.7±1.7 24.5±3.9 (53.1±1.9)

Table 8.3: Text Classification Accuracy (100%). We report the averaged accuracy across 5 runs
with different random seeds, together for the standard deviations. This does not apply to zero-shot
experiments because the models do not contain randomness.

mation distance in capturing semantic similarities.

8.5.3 Text Classification

For Text Classification, we evaluate the models on PIQA (Physical Interaction: Question An-
swering [Bisk et al., 2020]) and CaseHOLD (Case Holdings On Legal Decisions [Zheng et al.,
2021]) for zero-shot classification, and SST-5 (sentiment analysis) [Socher et al., 2013], Medical
abstracts [Schopf et al., 2023], AG-News (news headlines) [Zhang et al., 2015b], and Banking77
(banking and financial) [Casanueva et al., 2020] for one-shot classification. We compare our
method with two main approaches: 1) fine-tuning GPT-2 or BERT with a classification layer, 2)
in-context learning with GPT-2, denoted as GPT-prompt (detailed settings are in Appendix K),
and 3) cosine similarity using Sentence-BERT7 embeddings as a metric for classification.

As depicted in Table 8.3, in the zero-shot multiple-choice classification context, the infor-
mation distance approximated by GPT-AC delivers superior results compared to cosine similar-
ity distance metrics based on the embeddings from GPT-2, BERT, and even SBERT. Note that

7all-MiniLM-L12-v2
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SBERT, which is fine-tuned on 1 billion high-quality labeled sentence pairs, does not fall under
our setting of NS-FSL; it is included to provide a point of reference.

In one-shot text classification, our method surpasses both fine-tuned GPT and BERT on all
datasets. Additionally, our method also outperforms the GPT-prompt version in all datasets ex-
cept SST-5. Given that SST-5 is a widely used classification benchmark, we hypothesize that
the superior performance of the prompt approach could be due to data leakage during GPT pre-
training. Moreover, we did not apply the GPT-prompt method to the banking77 dataset because
accommodating one-shot samples of 77 classes [Casanueva et al., 2020] within the GPT-2 prompt
proves challenging, and adjusting the prompt can be complex. This issue represents a significant
hurdle when applying GPT-2 with in-context learning.

8.5.4 Passage Reranking

For Passage Reranking, we evaluate the models on different domain-specific zero-shot text re-
trieval datasets, including Trec-Covid [Voorhees et al., 2021], Trec-News [Soboroff et al., 2019],
SciFact [Wadden et al., 2020], BioASQ [Tsatsaronis et al., 2015], FiQA-2018 [Maia et al., 2018],
and ArguAna [Wachsmuth et al., 2018]. Given a query, we first retrieve the top relevant document
with BM25 [Robertson et al., 1995] with Elastic Search API8. We then rerank the documents with
the models. We compare our system with the original BM25 ranking, and the Dense Passage Re-
trieval (DPR) [Karpukhin et al., 2020a] model, a BERT-based model already fine-tuned on the
MS MARCO [Campos et al., 2016] for ranking, and a text gzip compressor.

As shown in Table 8.4, our proposed method outperforms the BERT-based DPR model across
all settings. Despite the DPR model being fine-tuned on the massive labeled MS MARCO dataset,
our performance remains superior. We also benchmark our model against the gzip compres-
sion method. The improvements observed indicate that GPT-AC can provide significant semantic
information, leading to improved ranking results. Notably, BM25 is a strong baseline in that
the domain-specific texts can contain many out-of-distribution terms, potentially hampering the
performance of the language model. Despite this, our method demonstrates comparable perfor-
mance across majority of the datasets and surpasses BM25 in certain domains, particularly in
Bio-Medical and Finance, which requires much domain-specific understanding.

8https://github.com/elastic/elasticsearch
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Model→ GPT-AC(Ours) BM25 gzip (DPR)
Dataset ↓ # Test Domain

TREC-COVID 50 COVID 0.694 0.656 0.447 (0.332)
TREC-NEWS 57 News 0.225 0.398 0.142 (0.161)
SciFact 300 Scientific 0.648 0.665 0.053 (0.318)
BioASQ 500 Bio-Med 0.517 0.465 0.157 (0.127)
FiQA-2018 648 Finance 0.239 0.236 0.032 (0.112)
ArguAna 1406 Argument 0.327 0.315 0.073 (0.175)

Table 8.4: Text Re-Ranking Effectiveness (NDCG@10). Retrieving top 100 relevant passages
using BM25 and re-ranking using GPT-AC. We present the best result among different metric
combinations.

