
University of Lethbridge Research Repository

OPUS http://opus.uleth.ca

Theses Arts and Science, Faculty of

2011

Improvements to the complex question

answering models

Imam, Md. Kaisar

Lethbridge, Alta. : University of Lethbridge, c2011

http://hdl.handle.net/10133/3214

Downloaded from University of Lethbridge Research Repository, OPUS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository

https://core.ac.uk/display/185288756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Improvements to the Complex Question Answering Models

Md. Kaisar Imam
Bachelor of Science in Computer Science and Information Technology, Islamic

University of Technology (Bangladesh), 2005

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c©Md. Kaisar Imam, 2011

I dedicate this thesis to my beloved parents whose endless support and
inspiration has always been with me at each and every step of my life.

iii

Abstract

In recent years the amount of information on the web has increased dramatically. As a

result, it has become a challenge for the researchers to find effective ways that can help us

query and extract meaning from these large repositories. Standard document search engines

try to address the problem by presenting the users a ranked list of relevant documents. In

most cases, this is not enough as the end-user has to go through the entire document to find

out the answer he is looking for. Question answering, which is the retrieving of answers

to natural language questions from a document collection, tries to remove the onus on the

end-user by providing direct access to relevant information.

This thesis is concerned with open-domain complex question answering. Unlike simple

questions, complex questions cannot be answered easily as they often require inferencing

and synthesizing information from multiple documents. Hence, we considered the task

of complex question answering as query-focused multi-document summarization. In this

thesis, to improve complex question answering we experimented with both empirical and

machine learning approaches. We extracted several features of different types (i.e. lexi-

cal, lexical semantic, syntactic and semantic) for each of the sentences in the document

collection in order to measure its relevancy to the user query.

We have formulated the task of complex question answering using reinforcement frame-

work, which to our best knowledge has not been applied for this task before and has the

potential to improve itself by fine-tuning the feature weights from user feedback. We have

also used unsupervised machine learning techniques (random walk, manifold ranking) and

augmented semantic and syntactic information to improve them. Finally we experimented

with question decomposition where instead of trying to find the answer of the complex

question directly, we decomposed the complex question into a set of simple questions and

synthesized the answers to get our final result.

iv

Acknowledgments

I would like to express my profound gratitude to my supervisor Dr. Yllias Chali for his

persistent and inspiring supervision and helping me learn the ABC of Natural Language

Processing. It would not have been possible to complete this work without his encourage-

ment, patience, suggestions and support.

I also thank my M.Sc. supervisory committee members Dr. John Zhang and Dr. Sajjad

Zahir for their valuable suggestions and guidance. I thank Dr. Hadi Kharaghani for his

kind consent to chair my thesis defense.

I am also thankful to all my fellow researchers and faculty members in the Department

of Mathematics and Computer Science for their spontaneous cooperation and encourage-

ment. Furthermore, I would like to express thanks to my friends Shafiq Rayhan Joty, Sadid

Hasan for their friendship and encouragement.

v

Contents

Approval/Signature Page ii

Dedication iii

Abstract iv

Acknowledgments v

Table of Contents vi

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Overview . 1
1.2 Text Summarization . 2

1.2.1 Types of Summary . 3
1.3 Complex Question Answering . 4
1.4 The State-of-the-Art Complex Question Answering Systems 5

1.4.1 Knowledge-Based Systems . 5
1.4.2 Complex Question Decomposition 7
1.4.3 Topic Focused Summarization . 8

1.5 Related Works . 11
1.6 Our Approaches . 14
1.7 Thesis Outline . 15
1.8 Published Work . 16

2 Machine Learning Techniques for Text Summarization 17
2.1 Reinforcement Learning . 17

2.1.1 Reinforcement Learning Framework 17
2.1.2 Markov Decision Process . 22
2.1.3 Partially Observable MDP (POMDP) 22

2.2 Supervised Models . 24
2.2.1 Support Vector Machines (SVM) 24
2.2.2 Maximum Entropy (MaxEnt) . 27

3 Document Processing and Feature Extraction 29
3.1 Overview of Selected Tools . 29

3.1.1 OAK System . 29
3.1.2 WORDNET . 30

vi

3.1.3 ASSERT . 31
3.1.4 Lemur Toolkit 4.12 . 31
3.1.5 ROUGE . 32

3.2 Corpus . 33
3.3 Document Processing . 34

3.3.1 Sentence Tokenization . 34
3.3.2 Word Stemming . 34
3.3.3 Part of Speech Tagging . 35
3.3.4 Syntactic Parsing . 37
3.3.5 Semantic Parsing . 38
3.3.6 Topic Signature . 39
3.3.7 Rhetorical Structure Theory (RST) 40

4 Evaluation Techniques 42
4.1 Introduction . 42
4.2 Extrinsic (task-based) . 42
4.3 Intrinsic (task-independent) . 43

4.3.1 Manual Evaluation . 43
4.3.2 Automatic Evaluation . 47

4.4 Our Approach . 48

5 Implementation 50
5.1 Introduction . 50
5.2 Task Description . 51
5.3 Reinforcement Learning . 52

5.3.1 Introduction . 52
5.3.2 MDP Model . 54
5.3.3 POMDP Model . 59
5.3.4 Feature Space . 63
5.3.5 Evaluation Framework . 66
5.3.6 Results and Analysis . 67

5.4 Augmenting TAC Ontologies with Random Walk Models 71
5.4.1 Introduction . 71
5.4.2 Our Approaches . 72
5.4.3 Evaluation Results and Analysis 80

5.5 Multi-Modality Manifold-Ranking . 84
5.5.1 Introduction . 84
5.5.2 Multi-Modality Manifold Ranking Model 85
5.5.3 Syntactic and Shallow Semantic Structures 87
5.5.4 Experiments and Results . 92

5.6 Question Decomposition . 96
5.6.1 Introduction . 96

vii

5.6.2 Filtering Important Sentences . 99
5.6.3 Simplifying the Sentences . 101
5.6.4 Sentence-to-Question Generation 102
5.6.5 Supervised Model . 104
5.6.6 Evaluation and Analysis . 108

6 Conclusion 114
6.1 Reinforcement Learning . 114
6.2 Augmenting TAC Ontologies with Random Walk Model 115
6.3 Multi-Modality Manifold-Ranking . 116
6.4 Question Decomposition Framework . 117

Bibliography 118

Appendix A: TAC Ontology 126

viii

List of Tables

5.1 ROUGE measures for MDP system . 68
5.2 ROUGE measures for SVM system . 68
5.3 Performance comparison between Baseline, SVM and MDP systems: F-

Score . 68
5.4 95% confidence intervals for Baseline, SVM and MDP systems: ROUGE-2 68
5.5 95% confidence intervals for Baseline, SVM and MDP systems: ROUGE-SU 68
5.6 Effective features indicated by MDP system 69
5.7 ROUGE-1 measures . 69
5.8 ROUGE-2 measures . 70
5.9 ROUGE-W measures . 70
5.10 95% confidence intervals for different systems 70
5.11 System comparison (F-scores) . 71
5.12 Linguistic quality and responsiveness scores (TAC-2010 data) 81
5.13 Linguistic quality and responsiveness scores (DUC-2006 data) 81
5.14 ROUGE-1 measures . 82
5.15 ROUGE-2 measures . 82
5.16 ROUGE-SU measures . 82
5.17 ROUGE-F scores for different systems . 83
5.18 95% confidence intervals for different systems 83
5.19 Comparison with DUC-2006 systems . 83
5.20 ROUGE-1 measures . 93
5.21 ROUGE-2 measures . 94
5.22 ROUGE-SU measures . 94
5.23 ROUGE-F scores for different systems . 95
5.24 95% confidence intervals for different systems 95
5.25 System comparison (F-scores) . 96
5.26 Linguistic quality and responsiveness scores (average) for SVM 110
5.27 Linguistic quality and responsiveness scores (average) for MaxEnt 110
5.28 Impact of features . 111
5.29 F-measures of different systems (Comparison) 113

ix

List of Figures

2.1 Reinforcement learning framework (Sutton and Barto, 1998) 18
2.2 Support Vector Machines (Hasan, 2009) 25

5.1 The overall architecture of our approaches 73
5.2 TAC ontologies with random walk model 80
5.3 Example of semantic trees . 88
5.4 (a) An example tree (b) The sub-trees of the NP covering “the press”. . . . 89
5.5 A graph plotting system variations considering different feature spaces . . . 111

x

Chapter 1

Introduction

1.1 Overview

In recent years we have witnessed an explosion of on-line unstructured information in

multiple languages. The size of the publicly indexable World Wide Web (WWW) is at

least 25.21 billion pages1 as of March 2009 and as yet growth shows no sign of leveling

off. This vast increase of both the amount of online data and the demand for access to

different types of information has led researchers to a renewed interest in a broad range of

Information Retrieval (IR) related areas, such as question answering, topic detection and

tracking, summarization, multimedia retrieval, chemical and biological informatics, text

structuring, text mining, etc.

Traditionally we use search engines like Google2, Yahoo!3 or Bing4 to retrieve in-

formation from this astronomical set of documents. These search engines offer access to

billions of web documents covering virtually every topic of interest. But search engines

have some limitations, which include uselessness of a sizable part of the output, limited

support for specific information needs, restrictions on input syntax for query formulation,

and coarse output granularity.

In response to a user query search engines frequently return hyperlinks to thousands

of documents. As the majority of the web search engine users view 10 documents or less,

more than 99% of the output is useless. Output granularity is another disadvantage of the

search engines. Search engines return hyperlinks to full-length web documents, possibly

1http://www.worldwidewebsize.com/.
2http://www.google.ca/.
3http://ca.yahoo.com/.
4http://www.bing.com/.

1

accompanied by a document fragment in which the keywords are highlighted. To find

relevant information, a user must read a few documents. Even if the relevant information

is inside the first hit returned, finding it can still be time-consuming if the document is very

long.

Question Answering (QA) systems try to deal with these problems. They present ad-

vanced user interface where users can write their query in natural language. In response,

users are presented directly with a small set of short answers, which are easier to read and

evaluate than a set of full-length web documents.

1.2 Text Summarization

Search engines provide a means to access huge volumes of information by retrieving the

documents considered relevant to a user’s query. But, the user still has to go through

the entire document content to judge its relevance. This contributes towards a serious

information overload problem. On the other hand, factoid question answering systems

provide a short factoid answer phrase. But sometimes the user needs something in between

these two extremes. Text summarization tries to fulfill these user needs by providing a short

overview of a document or a set of documents.

There is no fixed definition of text summarization. According to Mani and Maybury

(1999), “Text summarization is the process of distilling the most important information

from a text to produce an abridged version for a particular task and user”. According to

Mani (2001), “The goal of summarization system is to take an information source, extract

content from it, and present the most important content to the user in a condensed form

and in a manner sensitive to the user’s or application’s need”. Different summaries can

be generated for the same input source depending on their functionality and usage (Mani,

2001). For example, one of the important factors is the compression rate which is the ratio

2

of the summary length to the source length.

1.2.1 Types of Summary

Depending on the user need, there can be different kinds of summary. The goals of sum-

marization can often be characterized by their position on two dimensions (Jurafsky and

Martin, 2008):

• single-document verses multiple-document summarization

• generic summarization versus query-focused summarization

In single-document summarization systems, the input is a single document and the

output summary can be used in situations like producing a headline or an outline. For

multi-document summarization, the input is a group of documents. Multi-document sum-

marization can be used for summarizing a series of news stories on the same event or when

we have web contents on the same topic that we would like to synthesize and condense.

A generic summary is the one in which we do not consider a particular user or a par-

ticular information need; the summary simply gives the important information in the doc-

ument(s). In contrast, in query-focused summarization a summary is produced in response

to a user query. Query-focused summarization is also known as focused summarization,

topic-based summarization or user-focused summarization (Mani, 2001).

The summarizing operations can be applied on elements such as words, phrases, clauses,

sentences or discourse. Elements can be analyzed at various linguistic levels: morpholog-

ical, syntactic, semantic and discourse/pragmatic. Based on the level of linguistic analysis

of the source, summarization methods can be broadly classified into two approaches (Mani,

2001):

3

Shallow Approaches: These methods conduct surface level analysis of the document.

They consider features, such as word count, presence of cue phrases, position of

sentence etc., to extract the salient sentences and re-arrange them to form a coherent

summary.

Deep Approaches: These methods perform deeper syntactic and semantic analysis of the

document content to identify the salient portions. They require highly domain-

specific information to be able to perform deeper analysis.

Also summaries can be generated by just copying and pasting the text from the source

(extracts), or can be generated in abstractor’s own words (abstracts).

1.3 Complex Question Answering

Question answering (QA) is the task of automatically answering a question posed in natural

language. The answer produced by a QA system can be specific phrases, sentences, or

short passages. QA is regarded as requiring more complex natural language processing

(NLP) techniques than other types of information retrieval such as document retrieval, thus

natural language search engines are sometimes regarded as the next step beyond current

search engines (Kotov and Zhai, 2010).

QA research attempts to deal with a wide range of question types including: fact, list,

definition, how, why, hypothetical, semantically-constrained, and cross-lingual questions.

Some questions, which we call simple questions, are easier to answer. For example, the

question “Who is the president of Bangladesh?” asks for a person’s name. This type of

question (i.e. factoid) requires small snippets of text as the answer. Again, the question

“Which countries has Pope John Paul II visited?” is a sample of a list question asking only

for a list of small snippets of text.

4

Complex questions often seek multiple different types of information simultaneously

and do not presuppose that one single answer can meet all of its information needs. For

example, with a factoid question like “What is the magnitude of the earthquake in Haiti?”, it

can be safely assumed that the submitter of the question is looking for a number. However,

with complex question like “How is Haiti affected by the earthquake?”, the wider focus of

this question suggests that the submitter may not have a single or well-defined information

need and therefore may be amenable to receiving additional supporting information that is

relevant to some (as yet) undefined informational goal (Harabagiu et al., 2006). Complex

question answering tasks require multi-document summarization through an aggregated

search, or a faceted search, that represents an information need which cannot be answered

by a single document. For example, if we look for the comparison of the average number

of years between marriage and first birth for women in the USA, Asia, and Europe, the

answer is likely contained in multiple documents. Complex question answering systems

are useful for this type of query.

1.4 The State-of-the-Art Complex Question Answering Sys-

tems

1.4.1 Knowledge-Based Systems

Knowledge-based systems maintain a database of questions and corresponding answers.

As answers are obtained beforehand and are used later, these systems are comparatively

faster. Knowledge-based systems can be divided into two categories depending on how the

answers are acquired.

Some of the knowledge-based systems act as information-sharing tools. These systems

5

are a community-generated social knowledge Q&A platform which allows users to ask

just about any question, such as “How to cook ramen?” or “How to subscribe to interna-

tional magazines via the Internet?”, and gets answers from other users. One such system is

Naver’s Knowledge iN which has been launched in 2002. As of January 2008 the Knowl-

edge Search database included more than 80 million pages of user-generated information.

After the success of Naver, Yahoo also lunched such system called Yahoo! Answers which

is based on Naver. Yahoo! Answers is available in 12 languages and according to Yahoo!

currently it has 200 million users worldwide and 15 million daily visitors5.

In other types of knowledge-based systems answers are obtained automatically. One

such system is Watson, a QA system built by IBM. Watson had access to 200 million pages

of structured and unstructured content consuming four terabytes of disk storage, including

encyclopedias, dictionaries, thesauri, newswire articles, and literary works. In 2011, as a

test of its abilities, Watson competed on a quiz show called “Jeopardy!”, in the show’s only

human-versus-machine match up-to-date. In a two-game, combined-point match, Watson

bested Brad Rutter, the biggest all-time money winner on Jeopardy!, and Ken Jennings, the

record holder for the longest championship streak.

Another such system is MAYA (Kim et al., 2001). It creates a database of answers be-

fore any questions are asked. There are only fifteen types of entities this system considers

as answers. Each passage that contains a possible answer (i.e. any of the fifteen entities)

is kept, and when a question is asked, the answer that is contained in the passages most

closely related to the question is given as the answer. Katz et al. (2003) developed a similar

method of question answering that uses knowledge bases to compile facts about every sub-

ject before any definition questions are asked. Clifton and Teahan (2004) built a knowledge

base of questions from a document set. They used knowledgeable agents (Teahan, 2003)

that are based on the knowledge grids proposed by (Cannataro and Talia, 2003). These

5http://en.wikipedia.org/wiki/Yahoo! Answers.

6

knowledgeable agents go through the documents and form questions around entities they

find. For instance, from the phrase, “John Lennon died on December 8th, 1980 during a

public dramatic interpretation of J.D. Salingers Catcher in the Rye.” the system forms the

question-answer pair, “When did John Lennon die?” and “December 8th, 1980”. When a

question is asked, the system will check whether it has the knowledge to answer the ques-

tion by determining which questions they have identified match the incoming question.

1.4.2 Complex Question Decomposition

One way to answer a complex question is to decompose the question into simple factoid

questions. Harabagiu et al. (2006) have used this approach successfully in their complex

question answering system (Harabagiu et al., 2006). The process they have used had three

components:

• question decompositions (of the complex question)

• factoid question answering (QA) techniques (to process decomposed questions)

• multi-document summarization techniques (to fuse together the answers provided for

each decomposed question).

According to them, question decomposition depends on the successive recognition (and

exploitation) of the relations that exist between words and concepts extracted from topic-

relevant sentences. For example, if a topic-relation r1 between develop and drugs is recog-

nized in question Q0 , we assume that this sentence (and all other sentences containing this

particular relation) will contain relevant information that can be used to decompose of Q0.

So they created a bipartite graph of relations established between concepts related to the

topic of a complex question and subquestions. Complex questions are then decomposed by

a procedure that operates on a Markov chain, by following a random walk on that bipartite

7

graph. Decomposed questions discovered during this random walk are then submitted to a

state-of-the-art Question Answering (QA) system in order to retrieve a set of passages that

can later be merged into a comprehensive answer by a Multi-Document Summarization

(MDS) system (Harabagiu et al., 2006).

1.4.3 Topic Focused Summarization

We can consider the task of complex question answering as topic focused summarization,

where we consider the topic as a complex question. Most of the techniques that have been

used for generic summarization can also be used for topic focused summarization. For

example, the LexRank method discussed in (Erkan and Radev, 2004) was very successful

in generic multi-document summarization. An extended version of the original LexRank

method was introduced by (Otterbacher et al., 2005) for topic focused summarization. The

following section gives a short description of different approaches for topic focused sum-

marization.

Graph Based Methods

In recent years, a variety of graph-based methods have been proposed for topic-focused

multi-document summarization (Wan et al., 2007a). The graph-based methods first con-

struct a graph representing the sentence relationships at different granularities and then

evaluate the topic-biased saliency of the sentences based on the graph.

For example, In the extended version of LexRank proposed by (Otterbacher et al.,

2005), the set of sentences in a document cluster is represented as a graph, where nodes

are sentences and links between the nodes are induced by a similarity relation between the

sentences. Then the system ranked the sentences according to a random walk model de-

8

fined in terms of both the inter-sentence similarities and the similarities of the sentences to

the topic description or question. This idea is captured by the following mixture model:

p(s|q) = d× rel(s|q)
∑z∈C rel(z|q)

+(1−d)×∑
v∈C

sim(s,v)
∑z∈C sim(z,v)

× p(v|q), (1.1)

where, p(s|q) is the score of a sentence s given a question q, is determined as the sum of its

relevance to the question and the similarity to the other sentences in the collection. C is the

set of all sentences in the collection. Parameter d, called bias, is a trade-off between two

terms in the equation and is set empirically. Higher values of d, prefer the relevance to the

question to the similarity to the other sentences.

The relevance of a sentence s to the question q is computed by:

rel(s|q) = ∑
w∈q

log t fw,s +1× log t fw,q +1× id fw, (1.2)

where, t fw,s and t fw,q are the number of times word w appears in s and q, respectively and

id fw is the Inverse Document Frequency (IDF) of word w.

The system measures the cosine similarity weighted by word IDFs as the similarity

between two sentences in a cluster:

sim(x,y) =
∑w∈x,y t fw,x× t fw,y× (id fw)

2√
∑xi∈x(t fxi,x× id fxi)

2×
√

∑yi∈y(t fyi,y× id fyi)
2

(1.3)

Another universal graph based ranking method is the manifold-ranking method (Zhou

et al., 2003a;b), which has been used for topic-focused document summarization (Wan

9

et al., 2007a). The prior assumption of manifold-ranking is: (1) nearby points are likely to

have the same ranking scores; (2) points on the same structure (typically referred to as a

cluster or a manifold) are likely to have the same ranking scores.

In generic summarization, The sentence relationships are treated as a single modal-

ity. For topic focused summarization the sentence relationships are classified into within-

document relationships and cross-document relationships, and each kind of relationships is

considered as a separate modality (graph). They have used multi-modality learning algo-

rithm for fusing the two modalities.

Summarization Based on Statistical Models

In the 1990s, with the advent of machine learning techniques in NLP, a series of seminal

publications appeared that employed statistical techniques to produce document extracts.

Both supervised and unsupervised models have been used to improve extractive summary.

Naive-Bayes Methods Kupiec et al. (1995) described a method derived from (Edmund-

son, 1969) that is able to learn from data. The classification function categorizes each

sentence as worthy of extraction or not, using a naive-Bayes classifier. Let s be a particular

sentence, S the set of sentences that make up the summary, and F1,F2, ...,Fk the features.

Assuming independence of the features:

P(s ∈ S|F1,F2, ...,Fk) =
∏

k
i=1 P(Fi|s ∈ S)×P(s ∈ S)

∏
k
i=1 P(Fi)

(1.4)

The features were compliant to (Edmundson, 1969), but additionally included the sen-

tence length and the presence of uppercase words. Each sentence was given a score accord-

10

ing to Equation 1.4, and only n top sentences were extracted.

Aone et al. (1999) also incorporated a naive-Bayes classifier, but with richer features.

They described a system called DimSum that made use of features like term frequency (tf)

and inverse document frequency (idf) to derive signature words.

Hidden Markov Models Conroy and Oleary (2001) modeled the problem of extracting

a sentence from a document using a hidden Markov model (HMM). The basic motivation

for using a sequential model is to account for local dependencies between sentences. Only

three features were used: the position of a sentence in the document (built into the state

structure of the HMM), the number of terms in the sentence, and the likeliness of the

sentence terms given the document terms.

Log-Linear Models Osborne (2002) claimed that existing approaches to summarization

have always assumed feature independence. The author used log-linear models to obviate

this assumption and showed empirically that the system produced better extracts than a

naive-Bayes model, with a prior appended to both models. Let c be a label and s be the item,

we are interested in labeling, fi the ith feature, and λi the corresponding feature weight. The

conditional log-linear model used by (Osborne, 2002) can be stated as follows:

P(c|s) = 1
Z(s)

exp(∑
i

λi fi(c,s)) (1.5)

1.5 Related Works

Researchers all over the world working on multi-document summarization are trying dif-

ferent directions to see which methods provide the best results. In recent years, researchers

11

have become more interested in topic-focused summarization and hence, different methods

have been proposed ranging from heuristic extensions of generic summarization schemes6

(by incorporating topic-biased information) to novel ones. For instance Nastase (2008) ex-

pands the query by using encyclopedic knowledge in Wikipedia and use the topic expanded

words with activated nodes in the graph to produce an extractive summary.

