
Jauhari et al., Cogent Engineering (2017), 4: 1308653
http://dx.doi.org/10.1080/23311916.2017.1308653

PRODUCTION & MANUFACTURING | RESEARCH ARTICLE

A fuzzy periodic review integrated inventory model 
involving stochastic demand, imperfect production 
process and inspection errors
Wakhid Ahmad Jauhari1*, Selvia Mayangsari1, Nughthoh Arfawi Kurdhi2 and Kuan Yew Wong3

Abstract: In this study, we investigate an integrated production-inventory system 
consisting of a single-vendor and single-buyer. The buyer manages its inventory 
level periodically at a certain period of time. We consider a fuzzy annual demand, 
imperfect production, inspection errors, partial backordering, and adjustable pro-
duction rate in the proposed model. Additionally, it is assumed that the protection 
interval demand follows a normal distribution. The model contributes to the current 
literature by allowing the inclusion of fuzzy annual demand, adjustable production 
rate and imperfect production and inspection processes. Our objective is to opti-
mize the number of deliveries from vendor to buyer, the buyer’s review period, and 
the vendor’s production rate, so that the joint expected total annual cost incurred 
has the minimum value. Furthermore, an iterative procedure is proposed to find the 
optimal solutions of the model. We also provide a numerical example and conduct 
a simple sensitivity analysis to illustrate the model’s behaviour and feasibility. The 
results from the sensitivity analysis show that the defective rate, type I inspection 
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error, fuzzy annual demand, fixed production cost, variable production cost and 
setup cost give impacts to both the review period and production rate. Finally, it is 
concluded that the proposed model can be applied by managers or practitiones for 
managing inventories across the supply chain involving a vendor and a buyer.

Subjects: Operations Research; Supply Chain Management

Keywords: integrated inventory model; periodic review; imperfect production; fuzzy annual 
demand; inspection errors; adjustable production rate

1. Introduction
During the recent years, the issue of coordination between vendor and buyer in managing invento-
ries has become more and more important, accompanying the growth of supply chain manage-
ment. Companies have realised that managing inventories across the entire supply chain through 
better collaboration are important activities for reducing total cost. The collaboration can be made 
by integrating the production decision of vendor and the ordering decision of buyer. It has been 
proven from previous studies that making both decisions jointly will result in a significant cost saving 
compared to an individual decision. In the literature, the determination of production batch and 
ordering quantity to consider the benefits of all stages related to the supply chain is called joint 
economic lot-sizing problem (JELP).

In most of the earlier literature dealing with JELP in a stochastic environment, researchers have 
considered the annual demand as a fixed constant. In reality, the demand may vary from time to 
time. The absence of historical data makes it difficult to estimate the probability distribution of the 
demand. When the demand has an unknown distribution due to lack of data, linguistic-type terms 
and statements are generally used to describe it (Kao & Hsu, 2002; Petrović, Petrović, & Vujošević, 
1996). Some researchers, including Chang, Yao, and Ouyang (2006), Lin (2008), Garg (2014), Soni 
and Joshi (2015), Garg (2015), Rong and Maiti (2015) and Kumar and Goswami (2015), developed 
single-echelon inventory models in a fuzzy-stochastic environment. Then the models were extended 
by researchers into fuzzy JELP under various assumptions. Taleizadeh, Niaki, and Wee (2013) ana-
lysed fuzzy delay time and proposed a hybrid procedure to determine the optimal solutions of their 
proposed model. Priyan and Uthayakumar (2014) investigated some fuzzy parameters, such as 
holding cost, hospital’s expiry rate, screening rate and selling price in a JELP under controllable lead 
time. Mahata (2015) proposed a mathematical model for JELP consisting of a vendor and a buyer 
with fuzzy order quantity and fuzzy shortage quantity. The above papers, however, assumed that the 
items produced by the manufacturer are always in good conditions. In fact, the production system 
is imperfect. Thus, assuming that the items produced by the manufacturer are always perfect is a 
too restrictive assumption.

In real life, the production process may be imperfect and produces a certain number of defective 
items with a known probability. Some defective items produced are not successfully inspected by the 
manufacturer and passed on to the buyer, thereby causing reverse logistics from the buyer back to 
the manufacturer. A considerable amount of research has been carried out to address the problems 
of imperfect quality JELP. However, only few researchers have addressed the important issues of 
handling defects in a stochastic demand environment. Lin (2013) proposed a stochastic JELP involv-
ing vendor and buyer in which the production process is imperfect. The buyer conducts a screening 
process for each incoming lot. Lo (2013) proposed a collaborative business model for the vendor–
buyer system under setup cost and lead time reductions. Dey and Giri (2014) studied the effects of 
defective items and quality improvements in a stochastic vendor–buyer system. The vendor intends 
to invest some money for reducing the setup cost and lead time. In contrast to the above papers 
which used a continuous review policy, Lin (2010) proposed an integrated vendor–buyer model 
under defective items, variable lead time, backorder price discount and periodic review policy. The 
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previous models usually assume that the inspection process done by the buyer is 100% error-free. 
However, we often obtain a condition where an inspector may classify the defective items as non 
defective and vice versa. In this paper, we relax the assumption of perfect inspection and take into 
account the human error factor.