8.5.5 Comparison of Distance Metrics

In Table 8.5, we compare the results of all distance metrics with two different coding variants.
As stated in Section 8.2.2, we always take the longer sequence results withMmax, the shorter
sequence results withMmin, and the average over both of them withMmean. We aim to avoid
bias towards any single sequence when both texts contain similar or equally important informa-
tion, suggesting thatMmean is the most suitable. This intuition is justified by the results for STS
and one-shot classification. However, the approach differs for re-ranking. Typically, queries con-
tain fewer than 20 tokens, while documents often contain hundreds of tokens. We thus want to
focus the measurement on the query part, without being disturbed by the extra or non-relevant
information in the document. Therefore,Mmin is the preferred choice. ArguAna, however, is a
unique case as both the query and the document contain about 250 tokens with similar content,
makingMmean more suitable. For zero-shot classification, despite the varying content and text
length between the two sequences, both pieces of information remain important, makingMmean

the optimal choice. Finally, we observeMmean works better with Log-Rank, whileMmin works
better with Log-Prob. However, no specific trend is evident for a broader conclusion.
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Log-Prob Log-Rank

Dataset len(x) len(y) Mmax Mmin Mmean Mmax Mmin Mmean

Semantic Textual Similarity (Spearman Rank Correlation ρ ∗ 100)
sts-b 13 13 44.7 47.6 48.2 50.4 54.2 55.0

Zero-shot Classification (Accuracy %)
PIQA 24 10 60.0 56.4 62.0 59.5 55.0 61.5
CaseHold 29 219 56.0 27.2 57.9 55.2 27.6 58.3

One-shot Classification (Accuracy %)
AGNews 53 53 41.3 41.1 47.8 40.5 39.9 43.3
Medical 296 268 25.4 27.0 27.9 25.5 26.3 27.7
SST5 23 24 24.8 26.2 26.7 24.3 26.0 26.8
Banking77 15 14 30.6 25.2 33.9 29.8 24.7 34.0

Re-ranking (NDCG@10)
TREC-COVID 303 17 0.459 0.655 0.467 0.473 0.694 0.489
TREC-NEWS 808 16 0.173 0.161 0.167 0.184 0.161 0.186
BioASQ 304 14 0.306 0.517 0.364 0.267 0.507 0.330
FiQA-2018 247 15 0.128 0.239 0.154 0.118 0.222 0.143
ArguAna 276 247 0.277 0.257 0.301 0.282 0.262 0.307
SciFact 345 21 0.389 0.648 0.519 0.351 0.635 0.478

Table 8.5: Distance metric Analysis. We also list the token length of both x and y

8.5.6 Information Distance and Classification Accuracy

In Figure 8.2, we aim to illustrate the performance variance when the test cases have differ-
ent distance scoring. For each test case, we compute the prediction distance ratio Rpred(x) =

M(x,Dc∗ )
1

|C|
∑

c M(x,Dc)
. Here, Dc represents the one-shot example in class c, C embodies all the classes,

and c∗ stands for the class predicted under metricM. A smaller Rpred suggests that the predicted
class is more distant from the average distance. We then categorize all the test samples according
to their Rpred value, with each group containing 10% of the data. In Figure 8.2, the x-axis repre-
sents the average Rpred within each group, and the y-axis represents the group accuracy. The plot
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Figure 8.2: Relation between Prediction Distance Ratio and One-shot Classification Accuracy.
Experiment result underMmean with Log-Prob.

indicates that the further the predicted class deviates from the average, the better performance of
our method.

8.6 Summary

In this chapter, we introduced GPT-based Compression, a novel approach that employs GPT mod-
els to estimate the optimal information distance for few-shot learning, under the NS-FSL setting
like in Chapter 5. We demonstrated how the pretraining objectives of GPT models align with
the minimization of compression length and proposed an efficient method for approximating this
length using negative log probability. By applying this compression technique, we are able to
approximate the information distance and demonstrate its efficacy in various downstream NLP
tasks, including semantic similarities, zero-shot and one-shot text classification, and zero-shot
passage reranking with no parameters.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

Deep neural networks have achieved remarkable performance in various fields. The pace of
progress is even faster with the help of pre-trained models. Powerful as pre-trained models are,
they face two major challenges: interpretability and generalizability. We approach both two prob-
lems by restricting representation.

We propose two major directions to restrict representation — restricting the representation in
the middle (i.e., inserting a bottleneck) and restricting the representation at the end (i.e., doing
compression). We show the effectiveness of restricting representation for both interpretability
and generalizability. Additionally, we also show the connection between inserting bottleneck and
doing compression. Specifically, our main contribution can be summarized as follows:

• We implement an attribution method with information bottleneck to analyze the contri-
bution of features to the prediction that is model-agnostic (i.e., regardless of whether the
models are pretrained or not), excels in quantitative evaluation and is interpretable in qual-
itative analysis.

• With an attribution method that can faithfully generate attribution maps, we are able to carry
out deep analysis of tasks like passage re-ranking using BERT. Through the cross-layer and

126



cross-passage analysis, we are able to find: (1) BERT still cares about token-wise matching
but is better at capturing contextual information; (2) BERT fine-tuned on MSMARCO has
a positional bias towards the start of the passage; (3) Top-ranked passages are robust to
token-removal.

• Cross-layer analysis through multiple tasks on multiple-sized BERT shows that 2
3

of all the
layers — layer 8 for bert-base and layer 16 for bert-large are the most informative
layer.

• We unify previous works on compression-based methods into a framework Non-Parametric
learning by Compression (NPC), based on which we develop a new framework Non-Parametric
learning by Compression with Latent Variables (NPC-LV) that are flexible with multiple
replaceable modules. This framework can utilize a trained generative model with no param-
eters for classification with few-labeled data efficiently — it outperforms VGG [Simonyan
and Zisserman, 2014] by up to 59.0% on CIFAR-10 in the few-shot setting.

• We demonstrate how negative lower bound (nELBO) can be used directly for classification
as it can be used to estimate the compressed length.

