18 research outputs found

    Fuzzy Inventory Model with Single Item Under Constant Demand and Time Dependent Holding Cost

    Get PDF
    The objective of this model is to discuss the inventory model for constant  demand and time dependent holding cost. Mathematical model has been developed for determining the optimal order quantity, the optimal cycle time and optimal total inventory cost in fuzzy environment. For defuzzification, graded unit preference integration method is used. Numerical examples are given to validate the proposed model. Sensitivity analysis is carried out to analyze the effect of changes in the optimal solution with respect to change in various parameters

    The Fuzzy Economic Order Quantity Problem with a Finite Production Rate and Backorders

    Get PDF
    The track of developing Economic Order Quantity (EOQ) models with uncertainties described as fuzzy numbers has been very lucrative. In this paper, a fuzzy Economic Production Quantity (EPQ) model is developed to address a specific problem in a theoretical setting. Not only is the production time finite, but also backorders are allowed. The uncertainties, in the industrial context, come from the fact that the production availability is uncertain as well as the demand. These uncertainties will be handled with fuzzy numbers and the analytical solution to the optimization problem will be obtained. A theoretical example from the process industry is also given to illustrate the new model

    Fuzzy Mathematical Model For A Lot-Sizing Problem In Closed-Loop Supply Chain

    Get PDF
    The aim of lot sizing problems is to determine the periods where production takes place and the quantities to be produced in order to satisfy the customer demand while minimizing the total cost. Due to its importance on the efficiency of the production and inventory systems, Lot sizing problems are one of the most challenging production planning problems and have been studied for many years with different modeling features. In this paper, we propose a fuzzy mathematical model for the single-item capacitated lot-sizing problem in closed-loop supply chain. The possibility approach is chosen to convert the fuzzy mathematical model to crisp mathematical model. The obtained crisp model is in the form of mixed integer linear programming (MILP), which can be solved by existing solver in crisp environment to find optimal solution. Due to the complexity of the problems harmony search (HS) algorithm and genetic algorithm (GA) have been used to solve the model for fifteen problem. To verify the performance of the algorithm, we computationally compared the results obtained by the algorithms with the results of the branch-and-bound method. Additionally, Taguchi method was used to calibrate the parameters of the meta-heuristic algorithms. The computational results show that, the objective values obtained by HS are better from GA results for large dimensions test problems, also CPU time obtained by HS are better than GA for Large dimensions

    Fuzzy production planning models for an unreliable production system with fuzzy production rate and stochastic/fuzzy demand rate

    Get PDF
    In this article, we consider a single-unit unreliable production system which produces a single item. During a production run, the production process may shift from the in-control state to the out-of-control state at any random time when it produces some defective items. The defective item production rate is assumed to be imprecise and is characterized by a trapezoidal fuzzy number. The production rate is proportional to the demand rate where the proportionality constant is taken to be a fuzzy number. Two production planning models are developed on the basis of fuzzy and stochastic demand patterns. The expected cost per unit time in the fuzzy sense is derived in each model and defuzzified by using the graded mean integration representation method. Numerical examples are provided to illustrate the optimal results of the proposed fuzzy models

    A fuzzy periodic review integrated inventory model involving stochastic demand, imperfect production process and inspection errors

    Get PDF
    In this study, we investigate an integrated production-inventory system consisting of a single-vendor and single-buyer. The buyer manages its inventory level periodically at a certain period of time. We consider a fuzzy annual demand, imperfect production, inspection errors, partial backordering, and adjustable production rate in the proposed model. Additionally, it is assumed that the protection interval demand follows a normal distribution. The model contributes to the current literature by allowing the inclusion of fuzzy annual demand, adjustable production rate and imperfect production and inspection processes. Our objective is to optimize the number of deliveries from vendor to buyer, the buyer’s review period, and the vendor’s production rate, so that the joint expected total annual cost incurred has the minimum value. Furthermore, an iterative procedure is proposed to find the optimal solutions of the model. We also provide a numerical example and conduct a simple sensitivity analysis to illustrate the model’s behaviour and feasibility. The results from the sensitivity analysis show that the defective rate, type I inspection error, fuzzy annual demand, fixed production cost, variable production cost and setup cost give impacts to both the review period and production rate. Finally, it is concluded that the proposed model can be applied by managers or practitiones for managing inventories across the supply chain involving a vendor and a buyer