The graph-based methods, such as LexRank (Erkan and Radev, 2004) and TextRank

(Mihalcea and Tarau, 2004), are applied successfully to generic, multi-document summa-

rization. The LexRank method addressed in (Erkan and Radev, 2004) is very successful in

this problem domain. A topic-sensitive LexRank is proposed in (Otterbacher et al., 2005).

In LexRank, the set of sentences in a document cluster is represented as a graph, where

nodes are sentences and links between the nodes are induced by a similarity relation be-

tween the sentences. Then the system ranks the sentences according to a random walk

model defined in terms of both the inter-sentence similarities and the similarities of the

sentences to the topic description or question. A summarization method based on lexical

chains is described in (Li et al., 2007) that utilizes the extraction of nouns, compound nouns

and named entities as candidate words to represent lexical cohesion by incorporating their

semantic similarities.

Another graph-based method proposed by Wan et al. (2007b) is called manifold-ranking.

It make uniform use of sentence-to-sentence and sentence-to-topic relationships whereas

the use of multi-modality manifold-ranking algorithm is shown in (Wan and Xiao, 2009).

However, these methods use the standard cosine similarity measure to compute the relat-

edness between the sentences ignoring the syntactic and semantic information. The impor-

tance of syntactic and semantic features in finding textual similarity is described by Zhang

and Lee (2003b), Moschitti et al. (2007), and Moschitti and Basili (2006). An effective

way to integrate syntactic and semantic structures in machine learning algorithms is the

6Related work can be found in recent DUC workshop proceedings.

12

use of tree kernel functions (Collins and Duffy, 2001) which has been successfully applied

to question classification (Zhang and Lee, 2003b, Moschitti and Basili, 2006). we use the

tree kernel functions and to the best of our knowledge, no study has used tree kernel func-

tions to encode syntactic/semantic information for more complex tasks such as computing

the relatedness between the sentences in the multi-modality manifold ranking algorithm for

topic-focused multi-document summarization.

Machine learning methods have also been employed to extract sentences. Single docu-

ment summarization systems using Support Vector Machines (SVMs) demonstrated good

performance for both Japanese (Hirao et al., 2002a) and English documents (Hirao et al.,

2002b). Hirao et al. (2003) showed the effectiveness of their multiple document sum-

marization system employing SVMs for sentence extraction. The motivation of applying

Conditional Random Field (CRF) in text summarization came from observations on how

humans summarize a document by posing the problem as a sequence labeling problem

(Shen et al., 2007).

A new paradigm has been introduced in (Harabagiu et al., 2006) for producing summary-

length answers to complex questions that relies on a combination of (a) question decompo-

sitions; (b) factoid QA techniques; and (c) Multi-Document Summarization (MDS) tech-

niques. Their method operates on a Markov chain, by a random walk with mixture model

on a bipartite graph of relations established between concepts related to the topic of a com-

plex question and subquestions derived from topic-relevant passages that manifest these

relations. Decomposed questions are then submitted to a state-of-the-art QA system in

order to retrieve a set of passages that can later be merged into a comprehensive answer

by a MDS system. They show that question decompositions using this method can sig-

nificantly enhance the relevance and comprehensiveness of summary-length answers to

complex questions. Inspired by this, we propose to augment the TAC ontologies (that pro-

vides a better coverage of the topic on the entire document collection) into a random walk

13

framework that no study has used before to the best of our knowledge.

New features such as topic signature are used in NeATS system by (Lin and Hovy,

2002) to select important content from a set of documents about some topic to present them

in coherent order. An enhanced discourse-based summarization framework by rhetorical

parsing tuning is proposed by (Marcu, 1998). we exploit topic signature and rhetorical

structure theory (Mann and Thompson, 1988) to weight the sentences.

In the natural language processing area, reinforcement learning has been extensively

applied previously to the problem of dialogue management where the systems converse

with a human user by taking actions that emit natural language utterances (Scheffler and

Young, 2002, Roy et al., 2000, Litman et al., 2000, Singh et al., 1999). The state space

defined in these systems encodes information about the goals of the user and what they say

at each time step. There, the learning problem is to find an optimal policy that maps states to

actions, through a trial-and-error process of repeated interaction with the user. An iterative

reinforcement approach was proposed by (Wan et al., 2007a) to simultaneously extract

summary and keywords from single document under the assumption that the summary and

keywords of a document can be mutually boosted. Branavan et al. (2009) presented a

reinforcement learning approach for mapping natural language instructions to sequences of

executable actions.

1.6 Our Approaches

In our research, we have experimented with four different methods for answering complex

questions. In the first approach we have formulated the task of complex question answering

using Reinforcement Learning. We considered the main task of Document Understanding

Conferences (DUC) 20077 for this experiment and we used DUC 2006 corpus as training

7http://duc.nist.gov/guidelines/2007.html.

14

data and DUC 2007 corpus as test data. The task was formulated in both markov decision

processes (MDP) and partially observable markov decision process (POMDP). We have

used function approximation and used gradient descent to learn the parameters.

In the next approach we considered the Text Analysis Conference (TAC) 20108 guided

summarization task. The guided summarization task is to write a 100-word summary of

a set of 10 newswire articles for a given topic, where the topic falls into a predefined

category. In this task as the category of the topics are predifined we used this information

to score document sentences. Finally we used graph based random walk model for selecting

sentences.

In the next experiment we used manifold ranking which has been used successfully

for multi-document summarization. We extensively studied the impact of syntactic and se-

mantic information in computing the similarity between the sentences in the multi-modality

manifold learning framework for complex question answering.

In our final approach we used question decomposition framework for answering com-

plex question. This framework has five main components

• Sentence simplifier

• Question generator

• Question ranking

• Simple question answering system

• Answer synthesizer module

1.7 Thesis Outline

The remaining chapters of this thesis are organized as follows:

8http://www.nist.gov/tac/2010/.

15

Chapter 2 is a review of the mathematical tools we have used for complex question an-

swering in this thesis. In section 2.1 we discussed about reinforcement learning, MDP and

POMDP models and their formulation. Section 2.2 is a discussion of Supervised Models

(SVM, MaxEnt).

Chapter 3 is a discussion of various methods for tagging useful information in the doc-

uments. In this chapter we provided a detailed description of the taggers and parsers we

have used for processing the documents.

Chapter 4 includes different summary evaluation techniques that we have used to eval-

uate our complex question answering system and to compare them with other existing

systems.

Chapter 5 includes the implementation details of our approaches to answer complex

questions. In section 5.3 we described how the complex question answering can be formu-

lated using reinforcement learning. In section 5.4 we discussed guided complex question

answering technique using random walk. Section 5.5 gives detailed description of a graph

based approach for complex question answering. Section 5.6 shows our approach for an-

swering complex question by question decomposition.

Chapter 6 consists of concluding remarks about our findings and our views on the future

of QA systems.

1.8 Published Work

Some of the material presented in this thesis has been previously published. Section 5.3,

5.4 and 5.5 expands on the materials published in (Chali, Hasan, and Imam, 2011a) and

(Chali, Hasan, and Imam, 2011b).

16

Chapter 2

Machine Learning Techniques for Text Summarization

2.1 Reinforcement Learning

Learning form interaction is a fundamental idea underlying nearly all theories of learning

and intelligence. An infant learns by interacting with its environment and observing the

feedback it gets from the environment. This kind of feedback is called a reward or re-

inforcement. The idea has mainly arisen from the animal psychologists who have been

carefully studying reinforcement learning for over 70 years. The term reinforcement learn-

ing seems to have come into use in AI through early works of Minsky (Minsky and Self-

ridge, 1961). Reinforcement learning has been studied as function optimization (McMurtry,

1970, Holland, 1992), which includes the study of hill climbing algorithms (Howland et al.,

1960), as learning automata theory (Narendra and Thathachar, 1974) and in regard to the

two armed bandit problem (Cover and Hellman, 1970).

2.1.1 Reinforcement Learning Framework

In reinforcement learning, an agent is placed in an environment and must learn to behave

successfully by interacting with the environment. Here the agent is the learner or deci-

sion maker and the environment is comprising everything outside the agent with which it

interacts. The learning process goes through interaction cycles as shown in Figure 2.1.

Elements of Reinforcement Learning A policy specifies what the agent should do for

any state that the agent might reach. It is a mapping from perceived states of the environ-

ment to actions to be taken when the agent is in those states. In simple cases the policy

17

Figure 2.1: Reinforcement learning framework (Sutton and Barto, 1998)

may be represented by a simple function or a lookup table but it may also involve extensive

computation such as search process. In general, policies may be stochastic and is sufficient

to determine the behavior of the agent (Sutton and Barto, 1998).

A reward function defines the goal in a reinforcement learning problem. Roughly

speaking, it maps each perceived state (or state-action pair) of the environment to a sin-

gle number, a reward, indicating the intrinsic desirability of that state (Sutton and Barto,

1998). A reinforcement learning agent’s sole objective is to maximize the total reward it

receives in the long run. The reward function defines what are the good and bad events for

the agent. Rewards are basically given directly by the environment so the reward function

is unalterable by the agent. It may, however, serve as a basis for altering the policy. For ex-

ample, if an action selected by the policy is followed by a low reward, then the policy may

be changed to select some other action in that situation in the future. In general, reward

functions may be stochastic.

The value/utility of a state is the total amount of reward an agent can expect to ac-

cumulate over the future, starting from that state. Whereas a reward function determine

the immediate, intrinsic desirability of environmental states, a value function indicate the

long-term desirability of states after taking into account the states that are likely to follow,

18

and the rewards available in those states. For example, a state might always yield a low

immediate reward but still have a high value because it is regularly followed by other states

that yield high rewards. Or the reverse could be true.

Utility is estimated based on rewards. Utility plays a central role in choosing actions.

The agent tries to choose its actions that bring about states of highest utility. Values must

be estimated and reestimated from the sequences of observations the agent makes over its

entire lifetime. In fact, the most important component of almost all reinforcement learning

algorithms is a method for efficiently estimating values. If the agent’s preferences between

state sequences are stationary then there are just two ways to assign utilities to sequences

(Russel and Norvig, 2003):

1. Additive rewards: the utility of a state sequence is

Uh([s0, s1, s2, . . .]) = R(s0)+R(s1)+R(s2)+ . . . (2.1)

where [s0, s1, s2, . . .] is the state sequences visited by the agent and R(s) is the reward at

state s.

2. discounted rewards: the utility of a state sequence is

Uh([s0, s1, s2, . . .]) = R(s0)+ γR(s1)+ γ
2R(s2)+ . . . (2.2)

where the discount factor γ is a number between 0 and 1. The discount factor describes the

preference of an agent for current reward over future rewards. When γ is close to 0, rewards

in the distant future are viewed as insignificant. When γ is 1, discounted rewards are exactly

equivalent to additive rewards, so additive rewards are a special case of discounted rewards.

The fourth and final element of some reinforcement learning systems is a model of the

environment. This is something that mimics the behavior of the environment. For example,

given a state and action, the model might predict the resultant next state and next reward.

19

Models are used for planning, by which we mean any way of deciding on a course of

action by considering possible future situations before they are actually experienced. The

incorporation of models and planning into reinforcement learning systems is a relatively

new development. Early reinforcement learning systems were explicitly trial-and-error

learners; what they did was viewed as almost the opposite of planning. Nevertheless, it

gradually became clear that reinforcement learning methods are closely related to dynamic

programming methods, which do use models, and that they in turn are closely related to

state-space planning methods (Sutton and Barto, 1998).

Balancing exploration and exploitation The need to balance exploration and exploita-

tion is a distinctive challenge that arises in reinforcement learning. If the agent chooses

action that is best according to current knowledge it has, then we say that the agent is ex-

ploiting its knowledge. For example, If the agent maintains estimates of the action values,

then at any time there is at least one action whose estimated value is greatest. The action

with the highest estimate is called a greedy action.

If instead the agent selects one of the non-greedy actions, then we say it is exploring.

Exploration is important as it enables the agent to improve its knowledge or in other words

to improve its estimate of the non-greedy action’s value. Exploitation is the right thing to do

to maximize the expected reward on the one play, but exploration may produce the greater

total reward in the long run (Sutton and Barto, 1998). Reward may be lower in the short

run, during exploration, but higher in the long run because after the agent has discovered

the better actions, it can exploit them. As it is not possible both to explore and to exploit

with any single action selection, the agent must always do a trade-off between exploration

and exploitation.

In any specific case, whether it is better to explore or exploit depends in a complex way

on the precise values of the estimates, uncertainties, and the number of remaining plays.

20

There are many sophisticated methods for balancing exploration and exploitation. We have

used ε-greedy method (Sutton and Barto, 1998).

ε-greedy method In ε-greedy methods the agent behaves greedily most of the time, but

with small probability ε, instead it selects an action at random, uniformly, independently

of the action-value estimates. An advantage of these methods is that, in the limit as the

number of plays increases, every action will be sampled an infinite number of times.

Generalization and Function Approximation If the number of states and actions is

large it is not possible to represent the agent’s estimates of utility functions as a table with

one entry for each state or for each state-action pair. The same problem occurs when the

state or action spaces include continuous variables or complex sensations, such as a visual

image. The problem is not just the memory needed for large tables, but the time and data

needed to fill them accurately. In other words, the key issue is that of generalization. How

can experience with a limited subset of the state space be usefully generalized to produce

a good approximation over a much larger subset? Function approximation takes examples

from a desired function (e.g., an utility function) and attempts to generalize from them

to construct an approximation of the entire function (Sutton and Barto, 1998). Function

approximation is an instance of supervised learning which has been extensively studied in

machine learning, artificial neural networks, pattern recognition, statistical curve fitting,

etc. So, to a large extent we only need to combine reinforcement learning methods with

existing generalization methods.

21

2.1.2 Markov Decision Process

The specification of a sequential decision problem for a fully observable environment with

Markovian transition model and additive rewards is called a Markov Decision Process

(MDP) (Russel and Norvig, 2003). An MDP is defined by the following three components:

• Initial State: S0

• Transition Model: T (s, a, s
′
)

• Reward Function: R(s)

Here the transition model is a specification of the outcome probabilities for each action

in each possible state. In the case of MDP the transition model is Markovian. So the

probability of reaching s
′
from s depends only on s and not on the history of earlier states.

To solve a MDP problem we have to find out an optimal policy that gives the maximum

expected utility of the possible environment histories generated by the policy.

A careful balancing of risk and reward is a characteristic of MDPs that does not arise

in deterministic search problems. Many real-world decision problems also share the same

characteristic. That is why MDPs have been studied in several fields, including AI, opera-

tions research, economics, and control theory.

2.1.3 Partially Observable MDP (POMDP)

In the case of MDP the environment is fully observable but in the case of POMDP the

environment is only partially observable. The agent does not necessarily know which state

it is in. So the utility of a state s and the optimal action in s depend not on s, but also on

how much the agent knows when it is in s. The elements of POMDP are:

• Initial State: S0

22

• Transition Model: T (s, a, s
′
)

• Reward Function: R(s)

• Observation Model: O(s, o)

The observation model specifies the probability of perceiving the observation o in a

state s. In POMDP the agent always has to maintain its belief state. A belief state b

is a probability distribution over all possible states. Equation 2.3 shows how new belief

state b
′
(s
′
) is calculated given the previous belief state b(s), action taken a and perceived

observation o.

b
′
(s
′
) = α O(s

′
, o) ∑

s
T (s, a, s

′
) b(s), (2.3)

where α is a normalizing constant that makes the belief state sum to 1.

In POMDP the optimal action depends only on the agent’s current belief state as the

agent does not know its actual state; all it knows is the belief state. The decision cycle of a

POMDP agent is:

• Given the current belief state b, execute the optimal action a.

• Receive observation o.

• Update the current belief state.

It can be shown that solving a POMDP on a physical state space can be reduced to solv-

ing an MDP on the corresponding belief state space. Although POMDPs can be reduced to

MDPs, the resulted MDP has a continuous (and usually high-dimensional) state space. As

a result the algorithms used to solve MDPs can not be applied directly to such MDPs.

23

2.2 Supervised Models

2.2.1 Support Vector Machines (SVM)

SVM is a powerful methodology for solving machine learning problems introduced by

Vapnik (Cortes and Vapnik, 1995) based on the Structural Risk Minimization principle.

In the classification problem, the SVM classifier typically follows from the solution to a

quadratic problem. SVM finds the separating hyperplane that has the maximum margin

between the two classes in the case of binary classification.

Figure 2.2 shows the conceptual structure of SVM. Training samples each of which

belongs either to positive or negative class can be denoted by:

(x1, y1) , . . . ,(xu, yu) , x j ∈ Rn, y j ∈ {+1, −1} . (2.4)

Here, x j is a feature vector of the j-th sample represented by an n dimensional vector; y j

is its class label and u is the number of the given training samples. SVM separates positive

and negative examples by a hyperplane defined by:

w · x + b = 0, w ∈ Rn, b ∈ R, (2.5)

where “·” stands for the inner product. In general, a hyperplane is not unique (Cortes and

Vapnik, 1995). The SVM determines the optimal hyperplane by maximizing the margin.

The margin is the distance between negative examples and positive examples; the distance

between w · x + b = 1 and w · x + b =−1.

From Figure 2.2, we clearly see that the SVM on the left will generalize far better than

that of the right as it has an optimally maximized margin between two classes of samples.

The examples on w · x + b = ±1 are called the Support Vectors which represent both

24

Figure 2.2: Support Vector Machines (Hasan, 2009)

positive or negative examples. The hyperplane must satisfy the following constraints:

yi
(
w · x j + b

)
− 1≥ 0. (2.6)

Hence, the size of the margin is 2/||w||. In order to maximize the margin, we assume

the following objective function:

Minimizew,b J (w) =
1
2
||w||2 (2.7)

s.t. y j
(
w · x j + b

)
− 1≥ 0.

By solving a quadratic programming problem, the decision function f (x) = sgn(g(x))

is derived, where

g(x) =
u

∑
i=1

λiyixi · x + b. (2.8)

When examples are not linearly separable, the SVM algorithm allows for the use of

25

slack variables
(
ξ j
)

for all x j to allow classification errors and the possibility to map ex-

amples to a (high-dimensional) feature space. These ξ j give a misclassification error and

should satisfy the following inequalities (Kudo and Matsumoto, 2001):

yi
(
w · x j + b

)
−
(
1 − ξ j

)
≥ 0. (2.9)

Hence, we assume the following objective function to maximize the margin:

Minimizew,b,ξ J (w, ξ) =
1
2
||w||2 + C

u

∑
j=1

ξ j (2.10)

s.t. y j
(
w · x j + b

)
−
(
1 − ξ j

)
≥ 0.

Here, ||w||/2 indicates the size of the margin, ∑
u
j=1 ξ j indicates the penalty for misclas-

sification, and C is the cost parameter that determines the trade-off for these two arguments.

The decision function depends only on support vectors (λi 6= 0). Training examples, except

for support vectors (λi = 0), have no influence on the decision function.

SVMs can handle non-linear decision surfaces with kernel function K (xi, x). There-

fore, the decision function can be rewritten as follows:

g(x) =
u

∑
i=1

λiyiK (xi, x) + b. (2.11)

In this work, we use polynomial kernel functions, which have been found to be very

effective in the study of other tasks in natural language processing (Joachims, 1998b, Kudo

and Matsumoto, 2001):

K (x, y) = (x · y + 1)d . (2.12)

26

2.2.2 Maximum Entropy (MaxEnt)

The maximum entropy approach is a novel method for the task of sentence extraction. The

main principle of the MaxEnt method is to model all that is known and assumes nothing

about that which is unknown. In other words, given a collection of facts, the model must

be consistent with all the facts, but otherwise act as uniformly as possible (Berger et al.,

1996). One advantage of this form of statistical inference is that we only constrain the

model of our data by the information that we do know about the task, i.e. we do not assume

anything about information of which we have no knowledge. Another advantage is that

the information we use to constrain the model is in no way restricted so we can encode

whatever linguistic information we want via the features. However, a disadvantage of this

approach is that, although the maximum entropy approach may make good predictions, we

cannot interpret the individual elements that cause the behavior of the system as a large

number of features tend to be used in the approach and hence the output cannot be used to

interpret all of these separately (Ferrier, 2011).

MaxEnt models can be termed as multinomial logistic regression if they are to classify

the observations into more than two classes (Jurafsky and Martin, 2008). However, in this

research, we used the MaxEnt model to classify the sentences into two classes: summary or

non-summary. The parametric form for the maximum entropy model is as follows (Nigam

et al., 1999):

27

P(c|s) = 1
Z (s)

exp

(
∑

i
λi fi

)
(2.13)

Z (s) = ∑
c

exp

(
∑

i
λi fi

)
. (2.14)

Here, c is the class label and s is the sentence we are interested in labeling. Z is the nor-

malization factor that is just used to make the exponential into a true probability. Each fi is

a feature with the associated weight λi which can be determined by numerical optimization

techniques in the absence of a closed form solution.

28

Chapter 3

Document Processing and Feature Extraction

Our summarization systems require different kinds of preprocessing of the documents. The

raw data provided by DUC-2006 and DUC-2007 is just a string of characters. We had to

preprocess the documents, including sentence tokenization, parts-of-speech tagging, syn-

tactic parsing of the sentences etc. Some of the existing tools we have utilized to do tagging

and parsing are:

• WordNet (http://wordnet.princeton.edu/)

• OAK System (http://nlp.cs.nyu.edu/oak/)

• Basic Element (BE) extractor (http://www.isi.edu/cyl/BE)

• Charniak Parser (http://www.cs.brown.edu/people/ec/software)

• ASSERT semantic role labeling system (http://cemantix.org/assert)

In this chapter, we give a detailed description of the different tags and parses that were

done and the tools that were used to do the tagging and parsing.

3.1 Overview of Selected Tools

3.1.1 OAK System

OAK system (Sekine, 2002) is an English analyzer. It uses explicit rules that are extracted

based on transformation or decision list learning methods. OAK system can be used as:

• Sentence Splitter

• Tokenizer

29

• POS tagger and Stemmer

• Chunker

• Named Entity tagger

3.1.2 WORDNET

WordNet is a lexical database of English. It groups English words (i.e. nouns, verbs,

adjectives and adverbs) into sets of cognitive synonyms (synsets), each expressing a distinct

concept. Each of these sets is called synsets. WordNet provides a general definition (i.e.

gloss definition) for each synset and also provides various semantic relations between these

synsets. Different senses of a word are in different synsets. For example, the noun computer

has two senses and each sense belongs to a different synset as shown in the following table:

Synset ID Words in the synset Gloss definition

03082979 computer, computing machine,

computing device, data proces-

sor, electronic computer, infor-

mation processing system

a machine for performing cal-

culations automatically

09887034 calculator, reckoner, figurer,

estimator, computer

an expert at calculation (or

at operating calculating ma-

chines)

Two kinds of relations are represented between the synsets: lexical and semantic. Lex-

ical relations hold between semantically related word forms; semantic relations hold be-

tween word meanings. These relations include (but are not limited to) hypernymy/hyponymy

(superordinate/subordinate), antonymy, entailment, and meronymy/holonymy.