One major drawback of stochastic JELP is that most of the authors assumed that the production 
rate is set as a constant parameter rather than as a decision variable. Generally, the output of a 
production system may be influenced by adjusting the performance of production equipment or by 
inserting idle time between task elements. Thus, allowing the production rate to be adjusted flexibly 
will lead to some benefits, i.e. increasing system flexibility and reducing total cost. Here, we develop 
a model which considers the production rate as a variable rather than a constant, thereby causing 
the lead time to be dependent on both the lot size and production rate.

Based on the above description, it is known that JELP has been discussed in the literature. However, 
although a considerable number of research papers have already been published incorporating de-
fective items, none has considered fuzzy demand, inspection errors and adjustable production rate 
simultaneously. This paper contributes to the current literature of JELP in the following ways. Firstly, 
we address the limitations of Lin’s (2010) model by incorporating inspection errors, in which the re-
view period, number of deliveries and production rate are viewed as decision variables. The protec-
tion interval demand is assumed to be normally distributed. We intend to study how the inspections 
errors can affect the review period and production rate. Secondly, we assume that demand is taken 
to be fuzzy in nature. We examine how fuzzy demand can affect inventory decisions, especially 
when the buyer adopts a periodic review policy rather than a continuous review policy. Third, the 
production rate is considered to be a variable rather than a constant. This assumption will give the 
vendor an opportunity to adjust its production rate to minimise cost. Furthermore, an iterative solu-
tion procedure is developed to determine the optimal values for the decision variables so that the 
joint total expected annual cost of the respective system is minimized. Finally, a numerical example 
and sensitivity analysis are presented to illustrate the behaviour of the proposed model.

2. Literature review
During the last decades, many researchers have developed a JELP under various assumptions. Goyal 
(1976) was probably the first author who introduced the concept of integration between vendor and 
buyer in the supply chain. The vendor produces a batch of products in an infinite rate and then deliv-
ers it to the buyer on a lot-for-lot policy. Later, Banerjee (1986) relaxed the assumption of an infinite 
production rate used by Goyal (1976) and proposed a finite production rate. Although a significant 
cost saving can be obtained, however, the vendor always gets benefit while the buyer suffers loss. 
He proposed a benefit sharing scheme to entice the buyer to adopt an integrated model rather than 
individual model. Moreover, Goyal (1988) extended Banerjee’s (1986) model by demonstrating that 
producing a batch which is made of equal shipments generally resulted in lower cost, but the whole 
batch must be finished before the first shipment can be done. Furthermore, the basic JELP model 
has been extended into various cases, such as discount policy (Zhou & Wang, 2007), imperfect pro-
duction process (Jaber, Bonney, & Guiffrida, 2010; Sana, 2011), multi-echelon (Leung, 2010; 
Seliaman & Ahmad, 2008), and vendor-managed inventory (Wong, Qi, & Leung, 2009; Zhang, Liang, 
Yu, & Yu, 2007).

A stochastic JELP has also received a great deal of attention. An integrated vendor–buyer model 
with stochastic demand, continuous review policy and variable lead time was firstly studied by 
Ben-Daya and Hariga (2004). This model was then followed by various models, including, Glock 
(2009, 2012), Jauhari and Pujawan (2014) and Jauhari, Sejati, and Rosyidi (2016). Glock (2009) 
proposed an unequal shipment policy and showed that the model is better in reducing the total cost 
compared to the model which adopts an equal shipment policy. Glock (2012) developed a JELP and 
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proposed that the lead time of the first shipment should be calculated by considering production 
time and transportation time, while the lead time of the next shipment is only based on transporta-
tion time. The impact of adjustable production rate was then investigated by Jauhari and Pujawan 
(2014), while a stochastic JELP under a situation in which the shipper offers freight discount to the 
buyer was studied by Jauhari, Fitriyani and Aisyati (2016). In addition, a few researchers investigated 
JELP under a periodic review policy. Lin and Lin (2016) analysed a periodic review integrated inven-
tory model in which the defective items are recoverable and the ordering cost can be reduced by a 
capital investment. Later, Tahami, Mirzazadeh, Arshadi-Khamseh, and Gholakami-Qadikolaei (2016) 
studied the impact of inflationary condition on a JELP under a periodic review policy and imperfect 
production processes.

In most of aforesaid papers, the production process is assumed to be 100% perfect. In real life 
situations, however, defective items may be produced due to unreliable process and/or damage in 
transit. Thus, more researchers have continued to consider defective items in inventory manage-
ment. Porteus (1986) is among the first ones who investigated the relationship between product 
quality and lot sizing. Paknejad, Nasri, and Afflsco (1995) proposed an EOQ model with stochastic 
demand and assumed that there is a random number of defective items. Salameh and Jaber (2000) 
studied an EOQ model by assuming that each shipment contains some defective items. An inspec-
tion process was proposed to screen out the defective items from the lot and the defective items 
found by the inspector will be sold at a reduced price at the end of the inspection time. Wee, Yu, and 
Chen (2007) proposed an EPQ model with shortage backordering. Bera, Mahapatra, and Maiti (2009) 
studied a fuzzy inventory model under learning effect and imperfect production process. The topic of 
defective items has also been discussed in JELP. The first researcher who incorporated defective 
items in the vendor–buyer model was Huang (2004). He used an equal shipment policy to deliver the 
products to the buyer and considered a uniform distribution for the percentage of defective items. 
Ouyang, Wu, and Ho (2006) developed a vendor–buyer model and investigated situations where 
defect rate is formulated as a fixed constant and a triangular fuzzy number. There are other related 
studies such as Khan and Jaber (2011), Alkhedher, Darwish, and Alenezi (2013) and Paul, Wahab  
et al. (2014). Subsequent studies on JELP were then conducted by incorporating inspection errors. 
Hsu and Hsu (2012) investigated inspection errors in a two-echelon model involving a vendor and a 
buyer under deterministic demand. Khan, Jaber, and Ahmad (2014) studied both inspection errors 
and learning effect in a deterministic vendor–buyer model. Although JELP under imperfect items and 
inspection errors has been discussed in published papers, however, most authors investigated it in a 
deterministic environment and neglected a situation in which demand is treated as stochastic.

