491 research outputs found

    Irrigated grassland monitoring using a time series of terraSAR-X and COSMO-skyMed X-Band SAR Data

    Get PDF
    [Departement_IRSTEA]Territoires [TR1_IRSTEA]SYNERGIE [Axe_IRSTEA]TETIS-ATTOSInternational audienceThe objective of this study was to analyze the sensitivity of radar signals in the X-band in irrigated grassland conditions. The backscattered radar signals were analyzed according to soil moisture and vegetation parameters using linear regression models. A time series of radar (TerraSAR-X and COSMO-SkyMed) and optical (SPOT and LANDSAT) images was acquired at a high temporal frequency in 2013 over a small agricultural region in southeastern France. Ground measurements were conducted simultaneously with the satellite data acquisitions during several grassland growing cycles to monitor the evolution of the soil and vegetation characteristics. The comparison between the Normalized Difference Vegetation Index (NDVI) computed from optical images and the in situ Leaf Area Index (LAI) showed a logarithmic relationship with a greater scattering for the dates corresponding to vegetation well developed before the harvest. The correlation between the NDVI and the vegetation parameters (LAI, vegetation height, biomass, and vegetation water content) was high at the beginning of the growth cycle. This correlation became insensitive at a certain threshold corresponding to high vegetation (LAI ~2.5 m2/m2). Results showed that the radar signal depends on variations in soil moisture, with a higher sensitivity to soil moisture for biomass lower than 1 kg/m². HH and HV polarizations had approximately similar sensitivities to soil moisture. The penetration depth of the radar wave in the X-band was high, even for dense and high vegetation; flooded areas were visible in the images with higher detection potential in HH polarization than in HV polarization, even for vegetation heights reaching 1 m. Lower sensitivity was observed at the X-band between the radar signal and the vegetation parameters with very limited potential of the X-band to monitor grassland growth. These results showed that it is possible to track gravity irrigation and soil moisture variations from SAR X-band images acquired at high spatial resolution (an incidence angle near 30°)

    Hemiboreaalsete metsade kaardistamine interferomeetrilise tehisava-radari andmetelt