• We reveal the correlation between compression rate and classification accuracy, which sug-
gests that the improvement of generative models may further improve the classification.

• We showcase the effectiveness of NPC on text classification tasks — with absolute zero
training, no pre-processing, and a simple compressor like gzip, we are able to achieve
the text classification result competitive to non-pretrained deep neural networks on six in-
distributed (English) datasets and outperform both BERT and mBERT on all five Out-Of-
Distributed (OOD) datasets in both full-dataset and few-shot scenario.

• We achieve the state-of-the-art result on text classification for four low-resource languages
(Kinyarwanda, Kirundi, Dengue, Swahili), outperforming KinyaBERT [Nzeyimana and
Rubungo, 2022], a pretrained model specialized in the language, in the few-shot scenario.

• We demonstrate the generative-model-based passage reranking method can be viewed from
the NPC perspective and it outperforms encoder-based methods significantly with weak
supervision.
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• We extended the method of NPC to GPT models that perform well with almost no supervi-
sion. We show that this method can be used for various NLP tasks like semantic similarity,
zero-shot text ranking and classification, and one-shot classification without any parame-
ters. We’ve found that the compression-based methods leverage the prior knowledge better
than in-context learning and fine-tuning under extremely limited or no labeled data.

9.2 Future Work

To further investigate interpretability and generalizability with restricted representation, here are
a few future directions worth investigating.

9.2.1 Control Restrictiveness by Restricting Latent Representation

The superficial relationship between information bottleneck in Section 2.1.1 and variational au-
toencoder in Section 5.2.1 is that they are different ways of restricting information. However, in-
formation bottleneck and negative evidence lower bound (nELBO), the optimization function that
we derive from utilizing variational autoencoder, share a deeper connection through an information-
theoretic perspective.

In an unsupervised scenario, the information bottleneck is just the mutual information between
the input X and the latent representation Z:

I(X;Z) = Ex[DKL[p(z|x)∥p(z)])] = Ez[DKL[p(x|z)∥p(x)]]. (9.1)

As marginal distribution p(z) is intractable, we use qϕ(z) to approximate. Thus, we have:

I(X;Z) = Ex[DKL[p(z|x)∥qϕ(z)]]−DKL[qϕ(z)∥p(z)] ≤ Ex[DKL[p(z|x)∥qϕ(z)]] = R, (9.2)

where R means rate, measuring the relative KL divergence between encoding distribution and
marginal approximation. Note that this upper bound assumes p(z|x) is known.
Writing I(X;Z) from another direction, we use pθ(x|z) to approximate p(x|z):

I(X;Z) = Ez[DKL[pθ(x|z)∥p(x)]] + Ez[DKL[pθ(x|z)∥p(x|z)]], (9.3)
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assuming we have inference network like the setting in Section 5.2.3, we have:

I(X;Z) ≥ Eqϕ(z|x)[log pθ(x|z)] +H(X) = H(X)−D, (9.4)

where D means distortion, measuring reconstruction error, and H(X) is the data entropy.
Therefore, we have:

H(X)−D ≤ I(X;Z) ≤ R. (9.5)

As H(X) is the data entropy, which is out of control, our optimization focuses onD andR. In order
to find the optimal rate and distortion, we can perform Legendre transformation by minimizing:

min
qϕ(z|x),qϕ(z),pθ(x|z))

D + βR. (9.6)

If we set β = 1, Equation (9.6) is the optimization function of VAE — nELBO. Note that in
nELBO, p(z|x) → qϕ(z|x) in Equation (9.2) as in VAE, inference network is present and upper
bound assumes p(z|x) is known.

In a more general case, Equation (9.6) is the β−VAE objective [Higgins et al., 2016]. When
β ≪ 1, the behavior of β−VAE is close to an autoencoder, and when β ≫ 1, D is high and the
optimization emphasizes on autodecoding. β controls the trade-off between autoencoding and
autodecoding [Alemi et al., 2018]. In other words, the larger the β is, the more independent of
latent representation is. From this perspective, nELBO is just a special case of a more general
objective that controls the relative importance of latent representation.

In Section 5.2.3, we’ve shown using a VAE-based neural compressor for few-shot text classi-
fication. However, we don’t know the role that latent representation plays in the effectiveness of
this framework. Thus, in the next step, we want to reveal the relationship between latent repre-
sentation and classification by tuning β in β−VAE.

9.2.2 Control Restrictiveness by Using Lossy Compressor

In Section 9.2.1, we discuss a possible extension of using R′ to further restrict R(h(x)) so that
L(R′(R(h(x)))) ≤ L(R(h(x))). In this section, we discuss another extension of further restrict-
ing R(f(x)) by using lossy compressors.
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As we have discussed in Jiang et al. [2022b], simple image manipulation like greyscale can
improve the classification accuracy, and greyscale can be viewed as a lossy compressor. Inspired
by that, we are wondering how actual lossy compressors work under NPC-LV. The possible se-
lection of lossy compressors include Ballé et al. [2020]; Yang et al. [2020a,b].
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Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards better understanding
of gradient-based attribution methods for deep neural networks. In International Conference
on Learning Representations, 2018.

131



Nima Asadi and Jimmy Lin. Effectiveness/efficiency tradeoffs for candidate generation in multi-
stage retrieval architectures. In Proceedings of the 36th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 2013), pages 997–
1000, 2013.