30

Nouns and verbs are organized into hierarchies based on the hypernymy/hyponymy

relation between synsets. Adjectives are arranged in clusters containing head synsets and

satellite synsets.

3.1.3 ASSERT

ASSERT (Automatic Statistical SEmantic Role Tagger) is an automatic statistical semantic

role tagger, that can annotate naturally occurring text with semantic arguments. ASSERT

parser identifies all the predicates in a sentence, and then identifies and classifies sets of

word sequences, that represent the arguments (i.e. semantic roles) of each of these pred-

icates. In this process, it performs a full syntactic analysis of the sentence, automatically

identifies all the verb predicates in that sentence, extracts features for all constituents in

the parse tree relative to the predicate, and identifies and tags the constituents with the

appropriate semantic arguments.

3.1.4 Lemur Toolkit 4.12

Lemur toolkit provides a set of NLP tools to support research and development of informa-

tion retrieval and text mining software. For our research we have used Indri search engine

that provides state-of-the-art text search and a rich structured query language. It supports

text collections of up to 50 million documents (single machine) or 500 million documents

(distributed search).

31

3.1.5 ROUGE

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation (Lin and Hovy,

2003) (Lin, 2004) is an automatic summarization evaluation metrics. ROUGE automati-

cally determines the quality of a summary by measuring the number of N-gram overlapping

units between the candidate and human generated summaries (Jurafsky and Martin, 2008).

ROUGE toolkit calculates precision, recall and F-measure for evaluation. Precision (P) is

the percentage of overlapping units in the candidate summary that are correct. Recall (R) is

the percentage of over lapping units actually present in the input that were correctly iden-

tified by the candidate summary. The F-measure (Van Rijsbergen, 1979) provides a way to

combine these two measures into a single metric. The F-measure is defined as:

Fβ =
(β2 +1)PR

β2P+R

The parameter β differentially weights the importance of recall and precision. Values

of β > 1 favor recall, while values of β < 1 favor precision.

Depending on how we choose the overlapping units there are different variants of

ROUGE measures: ROUGE-N (N = 1, 2, 3, 4), ROUGE-L, ROUGE-W, ROUGE-S and

ROUGE-SU.

ROUGE-N (N = 1, 2, 3, 4) is an n-gram recall between the candidate summary and the

set of human reference summaries. ROUGE-N is computed as follows:

ROUGE-N =
∑S∈Re f erenceSummaries ∑gramn∈SCountmatch (gramn)

∑S∈Re f erenceSummaries ∑gramn∈SCount (gramn)

The function Countmatch(N−gram) returns the maximum number of N-grams that co-

occur in the candidate summary and the set of reference summaries.

ROUGE-L measures the longest common subsequence between the reference and the

32

candidate summaries. ROUGE-S measures the number of skip bigrams between the refer-

ence and candidate summaries. A skip bigram is a pair of words in their sentence order,

but allowing for any number of other words to appear between the pair.

All the ROUGE measures in this thesis were calculated by running ROUGE-1.5.5 with

stemming but no removal of stopwords. ROUGE run-time parameters were set as the same

as DUC 2007 evaluation setup.

3.2 Corpus

For training and testing of our automatic summarization systems we used DUC-2006,

DUC-2007 and TAC-2010 document sets. These documents come from the AQUAINT

and AQUAINT-2 collections of news articles. The AQUAINT corpus of English News

Text consists of documents taken from the New York Times, the Associated Press, and the

Xinhua News Agency newswires. The collection spans the years 1999-2000 (1996-2000

for Xinhua documents). The AQUAINT-2 collection spans the time period of October 2004

- March 2006; articles are in English and come from a variety of sources including Agence

France Presse, Central News Agency (Taiwan), Xinhua News Agency, Los Angeles Times-

Washington Post News Service, New York Times, and the Associated Press. The articles

are categorized into several topics. Each topic has a topic description and a set of related

articles. The topic description includes topic ID, title and narrative. The following is an

example of topic description from DUC-2007

<topic>

<num>D0703A</num>

<title> steps toward introduction of the Euro </title>

<narr>

33

Describe steps taken and worldwide

reaction prior to the introduction

of the Euro on January 1, 1999.

Include predictions and expectations

reported in the press.

</narr>

</topic>

3.3 Document Processing

3.3.1 Sentence Tokenization

The raw data provided by DUC-2006 and DUC-2007 is just a string of characters. Tok-

enization is a process of splitting a string of characters into lexical elements such as words,

punctuation or sentences. The first step of document processing is to split the raw data into

a set of sentences. We have used OAK System (Sekine, 2002) for this. The OAK system

command for sentence splitting is:

./oak -i TEXT -s TEXT -o SENTENCE -O PLAIN -r source-document -w destination-

document

3.3.2 Word Stemming

Stemming is the process for reducing inflected (or sometimes derived) words to their stem

or root form. So, a stem of a word is the part left after the affixes have been taken off.

Affixes can take different forms and are letters that are used to modify the base form of

a word. Examples of these are the suffixes; “e”, “ly”, “er”, “ess”, “ed”, and “ing”. A

34

stemming algorithm (for example, Porter stemmer (Porter, 1997)) reduces the words “fish-

ing”, “fished”, “fish”, and “fisher” to the root word, “fish”. We used the OAK system for

stemming. The OAK system command for word stemmming is:

./oak -i SENTENCE -o POSTAG -O STEM -r source-document -w destination-document

An example of word stemming is:

Input Passage

Angelina Jolie lives on the edge. Jolie, 25, delights in making waves. She is the woman

who literally jumped in a swimming pool in her ballgown after winning a Golden Globe

Award for Gia (1998).

Stemmed Passage

Angelina Jolie life on the edge. Jolie, 25, delight in make wave. She be the woman who

literally jump in a swimming pool in her ballgown after win a Golden Globe Award for Gia

(1998).

3.3.3 Part of Speech Tagging

In English, the words that function similarly with respect to what can occur nearby (syntac-

tic distributional properties) or with respect to the affixes they take (morphological prop-

erties) are grouped into classes, which is known as Part of Speech (POS). Part-of-speech

tagging is the process of assigning a part-of-speech or other syntactic class marker to each

word in a corpus. The significance of parts-of-speech for language processing is the large

amount of information they give about a word and its neighbors. The number of tagsets for

parts-of-speech can vary. For example the number of tagsets for Penn Treebank is 45 (Mar-

cus et al., 1994), for Brown corpus is 87 (Greenbaum et al., 1979) (Francis and Kucera,

1997) and for C7 it is 146 (Garside et al., 1997). We used the Penn Treebank POS tag set

which is the most popular one and used to train the OAK system. For example:

35

Input Passage

Angelina Jolie lives on the edge. Jolie, 25, delights in making waves. She is the woman

who literally jumped in a swimming pool in her ballgown after winning a Golden Globe

Award for Gia (1998).

Stemmed POS tagged Passage

Angelina/NNP Jolie/NNP life/NN on/IN the/DT edge/NN. Jolie/NNP, 25/CD, delight/NN

in/IN make/VB wave/NN. She/PRP be/VB the/DT woman/NN who/WP literally/RB jump/VBP

in/IN a/DT swimming/NN pool/NN in/NN her/PRP ballgown/NN after/IN win/NN a/DT

Golden/NNP Globe/NNP Award/NNP for/IN / Gia/NNP / (/-LRB- 1998/CD)/-RRB- ./.

Most of the current systems available for part-of-speech tagging has fairly high ac-

curacy (almost 95%). Most tagging algorithms fall into one of two classes: rule-based

taggers and probabilistic taggers. Rule-based taggers generally involve a large database of

hand-written disambiguation rules. Example of rule-based tagger is EngCG which is based

on the Constraint Grammar architecture of (Karlsson et al., 1995). Probabilistic taggers

generally learn the probability of a word having a given tag in a given context through su-

pervised machine learning techniques from manually created training corpus. Example of

probabilistic tagger is HMM tagger, which is based on Hidden Markov Model.

There is another approach to tag called the transformation based tagger, or the brill

tagger (Brill, 1994). The brill tagger shares features of both tagging architectures. Like the

rule-based tagger, it is based on rules that determine when an ambiguous word should have

a given tag. Like the probabilistic taggers, it has a machine-learning component: the rules

are automatically induced from a previously tagged training corpus. For POS tagging, we

were using the OAK System which uses a method similar to the Brill tagger, but has 13%

fewer errors (Sekine, 2002).

36

3.3.4 Syntactic Parsing

Syntactic parsing is the process of recognizing a sentence and assigning a syntactic struc-

ture to it. Syntactic parsing is used to discover word dependencies. It analyzes a sentence

using the grammar rules. We used Charniak parser1 to get syntactic parse of the passages.

Charniak parser is a stochastic syntactic parser which learns the probabilities through su-

pervised machine learning techniques. The probability is the chance that two words are

dependent, given certain features like part of speech and distance.

The following is an example of a sentence parsed with the Charniak parser:

(S1 (S (NP (NNP Angelina) (NNP Jolie))

(VP (AUX is)

(NP (NP (DT the) (NN woman))

(SBAR (WHNP (WP who))

(S (VP (ADVP (RB literally))

(VBD jumped)

(PP (IN in)

(NP (NP (DT a) (VBG swimming) (NN pool))

(PP (IN in) (NP (PRP$ her) (NN ballgown)))))

(PP (IN after)

(S (VP (VBG winning)

(NP (DT a) (NNP Golden) (NNP Globe) (NN Award))

(PP (IN for)

(NP (NP () (NNP Gia\) () (NNP \) (POS))

(PRN (-LRB- -LRB-) (NP (CD 1998)) (-RRB- -RRB-)))))

)))))))

1Available at ftp://ftp.cs.brown.edu/pub/nlparser/.

37

(. .)))

Pasca and Harabagiu (2001) demonstrated that with a syntactic form one can see which

words depend on other words. There should be a similarity between the words that are

dependent in the question and the dependency between words of the passage containing

the answer. The importance of syntactic feature in question answering was described by

(Zhang and Lee, 2003a), (Moschitti et al., 2007) and (Moschitti and Basili, 2006).

3.3.5 Semantic Parsing

Shallow semantic representations, bearing more compact information, can elude the sparse-

ness of deep structural approaches and the weakness of bag of words models (Moschitti

et al., 2007). Initiatives such as PropBank (PB) (Kingsbury and Palmer, 2002) made it pos-

sible to design accurate automatic Semantic Role Labeling (SRL) systems (Hacioglu et al.,

2004). So, attempting an application of SRL to automatic annotation seems natural, as

similarity of an abstract sentence with a document sentence relies on a deep understanding

of the semantics of both. For example, let us consider the PB annotation:

[ARG0 all] [TARGET use]

[ARG1 the french franc]

[ARG2 as their currency]

Such annotation can be used to design a shallow semantic representation that can be

matched against other semantically similar sentences, e.g.

[ARG0 the Vatican] [TARGET uses]

[ARG1 the Italian lira]

[ARG2 as their currency]

38

To experiment with semantic structures, we parsed the corresponding sentences se-

mantically using a Semantic Role Labeling (SRL) system like ASSERT2. ASSERT is an

automatic statistical semantic role tagger that can annotate naturally occurring text with

semantic arguments. When presented with a sentence, it performs a full syntactic analysis

of the sentence, automatically identifies all the verb predicates in that sentence, extracts

features for all constituents in the parse tree relative to the predicate, and identifies and tags

the constituents with the appropriate semantic arguments.

3.3.6 Topic Signature

Topic signatures that can play a central role in automated text summarization and informa-

tion retrieval are typically used to identify the presence of a complex concept–a concept

that consists of several related components in fixed relationships (Lin and Hovy, 2000).

Inspired by the idea presented in (Lin and Hovy, 2000), for each topic present in the data

set, we calculate its topic signature defined as below:

T S = {topic, signature}

= {topic,〈(t1, w1), · · · ,(tn, wn)〉} (3.1)

where topic is the target concept and signature is a vector of related terms. Each ti is a

term highly correlated to the topic with association weight, wi. We use the following log-

likelihood ratio to calculate the weights associated with each term (i.e. word) of a sentence:

2Available at http://cemantix.org/assert.

39

wi = log
occurrences o f ti in the topic
occurrences o f ti in all topics

(3.2)

To calculate the topic signature weight for each sentence, we sum up the weights of the

words in that sentence and then, normalized the weights. Thus, a sentence gets a high score

if it has a set of terms that are highly correlated with a target concept (topic).

3.3.7 Rhetorical Structure Theory (RST)

A well-written text is often supported by a hierarchically structured set of coherence re-

lations that reflect the author’s intent (Mann and Thompson, 1988). Discourse parsing

focuses on a higher-level view of text (called rhetorical structure), allowing some flex-

ibility in the choice of formal representation (Duverle and Prendinger, 2009). Rhetorical

Structure Theory (Mann and Thompson, 1988) provides a framework to analyze text coher-

ence by defining a set of structural relations to composing units (“spans”) of text. The most

frequent structural pattern in RST is that two spans of text are related such that one of them

has a specific role relative to the other. A paradigm case is a claim followed by evidence

for the claim. RST posits an “Evidence” relation between the two spans that is represented

by calling the claim span a nucleus and the evidence span a satellite3. In this thesis, we

parse each document sentence within the framework of Rhetorical Structure Theory (RST)

using a Support Vector Machine (SVM)-based discourse parser described in (Duverle and

Prendinger, 2009) that was shown 5% to 12% more accurate than the current state-of-the-

art parsers. We observe that in a relation the nucleus often contains the main information

while the satellite provides some additional information. Therefore, we assign a weight to

3http://www.sfu.ca/rst/01intro/intro.html.

40

each sentence that is a nucleus of a relation and normalize the weights at the end.

41

Chapter 4

Evaluation Techniques

4.1 Introduction

In any speech and language processing area a systematic and standard evaluation is im-

portant to assess the quality of the system and to compare the performance against other

systems. Many NLP tasks, such as parsing, named entity recognition, chunking and se-

mantic role labeling etc., can be automatically evaluated using the standard precision and

recall measures. However, the evaluation of a summary is a very difficult task as there is

no unique gold standard. For the same source documents there can be multiple summaries

and it is always difficult to identify which qualities make a summary a good one since this

fact largely depends on the evaluator. Still there are a wide variety of evaluation metrics

for summarization, metrics requiring human annotation as well a completely automatic

metrics. In this chapter, we discussed the widely available summary evaluation techniques.

Methods for evaluating text summarization can be broadly classified into two cate-

gories, extrinsic evaluation or task-based evaluation and intrinsic evaluation or task-independent

evaluation (Sparck-Jones and Galliers, 1996).

4.2 Extrinsic (task-based)

Ideally, summarization results need to be assessed in a task-based setting, determining

their usefulness as part of an information browsing and access interface (Mani et al., 2002)

(Mckeown et al., 2005) (Koumpis and Renals, 2005). An extrinsic evaluation tests the

summarization based on how it affects the completion of some other tasks. It tests the

impact of summarization on tasks like relevance assessment, reading comprehension, find-

42

ing documents from a large collection, routing documents, producing an effective report or

presentation using a summary etc. It is also possible to judge the impact of a summarizer

on the system in which it is embedded, for example, in a question answering system. The

amount of work required to post-edit a summary output to make it more readable can be

thought of as another measure to evaluate it. But such extrinsic evaluations are time con-

suming, expensive and require a considerable amount of careful planning. They are thus

not very suitable for system comparisons and evaluation during development (Nenkova,

2006).

4.3 Intrinsic (task-independent)

In intrinsic evaluation, summarization quality is assessed based on the analyses of the sum-

maries directly. This type of evaluations mainly measure the coherence and informativeness

of summaries. Intrinsic evaluations are normally employed in such cases, either by solicit-

ing human judgments on the goodness and utility of a given summary, or by a comparison

of the summary with a human-authored gold-standard (Nenkova, 2006). This type of eval-

uation might involve user judgment of fluency of the summary. Measures of fluency can

address language complexity, redundancy, coherence, preservation of different structured

environments such as lists or tables, grammatical features, etc.

4.3.1 Manual Evaluation

In early 1960s, the evaluation of summaries was mainly done by humans (Edmundson,

1969). In this type of evaluation, human judges rank the summaries mainly based on the

coherence and informativeness of the summary.

43

DUC Manual Evaluation

The Document Understanding Conference (DUC)1 has been carrying out large-scale evalu-

ations of summarization systems on a common dataset since 2001. In DUC-2007, National

Institute of Standards and Technology (NIST) manually evaluated the linguistic features of

each submitted summary using a set of quality questions2. These linguistic quality ques-

tions are targeted to assess how readable and fluent the summaries are, and they measure

qualities of the summary that DO NOT involve comparison with a model summary or DUC

topic. These questions require a certain readability property to be assessed on a five-point

scale from “1” to “5”, where “5” indicates that the summary is good with the respect to the

quality under question, “1” indicates that the summary is bad with respect to the quality

stated in the question, and “2” to “4” show the gradation in between. The quality of the

summary is assessed only with respect to the property that is described in the specific cate-

gory. The information content and responsiveness of the summary are measured separately

in the “responsiveness” part of the evaluation.

Grammaticality The summary should have no datelines, system-internal formatting,

capitalization errors or obviously ungrammatical sentences (e.g., fragments, missing com-

ponents) that make the text difficult to read.

Non-redundancy There should be no unnecessary repetition in the summary. Unneces-

sary repetition might take the form of whole sentences that are repeated, or repeated facts,

or the repeated use of a noun or noun phrase (e.g., “Morris Dees”) when a pronoun (“he”)

would suffice.
1http://duc.nist.gov.
2http://www.nlpir.nist.gov/projects/duc/duc2007/quality-questions.txt.

44

Referential clarity It should be easy to identify who or what the pronouns and noun

phrases in the summary are referring to. If a person or other entity is mentioned, it should

be clear what their role in the story is. So, a reference would be unclear if an entity is

referenced but its identity or relation to the story remains unclear.

Focus The summary should have a focus. Sentences should only contain information that

is related to the rest of the summary.

Structure and Coherence The summary should be well-structured and well-organized.

The summary should not just be a heap of related information, but should build from sen-

tence to sentence to a coherent body of information about a topic.

Responsiveness This is measured primarily in terms of the amount of information present

in the summary that actually helps to satisfy the information need expressed in the topic

statement. The linguistic quality of the summary might play only an indirect role in this

judgment, insofar as poor linguistic quality interferes with the expression of information

and reduces the amount of information that is conveyed.

Pyramid Evaluation

The pyramid method (Nenkova and Passonneau, 2004) is another manual evaluation tech-

nique for summarization evaluation which was concerned with analysis of a key problem in

summarization, variation in human summaries. The pyramid method addresses the prob-

lem by using multiple human summaries to create a gold-standard and by exploiting the

frequency of information in the human summaries in order to assign importance to differ-

ent facts. This method involves semantic matching of content units to which differential

weights are assigned based on their frequencies in a corpus of summaries. This way it is

45

possible to assign more stable, more informative scores, and hence to a meaningful content

evaluation.

The Pyramid method tries to reduce the dependency of the evaluation results on the

model used for evaluation. It performs semantic analysis of the model summaries and the

target summary (a peer). For each topic, a weighted inventory of Summary Content Units

(SCUs) is created. Each summary content unit (SCU) represents the same information

meaning, even when expressed using different wording in different summaries. An SCU is

similar to a collection of paraphrases in that it groups together words and phrases from dis-

tinct summaries into a single set, based on shared content. Each SCU is assigned a weight

equal to the number of human summarizers who expressed the SCU in their summaries.

The distribution of SCU weights is Zipffian, with few SCUs being included by many sum-

marizers and a heavy tail of low-weight SCUs. SCU analysis shows that summaries that

differ in content can be equally good and assign a score that is stable with respect of the

models when 4 or 5 human summaries are used. The actual pyramid score is equal to the

ratio between the weight of content expressed in a summary and the wight of an ideally

informative summary with the same number of SCUs (Nenkova, 2006).

The drawback of this approach is that users have to analyze different summaries to

manually identify the SCUs which can be tedious. We have used a special annotation tool

DUCView3 to facilitate the process. In this process the annotator must assign a label to

the SCU that expresses the shared content. The label is a concise English sentence that

states what the annotator views as the meaning of the content unit. Coincidentally, the

SCU will have a weight corresponding to the number of model summaries that expresses

the designated content. The SCU weight is automatically computed, based the number of

summaries that contribute to it, so the annotator is not responsible for assigning weights.

3http://www1.cs.columbia.edu/ becky/DUC2006/2006-pyramid-guidelines.html.

46

4.3.2 Automatic Evaluation

The comparison between different summarization systems is best carried out by humans.

But including human judgment for summary evaluation makes the process time consum-

ing and costly. Especially during system development, as the evaluation has to be per-

formed frequently, it is impractical to elicit human judgments for evaluation. Due to this,

researchers seek methods for evaluating system output automatically.

The main problem for automatic evaluation methods is the unavailability of gold stan-

dard for a direct comparison with the system generated summary. Research as early as

(Resnick et al.) reported that extracts selected by six different human judges for 10 articles

from Scientific American had only 8% overlap on average. The same summary can obtain

a recall score that is between 25% and 50% different depending on which of two available

human extracts are used for evaluation (Drummey et al., 2000). It is thus unclear how to

define a gold-standard.

Precision and recall In the case of extractive summarization, where the output summary

consists entirely of material copied from the input, precision and recall can be used as

evaluation measure. Recall is the fraction of sentences chosen by the human summarizer

that were also correctly identified by the system

Recall =
number o f sentences chosen by both human and system

number o f sentences chosen by human|
(4.1)

and precision is the fraction of system sentences that were correct

Precision =
number o f sentences chosen by both human and system

number o f sentences chosen by system|
(4.2)

47

ROUGE In DUC-2007, each topic and its document cluster were given to 4 different

NIST assessors, including the developer of the topic. The assessor created a 250-word

summary of the document cluster that satisfies the information need expressed in the topic

statement. These multiple “reference summaries” were used in the evaluation of our sum-

mary content. We considered the widely used evaluation measures Precision (P), Recall

(R) and F-measure for our evaluation task.

We evaluate our system generated summaries using the automatic evaluation toolkit

ROUGE (Lin, 2004) which has been widely adopted by DUC. We discussed the ROUGE

similarity measures in section 3.1.4. We report the two widely adopted ROUGE metrics in

the results: ROUGE-2 (bigram) and ROUGE-SU (skip bigram) because these have never

been shown not to correlate with the human judgment.