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsioone.Käesolev doktoritöö uurib tehisavaradari (SAR) kasutusvõimalusi metsa kõrguse hindamiseks hemiboreaalsete metsade vööndis. Uurimistöö viidi läbi Tartu Üli¬kooli, Tartu Observatooriumi, Aalto Ülikooli, Euroopa Kosmoseagentuuri (ESA) kaugseire keskuse ESRIN ja Reach-U koostöös. Uurimistöös kasutatud satelliidi¬andmed on pärit Saksa Kosmosekeskuse (DLR) kõrglahutusega bistaatilise X-laineala tehisavaradari TanDEM-X satelliidipaarilt. Sagedasti uuenevad satelliidiandmed, nende globaalne katvus ja kõrge ruumi¬line lahutus võimaldavad tehisavaradari abil kaardistada metsi ning nendes toimu¬vaid muutusi suurtel maa-aladel. Radari abil on võimalik saada kõrge lahutusvõimega pilte, mis on tundlikud taimestikule, maapinna karedusele ja dielektrilistele omadustele. Sünkroonis lendava radaripaari samaaegselt tehtud pildid elimineerivad võimalikud ajalised muutused taimestikus ning tänu sellele on radariandmetest võimalik tuletada metsade vertikaalset struktuuri ja kõrgust. Uurimistöös käsitletakse tehisavaradari interferomeetrilise koherentsuse tund¬likkust metsa kõrguse suhtes ning analüüsitakse, millised keskkonna ja klimaati¬lised tingimused ning satelliidi orbiidiga seotud parameetrid mõjutavad radari¬piltidelt erinevate puuliikide kõrguse hindamise täpsust. Lisaks keskendub väitekiri interferomeetrilisele koherentsusele tuginevate mudelite analüüsi¬misele ning nende täpsuse hindamisele operatiivse metsa kõrguse kaardistamise raken-duseks. Vaatluse alla on võetud kolm testala, mis asuvad Soomaa rahvuspargis, Võrtsjärve idakaldal Rannus ja Peipsiveere looduskaitsealal ning katavad kokku 2291 hektarit metsa. 23 TanDEM-X satelliidipildi koherentsuspilte võrreldakse samadel testaladel aerolaserskaneerimise (LiDAR) abil mõõdetud puistute kõrgu¬sega, mis on omakorda jagatud kolme rühma (kuused, männid ja laia¬lehised segametsad). RVoG (Random Volume over Ground) taimekatte mudel ning sellest tule¬tatud lihtsamad pooleempiirilised mudelid sobituvad olemasolevate TanDEM-X koherentsuse ning LiDARi metsa puistute kõrgusandmetega hästi. Töö tule¬mused kinnitavad, et tulevikus on suurte ja erinevatest metsatüüpidest koosne¬vate metsade kõrguse kosmosest kaardistamisel otstarbekas kasutusele võtta esmalt just soovitatud lihtsamad ja universaalsemad mudelid.This thesis presents research in the field of radar remote sensing and contributes to the forest monitoring application development using space-borne synthetic aperture radar (SAR). Satellite data is particularly useful for large-scale forestry applications making high revisit monitoring of the state of forests worldwide possible. The sensitivity of SAR to the dielectric and geometrical properties of the targets, penetration capacity and coherent imaging properties make it a unique tool for mapping and monitoring forest biomes. SAR satellites are also capable of retrieving additional information about the structure of the forest, tree height and biomass estimates as an essential input for monitoring the changes in the carbon stocks. Interferometric SAR (InSAR) is an advanced SAR imaging technique that allows the retrieval of forest parameters while working in nearly all weather conditions, independently of daylight and cloud cover. This research concen¬trates on assessing the impact of different variables affecting hemiboreal forest height estimation from space-borne X-band interferometric SAR coherence data. In particular, the research analyses the changes in coherence dynamics related to seasonal conditions, tree species and imaging properties using a large collection of interferometric SAR images from different seasons over a four-year period. The study is carried out over three test sites in Estonia using the extensive multi-temporal dataset of 23 TanDEM-X images, covering 2291 hectares of forests to describe the relation between the interferometric SAR coherence mag¬nitude and forest parameters. The work demonstrates how the correlation of interferometric coherence and Airborne LiDAR Scanning (ALS)-derived forest height varies for pine and deciduous tree species, for summer (leaf-on) and winter (leaf-off) conditions and for flooded forest floor. A simple semi-empirical modelling approach is proposed as being suitable for wide area forest mapping with limited a priori information under a range of seasonal and environ¬¬mental conditions. A Random Volume over Ground (RVoG) model and three semi-empirical models are compared and validated against a large dataset of coherence magnitude and ALS-measured data over hemiboreal forests in Estonia. The results show that all proposed models perform well in describing the relationship between hemiboreal forest height and interferometric coherence, allowing in future to derive forest stand height with an accuracy suitable for a wide range of applications

    Summaries of the Sixth Annual JPL Airborne Earth Science Workshop

    Get PDF
    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop

    X-band synthetic aperture radar methods

    Get PDF
    Spaceborne Synthetic Aperture Radars (SARs), operating at L-band and above, offer microwave observations of the Earth at very high spatial resolution in almost all-weather conditions. Nevertheless, precipitating clouds can significantly affect the signal backscattered from the ground surface in both amplitude and phase, especially at X band and beyond. This evidence has been assessed by numerous recent efforts analyzing data collected by COSMO-SkyMed (CSK) and TerraSAR-X (TSX) missions at X band. This sensitivity can be exploited to detect and quantify precipitations from SARs at the spatial resolution of a few hundred meters, a very appealing feature considering the current resolution of precipitation products from space. Forward models of SAR response in the presence of precipitation have been developed for analyzing SAR signature sensitivity and developing rainfall retrieval algorithms. Precipitation retrieval algorithms from SARs have also been proposed on a semi-empirical basis. This chapter will review experimental evidences, modelling approaches, retrieval methods and recent applications of X-band SAR data to rainfall estimation