Demand is another concern in inventory management that has been the focus of various studies. 
It is generally forecasted using expert opinions or is treated as a specific distribution based on his-
torical data (Gallego & Moon, 1993). It is usually difficult for managers to set demand as crisp values 
due to lack of data, e.g. new product introduction and single period setting. Thus, fuzzy set theory is 
reasonable to be used to address inventory problems. With the introduction of fuzzy set theory by 
Zadeh (1978), several inventory problems have been developed and solved with fuzzy demand. 
Vijayan and Kumaran (2008) proposed inventory models with fuzzy stock-out periods and used the 
signed distance method for defuzzification. Liu (2012) suggested a solution for the fuzzy production-
marketing problem based on the extension principle method. Mahata and Goswami (2013) em-
ployed two types of fuzzy numbers which were trapezoidal and triangular to develop inventory 
models for imperfect items and backorders. While some authors, including Gupta and Singh (2013) 
and Priyan and Uthayakumar (2016) developed JELP in a fuzzy environment. Gupta and Singh (2013) 
proposed an integrated model of vendor–buyer and assumed that the variation rate of deterioration, 
inflation, variable holding cost, production and demand as fuzzy variables. They employed the ex-
tension principle to find the membership function of the total cost and used the centroid method to 
defuzzify the total cost. Furthermore, Priyan and Uthayakumar (2016) developed a multi echelon 
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inventory system with controllable lead time and fuzzy cost environment and used the signed dis-
tance method to defuzzify the total cost. Although numerous methods such as centroid method, 
signed distance method, extension principle method, graded mean integration representation 
method, etc. have been proposed in the fuzzy inventory literature, however, the issue of choosing 
the proper method in inventory models is still a subject of active studies. According to Yao and Lee 
(1999) and Yao and Chiang (2003), the signed distance method is better for defuzzification than any 
other methods. Thus, in this paper we adopt the signed distance defuzzification method to develop 
the proposed model. In contrast with previous studies that used a complicated computational pro-
cess such as centroid method and graded mean integration representation, to handle triangular 
fuzzy numbers, here, we propose an effective algorithm which is developed under the concept of the 
signed distance method.

In addition, various types of solution methodologies have been suggested in the fuzzy inventory 
literature. The method most used by researchers in developing inventory models is classical deriva-
tion. Researchers such as, Hu, Zheng, Xu, Ji, and Guo (2010), Chen and Ho (2011), Kumar, Tiwari, and 
Goswami (2016), Pal, Mahapatra, and Samanta (2014, 2015) employed a classical derivation for 
obtaining the solutions of their proposed models. However, this solution approach cannot be used to 
solve large-scale and complicated mathematical models. Thus, researchers employed other types of 
solution approaches, such as genetic algorithm (Chakraborty, Jana, & Roy, 2015; Sadeghi & Niaki, 
2015; Sadeghi, Sadeghi, & Niaki, 2014), generalized reduced gradient technique (Bag, Chakraborty, & 
Roy, 2009; Jana, Maity, Das, & Roy, 2013; Mandal, Maity, Mondal, & Maiti, 2010), geometric program-
ming technique (Mahapatra, Mandal, & Samanta, 2011; Paul, Azeem et al., 2014; Samadi, Mirzazadeh, 
& Pedram, 2013) and karush-kuhn-tucher theorem (Maity, 2011; Soni & Patel, 2014) to obtain the 
solutions. Each solution approach appears to have some advantages as well as disadvantages. In 
each context, some approaches seem more appropriate than the others. In this paper, we propose 
an effective and efficient procedure based on the basic algorithm of Ben-Daya and Hariga (2004) for 
solving the problem. This kind of procedure is powerful and widely used by many researchers (Glock, 
2012; Hsiao, 2008; Jauhari, Fitriyani, et al., 2016; Kurdhi, Lestari, & Susanti, 2015) for determining the 
solutions of stochastic JELP.