We show 95% confidence interval of the evaluation metric ROUGE-2 for all systems to

report significance for doing meaningful comparison. ROUGE uses a randomized method

named bootstrap re-sampling to compute the confidence intervals. Bootstrap re-sampling

has a long tradition in the field of statistics (Efron and Tibshirani, 1994). The assumption

here is that, estimating the confidence interval from a large number of test sets with n

test samples drawn from a set of n test samples with replacement is as good as estimating

the confidence interval for the test sets of size n from a large number of test sets with n

test samples drawn from an infinite set of test samples. The benefit of this assumption is

that we only need to consider n samples. We use 1000 sampling points in the bootstrap

re-sampling.

4.4 Our Approach

We have used both manual and automatic methods to evaluate our system generated sum-

maries. For manual evaluation, we have used DUC manual evaluation techniques. For

48

automatic evaluation, we have used ROUGE.

49

Chapter 5

Implementation

5.1 Introduction

The complex question answering problem is a general one. One instance of it was the prob-

lem defined in the DUC-2007 main task. In this thesis, we focus on a query-based extractive

approach of summarization where a subset of the sentences from the original documents

are chosen. Complex questions often seek multiple different types of information simulta-

neously and do not presuppose that one single answer can meet all of its information needs.

For example, the wider focus of the complex questions like: “How is Haiti affected by the

earthquake?”, suggests that the submitter may not have a single or well-defined information

need and therefore may be amenable to receiving additional supporting information that is

relevant to some (as yet) undefined informational goal. Multi-document summarization is

an intelligent way to handle this type of query.

We have formulated complex question answering problem using different Machine

learning approaches. We have also experimented the impact of syntactic and semantic

information on complex question answering. In section 5.3 we discuss how our task can

be formulated using reinforcement learning technique. In section 5.4 we presented a graph

based random walk model for guided summarization task. Section 5.5 details Manifold

ranking model for topic-focused multi-document summarization and the impact of syn-

tactic and semantic information on it. In the last section we discuss a complex question

answering system where first we decompose the complex question into factoid questions

and then used a simple question answering system to generate summary.

50

5.2 Task Description

The DUC conference series is run by the National Institute of Standards and Technol-

ogy (NIST) to further progress in summarization and enable researchers to participate in

large-scale experiments. This experiment deals with the topic-focused (i.e. query-based)

multi-document summarization task as defined in the Document Understanding Confer-

ence, DUC-2007. The task is defined as follows:

Given a complex question (topic description) and a collection of relevant doc-

uments, the task is to synthesize a fluent, well-organized 250-word summary of

the documents that answers the question(s) in the topic

For example, given the topic description (from DUC-2007):

<topic>

<num>D0703A</num>

<title> steps toward introduction of the Euro </title>

<narr>

Describe steps taken and worldwide reaction prior to

the introduction of the Euro on January 1, 1999. Include

predictions and expectations reported in the press.

</narr>

</topic>

and a collection of relevant documents, the task of the summarizer is to build a summary

that answers the question(s) in the topic description. we consider this task to generate topic-

oriented 250-word extract summaries for all the topics of DUC-2007 (See sample summary

in Appendix).

51

5.3 Reinforcement Learning

5.3.1 Introduction

Judging the importance of a sentence is the most essential aspect of extractive summary

generation. Given a collection of document sentences and their abstract summaries (created

by human), we can think of a learner that tries to find the most important sentences that can

be extracted as system generated automatic summaries. The importance of a sentence can

be verified by measuring its similarity with the abstract summary sentences using a reward

function. The more similar a sentence is the better reward it receives. This is reinforcement

learning where the task is to learn what to do — how to map situations to actions — so as

to maximize a numerical reward signal. The learner is not told which actions to take, as

in most forms of machine learning, but instead must discover which actions yield the most

reward by trying them (Sutton and Barto, 1998).

Search engines are proved to be adequate as a tool for finding documents on the web.

Although there is no limitation in the expressiveness of the user in terms of query formu-

lation, certain limitation exists in what the search engine does with the query. Moreover,

search engines provide no way of measuring whether a user is satisfied with the answer or

not, and hence, it cannot improve its policy dynamically in real time. This becomes a main

motivation of applying the reinforcement approach to our domain. We can treat complex

question answering as an interactive problem since we consider that, if real-time user feed-

back can be provided in terms of reward, the answering systems might evolve substantially

by improving automatically as time passes.

Supervised learning techniques are not adequate for learning from interaction. More-

over, it requires a huge amount of human-annotated training data. In interactive problems,

it is often impractical to obtain training examples of desired behavior that are both correct

52

and representative of all the situations in which the agent has to act. So, the strategy here is

to use a reinforcement approach that can sense the state of the environment to some extent

and is able to take actions that affect the state. We assume that a little amount of supervision

is provided in the form of a reward function that defines the quality of executed actions.

During training, the learner repeatedly constructs action sequences for a set of given doc-

uments, executes those actions, and observes the resulting reward. The learner’s goal is to

estimate a policy that maximizes future expected reward (Branavan et al., 2009).

In this section, we present a reinforcement learning framework for answering complex

questions. We simplify our formulation by assuming no real time user interaction. We treat

the fact that the human generated abstract summaries are the gold-standards and users (if

they were involved) are satisfied with these summaries. Thus, our approach tries to produce

automatic summaries that are as close as the abstract summaries. Then, the correspondence

between these two types of summaries is learned and the final weights are used to output

machine generated summaries from the unseen data.

We formulate the topic-focused multi-document summarization task as a sequential

decision problem and used both Markov Decision Process models (MDPs) and Partially

Observable MDP models (POMDPs) to solve it. The specification of a sequential decision

problem for a fully observable environment with a Markovian transition model is called

a Markov Decision Process (MDP) (Russel and Norvig, 2003). With this assumption, the

agent always knows which state it is in. MDPs are proved to be useful in a variety of

sequential decision problems (Puterman, 1994). The Partially Observable MDP model

(POMDP) generalizes the MDP model to allow for even more forms of uncertainty to be

accounted for in the process. So, an increasing number of researchers in many areas are be-

coming interested in the application of POMDPs to model different problems that involve

uncertainty (Cassandra, 1998). We explain how Partially Observable Markov Decision Pro-

cesses (POMDPs) can be used for modeling the inherent uncertainty in the multi-document

53

summarization task.

5.3.2 MDP Model

Problem Formulation

Almost all reinforcement learning algorithms are based on estimating value functions —

functions of states (or of state-action pairs) that estimate how good it is for the agent to be

in a given state (Sutton and Barto, 1998). We formulate the complex question answering

problem by estimating an action-value function. We define the value of taking action a in

state s under a policy π , denoted Qπ(s,a), as the expected return starting from s, taking the

action a, and thereafter following policy π:

Qπ(s, a) = Eπ {Rt |st = s, at = a}

= Eπ

{
∞

∑
k=0

γkrt+k+1|st = s, at = a

}
(5.1)

Here, Eπ denotes the expected value given that the agent follows policy π and and t is

any time step. We call Qπ the action-value function for policy π. γ stands for the discount

factor that determines the importance of future rewards. We try to find out the optimal

policy through policy iteration. Once we get the optimal policy (π∗) the agent chooses the

actions using the Maximum Expected Utility Principle (Russel and Norvig, 2003).

Environment, State & Actions For complex question answering problem we are given

a complex question q and a collection of documents D = {d1, d2, d3, . . . , dn}, we have

to find out an answer (extract summary). The state is defined by the current status of the

54

answer space. Initially, there is no sentence in the answer pool. So, the initial state s0 is

empty. In each iteration, we add a sentence from the document to the answer pool that

in turn changes the state. In each state we have a set of actions. Actions are defined by

selecting a sentence from the remaining document sentences that are not included so far in

the extract summary.

Reward Function During training for each complex question, we had abstract sum-

maries generated by human as answers. After taking each action a, we computed the

immediate reward, r using the following function:

r = relevance(a) − 0.5 ∗ redundancy(a) (5.2)

Here, relevance(a) is the textual similarity measure between the selected sentence and

the abstract summaries. redundancy(a) is the similarity measure between the selected

sentence and the current state (set of sentences already chosen). By including redundancy in

the immediate reward calculation we discourage redundancy in the final extract summary.

We measure the textual similarity using ROUGE (Recall-Oriented Understudy for Gisting

Evaluation) 3.1.4. The ROUGE measures considered are: ROUGE-N (N = 1, 2, 3, 4),

ROUGE-L, ROUGE-W and ROUGE-S.

Function Approximation In many tasks such as the one to which we apply reinforce-

ment learning, most states encountered will never have been experienced exactly before.

This will almost always be the case when the state or action spaces include continuous vari-

ables or complex sensations. As in our case the number of states and actions are infinite,

the approximate action-value function is represented as a parameterized functional form

with parameter vector, ~θt . Our approximate action-value function is a linear function of

the parameter vector, ~θt . Corresponding to every state-action pair (s, a) , there is a column

55

vector of features, ~ϕs = [ϕs(1), ϕs(2), . . . , ϕs(n)]T with the same number of components

as ~θt . The approximate action-value function is given by:

Qt(s, a) =~θT
t ~ϕs =

n

∑
i=1

θt(i)ϕs(i) (5.3)

Markov Decision Process (MDP) Our environment has the Markov property. That is,

given the current state and action we can predict the next state and expected next reward.

For our problem formulation, given the current state s if we take an action a, the next state

will be s
′
= s + a since our action is to choose a sentence from the document collection and

adding it into the extract summary pool. Given any state and action, s and a, the transition

model is defined by:

ρ
a
ss′

= Pr

{
st+1 = s

′
|st = s, at = a

}
(5.4)

ρa
ss′

will be 1 when s
′
= s + a. For all other states, the transition probability will be 0.

Similarly, given any current state and action, s and a, together with any next state, s
′
, the

expected value of the next reward is:

Ra
ss′

= E
{

rt+1|st = s, at = a, st+1 = s
′
}

(5.5)

We viewed our problem as an infinite horizon sequential decision making problem. For

calculating the reward of a state-action pair, we used the discount factor γ. We kept the

initial value of γ as 0.1. The value of γ decreases with the increase of iteration counts.

56

Reinforcement Learning

Our reinforcement learning problem finds the parameter vector ~θ that maximize Q(s,a)

from Equation 5.3. Policy gradient algorithms tend to estimate the parameters θ by per-

forming a stochastic gradient ascent. The gradient is approximated by interacting with

the environment, and the resulting reward is used to update the estimate of θ. Policy gra-

dient algorithms optimize a non-convex objective and are only guaranteed to find a local

optimum (Branavan et al., 2009). We use a modified linear, gradient-descent version of

Watkins’ Q(λ) algorithm with ε-greedy policy to determine the best possible action i.e.

to select the most important sentences. We have used eligibility1 traces to keep trace of

the parameters that should go under learning changes in each cycle of learning. The eli-

gibility traces are updated in two steps. If an exploratory action is taken, they are set to

zero for all state-action pairs. Otherwise, the eligibility traces for all state-action pairs are

decayed by γλ. In the second step, the eligibility trace value for the current state-action

pair is incremented by 1 while accumulating traces. The original version of the Watkins’

Q(λ) algorithm uses a linear, gradient-descent function approximation with binary features.

However, since we deal with a mixture of real-valued and boolean features, we modified

the algorithm to induce a different update for the eligibility traces. In the second step of

eligibility trace update, we increment the value by the corresponding feature score. The

addition of a random jump step avoids the local maximums in our algorithm. We reduced

the step size α of the gradient method by 0.99 as the learning converges towards the goal.

Algorithm 1 shows all the steps in detail.

Our formulation with its modified version is unique in how it represents the complex

1Eligibility traces are one of the basic mechanisms of reinforcement learning. In mechanistic point of
view, an eligibility trace is a temporary record of the occurrence of an event, such as the visiting of a state
or the taking of an action. The trace marks the memory parameters associated with the event as eligible
for undergoing learning changes. Thus, eligibility traces help bridge the gap between events and training
information (Sutton and Barto, 1998).

57

Input: α,~θ,~e, λ, γ, δ, ϕ, ε, number of sentences/actions available T
Output: A vector~θ of learned weights
Initialize:~θ to~0, α to 0.01, γ to 0.1, λ to 0.9
~e =~0
s,a← initial state and action of episode
ϕ← set of features present in s,a
for each i = 1 . . .T do

if s is not terminal then
for i ∈ ϕ do

e(i)← e(i)+ϕ(i)
end
Take action a, observe reward r, and next state, s
δ← r−∑i ϕ(i)θ(i)
for a ∈ A(s) do

ϕ← set of features present in s,a
Qa← ∑i ϕ(i)θ(i)

end
δ← δ+ γmaxaQa
θ← θ+αδ~e
α← 0.99∗α

probability← get the probability o f choosing a random action
if probability≤ 1− ε then

for a ∈ A(s) do
Qa← ∑i ϕ(i)θ(i)

end
a← argmaxaQa
~e← γλ~e

else
a← a random action ∈ A(s)
~e← 0

end
end

end
return~θ

Algorithm 1: Modified Watkins’ Q(λ) algorithm

58

question answering task in the reinforcement learning framework.

5.3.3 POMDP Model

In contrast to Markov Decision Processes (MDPs) that provide a good statistical frame-

work for allowing forward planning in a fully observable environment, POMDPs provide

a mathematical model for the sequential decision-making problems in partially observable

environments. The key advantage of the POMDP formalism is that it provides a com-

plete and principled framework for modeling the inherent uncertainty of the problem under

consideration (Young, 2006).

Formal Definition

A POMDP is a tuple
〈

S, A, T
(

s, a, s
′
)
, O(s, o) ,R(s)

〉
, where:

• S is the state space defined as a set of mutually exclusive states.

• A is the action space i.e. a set of possible actions that an agent can perform in one

state.

• T
(

s, a, s
′
)

is the transition model that denotes the probability of reaching state s
′
if

action a is done in state s.

• O(s, o) is the observation model that specifies the probability of perceiving the ob-

servation o in state s.

• R(s) is the reward function that encodes the utility for the agent to perform the action

a while in state s.

Belief State The key idea of POMDP is the assumption that the state of the world is not

directly accessible and can only be inferred via observation. Such uncertainty is expressed

59

in the belief state b, which is a probability distribution over all possible states. We denote

b(s) for the probability assigned to the actual state s by belief state b. We can calculate a

current belief state as the conditional probability distribution over the actual states given

the sequence of observations and actions so far. In the current belief state b(s), if action a

is performed and observation o is perceived, the new belief state will be given by:

b
′
(s
′
) = αO(s

′
, o)∑

s
T (s, a, s

′
)b(s), (5.6)

where α is a normalizing constant that makes the belief state sum to 1.

Policies The solution to the POMDP problem must specify what the agent should do

for any state that it might reach. A solution of this kind is termed as policy, denoted by

π (Russel and Norvig, 2003). The fundamental concept of POMDP is that the optimal

action depends only on the agent’s current belief state since it has limited access to the

actual current state. Therefore, the optimal policy (that yields the highest expected utility),

denoted by π∗ (b) is a mapping from belief states to actions. We define the value of taking

action a in belief state b under a policy π , denoted Qπ(b, a), as the expected return starting

from b, taking the action a, and thereafter following policy π:

Qπ(b, a) = Eπ {Rt |bt = b, at = a} = Eπ

{
∞

∑
k=0

γkrt+k+1|bt = b, at = a

}
.

Here, Eπ denotes the expected value given that the agent follows policy π and t is any

time step. We call Qπ the action-value function for policy π. γ stands for the discount

factor that determines the importance of future rewards. We try to find out the optimal

policy through policy iteration. Once we get the optimal policy (π∗) the agent chooses the

actions using the Maximum Expected Utility Principle.

60

POMDP-based Summarization

For the topic-focused multi-document summarization task, we are given a query (i.e. topic),

q and a collection of related documents D = {d1, d2, d3, . . . , dn}, we have to find out an

extract summary. We define the state space as a summary state and a non-summary state.

Once we get the highest probability of the belief that we reached the summary state, a re-

ward 1 is assigned, otherwise 0 is returned. When we select a sentence as important, we

calculate its observation probability by measuring its relatedness with the given abstract

summaries. We measure this similarity using ROUGE 3.1.4. The ROUGE measures con-

sidered are: ROUGE-N (N = 1, 2, 3, 4), ROUGE-L, ROUGE-W and ROUGE-S. The action

space is defined as selecting a sentence from the remaining document sentences that are not

included so far in the extract summary.

Solving POMDP

In our formulation, the number of actual states is two (summary state, non-summary state).

Since the environment is partially accessible, we modeled the problem as a POMDP by

introducing an infinite number of belief states that are observable to the agent. To solve this

problem, we consider a functional approximation approach to the problem. We represent

the approximated action-value function as a parameterized functional form with parameter

vector, ~θt . Our approximate action-value function is a linear function of the parameter

vector, ~θt . Corresponding to every belief state–action pair (b,a) , there is a column vector

of features, ~ϕb = (ϕb(1),ϕb(2), . . . ,ϕb(n))T with the same number of components as ~θt .

The approximate action-value function is given by:

Qt(b, a) =~θT
t ~ϕb =

n

∑
i=1

θt(i)ϕb(i). (5.7)

61

We use a policy gradient algorithm to solve our POMDP problem. Policy gradient

algorithms tend to estimate the parameters θ by performing a stochastic gradient ascent.

The gradient is approximated by interacting with the environment, and the resulting reward

is used to update the estimate of θ. Policy gradient algorithms optimize a non-convex

objective and are only guaranteed to find a local optimum (Branavan et al., 2009). We use a

modified linear, gradient-descent version of Watkins’ Q(λ) algorithm with ε-greedy policy

to determine the best possible action i.e. to select the most important sentences. As long

as the initial policy selects greedy actions, the algorithm keeps learning the action-value

function for the greedy policy. But when an exploratory action is selected by the behavior

policy, the eligibility traces2 for all state-action pairs are set to zero. The eligibility traces

are updated in two steps. If an exploratory action is taken, they are set to zero for all state-

action pairs. Otherwise, the eligibility traces for all state-action pairs are decayed by γλ3.

In the second step, the eligibility trace value for the current state-action pair is incremented

by 1 while accumulating traces. We modified the algorithm to induce a different update

for the eligibility traces. In the second step of eligibility trace update, we increment the

value by the corresponding feature score (Features are discussed in the next section). The

addition of a random jump step avoids the local maximums in our algorithm. We reduced

the step size, α by 0.99 as learning converges toward the goal.

2Eligibility traces are one of the basic mechanisms of reinforcement learning. In mechanistic point of
view, an eligibility trace is a temporary record of the occurrence of an event, such as the visiting of a state
or the taking of an action. The trace marks the memory parameters associated with the event as eligible
for undergoing learning changes. Thus, eligibility traces help bridge the gap between events and training
information. Sutton and Barto (1998)

3For calculating the reward of a state-action pair, we used the discount factor γ. We use the ε-greedy
policy (meaning that most of the time this policy chooses an action that has maximal estimated action value,
but with probability ε they instead select an action at random) to balance between exploration and exploitation
during the training phase. We set ε = 0.1. So, our algorithm chooses an action with the best action-value
90% times and for 10% time it chooses an action randomly. We kept the initial value of γ as 0.1. The value
of γ decreases with the increase of iteration counts.

62

5.3.4 Feature Space

We represent each sentence of a document as a vector of feature-values (ϕ in Algorithm

1). We divide the features into two major categories: static and dynamic. Static features

include two types of features, where one declares the importance of a sentence in a docu-

ment and the other measures the similarity between each sentence and the user query (Chali

et al., 2009, Edmundson, 1969, Sekine and Nobata, 2001). We use the following eighteen

features as static features. We use one dynamic feature that measures the similarity of al-

ready selected candidate with each remaining sentences. The dynamic feature is used to

ensure that there is no redundant information present in the final extract summary.

Static Features: Importance

Position of Sentences We give the score 1 to those sentences found within the first and

the last 3 sentences of a document and assign score 0 to the rest, as the early and late

sentences are considered important intuitively (Hasan, 2009).

Length of Sentences If a sentence is longer, we can heuristically claim that it has a better

chance of inclusion in the summary. We give the score 1 to a longer sentence and assign

the score 0 otherwise. In this research, we considered a sentence as long if it has more than

11 words.

Title Match If we find a match such as exact word overlap, synonym overlap or hyponym

overlap between the title and a sentence, we give it the score 1, otherwise 0.

Named Entity The score 1 is given to a sentence, which contains a certain Named En-

tity class among: PERSON, LOCATION, ORGANIZATION, GPE (Geo-Political Entity),

63

FACILITY, DATE, MONEY, PERCENT, TIME. We believe that a certain Named Entity

increases the importance of a sentence. We use OAK System (Sekine, 2002), from New

York University for Named Entity recognition.

Cue Word Match The probable relevance of a sentence is affected by the presence of

pragmatic words such as “significant”, “impossible”, “in conclusion”, “finally” etc. We

use a cue word list of 228 words. We give the score 1 to a sentence having any of the cue

words and 0 otherwise.

Static Features: Query-related

n–gram Overlap This is the recall between the query and the candidate sentence where

n stands for the length of the n–gram (n = 1, 2, 3, 4).

LCS Given two sequences S1 and S2, the longest common subsequence (LCS) of S1 and S2 is

a common subsequence with maximum length.

WLCS Weighted Longest Common Subsequence (WLCS) improves the basic LCS method

to remember the length of consecutive matches encountered so far (Lin, 2004). We com-

pute the WLCS-based F-measure between a query and a sentence.

Skip-Bigram Skip-bigram measures the overlap of skip-bigrams between a candidate

sentence and a query sentence. Skip-bigram counts all in-order matching word pairs while

LCS only counts one longest common subsequence.

Exact-word Overlap This is a measure that counts the number of words matching ex-

actly between the candidate sentence and the query sentence.

64

Synonym Overlap This is the overlap between the list of synonyms of the important

words extracted from the candidate sentence and the query related words. We use WordNet

(Fellbaum, 1998) database for this purpose.

Hypernym/Hyponym Overlap It is the overlap between the list of hypernyms and hy-

ponyms (up to level 2 in WordNet) of the nouns extracted from the sentence and the query

related words.

Gloss Overlap Our systems extract the glosses for the proper nouns from WordNet.

Gloss overlap is the overlap between the list of important words that are extracted from

the glossary definition of the nouns in the candidate sentence and the query related words.

Syntactic Feature The syntactic similarity between the query and the sentence is cal-

culated after parsing them into syntactic trees using a parser such as (Charniak, 1999) and

finding the similarity between the two trees using the tree kernel (Collins and Duffy, 2001).

Basic Element (BE) Overlap We extract BEs for the sentences in the document collec-

tion. Then we filter those BEs by checking whether they contain any word which is a query

word or a query related word and get the BE overlap score (Hovy et al., 2005).

Dynamic Feature To lower redundancy in the extract summary, for each sentence that is

selected we measure its similarity with the remaining non-selected sentences using ROUGE.

We use the Maximal Marginal Relevance (MMR)4 method (Carbonell and Goldstein, 1998)

to balance this feature with query relevance.

4A sentence has the high marginal relevance if it is both relevant to the query and contains minimal
similarity to previously selected sentences.