    BP-RA-22

    Get PDF

    Optimization of fuzzy two-level production inventory system with persuasive exertion-reliant demand

    Get PDF
    Dynamic manufacturing-inventory system’s intelligent production design develops a crucial problem in the business reactivity of indecisions.  This investigation examines a two-level production system under fuzzy parameters and decision variables by implementing a pentagonal fuzzy quantity.  As designed, the fuzzy system is defuzzified through the graded mean technique, and then the Kuhn-Tucker technique is utilised to obtain the optimum production size and shortage level.  The effectual algorithms are established to project an intellectual industrial approach such as optimal production quantity, shortage level, trade group’s exertions, and then minimum integrated expected total cost.  The evaluation of the proposed fuzzy system is primed to fit numerical examples compared to the crisp system.  This suggested fuzzy system is likewise compared with a particular case of the prior model.  Numerical illustrations and sensitiveness studies are delivered in the direction of exhibiting the applicability based on the offered procedure and the attained outcomes.

    Application of Optimization in Production, Logistics, Inventory, Supply Chain Management and Block Chain

    Get PDF
    The evolution of industrial development since the 18th century is now experiencing the fourth industrial revolution. The effect of the development has propagated into almost every sector of the industry. From inventory to the circular economy, the effectiveness of technology has been fruitful for industry. The recent trends in research, with new ideas and methodologies, are included in this book. Several new ideas and business strategies are developed in the area of the supply chain management, logistics, optimization, and forecasting for the improvement of the economy of the society and the environment. The proposed technologies and ideas are either novel or help modify several other new ideas. Different real life problems with different dimensions are discussed in the book so that readers may connect with the recent issues in society and industry. The collection of the articles provides a glimpse into the new research trends in technology, business, and the environment

    Supply Chain Performance Appraisement and Benchmarking for Manufacturing Industries: Emphasis on Traditional, Green, Flexible and Resilient Supply Chain along with Supplier Selection

    Get PDF
    Supply chain represents a network of interconnected activities starting from raw material extraction to delivery of the finished product to the end-user. The main constituents of supply chain are supplying/purchasing, inbound logistics, manufacturing, outbound logistics, marketing and sales. In recent times, the traditional supply chain construct is being modified to embrace various challenges of present business needs. Today’s global market has become highly volatile; customers’ expectations are ever-changing. Fierce competition amongst business sectors necessitates adapting modern supply chain management philosophies. Agility, greenness, flexibility as well as resilience have become the key success factors in satisfying global business needs. In order to remain competitive in the turbulent marketplace, industries should focus on improving overall performance of the supply chain network. In this dissertation, supply chain performance assessment has been considered as a decision making problem involving various measures and metrics (performance indicators). Since most of the performance indices are subjective in nature; decisionmaking relies on active participation of a group of decision-makers (DMs). Subjective human judgment often bears some sort of ambiguity as well as vagueness in the decision making; to overcome uncertainty in decision making, adaptation of grey/fuzzy set theory seems to be fruitful. To this end, present work deals with a variety of decision support tools to facilitate supply chain performance appraisement as well as benchmarking in fuzzy/grey context. Starting from the traditional supply chain, this work extends appraisement and benchmarking of green supply chain performance for a set of candidate case companies (under the same industry) operating under similar supply chain construct. Exploration of grey-MOORA, fuzzy-MOORA, IVFN-TOPSIS, fuzzy-grey relation method has been illustrated in this part of work. Apart from aforementioned empirical studies, two real case studies have been reported in order to estimate a quantitative performance metric reflecting the extent of supply chain flexibility and resilience, respectively, in relation to the case company under consideration. Performance benchmarking helps in identifying best practices in perspectives of supply chain networking; it can easily be transmitted to other industries. Organizations can follow their peers in order to improve overall performance of the supply chain. vi Supplier selection is considered as an important aspect in supply chain management. Effective supplier selection must be a key strategic consideration towards improving supply chain performance. However, the task of supplier selection seems difficult due to subjectivity of supplier performance indices. Apart from considering traditional supplier selection criteria (cost, quality and service); global business scenario encourages emphasizing various issues like environmental performance (green concerns), resiliency etc. into evaluation and selection of an appropriate supplier. In this context, the present work also attempts to explore fuzzy based decision support systems towards evaluation and selection of potential suppliers in green supply chain as well as resilient supply chain, respectively. Fuzzy based Multi-Level Multi-Criteria Decision Making (MLMCDM) approach, fuzzy-TOPSIS and fuzzy-VIKOR have been utilized to facilitate the said decision making