Yang Bai, Xiaoguang Li, Gang Wang, Chaoliang Zhang, Lifeng Shang, Jun Xu, Zhaowei Wang,
Fangshan Wang, and Qun Liu. SparTerm: Learning term-based sparse representation for fast
text retrieval. arXiv preprint arXiv:2010.00768, 2020.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina
Stoica, Saurabh Tiwary, and Tong Wang. MS MARCO: A human generated MAchine Reading
COmprehension dataset. arXiv:1611.09268, 2016a.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. MS MARCO: A human gener-
ated machine reading comprehension dataset. arXiv:1611.09268, 2016b.
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Appendix A

Parameters and Datasets for IBA

Dataset Number of Dev/Test

IMDB 25000
MNLI Matched 9815

MNLI Mismatched 9832
AG News 7600

RTE 277

Table A.1: Dataset Details.

To keep as much information as possible at the beginning, µi should be set close to 1,∀i, in
which case T ≈ X. So we initialize with αi = 5, ∀i and therefore µi ≈ 0.993. In order to
stabilize the result, the input of the bottleneck (X) is duplicated 10 times with different noise
added. We set the learning rate to 1 and the number of training steps to 10. We use empirical
estimation for β ≈ 10× LCE

LIB
. For IMDB, MNLI Matched/Mismatched, and AGNews, we insert

the IB after layer 9 and β is set to 10−5. For RTE, we insert the IB after layer 10 and β is set to
10−4.

We carry out experiments on NVIDIA RTX 2080 Ti GPUs with 11GB VRAM running Py-
Torch 1.4.0 and CUDA 10.0. A full technical description of our computing environment is re-
leased alongside our codebase. For LIME, we set N , the number of permuted samples drawn
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from the original dataset, to 100 as this reaches the limitation of GPU memory. Similarly, the
number of steps of integrated gradients is set to 10 because it is more memory intensive. The
average time of running 25000 instances on the described GPU is about 10 hours for IBA, 13
hours for LIME, and 2 hours for IG.

We use the test sets when the label is provided and use the dev sets otherwise. See Table A.1
for details. Note that “IMDB” refers to the sentiment analysis dataset provided by Maas et al.
[2011]. “MNLI Matched” means that the training set and the test set have the same set of genres
while “MNLI Mismatched” means that genres that appear in the test set don’t appear in the training
set. Detailed information of the MNLI dataset can be found in Williams et al. [2018].
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Appendix B

Degradation Test across All Layers

Figure B.1 shows the complete version of the degradation test across all 12 layers. In general, the
earlier we insert the bottleneck, the larger the probability drop is, except for layers 8 and 9, which
are the only two layers with steeper slopes than layer 1.
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Figure B.1: Degradation test results across all layers.
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Appendix C

Detailed [SEP] Attribution Score across
Layers
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(c) CLS attribution weight.
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Figure C.1: Special tokens attribution scores and weights.

Figure C.1 contains plots showing [CLS] weight and two [SEP] scores as well as weights
across layers. Figure C.1c shows how important [CLS] is compared with other tokens across
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layers—that is, we divide the attribution score by the sum of all of the tokens’ attribution scores.
It’s even more clear that the [CLS] token aggregates all tokens’ information in the final layer and
becomes the most important token for prediction. The first [SEP] has slightly higher weight than
the second one. It’s probably because the first [SEP] indicates the boundary between query and
document, which is an important information to learn for reranking. But in general they show
similar patterns.
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Appendix D

All 24-Layer Degradation Test
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Figure D.1: 24-layer degradation test result

Figure D.1 shows the degradation test result for all 24 layers. As we can see, middle layers
show the steepest slope at first, indicating they are the most capable ones of capturing important
tokens. The reason why layer 24 gets a slow probability drop is because special tokens like [CLS]
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and [SEP] are not removed in degradation test while [CLS] is regarded as the most important
token in layer 24.
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Appendix E

Hierarchical Latent Variable Models

The hierarchical autoencoder in the paper uses deep latent Gaussian models (DLGM) [Rezende
et al., 2014] following the sampling process based on Markov chains, whose marginal distribu-
tions are:

pθ(x) =

∫
pθ(x|z1)pθ(z1)dz1,

pθ(z1) =

∫
pθ(z1|z2)pθ(z2)dz2,

...

pθ(zL−1) =

∫
pθ(zL−1|zL)pθ(zL)dzL.

(E.1)

Combining the above equations, the marginal distribution of x is:

pθ(x) =

∫
pθ(x|z1)pθ(z1|z2)...pθ(zL−1)|zL)pθ(zL)dz1:L. (E.2)

Accordingly, inference models qϕ(zi+1|zi) need to be defined for every latent layer. ELBO that
includes multiple latent variables then becomes:

Eqϕ(·|x)[log pθ(x, z1:L)− log qϕ(z1:L|x)]. (E.3)

In this paper, we use Logistic distribution (µ = 0, σ = 1) as the prior p(zL), and use condi-
tional Logistic distribution for both inference models qϕ(zi+1|zi), qϕ(z1|x) and generative models
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pθ(zi|zi+1). These distributions are modeled by neural networks, which is stacked by Residual
blocks [He et al., 2016] as hidden layers. More architecture details can be referred to Kingma
et al. [2019a], where they also discusses other possible topologies regarding to hierarchical latent
variable models.
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Appendix F