    Advances in Radar Remote Sensing of Agricultural Crops: A Review

    Get PDF
    There are enormous advantages of a review article in the field of emerging technology like radar remote sensing applications in agriculture. This paper aims to report select recent advancements in the field of Synthetic Aperture Radar (SAR) remote sensing of crops. In order to make the paper comprehensive and more meaningful for the readers, an attempt has also been made to include discussion on various technologies of SAR sensors used for remote sensing of agricultural crops viz. basic SAR sensor, SAR interferometry (InSAR), SAR polarimetry (PolSAR) and polarimetric interferometry SAR (PolInSAR). The paper covers all the methodologies used for various agricultural applications like empirically based models, machine learning based models and radiative transfer theorem based models. A thorough literature review of more than 100 research papers indicates that SAR polarimetry can be used effectively for crop inventory and biophysical parameters estimation such are leaf area index, plant water content, and biomass but shown less sensitivity towards plant height as compared to SAR interferometry. Polarimetric SAR Interferometry is preferable for taking advantage of both SAR polarimetry and SAR interferometry. Numerous studies based upon multi-parametric SAR indicate that optimum selection of SAR sensor parameters enhances SAR sensitivity as a whole for various agricultural applications. It has been observed that researchers are widely using three models such are empirical, machine learning and radiative transfer theorem based models. Machine learning based models are identified as a better approach for crop monitoring using radar remote sensing data. It is expected that the review article will not only generate interest amongst the readers to explore and exploit radar remote sensing for various agricultural applications but also provide a ready reference to the researchers working in this field

    Wetland Monitoring and Mapping Using Synthetic Aperture Radar

    Get PDF
    Wetlands are critical for ensuring healthy aquatic systems, preventing soil erosion, and securing groundwater reservoirs. Also, they provide habitat for many animal and plant species. Thus, the continuous monitoring and mapping of wetlands is necessary for observing effects of climate change and ensuring a healthy environment. Synthetic Aperture Radar (SAR) remote sensing satellites are active remote sensing instruments essential for monitoring wetlands, given the possibility to bypass the cloud-sensitive optical instruments and obtain satellite imagery day and night. Therefore, the purpose of this chapter is to provide an overview of the basic concepts of SAR remote sensing technology and its applications for wetland monitoring and mapping. Emphasis is given to SAR systems with full and compact polarimetric SAR capabilities. Brief discussions on the latest state-of-the-art wetland applications using SAR imagery are presented. Also, we summarize the current trends in wetland monitoring and mapping using SAR imagery. This chapter provides a good introduction to interested readers with limited background in SAR technology and its possible wetland applications

    Remote sensing based assessment of land cover and soil moisture in the Kilombero floodplain in Tanzania