The above discussion shows that JELP has been discussed in the past, but none has studied the 
impact of incorporating fuzzy demand, defective items, inspection errors, adjustable production 
rate and periodic review policy simultaneously. Thus, the interdependencies between these deci-
sion variables are not yet well understood. In this paper, a JELP consisting of a vendor and a buyer 
with imperfect items, inspection errors, stochastic demand, fuzzy annual demand, adjustable pro-
duction rate and partial backorder is developed. Our study is different from the preceding studies 
in the following constructs: (1) the annual demand is assumed to be fuzzy while in the previous 
research, the annual demand is treated as constant, (2) both production process and inspection 
process are assumed to be imperfect while in the previous research, only one of them is assumed 
to be imperfect, (3) the production rate is controllable by decision makers while in the previous 
research, it is assumed to be a fixed constant, (4) a periodic review policy is adopted to manage the 
buyer’s inventory level while in published stochastic JELP, a continuous review policy is more often 
chosen by researchers, (5) shortages are assumed to be partially backordered while in most pub-
lished research, they are considered to be fully backordered. For better understanding, a compari-
son of the proposed model with some of the related papers in the inventory literature is provided 
in Table 1.
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3. Notations and assumptions

3.1. Notations
The notations used to develop the model are listed below.

D:� 		   demand rate (units/year)

Cb:� 		   unit purchasing cost ($/unit)

T:� 		   review period (year)

F:� 		   transportation cost ($/shipment)

b:� 		   transportation time (year)

A:� 		   ordering cost ($/order)

S:� 		   setup cost ($/setup)

P:� 		   production rate (units/year)

n:� 		   number of deliveries

γ:� 		   probability of defect

cab:� 		   buyer’s cost of a post-sale defective item ($/unit)

ci:� 		   inspection cost ($/unit)

cav:� 		   vendor’s cost of a post-sale defective item ($/unit)

cr:� 		   cost of false rejection of non-defective item ($/unit)

cw:� 		   vendor’s warranty cost for producing defective item ($/unit)

e1:� 		�   probability of type I inspection error (classifying a non-defective item as 
defective)

Table 1. A comparison of the proposed model and some of the published stochastic JELPs
Paper Fuzzy 

parameters
Buyer’s policy Production 

process
Inspection 
process

Adjustable 
production rate

Lead time

Lin (2010) No Periodic review Imperfect Perfect No Controllable

Dey and Giri (2014) No Continuous review Imperfect Perfect No Uncontrollable

Glock (2012) No Continuous review Perfect Perfect Yes Controllable

Jauhari and 
Pujawan (2014)

No Continuous review Perfect Perfect Yes Uncontrollable

Jauhari, Fitriyani  
et al. (2016)

No Continuous review Perfect Perfect No Uncontrollable

Kurdhi et al. (2015) Annual demand Continuous review Imperfect Perfect No Controllable

Taleizadeh et al. 
(2013)

Lead time Continuous review Perfect Perfect No Uncontrollable

Gupta and Singh 
(2013)

Holding cost, 
demand, variation 
rate of deterioration, 
inflation and 
production

Continuous review Perfect Perfect No Uncontrollable

Lo (2013) No Continuous review Imperfect Perfect No Controllable

Priyan and 
Uthayakumar 
(2016)

Ordering cost, setup 
cost, production 
cost 

Continuous review Perfect Perfect No Controllable

Priyan and 
Uthayakumar 
(2014)

Hospital’s expiry 
rate, holding cost, 
screening rate, raw 
material’s selling 
price

Continuous review Perfect Perfect No Controllable

Proposed model Annual demand Periodic review Imperfect Imperfect Yes Uncontrollable
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e2:� 		�   probability of type II inspection error (classifying a defective item as 
non-defective)

a1:� 		   fixed production cost ($)

a2:� 		   variable production cost ($/unit)

π:� 		   backorder cost ($/unit)

π0:� 		   marginal profit ($/unit)

k:� 		   safety factor

β:� 		   backorder ratio

hb:� 		   holding cost for buyer ($/unit/year)

hv:� 		   holding cost for vendor ($/unit/year)

x:� 		   demand during T period (unit)

y+:� 		   maximum value of y and 0, i.e. y+ = max{y,0}

TCb:� 		   total cost for buyer ($/year)

TCv:� 		   total cost for vendor ($/year)

JTC:� 		   joint total cost ($/year)

3.2. Assumptions
The assumptions used to develop the model are:

(1) � The system consists of only one vendor and one buyer with a single-product.

(2) � The buyer uses periodic review to control the inventory level.

(3) � The demand in the buyer side is assumed to be normally distributed with a mean D and stand-
ard deviation σ.

(4) � The buyer orders DT units from the vendor and then the vendor manufactures nDT items with 
a finite production rate. The vendor incurs a setup cost S for each production run and the buyer 
incurs an ordering cost A for each order. The transportation cost F is charged to the buyer for 
each delivery of DT units.

(5) � Each arriving shipment lot contains some defective items with a defective rate γ. Upon arrival 
of a shipment, all items will be screened by the buyer.

(6) � The screening process is imperfect. The inspector may incorrectly classify the quality of the 
items.

(7) � The shortage is assumed to be partially backordered.

(8) � The vendor has an opportunity to adjust the production rate between Pmin and Pmax.

4. Model development
As mentioned in the above section, we intend to develop an integrated inventory model consisting 
of single-vendor and single-buyer with stochastic demand, imperfect items and inspection errors. 
The periodic review policy is adopted by the buyer to manage the inventory level. The costs consid-
ered in this model include holding cost, transportation cost, ordering cost, purchasing cost, inspec-
tion cost, production cost, setup cost, warranty cost, shortage cost, cost of type I error and post-sales 
failure cost (cost of type II error). Here, we briefly describe the development of the total cost for the 
buyer, vendor and the supply chain system, respectively.