Initial Bits of BB-ANS and Bit-Swap

The main difference between BB-ANS and Bit-Swap is that BB-ANS requires the sender Alice
to decode zi+1 with qϕ(zi+1|zi) for i from 1 to L − 1 first, and then encode zi with pθ(zi|zi+1)

for i from 1 to L − 1. While Bit-Swap interleaves this encoding and decoding procedure and
applies it recursively for latent variables, as illustrated in Figure 5.4. The advantage of Bit-Swap’s
procedure is that, after decoding z1, the bits encoded from x can be used in decoding z2; then bits
encoded from z1 can be used for decoding z3. As a result, the initial bits required for Bit-Swap
is much less than BB-ANS. Concretely, for BB-ANS, the minimum initial bits required:

− log qϕ(z1|x)−
L−1∑
i=1

log qϕ(zi+1|zi). (F.1)

For Bit-Swap, the minimum initial bits required:

−max (0, log qϕ(z1|x)) +
L−1∑
i=1

max

(
0, log

pθ(zi−1|zi)
qϕ(zi+1|zi)

)

≤ − log qϕ(z1|x)−
L−1∑
i=1

log qϕ(zi+1|zi).

(F.2)

The initial bits Bit-Swap required is less than BB-ANS, making Bit-Swap reach the optimal com-
pression rate.
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Appendix G

Text Examples for Text Classification

Dataset Sample Text
AGNews “Wall St. Bears Claw Back Into the Black (Reuters) Reuters - Short-

sellers, Wall Street’s dwindling band of ultra-cynics, are seeing green
again.”

DBpedia “European Association for the Study of the Liver”, “The European As-
sociation for the Study of the Liver (EASL) is a European professional
association for liver disease.”

YahooAnswers “Is a transponder required to fly in class C airspace?”,“I’ve heard that it
may not be for some aircraft. What are the rules?”,“the answer is that
you must have a transponder in order to fly in a class C airspace.”
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20News “Subject: WHAT car is this!? Nntp-Posting-Host: rac3.wam.umd.edu
Organization: University of Maryland, College Park Lines: 15 I was
wondering if anyone out there could enlighten me on this car I saw the
other day. It was a 2-door sports car, looked to be from the late 60s/
early 70s. It was called a Bricklin. The doors were really small. In
addition, the front bumper was separate from the rest of the body. This
is all I know. If anyone can tellme a model name, engine specs, years of
production, where this car is made, history, or whatever info you have
on this funky looking car, please e-mail. Thanks,- IL —- brought to you
by your neighborhood Lerxst —-”

Ohsumed “Protection against allergen-induced asthma by salmeterol.The effects
of the long-acting beta 2-agonist salmeterol on early and late phase air-
ways events provoked by inhaled allergen were assessed in a group of
atopic asthmatic patients.In a placebo-controlled study, salmeterol 50
micrograms inhaled before allergen challenge ablated both the early and
late phase of allergen-induced bronchoconstriction over a 34 h time pe-
riod.Salmeterol also completely inhibited the allergen-induced rise in
non-specific bronchial responsiveness over the same time period.These
effects were shown to be unrelated to prolonged bronchodilatation or
functional antagonism.These data suggest novel actions for topically ac-
tive long-acting beta 2-agonists in asthma that extend beyond their pro-
tective action on airways smooth muscle.”

R8 “champion products ch approves stock split champion products inc said
its board of directors approved a two for one stock split of its common
shares for shareholders of record as of april the company also said its
board voted to recommend to shareholders at the annual meeting april
an increase in the authorized capital stock from five mln to mln shares
reuter ”
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R52 “january housing sales drop realty group says sales of previously owned
homes dropped pct in january to a seasonally adjusted annual rate of
mln units the national association of realtors nar said but the december
rate of mln units had been the highest since the record mln unit sales
rate set in november the group said the drop in january is not surprising
considering that a significant portion of december s near record pace
was made up of sellers seeking to get favorable capital gains treatment
under the old tax laws said the nar s john tuccillo reuter”

KinNews “mutzig beer fest itegerejwe n’abantu benshi kigali mutzig beer fest
thedition izabera juru parki rebero hateganyijwe imodoka zizajya zi-
fata abantu buri minota zibakura sonatubei remera stade kumarembo
areba miginai remera mugiporoso hamwe mumujyi rond point nini ki-
gali iki gitaramo kizaba cyatumiwemo abahanzi batandukanye harimo
kizigenza mugihugu cy’u burundi uzwi izina kidum benshi bakaba ba-
muziho gucuranga neza live music iki gitaramo kikazatangira isaha saa
kumi n’ebyiri z’umugoroba taliki kugeza saa munani mugitondo taliki
kwinjira bizasaba amafaranga y’u rwanda kubafite mutzig golden card
aha niho tike zigurirwa nakumat la gallette simba super market flurep”
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KirNews “sentare yiyungurizo ntahangwa yagumije munyororo abamenye-
shamakuru bane abo bamenyeshamakuru bakaba bakorera ikinya-
makuru iwacu bakaba batawe mvuto kwezi kw’icumi umwaka bak-
aba bagiye ntara bubanza kurondera amakuru yavuga hari abagwanya
leta binjiye gihugu abajejwe umutekano baciye babafata bagishika
komine bukinanyana ahavugwa bagwanyi bakaba baciye bashikirizwa
sentare nkuru bubanza umushikirizamanza akaba yaciye abagiriza ic-
aha co kwifatanya n’abagwanyi gutera igihugu icaha cahavuye gihin-
durwa citwa icaha co gushaka guhungabanya umutekano w’igihugu
iyo sentare yaciye ibacira imyaka ibiri nusu n’amande y’amafaranga
umuriyoni umwe umwe icabafashe cane n’ubutumwe bwafatanwe umwe
muribo buvuga ’bagiye i bubanza gufasha abagwanyi” ababuranira bak-
aba baragerageje kwerekana kwabo bamenyeshamakuru ataco bapfana
n’abagwanyi ikinyamakuru iwacu kikaba carunguruje sentare yiyungur-
izo ntahangwa ariko sentare yafashe ingingo kubagumiza mumunyororo
ikinyamakuru iwacu kikavuga kigiye kwitura sentare ntahinyuzwa”