    Get PDF
    Wetlands provide important ecological, biological, and social-economic services that are critical for human existence. The increasing demand for food, arable land shortage and changing climate conditions in East Africa have created a paradigm shift from upland cultivation to wetland use due to their year-round soil water availability. However, there is need to control and manage the activities within the wetlands to ensure sustainable use while negating any negative effects caused by these activities. This is implemented through the decisions made by the land managers within the wetlands. Providing the users of the wetlands with scientific knowledge acts as a support tool for policy-making geared towards the sustainable use of the wetlands. The overall research contains two main components: First, the need for timely land cover maps at a reasonable scale, and secondly, the assessment of soil moisture as a major contributor to agricultural production. The objectives of the study were to generate land cover maps from multi-sensor optical datasets and to assess the performance of single-polarized Sentinel-1 Gray Level Co-occurrence Matrix (GLCM) texture and Principal Component Analysis (PCA) features by applying multiple classification algorithms in a floodplain in the Kilombero catchment. Furthermore, soil moisture spatial-temporal patterns over three hydrological zones was assessed, estimation of soil moisture from radar data and generation of soil moisture products from global products was investigated. The correlation of the merged products to Normalized Difference Vegetation Index (NDVI) measures was also investigated. RapidEye, Sentinel-2 and Landsat images were used in determining the areal extents of four major land cover classes namely vegetated, bare, water and built up. The acquisition period of the images ranges from August 2013 to June 2015 for the RapidEye images, December 2015 to August 2016 for the Sentinel-2 images and 2013 to 2016 Landsat-8 images were included in the land cover time series dynamic study. However, the major challenge arising was cloud coverage and hence Sentinel-1 images were tested in the application of Synthetic Aperture Radar (SAR) in wetland mapping. Variograms were used in spatial-temporal assessment of soil moisture data collected from three hydrological zones, riparian, middle and fringe. A roughness parameter was derived from a semi-empirical model. Soil moisture was retrieved from TerraSAR-X and RadarSAT-2 with the retrieved roughness parameter as an input in a linear regression equation. Triple collocation was applied in error assessment of the global soil moisture products prior to development of a merged product. Cross-correlation was applied in relating NDVI to soil moisture. Optical data (RapidEye, Landsat-8, and Sentinel-2) generated land cover maps used in assessing the land cover dynamics over time. The land cover ratios were related to depth to groundwater. As the depth to groundwater reduced in June the bare land coverage was 45-57% while that of vegetation was 34-47%. In December when the depth to groundwater was highest, bare land coverage was 62-69% while that of the vegetated area was 27-25%. This indicates that depth of groundwater and vegetation coverage responds to seasonality. During the dry season, 68-81% of the total vegetation class is within the riparian zone. In the classification of the SAR images, the overall accuracies for the single polarized VV images ranged from 54-76%, 60-81% and 61-80% for Random Forest (RF), Neural Network (NN) and Support Vector Machine (SVM) respectively. GLCM features had overall accuracies of 64-86%, 65-88% and 65-86% for RF, NN, and SVM respectively. PCA derived images had similar overall accuracies of 68-92% for NN, RF, and SVM respectively. The PCA images had the highest overall accuracy for the entire time series indicating that reduction in the number of texture features to layers containing the maximum variance improves the accuracy. The standard deviation of soil moisture was noted to increase with increasing soil moisture. Soil texture plays a key role in soil moisture retention. The riparian fields had a high water content explained by the high clay and organic matter content. A roughness parameter was derived and utilized in the retrieval of soil moisture from SAR resulting to R2 of 0.88- 0.92 between observed and simulated soil moisture values from co-polarized RadarSAT-2 HH and TerraSAR-X HH and VV. Merged soil moisture product from FEWSNET Land Data Assimilation System_NOAH (FLDAS_NOAH), ECMWF Re-Analysis Interim (ERA-Interim) and Soil Moisture and Ocean Salinity (SMOS) and FLDAS_Variable Infiltration Capacity (VIC), ERA-Interim and SMOS had similar patterns attributed to FLDAS_NOAH and FLDAS_VIC forced by the same precipitation product (RFE). Cross-correlation of Moderate-resolution Imaging Spectrometer (MODIS) NDVI and the merged soil moisture products revealed a 2-month lag of NDVI. Hence, the relationship is useful in determining the Start of Season from soil moisture products. In conclusion, the successful land cover mapping of the study area demonstrated the use of satellite imagery for wetland characterization. The vast coverage and frequent acquisitions of optical and microwave remotely sensed data additionally make the approaches transferable to other locations and allow for mapping at larger scales. Soil moisture assessment from point data revealed varied soil moisture patterns whereas global remotely sensed and modeled products rather provide complementary information about growing conditions, and hence a situational assessment tool of potential of physical availability dimension of food security. This study forms a baseline upon which additional monitoring and assessment of the Kilombero wetland ecosystem can be performed with the current results marked as a reference. Moreover, the study serves as a demonstration case of remote sensing based approaches for land cover and soil moisture mapping, whose results are useful to stakeholders to aid in the implementation of adapted production techniques for yield optimization while minimizing the unsustainable use of the natural resources.Feuchtgebiete erbringen wichtige