    Supply Chain Performance Appraisement and Benchmarking for Manufacturing Industries: Emphasis on Traditional, Green, Flexible and Resilient Supply Chain along with Supplier Selection

    Get PDF
    Supply chain represents a network of interconnected activities starting from raw material extraction to delivery of the finished product to the end-user. The main constituents of supply chain are supplying/purchasing, inbound logistics, manufacturing, outbound logistics, marketing and sales. In recent times, the traditional supply chain construct is being modified to embrace various challenges of present business needs. Today’s global market has become highly volatile; customers’ expectations are ever-changing. Fierce competition amongst business sectors necessitates adapting modern supply chain management philosophies. Agility, greenness, flexibility as well as resilience have become the key success factors in satisfying global business needs. In order to remain competitive in the turbulent marketplace, industries should focus on improving overall performance of the supply chain network. In this dissertation, supply chain performance assessment has been considered as a decision making problem involving various measures and metrics (performance indicators). Since most of the performance indices are subjective in nature; decisionmaking relies on active participation of a group of decision-makers (DMs). Subjective human judgment often bears some sort of ambiguity as well as vagueness in the decision making; to overcome uncertainty in decision making, adaptation of grey/fuzzy set theory seems to be fruitful. To this end, present work deals with a variety of decision support tools to facilitate supply chain performance appraisement as well as benchmarking in fuzzy/grey context. Starting from the traditional supply chain, this work extends appraisement and benchmarking of green supply chain performance for a set of candidate case companies (under the same industry) operating under similar supply chain construct. Exploration of grey-MOORA, fuzzy-MOORA, IVFN-TOPSIS, fuzzy-grey relation method has been illustrated in this part of work. Apart from aforementioned empirical studies, two real case studies have been reported in order to estimate a quantitative performance metric reflecting the extent of supply chain flexibility and resilience, respectively, in relation to the case company under consideration. Performance benchmarking helps in identifying best practices in perspectives of supply chain networking; it can easily be transmitted to other industries. Organizations can follow their peers in order to improve overall performance of the supply chain. vi Supplier selection is considered as an important aspect in supply chain management. Effective supplier selection must be a key strategic consideration towards improving supply chain performance. However, the task of supplier selection seems difficult due to subjectivity of supplier performance indices. Apart from considering traditional supplier selection criteria (cost, quality and service); global business scenario encourages emphasizing various issues like environmental performance (green concerns), resiliency etc. into evaluation and selection of an appropriate supplier. In this context, the present work also attempts to explore fuzzy based decision support systems towards evaluation and selection of potential suppliers in green supply chain as well as resilient supply chain, respectively. Fuzzy based Multi-Level Multi-Criteria Decision Making (MLMCDM) approach, fuzzy-TOPSIS and fuzzy-VIKOR have been utilized to facilitate the said decision making
    corecore