Filipino “Kung hindi lang absent yung ibang pipirma sa thesis namen edi sana
tapos na hardbound”
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SwahiliNews “TIMU ya taifa ya Tanzania, Serengeti Boys jana ilijiweka katika nafasi
fi nyu katika mashindano ya Mataifa ya Afrika kwa wachezaji wenye
umri chini ya miaka 17 baada ya kuchapwa mabao 3-0 na Uganda
kwenye Uwanja wa Taifa, Dar es Salaam.Uganda waliandika bao lao la
kwanza katika dakika ya 15 lililofungwa na Kawooya Andrew akiungan-
isha wavuni krosi ya Najibu Viga huku lile la pili likifungwa na Asaba
Ivan katika dakika ya 27 Najib Yiga.Serengeti Boys iliendelea kulala,
Yiga aliifungia Uganda bao la tatu na la ushindi na kuifanya Serengeti
kushika mkia katika Kundi A na kuacha simanzi kwa wapenzi wa soka
nchini. Serengeti Boys inasubiri mchezo wa mwisho dhidi ya Senegal
huku Nigeria ikisonga mbele baada ya kushinda mchezo wake wa awali
kwenye uwanja huo na kufikisha pointi sita baada ya kushinda ule wa
ufunguzi dhidi ya Tanzania.”

SogouNews “2008 di4 qi1 jie4 qi1ng da3o guo2 ji4 che1 zha3n me3i nv3 mo2 te4
”,“2008di4 qi1 jie4 qi1ng da3o guo2 ji4 che1 zha3n yu2 15 ri4 za4i
qi1ng da3o guo2 ji4 hui4 zha3n zho1ng xi1n she4ng da4 ka1i mu4 .
be3n ci4 che1 zha3n jia1ng chi2 xu4 da4o be3n yue4 19 ri4 . ji1n nia2n
qi1ng da3o guo2 ji4 che1 zha3n shi4 li4 nia2n da3o che2ng che1 zha3n
gui1 mo2 zui4 da4 di2 yi1 ci4 , shi3 yo4ng lia3o qi1ng da3o guo2 ji4
hui4 zha3n zho1ng xi1n di2 qua2n bu4 shi4 ne4i wa4i zha3n gua3n .
yi3 xia4 we2i xia4n cha3ng mo2 te4 tu2 pia4n .”

Table G.1: Sample text for each dataset.
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Appendix H

Other Reported Results on Text
Classification Baselines

In Table 6.3 and Table 6.5, we report the result from our hyper-parameter setting and implemen-
tation. However, we find that we couldn’t replicate previously reported results in some cases —
we get higher or lower results than previously reported ones, which may be due to different ex-
periment setting (e.g., they may use pre-trained word embeddings while we don’t) or different
hyper-parameter settings. Thus, we provide results reported by some previous paper for reference
in Table H.1, Table H.2 and Table H.3. Note that SogouNews is listed in the first table as it has
abundant resources and is commonly used as benchmark for DNNs that excel at large datasets. As
the studies carried out in low-resource languages and few-shot learning scenarios are insufficient,
in Table H.2 and in Table H.3, we also report the result of variants of our models like BiGRU
using Kinyarwanda embeddings (Kin. W2V) and BERTMORPHO incorporating morphology and
pre-trained on Kinyarwanda corpus (Kin. Corpus) in addition to models we use in the paper. We
don’t find any result reported for DengueFilipino as previous works’ evaluation uses multi-label
metrics.
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Paper Model Emb AGNews DBpedia YahooAnswers 20News Ohsumed R8 R52 SogouNews

Zhang et al. [2015a]
LSTM ✓ 0.860 0.985 0.708 - - - - 0.951

charCNN ✗ 0.914 0.985 0.680 - - - - 0.956
Yang et al. [2016] HAN ✓ - - 0.758 - - - - -

Joulin et al. [2017]
charCNN ✗ 0.872 0.983 0.712 - - - - 0.951
VDCNN ✗ 0.913 0.987 0.734 - - - - 0.968
fastText ✗ 0.915 0.981 0.720 - - - - 0.939

Conneau et al. [2017] VDCNN ✗ 0.908 0.986 0.724 - - - - 0.962

Yao et al. [2019]
LSTM ✗ - - - 0.657 0.411 0.937 0.855 -
fastText ✓ - - - 0.797 0.557 0.947 0.909 -

Liu et al. [2020]
fastText ✓ 0.925 0.986 0.723 0.114 0.146 0.860 0.716 -
BiLSTM ✓ - - - 0.732 0.493 0.963 0.905 -
BERT ✗ - - - 0.679 0.512 0.960 0.897 -

Table H.1: Results reported in previous works on datasets with abundant resources with embed-
ding (Emb) information.