65

5.3.5 Evaluation Framework

Corpus

We use 50 topics of DUC-2006 data to learn the weights respective to each feature and then

use these weights to produce extract summaries for the first 25 topics (subset of the given

45 topics) of the DUC-2007 data.

Baseline System

We report the evaluation scores of one baseline system (used in DUC-2007) in each of

the tables in order to show the level of improvement our system achieved. The baseline

system generates summaries by returning all the leading sentences (up to 250 words) in the

〈T EXT 〉 field of the most recent document(s).

SVM Settings

We compare the performance of our reinforcement learning approach with a SVM-based

technique to answer complex questions. A Support Vector based approach requires huge

amount of training data during the learning stage. Here, typically, the training data in-

cludes a collection of sentences where each sentence is represented as a combination of a

feature vector and corresponding class label (+1 or −1). We obtain a training data set by

automatically annotating (using only ROUGE similarity measures) 50% sentences of each

document set as positive and the rest as negative.

During training step, we used the third-order polynomial kernel keeping the value of

66

the trade-off parameter C (equation 2.8) as default. We used the SV Mlight5 (Joachims,

1998a) package. We performed the SVM training experiments in the WestGrid6 for faster

computation. We used the Cortex cluster which comprises some shared-memory computers

for large serial jobs or demanding parallel jobs. Forcing summaries to obey a certain length

constraint is a common set-up in summarization as in the multi-document summarization

task at DUC-2007, the word limit was 250 words. In SVM systems, we used g(x), the

normalized distance from the hyperplane to x to rank the sentences. Then, we chose the top

N sentences until the summary length is reached.

5.3.6 Results and Analysis

MDP

Table 5.1 and Table 5.2 show the ROUGE scores of the reinforcement system and the

SVM system, respectively. In Table 5.3, we compare the ROUGE-F scores of the baseline

system, SVM system and reinforcement system. From here, we find that the reinforce-

ment system improves the ROUGE-2 and ROUGE-SU scores over the baseline system by

32.9% and 21.1%, respectively. On the other hand, the reinforcement system advances the

SVM system improving the ROUGE-2 and ROUGE-SU scores by 28.4% and 2.7%, re-

spectively. In table 5.4 and table 5.5, we report the 95% confidence intervals for ROUGE-2

and ROUGE-SU to show significance for meaningful comparison.

Most Effective Features After the training phase, we get the final updated weights corre-

sponding to each feature. A weight value close to zero indicates that the associated feature

5http://svmlight.joachims.org/
6http://westgrid.ca/

67

Measures ROUGE-2 ROUGE-SU

Precision 0.0878 0.1417
Recal 0.0849 0.1319
F-score 0.0863 0.1365

Table 5.1: ROUGE measures for MDP system

Measures ROUGE-2 ROUGE-SU

Precision 0.0707 0.1477
Recall 0.0641 0.1209
F-score 0.0672 0.1329

Table 5.2: ROUGE measures for SVM system

Systems ROUGE-2 ROUGE-SU

Baseline 0.0649 0.1127
SVM 0.0672 0.1329
MDP 0.0863 0.1365

Table 5.3: Performance comparison between Baseline, SVM and MDP systems: F-Score

Systems ROUGE-2

Baseline 0.060870 - 0.068840
SVM 0.057032 - 0.078794
MDP 0.074092 - 0.096803

Table 5.4: 95% confidence intervals for Baseline, SVM and MDP systems: ROUGE-2

Systems ROUGE-SU

Baseline 0.108470 - 0.116720
SVM 0.121819 - 0.144470
MDP 0.123609 - 0.147870

Table 5.5: 95% confidence intervals for Baseline, SVM and MDP systems: ROUGE-SU

68

to this weight can be eliminated because it does not contribute any relevant information

for action selection. So, from this viewpoint we can infer that — weights reflect the effec-

tiveness of a certain feature. Table 5.6 shows the top ten final feature weights (ranked by

higher effectiveness) for this problem domain that we find after the training experiment.

Final Weight Associated Feature

0.012837 Basic Element Overlap
0.007994 Syntactic Feature
0.007572 Length of Sentences
0.006483 Cue Word Match
0.005235 Named Entity Match
0.002201 2–gram Overlap
0.002182 Title Match
0.001867 Skip–Bigram
0.001354 WLCS
0.001282 1–gram Overlap

Table 5.6: Effective features indicated by MDP system

POMDP

Table 5.7 to Table 5.9 show the ROUGE-1, ROUGE-2, and ROUGE-W scores of the Max-

Ent system and the POMDP-based system.

Systems Recall Precision F-score
MaxEnt 0.3633 0.3769 0.3699
POMDP 0.4172 0.3484 0.3796

Table 5.7: ROUGE-1 measures

Table 5.10 reports the 95% confidence intervals of the ROUGE F-measures for the two

systems.

69

Systems Recall Precision F-score
MaxEnt 0.0799 0.0831 0.0814
POMDP 0.0966 0.0805 0.0878

Table 5.8: ROUGE-2 measures

Systems Recall Precision F-score
MaxEnt 0.0876 0.1684 0.1152
POMDP 0.0999 0.1548 0.1214

Table 5.9: ROUGE-W measures

From these tables we find that the POMDP system improves the MaxEnt system by a

significant margin in terms of almost all the ROUGE measures proving the effectiveness

of our POMDP model. In Table 5.11, our proposed POMDP model is also compared with

the NIST baseline system. The NIST baseline is the official baseline system established by

NIST in DUC-2007. We also list the average ROUGE scores of all the participating sys-

tems for DUC-2007 (i.e. AverageDUC). From these results, we can see that the proposed

POMDP model mostly outperforms the NIST baseline system. We also find that our system

achieved higher ROUGE scores as comparable to the average scores of all the participating

systems of DUC-2007.

Systems R-1 R-2
MaxEnt 0.3537 - 0.3860 0.0694 - 0.0935
POMDP 0.3663 - 0.3926 0.0769 - 0.0974

Table 5.10: 95% confidence intervals for different systems

70

Systems ROUGE-1 ROUGE-2 ROUGE-W
POMDP 0.37964 0.08783 0.12143
Baseline 0.33434 0.06479 0.11360

AverageDUC 0.40059 0.09550 0.13726

Table 5.11: System comparison (F-scores)

5.4 Augmenting TAC Ontologies with Random Walk Mod-

els

5.4.1 Introduction

Recently, there has been increased interest in topic-focused multi-document summarization

where the task is to produce automatic summaries in response to a given topic or specific

information request stated by the user. Given a topic and a set of related newswire articles,

the guided summarization task in Text Analysis Conference (TAC 2010) aims to encourage

a deeper semantic analysis of the source documents to select important concepts. They

put each topic in a predefined category and associate with it a list of aspects that act as a

guide for selecting the most relevant sentences into the summaries. We term these “list of

aspects” as “TAC ontologies” and use them to build a novel methodology for topic-focused

multi-document summarization that operates on a Markov chain tuned to extract the most

important sentences by following a random walk paradigm. Our evaluations suggest that

augmentation of TAC ontologies with the random walk model can considerably improve

the summary quality in comparison with the random walk model alone.

The recent 2005, 2006, and 2007 Document Understanding Conferences (DUC7) have

modeled real-world complex question answering as a form of multi-document summa-

7http://duc.nist.gov/.

71

rization and hence, tasked their systems requiring participants to provide summaries from

multiple documents as answers to complex questions. The 2010 Text Analysis Conference

(TAC) presents a new direction in focused summarization research with a novel task termed

guided summarization8. The goal of guided summarization is to encourage a deeper lin-

guistic (semantic) analysis of the source documents instead of relying only on document

word frequencies to select important concepts. The guided summarization task is to write a

100-word summary of a set of 10 newswire articles for a given topic, where the topic falls

into a predefined category. Participants are given a list of aspects for each category, and

a summary must include all aspects found for its category. We call these lists of aspects

as “TAC ontology9” and use those to focus our search to include the most relevant sen-

tences into the summary. We propose a novel topic-focused multi-document summarization

framework that operates on a Markov chain model (Lafferty and Zhai, 2001) and follows

a random walk paradigm (inspired from (Harabagiu et al., 2006)) in order to generate pos-

sible summary sentences. We build three alternative systems for summary generation that

are based on TAC ontology, random walk model, and a combination of both. We run our

experiments on the TAC-2010, and DUC-2006 data and based on the evaluation results we

argue that augmenting TAC ontologies with a random walk model often outperforms the

other two alternatives.

5.4.2 Our Approaches

In this section, we give a detailed description of three approaches that we used for the task

of topic-focused multi-document summarization. At the end of each method applied, we

get a candidate summary from it. Therefore, three different techniques give us three can-

8http://www.nist.gov/tac/2010/Summarization/Guided-Summ.2010.guidelines.html.
9Since we plan to build a large knowledge base having all the aspects to satisfy the topic-focused infor-

mation need, for now, we term it as this.

72

didate summaries for the same given topic (See example summaries in Appendix). Figure

5.1 presents the overall architecture of our systems.

Figure 5.1: The overall architecture of our approaches

TAC Ontology-based System

The Guided Summarization task at TAC-2010 aims to encourage summarization systems

to make a deeper linguistic (semantic) analysis of the source documents instead of relying

only on document word frequencies to select important concepts. The task is to write a

100-word summary of a set of 10 newswire articles for a given topic, where the topic falls

into a predefined category. There are five topic categories:

1. Accidents and Natural Disasters

73

2. Attacks

3. Health and Safety

4. Endangered Resources

5. Investigations and Trials

Participants are given a list of important aspects for each category, and a summary must

cover all these aspects (if the information can be found in the documents) including any

other information relevant to the topic. The list of aspects that we call “TAC ontology” are

shown in Appendix A.

Our first approach simply uses the list of aspects i.e. TAC ontologies in order to find

the most relevant sentences from the document collection to create 250-word topic-focused

summaries. For each question (i.e. aspect) in a category, we did keyword expansion us-

ing WordNet10. For example, the word “happen” being a keyword in the question “What

happened?” returns the words: occur, pass, fall out, come about, take place from Word-

Net. On the other hand, for each document sentence in the collection we perform Named

Entity (NE) tagging using OAK system (Sekine, 2002). Named Entities (NE) are defined

as terms that refer to a certain entity. For instance, Canada refers to a certain country,

and $200 refers to a certain quantity of money. OAK system has 150 named entities

(such as PERSON, LOCATION, ORGANIZATION, GPE (Geo-Political Entity), FACIL-

ITY, DATE, MONEY, PERCENT, TIME etc.) that can be tagged. They are included in a

hierarchy. We weigh each sentence based on the presence of one or more Named Entity

classes. We rank11 the document sentences based on the following two criteria:

1. Similarity of each sentence with the expanded question, and

10WordNet (http://wordnet.princeton.edu/.) is a widely used semantic lexicon for the English language.
It groups English words (i.e. nouns, verbs, adjectives and adverbs) into sets of synonyms called synsets,
provides short, general definitions (i.e. gloss definition), and records the various semantic relations between
these synonym sets.

11To satisfy the length limit of 250-words, we give a score to each sentence.

74

2. weight assigned to each sentence by the NE tagging procedure12.

Finally, we select the top-ranked sentences to be included in the candidate summary

(Summary 1 in Figure 5.1).

Random Walk Model

For our second approach, we select the most relevant sentences by following a random

walk on a graph where each node is a document sentence and the edges represent similarity

between sentences. The whole procedure operates on a Markov chain (MC). A Markov

chain is a process that consists of a finite number of states and some known probabilities

pi j, where pi j is the probability of moving from state j to state i. For each node (i.e.

sentence) and each edge in the graph, we calculate “node weight” and “edge weight”,

respectively. Once we find all the node weights and edge weights, we perform a random

walk on the graph following a Markov chain model in order to select the most important

sentences. The initial sentence is chosen simply based on the node (sentence) weights using

the following formula:

Initial Sentence = arg
N

max
i=1

(weight (Si)) , (5.8)

where N is the total number of nodes in the graph. After finding the initial best sentence,

in each step of the random walk we calculate the probability (transition probability) of

choosing the next relevant sentence based on the following equation:

12For example, for a question (aspect) like “when did the accident happened?”, we search for 〈Time〉 tag
in the NE tagged sentences and give them higher weights if found.

75

P(S j|Si) =
1
α

arg
Z

max
j=1

(
weight

(
S j
)
× similarity

(
Si, S j

))
, (5.9)

where Si is the sentence chosen earlier, S j is the next sentence to be chosen, Z is the set of

sentence indexes that does not contain i, the similarity(Si, S j) function returns a similarity

score between the already selected sentence and a new sentence under consideration, and

α is the normalization factor that is determined as follows:

α =
Z

∑
j=1

(
weight

(
S j
)
× similarity

(
Si, S j

))
. (5.10)

Node Weight We associate each node (sentence) in the graph a weight that indicates the

importance of the node with respect to the document collection. Node weights are calcu-

lated based on a Topic Signature (TS) model proposed in (Lin and Hovy, 2000) and Rhetor-

ical Structure Theory (RST) (Mann and Thompson, 1988). We combined the weights of

TS and RST, and normalized it to get the final weights of the sentences/nodes.

Topic Signature Topic signatures that can play a central role in automated text sum-

marization and information retrieval are typically used to identify the presence of a complex

concept–a concept that consists of several related components in fixed relationships (Lin

and Hovy, 2000). Inspired by the idea presented in (Lin and Hovy, 2000), for each topic

present in the data set, we calculate its topic signature defined as below:

T S = {topic, signature}

= {topic, 〈(t1, w1), · · · , (tn, wn)〉} , (5.11)

76

where topic is the target concept and signature is a vector of related terms. Each ti is a

term highly correlated to the topic with association weight, wi. We use the following log-

likelihood ratio to calculate the weights associated with each term (i.e. word) of a sentence:

wi = log
occurrences o f ti in topic j sentences

occurrences o f ti in all topics′ sentences
. (5.12)

To calculate the topic signature weight for each sentence, we sum up the weights of the

words in that sentence and then, normalized the weights. Thus, a sentence gets a high score

if it has a set of terms that are highly correlated with a target concept (topic).

Rhetorical Structure Theory (RST) A well-written text is often supported by a hi-

erarchically structured set of coherence relations that reflect the authors intent (Mann and

Thompson, 1988). Discourse parsing focuses on a higher-level view of text (called rhetori-

cal structure), allowing some flexibility in the choice of formal representation (Duverle and

Prendinger, 2009). Rhetorical Structure Theory (Mann and Thompson, 1988) provides a

framework to analyze text coherence by defining a set of structural relations to composing

units (“spans”) of text. The most frequent structural pattern in RST is that two spans of text

are related such that one of them has a specific role relative to the other. A paradigm case is

a claim followed by evidence for the claim. RST posits an “Evidence” relation between the

two spans that is represented by calling the claim span a nucleus and the evidence span a

satellite13. we parse each document sentence within the framework of Rhetorical Structure

Theory (RST) using a Support Vector Machine (SVM)-based discourse parser described

in (Duverle and Prendinger, 2009) that was shown 5% to 12% more accurate than current

state-of-the-art parsers. We observe that in a relation the nucleus often contains the main

13http://www.sfu.ca/rst/01intro/intro.html

77

information while the satellite provides some additional information. Therefore, we assign

a weight to each sentence that is a nucleus of a relation and normalize the weights at the

end.

Edge Weight Edge weight is determined by measuring similarity between the sentences.

We use the OAK system (Sekine, 2002) to get the stemmed word of a sentence. Then, we

remove the stopwords from the sentence using a stopword list. We expand the remaining

keywords of the sentence using WordNet. Finally, we find out the similar words between

each pair of sentences that denotes the edge weight between the two sentences. We build a

similarity matrix by populating into it the edge weights between sentences.

Augmenting TAC ontology with Random Walk Model

The third approach we follow to generate a candidate summary is the augmentation of TAC

ontologies into the random walk framework. Motivated by (Harabagiu et al., 2006), where

they described how a random walk could be used to populate a network with potential

decompositions of a complex question, we propose to use the list of aspects (given in TAC-

2010) in the random walk model as a guided way to provide a better coverage to satisfy a

wide range of information need on a given topic. We term this model as a Combined Model

since it combines TAC ontologies with the random walk paradigm. The whole procedure

can be again formulated according to a Markov Chain principle described in Section 5.4.2

except the fact that the node(sentence) weights will also include the weights obtained by

using the list of aspects’ information as defined in Section 5.4.2. Figure 5.2 shows a part

of the graph with node and edge weights (after applying the combined model) for the top

ranking sentences that were chosen by random walk. This is an example of a DUC-2006

topic outlined below.

78

<topic id = "D0626H" category = "2">

<title> bombing of US embassies in Africa </title>

S1: Among them is Saudi dissident Osama

bin Laden, who allegedly runs al Qaida,

a radical Islamic network accused of

planning the bombings.

S2: In an interview Tuesday, Home Affairs

Minister Ali Ameir Mohamed likened Ahmed

to a chameleon.

S3: It said Khalid, who can not speak English

or Kiswahili but only Arabic, was identified

by a guard and a civilian worker at the embassy and

a third witness.

S4: Although no details were released in court,

local media said traces of chemicals that could

have been used to make the bomb had been

found in Saleh’s home and car.

S5: The action contrasted markedly to a

decision by Kenya, where the American

Embassy was bombed on the same day.

From Figure 5.2, we get to the fact that initially, sentence S1 is chosen into the candidate

summary as it has the highest node (sentence) weight, then, by performing a random walk

based on the transition probabilities of the Markov chain model, we find S2 as the next

candidate sentence, then, S5, S4, S3 and so on. The random walk stops after the k steps

which is related to reaching the summary-length of 250 words.

79

Figure 5.2: TAC ontologies with random walk model

5.4.3 Evaluation Results and Analysis

In this research, we run our experiments using a subset of TAC-2010 and DUC-2006 data

applying three different models to generate three candidate summaries for each topic.

Manual Evaluation

Some university graduate students judged the summaries for linguistic quality and overall

responsiveness. The given score is an integer between 1 (very poor) and 5 (very good) and

is guided by consideration of the following factors: 1. Grammaticality, 2. Non-redundancy,

3. Referential clarity, 4. Focus and 5. Structure and Coherence. They also assigned a

content responsiveness score to each of the automatic summaries. The content score is an

integer between 1 (very poor) and 5 (very good) and is based on the amount of information

in the summary that helps to satisfy the information need expressed in the topic. These

measures were used at DUC 2007. Table 5.12 and Table 5.13 presents the average linguistic

80

quality and overall responsive scores of all the systems on TAC-2010 data and DUC-2006

data, respectively. While presenting the results, we highlight the top scores to indicate

significance at a glance.

Systems Linguistic Quality Overall Responsiveness

TAC ontology 4.00 4.00
Random walk 3.6 3.00

Combined 4.00 3.00

Table 5.12: Linguistic quality and responsiveness scores (TAC-2010 data)

Systems Linguistic Quality Overall Responsiveness

TAC ontology 3.72 3.00
Random walk 3.52 3.00

Combined 3.76 3.20

Table 5.13: Linguistic quality and responsiveness scores (DUC-2006 data)

Analyzing the results of the manual evaluation yields the fact that augmenting TAC

ontologies with the random walk model often outperforms the random walk model alone

in terms of linguistic quality and responsiveness scores. This is because, the use of TAC

ontologies enhances the coverage of the information that is necessary to satisfy the quest

of the users.

Automatic Evaluation

For the DUC-2006 data subset, we carried out automatic evaluation of our candidate sum-

maries using ROUGE 3.1.4 toolkit. For all our systems, we report the widely accepted

important metrics: ROUGE-1, ROUGE-2 and ROUGE-SU. We also show 95% confidence

interval of the important evaluation metrics for our systems to report significance for doing

81

meaningful comparison. Table 5.14 to Table 5.16 show the ROUGE-1, ROUGE-2, and

ROUGE-SU scores of our three different summary generation models.

Scores TAC ontology Random Walk Combined
Recall 0.347148 0.334269 0.361347

Precision 0.342975 0.360458 0.359846
F-score 0.346982 0.339435 0.358654

Table 5.14: ROUGE-1 measures

Scores TAC ontology Random Walk Combined
Recall 0.072359 0.051764 0.064682

Precision 0.068935 0.055743 0.061967
F-score 0.070964 0.054753 0.061863

Table 5.15: ROUGE-2 measures

Scores TAC ontology Random Walk Combined
Recall 0.116964 0.101865 0.126246

Precision 0.117532 0.119176 0.118645
F-score 0.114752 0.109165 0.116937

Table 5.16: ROUGE-SU measures

For all the three systems, Table 5.17 shows the F-scores of the reported ROUGE mea-

sures while Table 5.18 reports the 95% confidence intervals of the important ROUGE mea-

sures.

Table 5.17 clearly shows that the Combined system improves the ROUGE-1, ROUGE-

2, and ROUGE-SU scores over the Random walk system by 3.67%, 19.22%, and 8.21%,

respectively, whereas, it could not beat the ROUGE-2 score of TAC ontology-based sys-

tem but improves the ROUGE-1, and ROUGE-SU scores by 4.15%, and 4.97%, respec-

tively. These results suggest that augmenting TAC ontologies with the random walk model

82

Systems ROUGE-1 ROUGE-2 ROUGE-SU
TAC ontology 0.346982 0.070964 0.114752
Random walk 0.339435 0.054753 0.109165

Combined 0.358654 0.061863 0.116937

Table 5.17: ROUGE-F scores for different systems

Systems ROUGE-2 ROUGE-SU
TAC ontology 0.055273 - 0.084321 0.106424 - 0.119059
Random walk 0.036383 - 0.068463 0.089032 - 0.126243

Combined 0.036443 - 0.087892 0.098966 - 0.136364

Table 5.18: 95% confidence intervals for different systems

provides a better content coverage to satisfy the information need. On the other hand, Ta-

ble 5.18 shows a high overlap between the confidence intervals of different systems. The

proposed methods are also compared with a Baseline system. The Baseline is the official

baseline system established in DUC-2006. We also list the average ROUGE scores of all

the participating systems of DUC-2006 (i.e. DUC-Average). Table 5.19 presents this com-

parison which denotes that the Combined system improves the ROUGE-1, and ROUGE-2

scores over the Baseline system by 11.77%, and 17.78%, respectively, whereas, it performs

closely to the average DUC-2006 systems.

Systems ROUGE-1 ROUGE-2
TAC ontology 0.346982 0.070964
Random walk 0.339435 0.054753

Combined 0.358654 0.061863
Baseline 0.32095 0.05269

DUC-Average 0.37789 0.07483

Table 5.19: Comparison with DUC-2006 systems

83

5.5 Multi-Modality Manifold-Ranking

5.5.1 Introduction

The use of the multi-modality manifold-ranking algorithm for extracting topic-focused

summary from multiple documents is proved to be very successful. In this method, the

pair-wise similarity values between sentences are computed using the standard cosine sim-

ilarity measure (TF*IDF). However, the major limitation of the TF*IDF approach is that it

only retains the frequency of the words and disregards the syntactic and semantic informa-

tion. we propose the use of syntactic and shallow semantic kernels in the multi-modality

manifold-ranking algorithm for computing the relatedness between the sentences. Exten-

sive experiments on the DUC benchmark datasets show the effectiveness of our approach.