4.1. Buyer’s total cost (TCb)
Buyer’s total cost consists of ordering cost, purchasing cost, transportation cost, holding cost, short-
age cost, post-sales failure cost and inspection cost. Ordering cost can be calculated by multiplying 
the ordering cost per batch (A) and the order frequency (1/T). Purchasing cost can be formulated by 
multiplying the unit purchasing cost (Cb) and demand (D). Transportation cost can be formulated by 
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multiplying the transportation cost per shipment (F) and the delivery frequency (1/T). The ordering 
cost, purchasing cost and transportation cost are shown in Equations (1)–(3), respectively.
 

 

 

The lot received by the buyer contains non-defective products and defective products. The buyer 
holds an inspection process to categorize non-defective products and defective products. The in-
spection process is imperfect. There are two types of error that are type I error and type II error. The 
type I error is occurred by categorizing non-defective products as defective products while the type 
II error is occurred by categorizing defective products as non-defective products. Defective products 
that pass the inspection process can be sold to end customers. End customers who detect the qual-
ity problems will return the products to the buyer. All the items classified by the inspector as defec-
tive items and all the items returned from end customers are sent back to the vendor in a single 
batch. The vendor then gives a full price refund to the buyer for each item returned. Because of this, 
the vendor and the buyer endure a loss called post-sales failure cost. The holding cost consists of the 
costs for holding non-defective products and defective products that are found by the inspector as 
well as for returned products from end customers. We adopt the formulation from Lin (2010) and 
Hsu and Hsu (2012) for developing the holding cost. The inspection cost can be formulated by mul-
tiplying the inspection cost per unit (Ci) and demand (D). The post-sales failure cost for the buyer can 
be calculated by multiplying the buyer’s post-sales failure cost of an item (cab), probability that an 
item is defective (γ), probability of type II error (e2), and demand (D). The holding cost, inspection cost 
and post-sales failure cost related to the buyer can be seen in Equations (4)–(6), respectively.

 

 

 

We regard that demand during protection period is normally distributed with a mean D(T + L) and 
standard deviation �

√
T + L. By examining that the lead time L is DT/P + b, so the target level 
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P
+ b. The expected demand shortage at the end of the cycle pe-
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The expected backorder and the expected lost sales are expressed by Equations (9) and (10), 
respectively.
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Thus, by considering the above expressions, the expected shortage cost is given by the following 
equation

 

By examining the above costs, the total cost for the buyer can be formulated as

4.2. Vendor’s total cost (TCv)
Vendor’s total cost consists of setup cost, production cost, warranty cost, type I error cost, vendor’s 
post sales failure cost, and holding cost. The setup cost can be formulated by considering the setup 
cost (S) and setup frequency (1/nT). Equation (13) expresses the vendor’s setup cost per year
 

The production cost is developed as a function of production rate. To develop the production cost, 
here, we adopt the formulation from Khouja and Mehrez (1994), which is

 

During the production process, the vendor produces DT units in the first instance and deliver these 
to the buyer. After that, the vendor will make the delivery on the average every T unit of time until 
the inventory level falls to zero. The average inventory level for the vendor can be determined by 
subtracting the accumulative delivery from the vendor’s accumulated inventory, which is

Thus, the holding cost for the vendor can be expressed as follows:

 

Moreover, the vendor also endures type I error cost, warranty cost and post-sales failure cost. The 
type I error cost is incurred by the vendor as a result of the inspector’s mistake in categorizing non-
defective products as defective products. The type I error cost can be computed by multiplying the 
cost per unit of rejecting non-defective products (cr), the probability that item is non-defective (1 − γ), 
probability of type I error (e1), and demand (D). The warranty cost is incurred by the vendor to endure 
the consequences of producing defective products. The warranty cost can be calculated by multiply-
ing the warranty cost per unit (cw), probability of defect (γ), and demand (D). The post-sales failure 
cost can be formulated by multiplying the vendor’s post-sales failure cost per unit (cav), the probabil-
ity of defect (γ), probability of type II error (e2), and demand (D). The cost of type I error, warranty 
cost, and post-sales failure cost are shown by Equations (17)–(19), respectively.

 

 

 

Hence, the vendor’s total cost can be expressed by the following equation
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4.3. Joint total cost (JTC)
In this paper, the vendor and the buyer coordinate their production and inventory decisions with 
each other to determine the best policy for their supply chain system. The joint total cost for this 
system is formulated by adding the vendor’s total cost and buyer’s total cost. Thus, we have the joint 
total cost formulation as follows.

In real conditions, it is actually quite difficult to determine the annual demand because of various 
uncertainties that may influence the system (Fergany, Ezzat & Gawdt, 2011). Uncertainties happen 
when the annual demand faces fluctuation from a perfect market competition that hinders the de-
cision-maker to assess it by using a crisp value of D. However, it becomes more reasonable if the 
annual demand is located in an interval [D − z1, D + z2], where z1 and z2 are determined by decision 
makers. Let D be a known number. The decision makers want to select a suitable value in the interval 
[D – z1, D + z2] as an appropriate estimate of the annual demand. If the value selected coincides with 
D, then the error is 0. The error is getting bigger when the value deviates from D from both sides of 
D. The maximum error will be attained at the two endpoints D – z1 and D + z2. From the fuzzy point of 
view, we can transform the error to a confidence level. If the error is 0, the confidence level is 1. The 
confidence level is getting smaller when the value deviates farther from both sides of D. At the two 
endpoints D − z1 and D + z2, the confidence level will attain the minimum.