ökologische, biologische und sozial-ökonomische Dienstleistungen, welche entscheidend für das menschliche Dasein sind. Der steigende Bedarf an Nahrung, der Mangel an landwirtschaftlichen Nutzflächen und die Veränderung der klimatischen Bedingungen in Ostafrika haben zu einem Paradigmenwechsel vom Anbau im Hochland hin zur Nutzung von Feuchtgebieten geführt. Allerdings sind Kontrolle und Management der Aktivitäten in Feuchtgebieten notwendig, um die nachhaltige Nutzung zu sichern und negative Effekte dieser Aktivitäten zu vermeiden. Die Implementierung erfolgt durch die Landverwalter in den Feuchtgebieten. Den Nutzern von Feuchtgebieten wissenschaftliche Erkenntnisse bereitzustellen dient als Hilfsmittel zur politischen Entscheidungsfindung für die nachhaltige Feuchtgebietsnutzung. Die Forschung im Rahmen der Dissertation beinhaltet zwei Hauptkomponenten: erstens den Bedarf an aktuellen Landbedeckungskarten auf einer angemessenen Skalenebene und zweitens die Erfassung der Bodenfeuchte als wichtiger Einflussfaktor auf die landwirtschaftliche Produktion. Das Ziel der Untersuchung war, Landbedeckungskarten auf Grundlage von multisensorischen optischen Daten zu erstellen und die Eignung der Textur der einfach polarisierten Sentinel-1 Grauwertmatrix (GLCM) sowie der einer Hauptkomponentenanalyse (PCA) bei Anwendung unterschiedlicher Klassifikationsalgorithmen zu beurteilen. Des Weiteren wurden raum-zeitliche Bodenfeuchtemuster über drei hydrologische Zonen hinweg modelliert, die Bodenfeuchte aus Radardaten abgeleitet sowie die Erstellung von Bodenfeuchteprodukten auf Basis von globalen Produkten untersucht. Die Korrelation der Bodenfeuchteprodukte mit dem Normalisierten Differenzierten Vegetationsindex (NDVI) wurde ebenfalls analysiert. RapidEye, Sentinel-2 und Landsat Bilder wurden genutzt um die räumliche Ausdehnung der vier Hauptklassen (Vegetation, freiliegender Boden, Wasser und Bebauung) der Landbedeckung zu ermitteln. Für die Zeitreihenanalyse der der Landbedeckungsdynamik wurden RapidEye-Daten von August 2013 bis Juni 2015, Sentinel-2-Bilder von Dezember 2015 bis August 2016 und Landsat-8-Bilder von 2013 bis 2016 verwendet. Die größte Herausforderung war jedoch die Wolkenbedeckung, weshalb die Anwendung von Synthetic Aperture Radar (SAR) für die Feuchtgebietskartierung getestet wurde. Die gemessene Bodenfeuchte wurde mittels Variogrammen für die drei hydrologischen Zonen (Uferzone, Mitte und Randgebiete) raum-zeitlich interpoliert. Ein Rauhigkeitsparameter wurde aus einem semi-empirischen Modell hergeleitet. Die Bodenfeuchte wurde aus TerraSAR-X und RadarSAT-2- Bildern unter Verwendung des Rauhigkeitsparameters als Eingangsgröße in einer linearen Regression abgeleitet. Vor der Zusammenführung der Produkte wurde das globale Bodenfeuchteprodukt mithilfe von dreifacher Kollokation auf Fehler überprüft. Die Kreuzkorrelation zwischen NDVI und Bodenfeuchte wurde berechnet. Optische Daten (RapidEye, Landsat-8 und Sentinel-2) wurden genutzt, um die zeitliche Dynamik der Landbedeckung zu bestimmen. Die Landbedeckungsverhältnisse wurde mit der Höhe des Grundwasserspiegels korreliert. Ein hoher Grundwasserstand im Juni resultierte in 45-57% unbedecktem Boden, während der Anteil der Vegetation 34-47% betrug. Im Dezember, als der Grundwasserspiegel seinen Tiefststand hatte, erhöhte sich der Anteil des freiliegenden Bodens auf 62-69% und der Anteil der Vegetation verringerte sich auf 27-25%. Das zeigt, dass Grundwasserspiegel und Vegetation saisonalen Schwankungen unterworfen sind. Während der Trockenzeit liegen 68-81% der gesamten als Vegetation klassifizierten Fläche innerhalb der Uferzone. In der Klassifikation der SAR-Bilder liegt die Gesamtgenauigkeit der einfach polarisierten VV-Bilder im Rahmen von 54-76%, 60-81% und 61-80%, entsprechend für Random Forest (RF), Neuronale Netze (NN) und Support Vector Machine (SVM). Die GLCM ergab eine Gesamtgenauigkeit von 64-86%, 65-88% und 65-86% für RF, NN und SVM. Die über eine PCA abgeleiteten Bilder erreichten eine ähnliche Genauigkeit von 68-92% für NN, RF und SVM. Die PCA-Bilder weisen die höchste Gesamtgenauigkeit der gesamten Zeitreihe auf, was darauf hinweist, dass eine Reduktion von Textureigenschaften auf Layer der maximalen Varianz enthalten, die Genauigkeit erhöht. Die Standardabweichung der Bodenfeuchte stieg mit zunehmender Bodenfeuchte. Die Bodentextur spielt dabei eine Schlüsselrolle für das Wasserhaltevermögen des Bodens. Die Uferzone wies einen hohen Wassergehalt auf, was durch den hohen Anteil von Ton und Humus zu erklären ist. Die beobachteten und simulierten Bodenfeuchtewerte von co-polarisierten RadarSAT-2 HH, TerraSAR-X HH und VV Daten korrelieren mit einem R2 von 0.88 - 0.92. Die zusammengesetzten globalen Bodenfeuchteprodukte von FLDAS_NOAH, ERA-Interim sowie SMOS und FLDAS_VIC, ERA-Interim und SMOS zeigen ähnliche Muster wie FLDAS_NOAH und FLDAS_VIC, was über die Verwendung desselben Niederschlagsproduktes (RFE) zu erklären ist. Die Kreuzkorrelation von MODIS NDVI und den zusammengeführten Bodenfeuchteprodukten ergab eine zeitliche Verzögerung des NDVI von zwei Monaten. Dieser Zusammenhang kann daher bei der Bestimmung des Saisonbeginns aus Bodenfeuchtigkeitsprodukten nützlich sein. Zusammengefasst hat die Studie gezeigt, wie Satellitenbilder zur Charakterisierung von Wetlands genutzt werden können. Die große Abdeckung und häufige Aufnahme der optischen und Mikrowellen-Fernerkundungsdaten ermöglichen darüber hinaus die Übertragung der Ansätze auf weitere Gebiete und Kartierung auf größeren Skalen. Die Punktmessungen zeigen kleinräumige Muster der Bodenfeuchte, während globale Fernerkundungsprodukte und Modelle Informationen über die Wachstumsbedingungen liefern und somit ein Bewertungsinstrument der Ernährungssicherheit darstellen können. Weiterhin bildet die Studie eine Basis, auf der ein weitergehendes Monitoring und eine Bewertung des Feuchtgebietsökosystems durchgeführt werden kann. Sie ist ein Beispiel für fernerkundungsbasierte Ansätze zur Landbedeckungs- und Bodenfeuchtekartierung; ihre Ergebnisse sind nützlich, um Akteuren bei der Implementierung von Produktionstechniken zu unterstützen, welche die Erträge maximieren und gleichzeitig die nicht nachhaltige Nutzung der natürlichen Ressourcen minimieren