Paper Model Emb PT KinyarwandaNews KirundiNews SwahiliNews DengueFilipino

Niyongabo et al. [2020]
charCNN ✗ ✗ 0.717 0.692 - -
BiGRU ✓(Kin. W2V) ✗ 0.887 0.859 - -
CNN ✓(Kin. W2V) ✗ 0.875 0.857 - -

Kastanos and Martin [2021] fastText ✗ ✗ - - 0.675 -

Nzeyimana and Rubungo [2022]

BERTBPE ✗ ✓(Kin. Corpus) 0.883 - - -
BERTMORPHO ✗ ✓(Kin. Corpus) 0.869 - - -

KinyaBERT ✗ ✓(Kin. Corpus) 0.880 - - -

Table H.2: Results reported in previous works on low resource languages with embedding (Emb)
and pre-training (PT) information.

Paper Model AGNews DBpedia

Shnarch et al. [2022]
BERT 0.619 0.312

BERTIT:CLUSTER 0.807 0.670

Table H.3: Results reported in previous works on 64-sample learning, corresponding to 14-shot
for AGNews and ≈5-shot for DBpedia.
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Appendix I

Numerical Results of Few-Shot Learning

The exact numerical values of accuracy shown in Figure 6.1 is listed in three tables below.

Dataset AGNews
#Shot 5 10 50 100

fastText 0.273±0.021 0.329±0.036 0.550±0.008 0.684±0.010

Bi-LSTM+Attn 0.269±0.022 0.331±0.028 0.549±0.028 0.665±0.019

HAN 0.274±0.024 0.289±0.020 0.340±0.073 0.548±0.031

W2V 0.388±0.186 0.546±0.162 0.531±0.272 0.395±0.089

BERT 0.803±0.026 0.819±0.019 0.869±0.005 0.875±0.005

SentBERT 0.716±0.032 0.746±0.018 0.818±0.008 0.829±0.004

gzip (ours) 0.587±0.048 0.610±0.034 0.699±0.017 0.741±0.007

Dataset DBpedia
#Shot 5 10 50 100

fastText 0.475±0.041 0.616±0.019 0.767±0.041 0.868±0.014

Bi-LSTM+Attn 0.506±0.041 0.648±0.025 0.818±0.008 0.862±0.005

HAN 0.350±0.012 0.484±0.010 0.501±0.003 0.835±0.005

W2V 0.325±0.113 0.402±0.123 0.675±0.05 0.787±0.015

BERT 0.964±0.041 0.979±0.007 0.986±0.002 0.987±0.001

SentBERT 0.730±0.008 0.746±0.018 0.819±0.008 0.829±0.004

gzip (ours) 0.622±0.022 0.701±0.021 0.825±0.003 0.857±0.004

Dataset SogouNews
#Shot 5 10 50 100

fastText 0.545±0.053 0.652±0.051 0.782±0.034 0.809±0.012

Bi-LSTM+Attn 0.534±0.042 0.614±0.047 0.771±0.021 0.812±0.008

HAN 0.425±0.072 0.542±0.118 0.671±0.102 0.808±0.020

W2V 0.141±0.005 0.124±0.048 0.133±0.016 0.395±0.089

BERT 0.221±0.041 0.226±0.060 0.392±0.276 0.679±0.073

SentBERT 0.485±0.043 0.501±0.041 0.565±0.013 0.572±0.003

gzip (ours) 0.649±0.061 0.741±0.017 0.833±0.007 0.867±0.016

Table I.1: Few-Shot result on AG News, DBpedia, and SogouNews.
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Appendix J

Choice of k and Tie-Breaking Strategies

For the results in the paper, we use k = 2 and “maximum” as the tie-breaking strategy. This does
mean the reported accuracy is the upperbound of the method. We thus carry out the experiments
using various k and various tie-breaking strategies. The “minimum” and “maximum” serves as
the lowerbound and the upperbound while “random” is to pick either label when tied and the
reported “random” result is based on one run so it may create fluctuation, shown in Table J.1.
For comparison, we also add results of other two non-parametric learning methods — W2V and
SentBERT under the same setting. The result is shown in Table J.2. For “random” case, choosing
an odd number for k performs better than choosing an even number no matter what non-parametric
methods we use.
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Dataset Tie-Breaking k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Kinyarwanda
min 0.835 0.752 0.822 0.806 0.812 0.806 0.814 0.812 0.812 0.810

random 0.835 0.822 0.834 0.833 0.831 0.829 0.830 0.826 0.828 0.823
max 0.835 0.891 0.868 0.867 0.853 0.855 0.845 0.847 0.842 0.840

Kirundi
min 0.858 0.722 0.775 0.732 0.774 0.746 0.779 0.731 0.751 0.758

random 0.858 0.803 0.788 0.790 0.800 0.789 0.792 0.789 0.781 0.784
max 0.858 0.906 0.827 0.828 0.824 0.848 0.800 0.835 0.831 0.800