According to the arguments above, corresponding to the interval [D − z1, D + z2], we fuzzify D to be 
a triangular fuzzy number, D̃ = (D − z1, D, D + z2), where 0 ≤ z1 ≤ D and 0 ≤ z2. The membership grade 
of D in D̃ is 1. The farther the point in [D − z1, D + z2] is from both sides of D, the less the membership 
grade is. The membership grade serves the same property with the confidence level. If we make a 
correspondence between membership grade and confidence level, it is reasonable to set a fuzzy 
number D̃ corresponding to the interval [D − z1, D + z2]. Since D is fuzzified to be D̃, the joint total cost 
is also a fuzzy value, that is expressed by:

subject to Pmin ≤ P ≤ Pmax and n ≥ 1.
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Next, we defuzzify J̃TC by using the signed distance method. The signed distance of J̃TC is given 
by

From Equation (23), D̃ needs to be defuzzified by using the signed distance method and the following 
definition:

Definition 1  For the fuzzy set D̃(�) = {x:mD̃(x) ≥ �} where � ∈ [0, 1] is called the α-cut of D̃. D̃(�) is 
a non-empty bounded closed interval contained in a set of real numbers and it can be denoted by 
D̃(�) = [D̃L(�), D̃U(�)], where D̃L(�) and D̃U(�) are respectively the lower and upper limits of D̃(�) and are 
usually known as the left and right α-cuts of D̃.

It is known that for any a and 0 ∊ R, the signed distance from a to 0 is d
0
(a, 0) = a. If a < 0, the dis-

tance from a to 0 is −a = −d
0
(a, 0). If a > 0, then the distance from a to 0 is a = d

0
(a, 0). Let ξ be the 

family of all fuzzy sets D̃ defined in R for which the α-cut D(α) = [DL(α), DU(α)] exists for every � ∈ [0, 1]

. Both DL(α) and DU(α) are continuous functions in � ∈ [0, 1]. Then it can be said that for any D̃ ∈ �, we 
have D̃ = U

0≤�≤1[DL(�)� , DU(�)�]. Hence, for D̃ ∈ � the signed distance from D̃ to 0̃ can be defined as:
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]
 for � ∈ [0, 1], where 

DL(�) = a + (b − a)� and DU(�) = c − (c − b)�. The signed distance from D̃ to 0̃ is:

Therefore, the signed distance from D̃ to 0̃ is

By substituting Equations (24) to (23), we have
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subject to Pmin ≤ P ≤ Pmax and n ≥ 1.

5. Solution methodology
In order to determine the optimal solutions of problem (25), we minimize the joint expected total 
annual cost over T, P, n with a classical optimization technique by taking the first partial derivatives 
of JTC(T, P, n) with respect to P and T, respectively. We obtain that
 

By setting Equations (26) and (27) equal to zero and solving the equations, then we have

 

If the value of � is negative, the above equation may not result in the feasible solutions. Hence, we 
have to set P = Pmin, if 𝛿 < 0. By examining this situation, Equation (28) can be described as
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Thus, we obtain the formulation of T as follows

 

Theoretically, the values of P* and T* can be obtained from (29) and (30). However, it is difficult to 
verify analytically that the joint expected total annual cost is a convex function. Hence, we need to 
note that the solutions obtained by the proposed procedure cannot be claimed as a global optimal 
solution. The proposed procedure only guarantees a local optimal solution. Nevertheless, many re-
searchers have utilized an identical method to find the optimal solutions through certain similar 
procedures. Therefore, the proposed algorithm can be considered as one of the methods to obtain 
the optimal solutions. The proposed algorithm is different from the previous algorithm proposed by 
Ben-Daya and Hariga (2004) which is usually used for solving a JELP under a stochastic environment. 
First, the proposed algorithm provides a feature for decision makers to decide the values of z1 and z2 
and to calculate D̃ based on the signed distance method. Second, the proposed algorithm is used to 
find the optimal values of T and P while the previous algorithm is suggested to find the optimal val-
ues of Q and k. For a stochastic JELP with adjustable production rate, the optimal value of P should 
be obtained in the range between Pmin and Pmax.

From the above derivations, it is clear that the decision variables P and T are dependent on each 
other. The proposed solution procedure is started by setting the fuzzy demand to get the crisp value 
of D. Then, we set the initial value of P with P =

√
a
1
∕a

2
. The initial value of T is decided by setting 

the stochastic parameters in Equation (30) equal to zero. Next, the initial value of T is utilized to 
update the value of P. This procedure is followed until an appropriately stable solution is attained. 
The proposed solution procedure is presented in Figure 1 while some parts of the codes are listed 
below.

input: all inventory parameters

output: Best_n, Best_T and Best_P

n=1;

x=2;

JTC(x-1)=inf;

set the values of z1 and z2

compute D̃;

while stop=0

  compute P(1);

  compute T(1)

  compute P(2);

  compute T(2);

  i=2;
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Figure 1. The flowchart of the 
proposed procedure.
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      while T(i)≠T(i-1) or P(i) ≠P(i-1)

        i=i+1;

        compute P(i);

        compute T(i);

      end

compute P(n);

compute T(n);

compute JTC(x);

      if JTC(x)<JTC(x-1)

        n=n+1;

        x=x+1;

      else

        stop=1;

      end

end

Best_JTC=JTC(x-1);

Best_n=(n-1);

Best_P=P(n-1);

Best_T=T(n-1);