In recent years, a variety of manifold-ranking based methods are applied successfully

to topic-focused multi-document summarization. The basic manifold-ranking method is

a typical graph-based summarization method that makes uniform use of the sentence-to-

sentence relationships and the sentence-to-topic relationships in a manifold-ranking pro-

cess (Wan et al., 2007a). In the multi-modality manifold-ranking algorithm, sentence re-

lationships are classified into within-document relationships and cross-document relation-

ships, and each kind of relationships are considered as a separate modality (graph) (Wan

and Xiao, 2009). In these methods, the pair-wise similarity values between the sentences

are computed using the standard cosine measure (TF*IDF). However, the major limitation

of the TF*IDF approach is that it only retains the frequency of the words and does not take

into account the sequence, syntactic and semantic structure. Thus, it cannot distinguish

between “The police shot the gunman” and “The gunman shot the police”. For the task like

multi-document summarization that requires the use of more complex syntactic and seman-

tics, the approaches with only the standard cosine similarity measure are often inadequate

84

to perform fine-level textual analysis.

We extensively study the impact of syntactic and semantic information in computing

the similarity between the sentences in the multi-modality manifold learning framework

for topic-focused multi-document summarization. We believe that the similarity measures

based on the syntactic and semantic information could be helpful to characterize the relation

between the sentences in a more effective way than the traditional TF*IDF based similarity

measures. We run our experiments on the DUC-2006 benchmark dataset, and the results

show the effectiveness of our approach.

5.5.2 Multi-Modality Manifold Ranking Model

The manifold-ranking method (Zhou et al., 2003a;b) is a universal ranking algorithm that is

initially used to rank data points. This method has been successfully used for topic-focused

document summarization in (Wan et al., 2007a) where the data points refer to the topic

description and all the sentences in the documents. The manifold-ranking process for the

summarization task can be formalized as follows (Wan and Xiao, 2009):

Given a set of data points χ = {x0, x1, · · · , xn} ⊂ Rm, the first point x0 represents the

topic description (query point) and the rest n points represent all the sentences in the docu-

ments (data points to be ranked). The basic manifold-ranking algorithm makes uniform use

of the sentence relationships in a single modality (Wan et al., 2007a). However, in (Wan

and Xiao, 2009), the relationships between the sentences in a document set are classified

as either within-document relationship or cross-document relationship to form two sepa-

rate modalities to reflect the local information channel and the global information channel

between the sentences, respectively. The two modalities are applied in the multi-modality

manifold-ranking algorithm for ranking the sentences effectively. Based on each kind of

modality, an undirected graph is built to reflect each kind of sentence relationships. Let

85

W a =
[
W a

i j

]
(n+1)×(n+1)

be the within-document affinity matrix containing only the within-

document links for the n+1 data points, where W a
i j is the cosine similarity value between

xi and x j if xi and x j belong to the same document or one of xi and x j is x0; Otherwise, W a
i j

is set to 0. Similarly, let W b =
[
W b

i j

]
(n+1)×(n+1)

be the cross-document affinity matrix con-

taining the cross-document links, where W b
i j is the cosine similarity value between xi and

x j if xi and x j belong to different documents or one of xi and x j is x0; Otherwise, W b
i j is set

to 0. All the relationships between the topic, x0 and any document sentence xi (i≥ 1) are

included in both W a and W b. Then, W a and W b are normalized by Sa = (Da)−
1
2 W a (Da)−

1
2

and Sb =
(
Db)− 1

2 W b (Da)−
1
2 , respectively, where Da and Db are the diagonal matrices with

(i, i)-element equal to the sum of the ith row of W a and W b, respectively. Then the multi-

modality learning task for topic-focused summarization is to infer the ranking function f

from W a, W b and y:
{
(W a, Da, Sa) ;

(
W b, Db, Sb) ; y

}
→ f .

Linear Fusion: For fusing the two modalities, we use the linear fusion scheme as this

was shown to perform the best in (Wan and Xiao, 2009). This scheme fuses the constraints

from Sa, Sb and y simultaneously by a weighted sum. The cost function associated with f

is defined as:

Q(f)= µ·
n

∑
i, j=0

W a
i j|

1√
Da

ii
fi−

1√
Da

j j

f j|2+η·
n

∑
i, j=0

W b
i j|

1√
Db

ii

fi−
1√
Db

j j

f j|2+θ·
n

∑
i=0
| fi−yi|2,

where µ, η, and θ capture the trade-off between the constraints14.

we claim that for a complex task like topic-focused multi-document summarization

where the relatedness between the document sentences is an important factor, the multi-

14The first two terms of the right-hand side in the cost function are the smoothness constraints for the two
modalities, and the last term is the fitting constraint, respectively.

86

modality manifold algorithm for ranking sentences would perform more effectively if we

could encode the syntactic and semantic information instead of just the standard cosine

measure (i.e. TF*IDF) in calculating the similarity between sentences. In the next sec-

tion, we describe how we can encode syntactic and semantic structures in calculating the

similarity between sentences.

5.5.3 Syntactic and Shallow Semantic Structures

Given a sentence (or query), we first parse it into a syntactic tree using a parser like (Char-

niak, 1999) and then, calculate the similarity between the two trees using the tree kernel

(discussed in Section 5.5.3). However, syntactic information is not often adequate when

dealing with long and articulated sentences or paragraphs. Shallow semantic representa-

tions, bearing a more compact information, could prevent the sparseness of deep structural

approaches (Moschitti et al., 2007). Initiatives such as PropBank (PB) (Kingsbury and

Palmer, 2002) have made possible the design of accurate automatic Semantic Role Label-

ing (SRL) systems like ASSERT (Hacioglu et al., 2004).

For example, consider the PB annotation:

[ARG0 all][TARGET use][ARG1 the french

franc][ARG2 as their currency]

Such annotation can be used to design a shallow semantic representation that can be

matched against other semantically similar sentences, e.g.

[ARG0 the Vatican][TARGET use][ARG1 the

Italian lira][ARG2 as their currency]

In order to calculate the semantic similarity between the sentences, we first represent

the annotated sentence (or query) using the tree structures like Figure 5.3 which we call

87

Figure 5.3: Example of semantic trees

Semantic Tree (ST). In the semantic tree, arguments are replaced with the most important

word-often referred to as the semantic head. We look for noun first, then verb, then adjec-

tive, then adverb to find the semantic head in the argument. If none of these is present, we

take the first word of the argument as the semantic head. This reduces the data sparseness

with respect to a typical cosine measure representation.

Tree Kernels

Once we build the trees (syntactic or semantic), our next task is to measure the similarity

between the trees. For this, every tree T is represented by an m-dimensional vector v(T) =

(v1(T), v2(T), · · · vm(T)), where the i-th element vi(T) is the number of occurrences of

the i-th tree fragment in tree T . The tree fragments of a tree are all of its sub-trees which

include at least one production with the restriction that no production rules can be broken

into incomplete parts. Figure 5.4 shows an example tree and a portion of its subtrees.

Implicitly we enumerate all the possible tree fragments 1, 2, · · · , m. These fragments

are the axis of this m-dimensional space. Note that this could be done only implicitly, since

the number m is extremely large. Because of this, (Collins and Duffy, 2001) defines the

88

Figure 5.4: (a) An example tree (b) The sub-trees of the NP covering “the press”.

tree kernel algorithm whose computational complexity does not depend on m.

The tree kernel of two trees T1 and T2 is actually the inner product of v(T1) and v(T2):

T K(T1, T2) = v(T1).v(T2). (5.13)

We define the indicator function Ii(n) to be 1 if the sub-tree i is seen rooted at node n

and 0 otherwise. It follows:

vi(T1) = ∑
n1∈N1

Ii(n1)

vi(T2) = ∑
n2∈N2

Ii(n2),

where, N1 and N2 are the set of nodes in T1 and T2 respectively. So, we can derive:

89

T K(T1,T2) = v(T1).v(T2)

= ∑
i

vi(T1)vi(T2)

= ∑
n1∈N1

∑
n2∈N2

∑
i

Ii(n1)Ii(n2)

= ∑
n1∈N1

∑
n2∈N2

C(n1,n2), (5.14)

where, we define C(n1, n2) = ∑i Ii(n1)Ii(n2). Next, we note that C(n1, n2) can be computed

in polynomial time, due to the following recursive definition:

• If the productions at n1 and n2 are different then C(n1, n2) = 0

• If the productions at n1 and n2 are the same, and n1 and n2 are pre-terminals, then

C(n1, n2) = 1

• Else if the productions at n1 and n2 are not pre-terminals,

C(n1, n2) =
nc(n1)

∏
j=1

(1 + C(ch(n1, j),ch(n2, j))), (5.15)

where, nc(n1) is the number of children of n1 in the tree; because the productions at n1

and n2 are the same, we have nc(n1) = nc(n2). The i-th child-node of n1 is ch(n1, i). Note

that, the tree kernel (TK) function computes the number of common subtrees between two

trees. Such subtrees are subject to the constraint that their nodes are taken with all or none

of the children they have in the original tree. Though, this definition of subtrees makes the

TK function appropriate for syntactic trees but at the same time makes it not well suited

for the semantic trees (ST). The critical aspect of steps (1), (2) and (3) of the TK function

is that the productions of two evaluated nodes have to be identical to allow the match of

further descendants. This means that common substructures cannot be composed by a node

90

with only some of its children as an effective ST representation would require. Moschitti

et al. (2007) solve this problem by designing the Shallow Semantic Tree Kernel (SSTK)

which allows to match portions of a ST.

Shallow Semantic Tree Kernel (SSTK)

The SSTK is based on two ideas: first, it changes the ST by adding SLOT nodes. These

accommodate argument labels in a specific order i.e. it provides a fixed number of slots,

possibly filled with null arguments, that encode all possible predicate arguments. Leaf

nodes are filled with the wildcard character * but they may alternatively accommodate

additional information. The slot nodes are used in such a way that the adopted TK function

can generate fragments containing one or more children. As previously pointed out, if the

arguments were directly attached to the root node, the kernel function would only generate

the structure with all children (or the structure with no children, i.e. empty). Second, as the

original tree kernel would generate many matches with slots filled with the null label, we

have set a new step 0 in the TK calculation:

(0) if n1 (or n2) is a pre-terminal node and its child label is null, C(n1, n2) = 0;

and subtract one unit to C(n1, n2), in step 3:

C(n1, n2) =
nc(n1)

∏
j=1

(1 + C(ch(n1, j), ch(n2, j))) − 1. (5.16)

The above changes generate a new C which, when substituted (in place of original C)

in Eq. 5.14, gives the new SSTK.

91

5.5.4 Experiments and Results

We reimplement the multi-modality manifold ranking algorithm for topic-focused multi-

document summarization by encoding the syntactic and semantic information to measure

sentence relationships. We use the linear approach for fusing the modalities as this was

shown to perform the best (Wan and Xiao, 2009). The purpose of our experiments is to

study the impact of the syntactic and semantic representation introduced earlier for the

summarization task. Besides using tree kernel functions for incorporating syntactic and

shallow semantic structures, we also measure the sentence similarities using deep semantic

analysis. For each sentence, we perform keyword expansion using WordNet to find out

similar words between the sentences that gives us a similarity score.

We used the main task of DUC 2006 for evaluation 5.2. To accomplish this task, we

generate summaries for 25 topics of DUC 2006 by each of our three systems as defined

below:

(1) SYN: This system measures the similarity between the sentences using the syntactic

tree and the general tree kernel function defined in Section 5.5.3.

(2) SHALLOW-SEM: This system measures the similarity between the sentences using

the shallow semantic tree and the shallow semantic tree kernel function defined in Sec-

tion 5.5.3.

(3) DEEP-SEM: This system measures the similarity between the sentences using deep

semantic analysis using WordNet.

In all these experiments, the topic description is considered as a single query point,

and it is processed in the same way as other sentences. In another three experiments, we

introduce more query points following the guided-summarization strategy defined in the

2010 Text Analysis Conference (TAC15). In the guided summarization framework, each

15http://www.nist.gov/tac/2010/Summarization/Guided-Summ.2010.guidelines.html

92

topic falls into a predefined category and a list of aspects for each category is given. We

use this list of aspects as additional query points in the manifold-ranking framework to

conduct three more experiments forming the guided versions of the similarity measures

discussed above.

Evaluation

We carried out automatic evaluation of our candidate summaries using ROUGE 3.1.4

toolkit, which has been widely adopted for automatic summarization evaluation. For all

our systems in this experiment, we report the widely accepted important metrics: ROUGE-

1, ROUGE-2 and ROUGE-SU.

We also show 95% confidence interval of the important evaluation metrics for our sys-

tems to report significance for doing meaningful comparison. Table 5.20 to Table 5.22

show the ROUGE-1, ROUGE-2, and ROUGE-SU scores of our six different systems. In

the experiments, the regularized parameter for the fitting constraint is fixed at 0.4, as in

(Wan et al., 2007a). We kept µ = η = 0.3 as it was shown to be the most effective choice

for the linear fusion scheme in (Wan and Xiao, 2009).

Systems Recall Precision F-score
SYN 0.3571 0.3105 0.3320

SHALLOW-SEM 0.3814 0.2909 0.3299
DEEP-SEM 0.3889 0.2935 0.3344

SYN-GUIDED 0.3649 0.3124 0.3365
SHALLOW-GUIDED 0.3833 0.2906 0.3302

DEEP-GUIDED 0.3962 0.3006 0.3417

Table 5.20: ROUGE-1 measures

For all the systems, Table 5.23 shows the F-scores of the reported ROUGE measures

93

Systems Recall Precision F-score
SYN 0.0638 0.0558 0.0595

SHALLOW-SEM 0.0732 0.0555 0.0631
DEEP-SEM 0.0665 0.0501 0.0571

SYN-GUIDED 0.0564 0.0481 0.0519
SHALLOW-GUIDED 0.0684 0.0519 0.0590

DEEP-GUIDED 0.0662 0.0503 0.0572

Table 5.21: ROUGE-2 measures

Systems Recall Precision F-score
SYN 0.1190 0.0903 0.1025

SHALLOW-SEM 0.1406 0.0818 0.1033
DEEP-SEM 0.1452 0.0829 0.1054

SYN-GUIDED 0.1287 0.0946 0.1089
SHALLOW-GUIDED 0.1408 0.0815 0.1029

DEEP-GUIDED 0.1487 0.0859 0.1088

Table 5.22: ROUGE-SU measures

94

while Table 5.24 reports the 95% confidence intervals of the important ROUGE measures.

Systems R-1 R-2 R-SU
SYN 0.3320 0.0595 0.1025

SHALLOW-SEM 0.3299 0.0631 0.1033
DEEP-SEM 0.3344 0.0571 0.1054

SYN-GUIDED 0.3365 0.0519 0.1089
SHALLOW-GUIDED 0.3302 0.0590 0.1029

DEEP-GUIDED 0.3417 0.0572 0.1088

Table 5.23: ROUGE-F scores for different systems

Systems R-2 R-SU
SYN 0.0439 - 0.0802 0.0845 - 0.1313

SHALLOW-SEM 0.0530 - 0.0753 0.0928 - 0.1128
DEEP-SEM 0.0487 - 0.0652 0.0957 - 0.1142

SYN-GUIDED 0.0356 - 0.0636 0.1063 - 0.1107
SHALLOW-GUIDED 0.0501 - 0.0678 0.0931 - 0.1127

DEEP-GUIDED 0.0478 - 0.0663 0.0991 - 0.1183

Table 5.24: 95% confidence intervals for different systems

In Table 5.25, the proposed methods are compared with the basic manifold-ranking

method (i.e. “BASIC”), standard cosine similarity based multi-modality ranking method

(i.e. “COSINE”) and the NIST baseline. The NIST baseline is the official baseline sys-

tem established by NIST. We also list the average ROUGE scores of all the participating

systems for DUC 2006 (i.e. AverageDUC). From the tables, we can see that the pro-

posed multi-modality manifold ranking methods based on the syntactic and semantic mea-

sures mostly outperform the NIST baseline system. They can also achieve higher ROUGE

scores as comparable to the average scores of all the participating systems of DUC 2006.

Our proposed systems also perform closely to the basic manifold ranking system and the

standard cosine measure based multi-modality ranking method. The results also show that

95

the guided systems often perform better than their unguided counterpart denoting the fact

that the addition of the list of aspects (to increase the number of query points) improves the

overall performance of the manifold ranking process.

Systems ROUGE-1 ROUGE-2
SYN 0.3320 0.0595

SHALLOW-SEM 0.3299 0.0631
DEEP-SEM 0.3344 0.0571

SYN-GUIDED 0.3365 0.0519
SHALLOW-GUIDED 0.3302 0.0590

DEEP-GUIDED 0.3417 0.0572
BASIC 0.3953 0.0833

COSINE 0.4030 0.0850
Baseline 0.3209 0.0526

AverageDUC 0.3778 0.0748

Table 5.25: System comparison (F-scores)

5.6 Question Decomposition

5.6.1 Introduction

A complex question is a question asking about events, biographies, definitions, descrip-

tions, reasons etc. which might not be answered by a single entity or even a single sentence

as Question Answering (QA) systems often need to deal with complex information needs

for this purpose. Previous works have demonstrated that decomposing a complex question

into a series of simple questions and then reusing the techniques developed for answering

simple questions is an effective means of dealing with the complex question answering

problem. However, no study has developed any methods that can judge the significance

of the decomposed questions disregarding the fact that good decomposed questions are the

96

prerequisites for more relevant and more accurate answers. we address this challenge and

propose a supervised model to learn good decompositions from complex questions. Exten-

sive experiments and evaluations show promising results to prove the effectiveness of our

approach.

Decomposing a complex question into simpler questions such that each of which can

be answered individually, then using state-of-the-art QA systems to get individual answers,

and combining them finally into a single answer to the original complex question has been

proved to be an effective way of dealing with the complex question answering problem.

For example, Harabagiu et al. (2006) proposed a method of processing complex questions

that relies on a combination of (a) question decompositions; (b) factoid QA techniques;

and (c) Multi-Document Summarization (MDS) techniques. The question decomposition

procedure operates on a Markov chain, by following a random walk with mixture model on

a bipartite graph of relations established between concepts related to the topic of a complex

question and subquestions derived from topic-relevant passages that manifest these rela-

tions. Decomposed questions are then submitted to a state-of-the-art QA system in order to

retrieve a set of passages that can later be merged into a comprehensive answer by a MDS

system. They show that question decompositions using this method can significantly en-

hance the relevance and comprehensiveness of summary-length answers to complex ques-

tions. Necessity and positive impact of question decomposition have been also shown in

many researches in the complex question answering domain (Lacatusu et al., 2006, Sa-

quete et al., 2004, Hickl et al., 2006). However, issues like judging the significance of

decomposed questions remained beyond the scope of all these researches till date. It is un-

derstandable that if we can enhance the quality of the decomposed questions, final answer

to the original complex question would be more accurate. This will obviously require un-

derstanding the quality of the decomposed questions and then, investigating more methods

to enhance the quality. In this research, we address this challenging task and come up with

97

a supervised model of automatically learning good decompositions to complex questions

which can then be passed to the traditional QA systems for more accurate answers.

To find answers for complex type of questions, it is important at first to know what

information is relevant to an event, biography, definition, description or reason type ques-

tion. Therefore, we assume that a set of relevant data set is given along with a complex

question that certainly possesses potential answers to the complex question. However, it is

still necessary to filter out the most important sentences from the given data set (that are

mostly relevant to contain potential answers) since the data set may have huge number of

sentences and therefore, not suitable to act as a reasonably straightforward answer to the

complex question. We conduct a shallow and a deep semantic analysis between the com-

plex question and the given document sentences in order to find out the salient sentences

that can be potential candidate answers. Sentences that are picked up during this process

can be long and complex to deal with. Hence, we pass the selected sentences through a

sentence simplification module. Once we find the simple sentences, we use a sentence-to-

question generation approach in order to generate corresponding questions. We claim that

these questions are the potential candidate decompositions of the complex question in con-

sideration. Since automatic processing of sentences is a complex task, several modules of

the question decomposition framework may be erroneous and hence, not producing 100%

accurate output. This is what motivates us to judge the significance of the generated decom-

positions by hand. We manually annotate the decomposed questions into two classes: good

candidate and bad candidate, using a rich feature set considering correctness at the question

level along with a coverage component that measures whether a decomposed question can

actually satisfy the information need stated in the original complex question partially. We

employ two supervised models: Support Vector Machines (SVM) and Maximum Entropy

(MaxEnt) that are trained on this annotated data set and then, we use the learned model to

produce good decompositions from the complex question automatically. Learning good de-

98

compositions from complex questions is unique and to the best of our knowledge, no other

study has investigated this challenge before in our setting. Extensive experimental analysis

shows significance and effectiveness of our approach in the complex question answering

domain.

5.6.2 Filtering Important Sentences

Techniques to measure similarities between texts can be an effective way of judging the

importance of a sentence. Word dependencies having an important role in finding simi-

larity between two texts can be discovered using a syntactic parser. Pasca and Harabagiu

(2001) demonstrated that with the syntactic form one can see which words depend on other

words while successful use of syntactic features have been shown so far in question an-

swering (Zhang and Lee, 2003b, Moschitti et al., 2007, Moschitti and Basili, 2006). How-

ever, shallow semantic representations can bear a more compact information preventing

the sparseness of deep structural approaches and the weakness of BOW models (Moschitti

et al., 2007). By abstracting over surface syntactic configurations, semantic roles typi-

cally offer a significant first step towards deeper text understanding and hold promise for a

range of applications requiring a broad coverage of semantic processing (Shen and Lapata,

2007). This motivates us to use a shallow and a deep semantic analysis in order to filter

out the most important sentences related to the complex question from the given document

collection.

Shallow Semantic Analysis

As similarity of a document sentence with the complex question relies on a deep under-

standing of the semantics of both, we get the feeling that an application of Semantic Role

99

Labeling (SRL) system to filter important sentences might suit well. To experiment with

semantic structures, we parse the corresponding sentences (and the question) semantically

using a Semantic Role Labeling (SRL) system called ASSERT 3.3.5. We represent the

annotated sentences using tree structures called semantic trees (ST). In the semantic tree,

arguments are replaced with the most important word, often referred to as the semantic

head. We look for noun, then verb, then adjective, then adverb to find the semantic head in

the argument. We then used Shallow Semantic Tree Kernel (SSTK) 5.5.3 to give a similar-

ity score between a document sentence and the complex question based on their underlying

semantic structures. For example, for the following sentence s and complex question q we

get a semantic score:

Query (q): Describe steps taken and worldwide reaction prior to introduction of the Euro

on January 1, 1999. Include predictions and expectations reported in the press.

Sentence (s): The Frankfurt-based body said in its annual report released today that it has

decided on two themes for the new currency history of European civilization and

abstract or concrete paintings.