Swahili
min 0.850 0.759 0.873 0.854 0.876 0.865 0.883 0.873 0.883 0.877

random 0.850 0.839 0.880 0.883 0.885 0.883 0.889 0.888 0.889 0.888
max 0.850 0.927 0.895 0.912 0.896 0.905 0.897 0.903 0.896 0.900

Filipino
min 0.864 0.746 0.867 0.855 0.873 0.893 0.887 0.890 0.899 0.893

random 0.864 0.850 0.893 0.887 0.910 0.910 0.913 0.910 0.913 0.902
max 0.864 0.945 0.922 0.916 0.928 0.934 0.928 0.928 0.922 0.928

Sogou
min 0.957 0.930 0.956 0.951 0.956 0.953 0.956 0.954 0.955 0.955

random 0.957 0.951 0.959 0.959 0.959 0.959 0.959 0.958 0.959 0.958
max 0.957 0.975 0.967 0.968 0.964 0.966 0.963 0.964 0.962 0.962

Table J.1: Accuracy using gzip(knn) on full OOD datasets with various tie-breaking strategies
and various k.

Dataset Non-Parametric Methods k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Kinyarwanda
W2V 0.812 0.806 0.814 0.814 0.816 0.823 0.825 0.825 0.823 0.825

SentBERT 0.729 0.703 0.712 0.704 0.707 0.702 0.700 0.698 0.692 0.688

Kirundi
W2V 0.868 0.783 0.723 0.727 0.737 0.763 0.766 0.750 0.743 0.742

SentBERT 0.869 0.742 0.646 0.645 0.674 0.664 0.657 0.660 0.644 0.641

Swahili
W2V 0.811 0.804 0.839 0.839 0.847 0.847 0.848 0.849 0.849 0.850

SentBERT 0.712 0.696 0.732 0.738 0.745 0.747 0.751 0.751 0.750 0.750

Filipino
W2V 0.500 0.506 0.474 0.526 0.561 0.517 0.581 0.584 0.592 0.601

SentBERT 0.913 0.884 0.902 0.893 0.916 0.916 0.905 0.899 0.910 0.905

Table J.2: Accuracy using other non-parametric methods (x+knn) on full OOD datasets with
random strategy and various k.
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Appendix K

GPT In-Context Learning

CaseHold Prompt Citing: {citing}.
Holding 0: {holding 0}.
Holding 1: {holding 1}.
Holding 2: {holding 2}.
Holding 3: {holding 3}.
Holding 4: {holding 4}.
Which holding is correct (0, 1, 2, 3, or 4)?
Answer:

PIQA Prompt Goal: {goal}.
Option 0: {option 0}.
Option 1: {option 1}.
Which option is correct (0 or 1)?
Answer:

Table K.1: Zero-Shot Prompts
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AG News Prompt Please classify text input into one of the following cate-
gories: World, Sports, Business, and Science/Technology.
Here are some examples:
Input: {Example 1 Text}, Label: {Example 1 Label}
Input: {Example 2 Text}, Label: {Example 2 Label}
Input: {Testing Text}, Label:

Label Token Mapping ’World’: 10603, ’Sports’: 18153, ’Business’: 24749, ’Sci-
ence/Technology’: 26959

Medical Prompt Please classify text input into one of the following cate-
gories: World, Sports, Business, and Science/Technology.
Here are some examples:
Input: {Example 1 Text}, Label: {Example 1 Label}
Input: {Example 2 Text}, Label: {Example 2 Label}
Input: {Testing Text}, Label:

Label Token Mapping ’Neoplasms’: 10603, ’Digestive system diseases’: 18153,
’Nervous system diseases’: 24749, ’Cardiovascular dis-
eases’: 26959, ’Pathological conditions’: 0

SST5 Prompt Please classify text input into one of the following cate-
gories: World, Sports, Business, and Science/Technology.
Here are some examples:
Input: {Example 1 Text}, Label: {Example 1 Label}
Input: {Example 2 Text}, Label: {Example 2 Label}
Input: {Testing Text}, Label:

Label Token Mapping ’very negative’: 10603, ’negative’: 18153, ’neutral’: 24749,
’positive’: 26959, ’very positive’: 0

Table K.2: One-Shot Prompt
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Appendix L

List of Evaluation Metrics

• Normalized probability drop for degradation normalizes the degradation test result p̄(y|x′)
to [0, 1] by:

d̄ =
p̄(y|x′)−m
o−m

, (L.1)

where omeans the original probability on the nondegraded instance andmmeans the min-
imum of the fully degraded instance’s probability across all interpretability models.

• Mean Reciprocal Rank (MRR) measures the reciprocal of the rank of the first relevant item
in the prediction list:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

, (L.2)

where ranki is the rank position of the first relevant passage returned for i-th query.

• Normalized Discounted Cumulative Gain (nDCG) takes into account the relevance of the
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predictions and their positions:

nDCGk =
DCGk

IDCGk

DCGk =
k∑

i=1

reli
log2(i+ 1)

IDCGk =

|RELk|∑
i=1

reli
log2(i+ 1)

,

(L.3)

where RELk is the list of relevant passages ordered by their relevance score in the corpus
up to position k, so IDCG is the ideal discounted cumulative gain.
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