6. Results and discussion
To illustrate the above solution procedure we provide a numerical example as well as sensitivity 
analysis to examine the behavior of the proposed model. The following input parameters are adopt-
ed from Jauhari, Sejati, et al. (2016), Hsu and Hsu (2012), and Kurdhi et al. (2015). D = 1,000 units/
year, z1 = 100, z2 = 50, σ = 5 units/year, a1 = $2,500/batch, a2 = $1/2,500/unit, F = $25/delivery, 
A = $50/order, S = $400/setup, hv = $3/unit/year, hb = $5/ unit/year, cav = $300/unit, cab = $200/unit, 
k = 1.645, b = 1/12 year, Cb = $65/unit, ci = $0.5/ unit, cr = $100/unit, cw = $50/unit, e1 = 0.04, e2 = 0.04, 
β = 0.4, γ = 0.005, π = $15/unit, π0 = $45/unit, Pmin = 1,500, Pmax = 5,000. By using the solution proce-
dure explained in the previous section, the optimal value for each decision variable can be derived. 
The optimization results are shown in Table 2.

The optimization results presented in Table 2 show that JTC is minimum for n = 4 hence, the itera-
tion will stop at n = 5 and does not continue to a higher value of n. Therefore, the optimal values of 
n*, T*, and P*, satisfying the proposed solution procedure, are 4 deliveries, 0.1768 years (65 days), 
and 2,233 units which can minimize the value of JTC at $122,104.

The next section presents the sensitivity analysis to investigate the behavior of the model when 
there is only one change in parameters, including γ, e1, e2, β, z1, z2, a1, a2 and S, while the other param-
eters remain unchanged. Investigations are done by observing the optimal values of decision 
variables (n*, T*, P*), and also the effects on the objective function, JTC. Table 3 shows the effects of 

Table 2. Optimization results for the fuzzy integrated model

*Optimal solution of the proposed numerical example.

n* T* (years) P* (units) Vendor cost (TCv) Buyer cost (TCb) Total cost (JTC)
1 0.3878 2,778 $65,972 $56,586 $122,558

2 0.2604 2,508 $65,722 $56,493 $122,215

3 0.2071 2,351 $65,652 $56,472 $122,124

4* 0.1768* 2,233* $65,632* $56,472* $122,104*

5 0.1571 2,134 $65,632 $56,481 $122,113
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an increase in γ, in a range from 0.005 to 0.05, on n*, T*, P*, TCv, TCb, and JTC, while the other param-
eters remain unchanged. From the results, it can be seen that as defective rate (γ) increases, TCv and 
TCb will eventually be higher, which cause JTC to be higher as well. As explained in the previous sec-
tion, γ denotes the proportion of defect, which in turn indicates the amount of defective products in 
the system.

The greater the amount of defective products, the higher the costs of type I and type II errors, and 
warranty, which end up in a substantial increase in cost that must be paid by both parties. A system 
that has a high level of defective rate means that the system itself has a poor capability in meeting 
the product specification. The inspection process may be interrupted, since the inspector tends to 
make more mistakes as the amount of defective products increases. Consequently, it will result in a 
higher cost of errors I and II and higher amount of defective products sold to the consumers. The 
end customers will have the intention to bring a product back to the buyer, since they are actually 
allowed to return it, in case they really found it to be defective. Hence, it will eventually increase the 
costs of warranty and post-sales failure as well. However, the increase in the value of γ does not 
significantly affect the optimum values of n*, T*, and P*. It can be seen from the results presented in 
Table 3. As the value of γ increases from 0.005 to 0.05, which is ten times greater, the values of n*, 
T*, and P* do not vary substantially. It indicates that the model decisions are not significantly af-
fected by the value of γ.

Table 4 summarises the effect of variations of probability of type I error (e1) on the proposed 
model. The results show that the variation of e1 affects the values of TCv, TCb, and JTC as well as T* 
and P*. The higher the value of e1, the higher the cost of rejecting non-defective products (type I in-
spection error cost) and the cost of warranty, which lead to an increase in TCv and JTC. As previously 
explained, the cost of rejecting non-defective products is the cost incurred by the vendor as a result 
of the inspector’s mistake to categorize non-defective products as defective products with the prob-
ability of e1. A higher value of e1 means that the probability of the inspector to make a mistake is 
higher, which ends up in a greater amount of defective products returned by the buyer to the vendor. 
Therefore, it will inevitably cause a higher warranty cost as a form of refund from the vendor to the 
buyer. From Table 4, it can also be seen that the buyer cost continually increases as e1 adopts higher 
values. Some of the model’s decision variables, which are T* and P*, also vary when the value of e1 is 
set to be higher.