Scores: 6, 12

Average Score: 9

Deep Semantic Analysis

Different words may have similar meaning in the sentences. This insists us towards deeper

semantic analysis of the text. We use the OAK system (Sekine, 2002) to get the stemmed

words. Then, we remove the stopwords from the sentences (and the complex question)

using a stopword list. For each sentence and the complex question, we perform keyword

100

expansion using WordNet16. For example, the word “happen” being a keyword in the

question “What happened?” returns the words: occur, pass, fall out, come about, take

place from WordNet. Thus, we find out the similar words between the sentence-question

pair that gives us a similarity score.

5.6.3 Simplifying the Sentences

Sentences in the dataset may have complex grammatical structure with multiple embedded

clauses. Therefore, we simplify the complex sentences by altering lexical items, syntac-

tic structure, and semantics etc. with the intention to generate more accurate questions.

We call the generated simple sentences as elementary sentences since they are the individ-

ual constituents that combinedly possess the overall meaning of the complex sentence in

consideration. Although many existing NLP transformations such as sentence compres-

sion, paraphrase generation etc. could be exploited in this step, we extract the simpler

forms of the complex source sentence by removing phrase types such as leading conjunc-

tions, sentence-level modifying phrases, and appositives according to the model described

in (Heilman and Smith, 2010b). To identify the syntactic structure of the sentences, we use

Stanford Parser (Klein and Manning, 2003). We use Tregex, a tree query language (Levy

and Andrew, 2006) to write expressions for extracting a set of elementary sentences from

any finite clauses, relative clauses, appositives, and participial phrases that are present in

the original complex sentence. For example, for the following complex sentence s, we get

four elementary sentences:

Sentence (s): The student, who is supervised by Tom, arrived at my office, gave me a

16WordNet (http://wordnet.princeton.edu/) is a widely used semantic lexicon for the English language.
It groups English words (i.e. nouns, verbs, adjectives and adverbs) into sets of synonyms called synsets,
provides short, general definitions (i.e. gloss definition), and records the various semantic relations between
these synonym sets.

101

presentation and left unhappy.

Elementary Sentences: 1) The student is supervised by Tom. 2) The student arrived at

my office. 3) The student gave me a presentation. 4) The student left unhappy.

5.6.4 Sentence-to-Question Generation

Once we get the simplified (i.e. elementary) sentences, our next task is to produce a set of

possible questions from them. We claim these questions to be the candidate decomposi-

tions of the original complex question. In this research, we work on generating six simple

types of questions17: who,what,where,when,whom and how much. We identify the candi-

date answer terms from the input simple sentences and replace them with suitable question

words in order to generate questions. Inspired by (Mitkov and Ha, 2003, Heilman and

Smith, 2010a), we encode a considerable amount of linguistic knowledge by forming a set

of general-purpose rules in order to transform the simple sentences into suitable questions.

In the first step, we use Stanford Parser to syntactically parse each input sentence for iden-

tifying the noun phrases (NP) and prepositional phrases (PP) that we treat as the possible

candidate answer terms. Then, we decompose the main verb to deal with the tense infor-

mation before inverting the subject and auxiliary verb and finally, we classify the sentence

considering an opposite approach to (Roth et al., 2002) for inserting a suitable question

word in place of the candidate answer term to generate a possible question.

We use OAK system (Sekine, 2002) to produce Part-Of-Speech (POS) tagged sen-

tences. The POS tagged sentences gives us information about the verbs and their tenses.

We extract all the verbs from a sentence based on this information, stem them and process

further to perform necessary subject-auxiliary verb inversion. Again, we employ the OAK

17We restrict ourselves from generating why and how type questions since our intention is to generate
simple questions as decompositions to a complex question.

102

system to generate Named Entity (NE) tagged sentences. NE information is necessary to

identify the candidate answer terms in a sentence. A sentence may include a certain Named

Entity type (among the 150 NEs defined in OAK system) such as: PERSON, LOCATION,

ORGANIZATION, GPE (Geo-Political Entity), FACILITY, DATE, MONEY, PERCENT,

TIME, etc. However, while manually inspecting the performance of the Oak system, we

find that it cannot recognize certain NE classes. Therefore, we also use Stanford Named

Entity Recognizer (NER) tool (Finkel et al., 2005) and exploit the output of both. We use

these information to classify the sentences by following a two-layered taxonomy to rep-

resent a natural semantic classification for the sentences. Our sentence classifier module

makes use of a sequence of two simple classifiers. The first classifies the sentences into

fine classes (Fine Classifier) and the second into coarse classes (Coarse Classifier). This

is a similar but opposite approach to the one described in (Roth et al., 2002). The second

classifier influences the first in that its candidate labels are generated by reducing the set

of retained fine classes from the first into a set of coarse classes. This set is treated as the

confusion set for the first classifier, the confusion set keep shrinking till we find the coarse

classes that the word belongs to. The NE information is included in a hierarchy and is used

to make candidate fine and coarse classes. We define the five coarse classes as: 1) Human:

Any subject or object that is a name of a person, 2) Entity: Includes animals, plant, moun-

tains and any object, 3) Location: Words that represent locations, such as country, city,

school, etc., 4) Time: Words that represent time, date or period such as year, Monday, 9

am, last week, etc., and 5) Count: Holds all the counted elements, such as 9 men, measure-

ments like weight etc. Let, the confusion set of any sentence be C0 = {c1, c2, · · · , cn}, the

set of all the coarse classes. Initially, the fine classifier determines the fine classes. Then,

the set of fine classes is reduced to a coarse class determined by the class hierarchy. That

is, the set { fi1, fi2, · · · , fim} of fine classes is mapped into the coarse class ci. Based on

the coarse classification, we consider the relationship between the words in the sentence.

103

Thus, we process each sentence in a top-down manner to get it classified. We check the

coarse classes according to some basic word-to-word interaction rules. Indeed, the sen-

tence classification module outputs the question type that is used to replace the candidate

answer term. We use the POS information to decompose the main verb and perform nec-

essary subject-auxiliary inversion motivated by (Heilman and Smith, 2010a) and finally,

insert the question word (with a question mark at the end) to generate suitable questions

from the given elementary sentence. For example, for the following simple sentence s, we

get one question generated as:

Sentence (s): Native Americans around the country are leaving reservations.

Generated Question: Who around the country are leaving reservations?

5.6.5 Supervised Model

Automatic processing of sentences is a complex task. In different stages of our question

decomposition procedure (such as semantic parsing, syntactic parsing, POS tagging, NE

tagging, elementary sentence extraction, question generation), we analyze the output and

find not all of them as 100% accurate. This motivates us to introduce a supervised model

that enables the system to judge the generated questions for better results and accuracy.

For supervised learning techniques, annotated or labeled data is required as a precondition.

We manually annotate the generated questions into two classes: good candidate and bad

candidate considering a rich feature set, employ two supervised models: Support Vector

Machines (SVM) and Maximum Entropy (MaxEnt) that are trained on this annotated data

set and then, use the learned model to filter out good decompositions from the candidate set

automatically. We describe our feature space, learning and testing modules in the following

subsections.

104

Feature Space

We use a total of thirteen features that are divided into two major categories: one that con-

siders the correctness at the question level and other is a coverage component that measures

whether a decomposed question can actually satisfy the information need stated in the orig-

inal complex question partially (if not fully). We consider these features manually by hand

while annotating the training data set, on the other hand, we automatically extract these

features from the questions (for both training and testing data) in order to feed them to the

supervised models for learning and then, for prediction. To be specific, each question is

scored according to several features related to the original sentence (that is filtered by se-

mantic analysis), the input sentence (elementary sentence), the generated question at hand,

the original complex question and a human-generated summary of the given data set (that

is assumed to successfully answer the original complex question).

Correctness of Questions We manually inspect each question to measure whether they

are lexically, syntactically and semantically correct or not. With the same intention, we

automatically extract a composition of following features from the questions:

Grammaticality We count the number of proper nouns, pronouns, adjectives, ad-

verbs, conjunctions, numbers, noun phrases, prepositional phrases, and subordinate clauses

in the syntactic structures of the question and the input sentence. We set a certain threshold

to denote the limit up to which a candidate can be termed as good. We also include some

boolean features to encode the tense information of the main verb.

Length We calculate the number of tokens in the question, the original source sen-

tence, the input elementary sentence, and the answer term (that is replaced by a question

type). We set a threshold for this purpose, too.

105

Presence of Question Word We consider some boolean features to identify the pres-

ence or absence of a certain question type: who,what,where,when,whom and how much.

Presence of Pronouns If a question has one or more pronouns, we understand that

the question is asking about something that has limited reference and hence, we consider

the question as vague. To identify whether a question includes pronouns or not, we employ

a boolean feature.

Coverage We manually judge each decomposed question against the original complex

question and analyze further to find out whether they can ask about something that can

be found in the given data (and/or in the given human-generated summary). This is the

coverage component of our feature extraction module that can tell whether a decomposed

question can somehow satisfy the requested information need. To automatically encode

this feature for each question, we conduct an extensive linguistic analysis and a deep se-

mantic analysis between the decomposed question and the original complex question in

consideration.

Linguistic Analysis We use ROUGE (Recall-Oriented Understudy for Gisting Eval-

uation) to automatically determine the quality of a question by comparing it to the original

complex question using a collection of measures (Lin, 2004). The ROUGE measures con-

sidered are: ROUGE-N (N = 1, 2, 3, 4), ROUGE-L, ROUGE-W and ROUGE-S.

Deep Semantic Analysis We conduct a deep semantic analysis between the decom-

posed question and the original complex question according to the procedure discussed in

Section 5.6.2.

106

Learning and Testing

Once we get the feature values for all the decomposed questions along with the associated

annotation (good or bad candidate), we feed this data18 to the supervised learners so that a

learned model is established. Later, this model is used to predict the labels for the unseen

questions19 during the testing phase. In this work, we use two well-known supervised

machine learning techniques: Support Vector Machines (SVM) and Maximum Entropy

(MaxEnt) as classifiers.

Support Vector Machines (SVM) SVM is a powerful methodology for solving machine

learning problems introduced by Vapnik (Cortes and Vapnik, 1995) based on the Structural

Risk Minimization principle. SVM finds the separating hyperplane that has maximum

margin between the two classes in case of binary classification. SVMs can also handle non-

linear decision surfaces introducing kernel functions. In this research, we use the default

linear kernel function. To allow some flexibility in separating the classes, SVM models

have a cost parameter, C, that controls the trade off between allowing training errors and

forcing rigid margins. We use the default value for the trade off parameter C. We use the

SV Mlight (Joachims, 1998a) package20 for training and testing in this work. SV Mlight is an

implementation of Support Vector Machine (Cortes and Vapnik, 1995) for the problems of

pattern recognition, regression, and learning a ranking function. It consists of a learning

module and a classification module. The learning module takes an input file containing

the feature values with corresponding labels and produces a model file. The classification

module is used to apply the learned model to new samples. We use g(x), the normalized

distance from the hyperplane to each sample point, x to rank the good questions.

18We use a set of 523 questions for training purpose.
19Our test data set includes 350 questions.
20http://svmlight.joachims.org/.

107

Maximum Entropy (MaxEnt) The main principle of the MaxEnt method is to model

all that is known and assume nothing about that which is unknown. In other words, given

a collection of facts, the model must be consistent with all the facts, but otherwise act as

uniformly as possible (Berger et al., 1996). MaxEnt models can be termed as multinomial

logistic regression if they are to classify the observations into more than two classes (Juraf-

sky and Martin, 2008). However, in this research, we used the MaxEnt model to classify

the questions into two classes: good candidate or bad candidate. We build the MaxEnt

system using Dr. Dekang Lin’s MaxEnt package21. To define the exponential prior of the

λ values22 in MaxEnt models, an extra parameter α is used in the package during train-

ing. We keep the value of α as default. The output probability values corresponding to the

predicted labels are used to rank the classified good questions.

5.6.6 Evaluation and Analysis

Corpus

We use DUC-2006 data (that came from the AQUAINT corpus, comprising newswire

articles from the Associated Press and New York Times (1998-2000) and Xinhua News

Agency (1996-2000)) to run our experiments in this research.

Manual Evaluation

During the testing phase of our experiments, supervised classifiers automatically output

their predicted labels (good or bad) for the decomposed questions in consideration. To

21http://www.cs.ualberta.ca/˜lindek/downloads.htm.
22λ is the associated weight for each feature, which is learned by the MaxEnt model using numerical

optimization techniques.

108

evaluate the performance of the classifiers, we manually assess the quality of the generated

questions23. Two university graduate students judged the questions for linguistic quality

and overall responsiveness following a similar setting to the DUC-2007 evaluation guide-

lines24. The given score is an integer between 1 (very poor) and 5 (very good) and is guided

by consideration of the following factors: 1. Grammaticality, 2. Correct question type, 3.

Referential clarity (Presence of pronoun), and 4. Meaningfulness. They also assigned a

content responsiveness score to each of question. This score is also an integer between

1 (very poor) and 5 (very good) and is based on the factor whether the question some-

how helps to satisfy the information need expressed in the original complex question. We

compare the top-ranked good questions with the performance of a set of randomly picked

(good/bad mixed) questions. For each topic, we also judge the performance of the bad

questions alone. Table 5.26 and Table 5.27 show the evaluation results for SVM and Max-

Ent, respectively. Analyzing the Table 5.26, we see that SVM predicted Good Questions

improve the linguistic quality and responsiveness scores over Mixed (Random) Questions

by 74.06%, and 100.00%, respectively whereas they outperform the Linguistic Quality and

Responsiveness scores over Bad Questions by 20.58%, and 12.50%, respectively. These

results suggest that the SVM classifier performed well to rank the decomposed questions

accurately. We also see that Bad Questions outperform the Mixed (Random) Questions

in terms of linguistic quality because they were small in length and had good grammati-

cal structure. However, they could not beat the responsiveness scores meaning that small

questions have limited coverage over the requested information need. On the other hand,

Table 5.27 yields that Good Questions underform the other two types of questions meaning

the fact that MaxEnt performed poorly to classify the decomposed questions.

23We evaluated top 15% decomposed questions.
24http://www-nlpir.nist.gov/projects/duc/duc2007/quality-questions.txt.

109

Systems Linguistic Quality Responsiveness

Good Questions 4.10 3.60
Mixed (Random) 2.35 1.80

Bad Questions 3.40 1.60

Table 5.26: Linguistic quality and responsiveness scores (average) for SVM

Systems Linguistic Quality Responsiveness

Good Questions 2.60 1.90
Mixed (Random) 3.15 3.50

Bad Questions 3.90 3.10

Table 5.27: Linguistic quality and responsiveness scores (average) for MaxEnt

Impact of Features To analyze the impact of different features, we run another exper-

iment considering the SVM classifier generated top-ranked questions. Table 5.28 shows

detailed results. Grammaticality, Length, Pronoun, and Coverage in Systems column in-

dicate that the corresponding feature is not considered during experiments, whereas All

denotes the inclusion of all features. From these results, we understand that if we exclude

the Grammatically feature, it does not affect the responsiveness score, but exclusion of

Length produces better scores for both linguistic quality and responsiveness. On the other

hand, if we do not consider the Pronoun feature, the scores have a negative impact. Again,

omitting the Coverage feature decreases the responsiveness score badly and considering

all the features yield a good linguistic quality while showing a moderate performance in

terms of responsiveness score. In Figure 5.5, we plot a graph to show the performance of

different systems considering several variants of feature space during experiments.

110

Variations Linguistic Quality Responsiveness

Grammaticality 3.70 4.60
Length 4.10 4.50

Pronoun 3.90 3.20
Coverage 4.00 3.10

All 4.10 3.60

Table 5.28: Impact of features

Figure 5.5: A graph plotting system variations considering different feature spaces

111

Automatic Evaluation

We pass the top-ranked decomposed questions to the Lemur toolkit25. The Lemur toolkit

was developed jointly by the University of Massachusetts and Carnegie Mellon Univer-

sity to facilitate development of retrieval systems based on language models. The Lemur

systems underlying architecture was built to support ad hoc and distributed retrieval with

structured queries, cross-language IR, summarization, filtering, and categorization. For all

decomposed questions, we formulate queries according to the Lemur toolkits input format

and Lemur returns ranked sentences from the given data set in response to the queries.

Thus, for each complex question, we generate a 250-word summary from the Lemur re-

turned top-ranked sentences according to the DUC guidelines and evaluate the performance

against four human-generated reference summaries given in DUC-2006. We evaluate the

system generated summaries using the automatic evaluation toolkit ROUGE 3.1.4. ROUGE

parameters were set as that of DUC-2007 evaluation setup. Thus, we investigate the per-

formance of our supervised question decomposition systems. To show the impact of our

question decomposition procedure, we compare our SVM and MaxEnt systems perfor-

mance with their similar counterparts (SVM-WD and MaxEnt-WD26) that do not rely on

question decomposition. We present the average ROUGE F-Scores of all our systems and

a baseline system in Table 5.29. The baseline system generates summaries by returning all

the leading sentences (up to 250 words) in the TEXT field of the most recent document(s).

To compare our systems performance with the state-of-the-art systems, we also list the av-

erage ROUGE scores of all the participating systems of DUC-2006 and DUC-2007 (i.e.

DUC-Avg-2006 and DUC-Avg-2007).

25Available at http://www.lemurproject.org
26WD stands for Without Decomposition

112

Systems ROUGE-1 ROUGE-2

Baseline 0.3347 0.0640
DUC-Avg-2006 0.37789 0.07483
DUC-Avg-2007 0.40059 0.09550

SVM 0.3905 0.0867
MaxEnt 0.4006 0.0923

SVM-WD 0.3905 0.0867
MaxEnt-WD 0.4006 0.0923

Table 5.29: F-measures of different systems (Comparison)

113

Chapter 6

Conclusion

In this thesis we have investigated several methods for complex question answering which

also can be rephrased as topic focused multi document summarization. We have formulated

the complex question answering problem using reinforcement learning framework, which

to the best of our knowledge has not been done before. We have also used unsupervised

methods (manifold and random walk) for ranking and selecting document sentences for

summarization and used question decomposition framework for answering complex ques-

tion. We have also investigated the effect of different features in text summarization.

6.1 Reinforcement Learning

We presented a reinforcement learning formulation of the complex question answering

problem. We proposed a modified version of the Watkins’ Q(λ) algorithm that is unique

in how it represents the complex question answering task in the reinforcement learning

framework. The main motivation of applying a reinforcement approach in this domain

was to enhance real-time learning by treating the task as an interactive problem where user

feedback can be aided as a reward. We simplified this assumption by not interacting with

the users directly rather we employed the human-generated abstract summaries in order

to provide a little amount of supervision using reward scores through textual similarity

measurement. The similarity is measured using ROUGE.

We modeled the complex question answering problem in both MDP and POMDP. The

main difference between MDP and POMDP is that in MDP the agent always knows which

state it is in. This, combined with the Markov assumption for the transition model the

optimal policy depends only on the current state. In case of POMDP the agent does not

114

necessarily knows which state it is in. So the optimal action in a state s does not just depends

on s, but also on how much the agent knows when it is in s (Russel and Norvig, 2003). As

it is uncertain to tell whether a topic-oriented summary satisfies the user’s information need

or not, we argued that this uncertainty can be modeled if we consider the summarization

task as a POMDP problem.

We compared the MDP-based system with a baseline and a SVM system and POMDP-

based system with the NIST baseline and a MaxEnt-based system. The systems are eval-

uated using ROUGE and reported the significance of our results through 95% confidence

intervals. Evaluation results show the effectiveness of applying the reinforcement approach

for answering complex questions.

In this research, we kept the value of ε defined, through out the weight learning phase

to denote a fixed probability of exploration. In future, we would experiment on tuning the

value of ε where we will start by a high value to ensure more amount of exploration and less

amount of exploitation while gradually decreasing this value to reduce exploration as time

passes. We also plan to extend this research by experimenting on different text similarity

measurement techniques such as Basic Element (BE) overlap (Hovy et al., 2006), syntactic

similarity measure (Moschitti and Basili, 2006), semantic similarity measure (Moschitti

et al., 2007), and Extended String Subsequence Kernel (ESSK) (Hirao et al., 2003) by

using them as reward functions.

6.2 Augmenting TAC Ontologies with Random Walk Model

In this experiment, we presented a novel methodology to solve the topic-focused multi-

document summarization task that uses a list of aspects (associated with each categorized

topic of TAC-2010) that we call “TAC ontologies” in a random walk framework by per-

forming a deeper semantic analysis of the source documents instead of relying only on

115

document word frequencies to select important concepts. Experiments on several subsets

of DUC-2006 and TAC-2010 data indicate that augmenting the TAC ontologies by the ran-

dom walk model considerably outperforms the random walk model alone. This suggests

the fact that TAC ontologies can provide a certain amount of supervision to cover all the

relevant perspectives of a topic and hence, the use of it with any sophisticated model such

as random walk can enhance the model’s performance substantially in comparison to the

model if used alone. In the future, we plan to use the TAC ontologies as a question decom-

position model and focus to direct our research to find better decomposition methods that

can aid to generate more accurate summary-length answers to complex questions.

6.3 Multi-Modality Manifold-Ranking

In this research, we proposed to encode the syntactic and semantic information for mea-

suring sentence relationships in the multi-modality manifold ranking algorithm for topic-

focused multi-document summarization. We parsed the sentences into the syntactic trees

using the Charniak parser and applied the general tree kernel function to measure the simi-

larity between sentences. We have redefined shallow semantic trees (STs and STNs) to rep-

resent predicate argument relations, which we automatically extracted using the ASSERT

SRL system. We have used the shallow semantic tree kernel to measure the semantic sim-

ilarity between two semantic trees. We also performed a deep semantic analysis in order

to measure the sentence relationships. To the best of our knowledge, no other study has

used syntactic and semantic information in the multi-modality manifold ranking algorithm

before. We also propose to use more query points in the manifold ranking process by con-

sidering a list of aspects according to the guided summarization framework of TAC 2010.

We evaluated our systems automatically using ROUGE and reported the significance of

our results through 95% confidence intervals. Our systems also showed comparable results

116

with respect to the state-of-the-art summarization systems.

6.4 Question Decomposition Framework

Here we proposed a supervised model of learning good decompositions from complex

questions. Given a complex question and a set of relevant data set, our question decom-

position framework filters out the most important sentences from the document collection

using a shallow and deep semantic analysis. As these sentences may possess complex

structures, we extracted elementary sentences from them in order to smoothen the ques-

tion generation process. Then, these simple sentences are passed to the question generation

module and using a set of general-purpose rules, we get a set of simple questions. We claim

these questions to be the candidate decompositions of the original complex question in con-

sideration. However, these questions may not be 100% accurate due to erroneous output

in subsequent stages. So, we annotate the questions by hand considering several important

features and produce a labeled data set. We employ two supervised learning techniques to

learn from these data and then, they generate good decompositions from unseen complex

questions automatically utilizing the learned model. To our knowledge, no other study has

investigated the question decomposition task using a supervised model before. Evaluations

and analysis show the effectiveness of our approach. Experiments on the DUC-2006 data

set show that Support Vector Machines can be more useful than MaxEnt in this problem

setting. We also show the impact of different features on performance of the SVM clas-

sifier. In future, we plan to use more sophisticated features with the intention to produce

more accurate results.