    Whitepaper: Understanding land-atmosphere interactions through tower-based flux and continuous atmospheric boundary layer measurements

    Get PDF
    Executive summary ● Target audience: AmeriFlux community, AmeriFlux Science Steering Committee & Department of Energy (DOE) program managers [ARM/ASR (atmosphere), TES (surface), and SBR (subsurface)] ● Problem statement: The atmospheric boundary layer mediates the exchange of energy and matter between the land surface and the free troposphere integrating a range of physical, chemical, and biological processes. However, continuous atmospheric boundary layer observations at AmeriFlux sites are still scarce. How can adding measurements of the atmospheric boundary layer enhance the scientific value of the AmeriFlux network? ● Research opportunities: We highlight four key opportunities to integrate tower-based flux measurements with continuous, long-term atmospheric boundary layer measurements: (1) to interpret surface flux and atmospheric boundary layer exchange dynamics at flux tower sites, (2) to support regionalscale modeling and upscaling of surface fluxes to continental scales, (3) to validate land-atmosphere coupling in Earth system models, and (4) to support flux footprint modelling, the interpretation of surface fluxes in heterogeneous terrain, and quality control of eddy covariance flux measurements. ● Recommended actions: Adding a suite of atmospheric boundary layer measurements to eddy covariance flux tower sites would allow the Earth science community to address new emerging research questions, to better interpret ongoing flux tower measurements, and would present novel opportunities for collaboration between AmeriFlux scientists and atmospheric and remote sensing scientists. We therefore recommend that (1) a set of instrumentation for continuous atmospheric boundary layer observations be added to a subset of AmeriFlux sites spanning a range of ecosystem types and climate zones, that (2) funding agencies (e.g., Department of Energy, NASA) solicit research on land-atmosphere processes where the benefits of fully integrated atmospheric boundary layer observations can add value to key scientific questions, and that (3) the AmeriFlux Management Project acquires loaner instrumentation for atmospheric boundary layer observations for use in experiments and short-term duration campaigns
    corecore