117

Bibliography

C. Aone, M. E. Okurowski, J. Gorlinsky, and B. Larsen. A trainable summarizer with
knowledge acquired from robust NLP techniques. In Advances in Automatic Text Sum-
marization, pages 71–80, 1999.

A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. A maximum entropy approach to
natural language processing. Computational Linguistics, 22(1):39–71, 1996.

S. R. K. Branavan, Harr Chen, Luke S. Zettlemoyer, and Regina Barzilay. Reinforcement
learning for mapping instructions to actions. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Nat-
ural Language Processing of the AFNLP: Volume 1 - Volume 1, ACL ’09, pages 82–90,
Stroudsburg, PA, USA, 2009. Association for Computational Linguistics. ISBN 978-1-
932432-45-9. URL http://portal.acm.org/citation.cfm?id=1687878.1687892.

E. Brill. Some advances in transformation-based part of speech tagging. In National Con-
ference on Artificial Intelligence, pages 722–727, Seattle, Washington, 1994.

M. Cannataro and D. Talia. The knowledge grid. In Communications of the ACM, pages
46(1):89–93, 2003.

J. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking for reordering
documents and producing summaries. In Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR
1998), pages 335–336, Melbourne, Australia, 1998.

A. Cassandra. A survey of POMDP applications. In AAAI Fall Symposium, pages 17–24,
1998.

Y. Chali, S. R. Joty, and S. A. Hasan. Complex question answering: Unsupervised learning
approaches and experiments. Journal of Artificial Intelligence Research, 35:1–47, 2009.

Y. Chali, S. A. Hasan, and K. Imam. A reinforcement learning framework for answering
complex questions. In Proceedings of the 16th international conference on Intelligent
user interfaces, IUI ’11, pages 307–310, New York, NY, USA, 2011a. ACM. ISBN
978-1-4503-0419-1. doi: http://doi.acm.org/10.1145/1943403.1943452. URL http:
//doi.acm.org/10.1145/1943403.1943452.

Y. Chali, S. A. Hasan, and K. Imam. Using semantic information to answer complex
questions. In Proceedings of the 24th Canadian Conference on Artificial Intelligence,
St. John’s, Newfoundland and Labrador, Canada, 2011b.

E. Charniak. A maximum-entropy-inspired parser. In Technical Report CS-99-12, Brown
University, Computer Science Department, 1999.

118

T. Clifton and W. Teahan. Bangor at TREC 2004: Question answering track. In Proceed-
ings of the Thirteenth Text Retreival Conference, pages 426–435, 2004.

M. Collins and N. Duffy. Convolution kernels for natural language. In Proceedings of
Neural Information Processing Systems, pages 625–632, Vancouver, Canada, 2001.

J. M. Conroy and D. P. Oleary. Text summarization via hidden markov models. In Proceed-
ings of the 24th annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, SIGIR ’01, pages 406–407, New York, NY, USA, 2001.
ACM. ISBN 1-58113-331-6. URL http://doi.acm.org/10.1145/383952.384042.

C. Cortes and V. N. Vapnik. Support vector networks. Machine Learning, 20:273–297,
1995.

T. M. Cover and M. E. Hellman. The two-armed bandit problem with time-invariant finite
memory. In IEEE Transactions on Information Theory, pages 16, 185–195, 1970.

K. Drummey, R. Donaway, and L. Mather. A comparison of rankings produced by sum-
marization evaluation measures. In Proceedings of the 2000 NAACL-ANLP Workshop
on Automatic Summarization, NAACL-ANLP-AutoSum ’00, pages 69–78, Stroudsburg,
PA, USA, 2000. Association for Computational Linguistics. URL http://dl.acm.
org/citation.cfm?id=1567564.1567572.

D. A. Duverle and H. Prendinger. A novel discourse parser based on support vector machine
classification. In Proceedings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Language Processing of the
AFNLP (ACL ’09), pages 665–673, 2009. ISBN 978-1-932432-46-6.

H. P. Edmundson. New methods in automatic extracting. Journal of the Association for
Computing Machinery (ACM), 16(2):264–285, 1969.

B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. CRC Press, 1994.

G. Erkan and D. R. Radev. LexRank: Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence Research, 22:457–479, 2004.

C. Fellbaum. WordNet - an electronic lexical database. Cambridge, MA, 1998. MIT Press.

L. Ferrier. A maximum entropy approach to text summarization. Master’s thesis, University
of Edinburgh, 2011.

J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local information into in-
formation extraction systems by gibbs sampling. In Proceedings of the 43rd Annual
Meeting on Association for Computational Linguistics, pages 363–370, 2005.

W. N. Francis and H. Kucera. Frequency analysis of english usage. Houghton Mifflin,
1997.

119

R. Garside, G. Leech, and A. McEnery. Corpus Annotation: linguistic information from
computer text corpora. Addison Wesley Longman, 1997.

S. Greenbaum, G. Leech, and J. Svartvik. Studies in english linguistics for randolph quirk.
In A tagged corpus - problems and prospects, pages 192 – 209. Longman, 1979.

K. Hacioglu, S. Pradhan, W. Ward, J. H. Martin, and D. Jurafsky. Shallow semantic
parsing using support vector machines. In Proceedings of the Human Language Tech-
nology Conference/North American chapter of the Association for Computational Lin-
guistics annual meeting (HLT/NAACL-2004), 2004. URL http://www.stanford.edu/
\˜{}jurafsky/hlt-2004-verb.pdf.

S. Harabagiu, F. Lacatusu, and A. Hickl. Answering complex questions with random walk
models. In Proceedings of the 29th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 220 – 227. ACM, 2006.

S. A. Hasan. Answering complex questions: Supervised approaches. Master’s thesis,
University of Lethbridge, 2009.

M. Heilman and N. A. Smith. Good question! statistical ranking for question generation.
In Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pages 609–617, 2010a.

M. Heilman and N. A. Smith. Extracting simplified statements for factual question gener-
ation. In Proceedings of the Third Workshop on Question Generation, 2010b.

A. Hickl, P. Wang, J. Lehmann, and S. Harabagiu. Ferret: Interactive question-answering
for real-world environments. In Proceedings of the COLING/ACL on Interactive Presen-
tation Sessions, pages 25–28, 2006.

T. Hirao, H. Isozaki, E. Maeda, and Y. Matsumoto. Extracting important sentences with
support vector machines. In Proceedings of the 19th International Conference on Com-
putational Linguistics, pages 1–7, Taipei, Taiwan, 2002a.

T. Hirao, Y. Sasaki, H. Isozaki, and E. Maeda. NTT’s text summarization system for
duc 2002. In Proceedings of the Document Understanding Conference, pages 104–107,
Philadelphia, Pennsylvania, USA, 2002b.

T. Hirao, J. Suzuki, H. Isozaki, and E. Maeda. NTT’s multiple document summarization
system for DUC 2003. In Proceedings of the Document Understanding Conference,
Edmonton, Canada, 2003.

J. H. Holland. Adaptation in natural and artificial systems. MIT Press, Cambridge, MA,
USA, 1992. ISBN 0-262-58111-6.

120

E. Hovy, C. Y. Lin, and L. Zhou. A be-based multi-document summarizer with query
interpretation. In Proceedings of the Document Understanding Conference, Vancouver,
B.C. Canada, 2005.

E. Hovy, C. Y. Lin, L. Zhou, and J. Fukumoto. Automated summarization evaluation
with basic elements. In Proceedings of the 5th Conference on Language Resources and
Evaluation, Genoa, Italy, 2006.

B. Howland, M. L. Minsky, and O. G. Selfridge. Hill-climbing: Some remarks on multiple
simultaneous optimization. In Group Report 54-15, Lincoln Laboratory, Massachusetts
Institute of Technology, 1960.

T. Joachims. Making large-scale support vector machine learning practical. MIT Press,
Cambridge, MA, 1998a.

T. Joachims. Text categorization with support vector machines: Learning with many rele-
vant features. In Proceedings of the European Conference on Machine Learning (ECML
1998)., 1998b.

D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition. Prentice
Hall, 2008.

F. Karlsson, A. Voutilainen, J. Heikkil, and A. Anttila. Constraint Grammar: A Language-
Independent Framework for Parsing Unrestricted Text. Mouton de Gruyter, Berlin / New
York, 1995.

B. Katz, J. Lin, D. Loreto, W. Hildebrandt, M. Bilotti, S. Felshin, A. Fernandes, G. Marton,
and F. Mora. Integrating web-based and corpus-based techniques for question answering.
In Proceedings of the Association for Computational Linguistics 39th Annual Meeting
and 10th Conference of the European Chapter Workshop on Open-Domain Question
Answering, pages 426–435, 2003.

H. Kim, K. Kim, G. G. Lee, and J. Seo. MAYA: A fast question-answering system based on
a predictive answer indexer. In Proceedings of the Association for Computational Lin-
guistics 39th Annual Meeting and 10th Conference of the European Chapter Workshop
on Open-Domain Question Answering, page 916, 2001.

P. Kingsbury and M. Palmer. From Treebank to PropBank. In Proceedings of the 3rd
International Conference on Language Resources and Evaluation (LREC), Las Palmas,
Spain, 2002.

D. Klein and C. D. Manning. Fast exact inference with a factored model for natural lan-
guage parsing. In Proceedings of the Seventeenth Annual Conference on Neural Infor-
mation Processing Systems (NIPS), pages 3–10. MIT Press, 2003.

121

A. Kotov and C. Zhai. Towards natural question guided search. In Proceedings of the 19th
International Conference on World Wide Web (WWW10), pages 541–550, 2010.

K. Koumpis and S. Renals. Automatic summarization of voicemail messages using lexical
and prosodic features. ACM Transactions on Speech and Language Processing, 2, 2005.
ISSN 1550-4875. URL http://doi.acm.org/10.1145/1075389.1075390.

T. Kudo and Y. Matsumoto. Chunking with support vector machines. In Proceedings of
the Second Meeting of the North American Chapter of the Association for Computa-
tional Linguistics on Language Technologies, NAACL ’01, pages 1–8, Stroudsburg, PA,
USA, 2001. Association for Computational Linguistics. URL http://dx.doi.org/
10.3115/1073336.1073361.

J. Kupiec, J. Pedersen, and F. Chen. A trainable document summarizer. In Proceedings
of the 18th annual international ACM SIGIR conference on Research and Development
in Information Retrieval, SIGIR ’95, pages 68–73, New York, NY, USA, 1995. ACM.
ISBN 0-89791-714-6.

F. Lacatusu, A. Hickl, and S. Harabagiu. Impact of question decomposition on the quality
of answer summaries. In Proceedings of the Fifth International Conference on Language
Resources and Evaluation (LREC), 2006.

J. Lafferty and C. Zhai. Document language models, query models, and risk minimization
for information retrieval. In Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’01, pages
111–119, New York, NY, USA, 2001. ACM. ISBN 1-58113-331-6.

R. Levy and G. Andrew. Tregex and tsurgeon: Tools for querying and manipulating tree
data structures. In Proceedings of the fifth international conference on Language Re-
sources and Evaluation (LREC), 2006.

J. Li, L. Sun, C. Kit, and J. Webster. A query-focused multi-document summarizer based on
lexical chains. In Proceedings of the Document Understanding Conference, Rochester,
2007.

C. Lin. Rouge: A package for automatic evaluation of summaries. In Proceedings of
Workshop on Text Summarization Branches Out, Post-Conference Workshop of Associa-
tion for Computational Linguistics, pages 74–81, Barcelona, Spain, 2004.

C. Y. Lin and E. Hovy. The automated acquisition of topic signatures for text summa-
rization. In Proceedings of the 18th Conference on Computational Linguistics, pages
495–501, 2000. ISBN 1-55860-717-X.

C. Y. Lin and E. Hovy. From single to multi-document summarization: A prototype system
and its evaluation. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 457–464, Philadelphia, 2002.

122

C. Y. Lin and E. Hovy. Automatic evaluation of summaries using n-gram co-occurrence
statistics. In Proceedings of the Annual Meeting of the North American Association for
Computational Linguistics, pages 150–156, Edmonton, Canada, 2003.

D. J. Litman, M. S. Kearns, S. Singh, and M. A. Walker. Automatic optimization of dia-
logue management. In Proceedings of the 18th conference on Computational linguistics
- Volume 1, COLING ’00, pages 502–508, Stroudsburg, PA, USA, 2000. Association for
Computational Linguistics. ISBN 1-55860-717-X.

I. Mani. Automatic Summarization. John Benjamins Co, Amsterdam/Philadelphia, 2001.

I. Mani, G. Klein, D. House, L. Hirschman, T. Firmin, and B. Sundheim. Summac: a
text summarization evaluation. Proceedings of the Natural Language Engineering, 8:
43–68, March 2002. ISSN 1351-3249. URL http://dl.acm.org/citation.cfm?
id=973860.973864.

W. C. Mann and S. A. Thompson. Rhetorical structure theory: Toward a functional theory
of text organization. In TEXT, pages 8(3): 243–281, 1988.

D. Marcu. Improving summarization through rhetorical parsing tuning. In Proceedings of
The Sixth Workshop on Very Large Corpora, pages 206 – 215, Montreal, Canada, 1998.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. Computational Linguistics, 19(2):313 – 330, 1994.

K. Mckeown, R. J. Passonneau, D. K. Elson, Nenkova A., and J. Hirschberg. Do sum-
maries help? In Proceedings of the 28th annual international ACM SIGIR conference
on Research and development in information retrieval, SIGIR ’05, pages 210–217, New
York, NY, USA, 2005. ACM. ISBN 1-59593-034-5.

G. J. McMurtry. Adaptive optimization procedures. In In Adaptive, Learning and Pattern
Recognition Systems: Theory and Applications, pages 243–286, 1970.

R. Mihalcea and P. Tarau. Textrank: Bringing order into texts. In Proceedings of the
Conference of Empirical Methods in Natural Language Processing (EMNLP 2004),
Barcelona, Spain, 2004.

M. L. Minsky and O. G. Selfridge. Learning in random nets. In Proceedings of the Infor-
mation Theory: Fourth London Symposium, 1961.

R. Mitkov and L. A. Ha. Computer-aided generation of multiple-choice tests. In Pro-
ceedings of the HLT-NAACL 03 Workshop on Building Educational Applications Using
Natural Language Processing, pages 17–22, 2003.

A. Moschitti and R. Basili. A tree kernel approach to question and answer classification
in question answering systems. In Proceedings of the 5th International Conference on
Language Resources and Evaluation (LREC), Genoa, Italy, 2006.

123

A. Moschitti, S. Quarteroni, R. Basili, and S. Manandhar. Exploiting syntactic and shal-
low semantic kernels for question/answer classificaion. In Proceedings of the 45th An-
nual Meeting of the Association of Computational Linguistics, pages 776 – 783, Prague,
Czech Republic, 2007. ACL.

K. S. Narendra and M. A. L. Thathachar. Learning automata - a survey. In IEEE Transac-
tions on Systems, Man and Cybernetics, pages 323–334, 1974.

V. Nastase. Topic-driven multi-document summarization with encyclopedic knowledge and
spreading activation. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP-08), pages 763–772, 2008.

A. Nenkova. Summarization evaluation for text and speech: Issues and approaches. In
Proceedings of the Ninth International Conference on Spoken Language Processing (IN-
TERSPEECH), Pittsburgh, PA, USA, 2006.

A. Nenkova and R. Passonneau. Evaluating content selection in summarization: The pyra-
mid method. In Proceedings of the North American Chapter of the Association for
Computational Linguistics - Human Language Technologies (NAACL HLT), 2004.

K. Nigam, J. Lafferty, and A. McCallum. Using maximum entropy for text classification.
In International Joint Conference on Artificial Intelligence (IJCAI-99) Workshop on Ma-
chine Learning for Information Filtering, pages 61–67, 1999.

M. Osborne. Using maximum entropy for sentence extraction. In Proceedings of the As-
sociation for Computational Linguistics (ACL) Workshop on Automatic Summarization,
pages 1–8, 2002.

J. Otterbacher, G. Erkan, and D. R. Radev. Using random walks for question-focused
sentence retrieval. In Proceedings of Human Language Technology Conference and
Conference on Empirical Methods in Natural Language Processing, pages 915–922,
Vancouver, Canada, 2005.

M. A. Pasca and S. M. Harabagiu. High performance question/answering. In Proceedings
of the 24th Annual International ACL SIGIR Conference on Research and Development
in Information Retrieval (SIGIR-2001), pages 366–374, 2001.

M. F. Porter. Readings in information retrieval. chapter An algorithm for suffix strip-
ping, pages 313–316. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1997. ISBN 1-55860-454-5. URL http://dl.acm.org/citation.cfm?id=275537.
275705.

M. L. Puterman. Markov Decision Processes–Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc, New York, 1994.

124

A. Resnick, G. J. Rath, and T. R. Savage. The formation of abstracts by the selection of
sentences: Part 1: Sentence selection by man and machines. In American Documenta-
tion.

D. Roth, C. Cumby, X. Li, P. Morie, R. Nagarajan, N. Rizzolo, K. Small, and W. Yih.
Question-answering via enhanced understanding of questions. In Proceedings of the
Eleventh Text REtreival Conference, page 667, Gaithersburg, Maryland, 2002.

N. Roy, J. Pineau, and S. Thrun. Spoken dialogue management using probabilistic rea-
soning. In Proceedings of the 38th Annual Meeting on Association for Computational
Linguistics, ACL ’00, pages 93–100, Stroudsburg, PA, USA, 2000. Association for Com-
putational Linguistics.

S. Russel and P. Norvig. Artificial Intelligence A Modern Approach, 2nd Edition. Prentice
Hall, 2003.

E. Saquete, P. Martı́nez-Barco, R. Muñoz, and J. L. Vicedo. Splitting complex temporal
questions for question answering systems. In Proceedings of the 42nd Annual Meeting
on Association for Computational Linguistics, ACL ’04, 2004.

K. Scheffler and S. Young. Automatic learning of dialogue strategy using dialogue simu-
lation and reinforcement learning. In Proceedings of the Human Language Technology
Conference (HLT), pages 12–19, 2002.

S. Sekine. Proteus project oak system (english sentence analyzer). 2002. URL http:
//nlp.nyu.edu/oak.

S. Sekine and C. A. Nobata. Sentence extraction with information extraction technique.
In Proceedings of the Document Understanding Conference (DUC 2001), New Orleans,
Louisiana, USA, 2001.

D. Shen and M. Lapata. Using semantic roles to improve question answering. In Proceed-
ings of the 2007 Joint Conference on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning, pages 12–21, 2007.

D. Shen, J. Sun, H. Li, Q. Yang, and Z. Chen. Document summarization using condi-
tional random fields. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI 2007), pages 2862–2867, Hyderabad, India, 2007.

S. P. Singh, M. J. Kearns, D. J. Litman, and M. A. Walker. Reinforcement learning for spo-
ken dialogue systems. In Advances in Neural Information Processing Systems (NIPS),
pages 956 – 962. MIT Press, 1999.

K. Sparck-Jones and J. Galliers. Evaluating natural language processing systems: An anal-
ysis and review. Springer-Verlag, 1996.

125

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
Cambridge, Massachusetts, London, England, 1998.

W. J. Teahan. Knowing about knowledge: Towards a framework for knowledgeable agents
and knowledge grids. Technical report, Artificial Intelligence and Intelligent Agents
(AIIA 03.2), 2003.

C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, 1979.

X. Wan and J. Xiao. Graph-based multi-modality learning for topic-focused multi-
document summarization. In Proceedings of the 21st International Jont Conference on
Artifical Intelligence (IJCAI-09), pages 1586–1591, 2009.

X. Wan, J. Yang, and J. Xiao. Towards an iterative reinforcement approach for simul-
taneous document summarization and keyword extraction. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the Association for Computational Linguistics
(ACL-2007), pages 552–559, Prague, Czech Republic, 2007a.

X. Wan, J. Yang, and J. Xiao. Manifold-ranking based topic-focused multi-document sum-
marization. In Proceedings of the 20th International Joint Conference on Artifical Intel-
ligence (IJCAI-07), pages 2903–2908, 2007b.

S. Young. Using POMDPs for dialog management. In Proceedings of the 1st IEEE/ACL
Workshop on Spoken Language Technologies (SLT), pages 8 – 13, 2006.

A. Zhang and W. Lee. Question classification using support vector machines. In Pro-
ceedings of the Special Interest Group on Information Retrieval, pages 26–32, Toronto,
Canada, 2003a. ACM.

D. Zhang and W. S. Lee. A language modeling approach to passage question answering.
In Proceedings of the 12th Text REtrieval Conference (TREC), 2003b.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schlkopf. Learning with local and
global consistency. In the Seventeenth Annual Conference on Neural Information Pro-
cessing Systems (NIPS), 2003a.

D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Schlkopf. Ranking on data mani-
folds. In the Seventeenth Annual Conference on Neural Information Processing Systems
(NIPS), 2003b.

126

Appendix A: TAC Ontology

1. Accidents and Natural Disasters

(a) WHAT: what happened

(b) WHEN: date, time, other temporal placement markers

(c) WHERE: physical location

(d) WHY: reasons for accident/disaster

(e) WHO AFFECTED: casualties (death, injury), or individuals otherwise nega-
tively affected by the accident/disaster

(f) DAMAGES: damages caused by the accident/disaster

(g) COUNTERMEASURES: countermeasures, rescue efforts, prevention efforts,
other reactions to the accident/disaster

2. Attacks (Criminal/Terrorist)

(a) WHAT: what happened

(b) WHEN: date, time, other temporal placement markers

(c) WHERE: physical location

(d) PERPETRATORS: individuals or groups responsible for the attack

(e) WHY: reasons for the attack

(f) WHO AFFECTED: casualties (death, injury), or individuals otherwise nega-
tively affected by the attack

(g) DAMAGES: damages caused by the attack

(h) COUNTERMEASURES: countermeasures, rescue efforts, prevention efforts,
other reactions to the attack (e.g. police investigations)

3. Health and Safety

(a) WHAT: what is the issue

(b) WHO AFFECTED: who is affected by the health/safety issue

(c) HOW: how they are affected

(d) WHY: why the health/safety issue occurs

(e) COUNTERMEASURES: countermeasures, prevention efforts

4. Endangered Resources

(a) WHAT: description of resource

(b) IMPORTANCE: importance of resource

(c) THREATS: threats to the resource

127

(d) COUNTERMEASURES: countermeasures, prevention efforts

5. Investigations and Trials (Criminal/Legal/Other)

(a) WHO: who is a defendant or under investigation

(b) WHO INV: who is investigating, prosecuting, or judging

(c) WHY: general reasons for the investigation/trial

(d) CHARGES: specific charges to the defendant

(e) PLEAD: defendant’s reaction to charges, including admission of guilt, denial
of charges, or explanations

(f) SENTENCE: sentence or other consequences to defendant

128