Nevertheless, the optimal number of deliveries (n*) remains unchanged. The review period is grad-
ually decreased in the percentage of 0.4–3.7% (about 11–13 days). Whereas, the optimal production 
rate per year increases in the percentage of 0.06–0.5% (about 2–12 units) when the value of e1 be-
comes higher. Accordingly, the results show an effect on the decision variables since the values vary 

Table 3. The impact of the changes in defective rate (γ) on the proposed model
γ n* T* (years) P* (units) Vendor cost (TCv) Buyer cost (TCb) Total cost (JTC)
0.005 4 0.1768 2,233 $56,472 $65,632 $122,104

0.010 4 0.1765 2,234 $56,511 $65,675 $122,186

0.015 4 0.1761 2,234 $56,555 $65,719 $122,274

0.020 4 0.1758 2,235 $56,590 $65,762 $122,352

0.025 4 0.1754 2,235 $56,630 $65,806 $122,436

0.030 4 0.1751 2,236 $56,669 $65,849 $122,518

0.035 4 0.1747 2,236 $56,709 $65,893 $122,602

0.040 4 0.1744 2,237 $56,749 $65,936 $122,685

0.045 4 0.1740 2,238 $56,788 $65,979 $122,767

0.050 4 0.1737 2,239 $56,828 $66,023 $122,851



Page 17 of 24

Jauhari et al., Cogent Engineering (2017), 4: 1308653
http://dx.doi.org/10.1080/23311916.2017.1308653

for about 0.4–3.7% when the parameter e1 is changed up to 10 times higher. It implies that the 
proposed model is affected by the variation of the parameter e1.

The numerical results for the impact of changes in probability of type II error (e2) are presented in 
Table 5. As formerly defined, type II error refers to any error made by the buyer’s inspector in catego-
rizing defective products as non-defective products with a probability equal to e2. A higher probabil-
ity of type II error will lead to a higher amount of defective products that are returned from end 
customers to the buyer. This will subsequently result in a post-sales failure cost that must be paid by 
the buyer to end consumers. Moreover, the buyer may lose the trust of final consumers, which leads 
to poorer demand. The results in Table 5 show that the higher the value of e2, the higher the costs 
related to vendors and buyers which result in a higher JTC. The increases are majorly caused by the 
post-sales failure costs incurred by the vendor and the buyer, which substantially cause JTC to be 
higher. However, the percentages of increases are lower than those in Table 3 and Table 4. The 
model’s decisions, i.e. number of deliveries (n*), review time (T*), and production rate (P*), are re-
spectively insensitive to the changes in e2. Hence, we can conclude that the proposed model is insen-
sitive to the changes in probability of type II error.

From the discussion above, we point out an interesting note that the inspection errors actually af-
fect cost components. As has been investigated in our reference model, which is the model of 
Jauhari (2016), we also conclude that the cost of misclassification, both false rejection and false 
acceptance, will contribute to a higher vendor cost, buyer cost, and joint total cost, respectively. The 
changes in e1 deliver a higher percentage of increases of the costs than the changes in e2. This 

Table 5. The impact of the changes in probability of type II error on the proposed model (for 
e1 = 0.04)
e2 n* T* (years) P* (units) Vendor cost (TCv) Buyer cost (TCb) Total cost (JTC)
0.01 4 0.1767 2,233 $56,426 $65,605 $122,031

0.02 4 0.1767 2,233 $56,444 $65,617 $122,061

0.03 4 0.1767 2,233 $56,462 $65,629 $122,091

0.04 4 0.1767 2,233 $56,472 $65,632 $122,104

0.05 4 0.1767 2,233 $56,497 $65,652 $122,149

0.06 4 0.1767 2,233 $56,515 $65,664 $122,179

0.07 4 0.1767 2,233 $56,533 $65,676 $122,209

0.08 4 0.1767 2,233 $56,551 $65,688 $122,239

0.09 4 0.1767 2,233 $56,569 $65,700 $122,269

0.1 4 0.1768 2,233 $56,586 $65,711 $122,297

Table 4. The impact of the changes in probability of type I error on the proposed model
e1 n* T* (years) P* (units) Vendor cost (TCv) Buyer cost (TCb) Total cost (JTC)
0.01 4 0.1791 2,229 $53,535 $65,615 $119,150

0.02 4 0.1783 2,230 $54,516 $65,624 $120,140

0.03 4 0.1775 2,232 $55,498 $65,632 $121,130

0.04 4 0.1768 2,233 $56,472 $65,632 $122,104

0.05 4 0.1760 2,234 $57,461 $65,649 $123,110

0.06 4 0.1752 2,236 $58,443 $65,657 $124,100

0.07 4 0.1745 2,237 $59,425 $65,666 $125,091

0.08 4 0.1738 2,238 $60,406 $65,674 $126,080

0.09 4 0.1731 2,239 $61,388 $65,682 $127,070

0.1 4 0.1724 2,240 $62,370 $65,690 $128,060
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explains that false rejection turns out to give a greater effect in terms of inventory cost rather than 
false acceptance. These findings may suggest the managerial team to be more cautious in control-
ling the parameter of type I inspection error to keep the cost down.

The proposed model allows any shortage that may be experienced by the buyer in the form of a 
partial backorder. The related cost is incurred by the buyer for the amount of expected demand 
shortage at the end of each cycle period. As presented in Table 6, the changes in the backorder ratio 
(β) actually do not give any significant effect to the model. When β is increased continually, for the 
range of 0.1 to 0.9, the buyer cost and total cost decrease slightly while the vendor cost is somewhat 
constant, as well as n* and P* which also indicate the same value. Another finding is that the joint 
total cost is minimum when shortages are fully backordered. Otherwise, when shortages are fully 
considered as lost sales, the joint total cost has the maximum value. Hence, we can suggest that it 
would be more economical to backorder all the shortages compared to treating them as a lost sale.

Fuzzy number denotes a number that affects the crisp value level to determine the fuzzy demand 
rate. The values itself is set by the decision-maker based on the trend of the demand. Tables 7 and 
8 present the sensitivity analysis results of changes in the values of z1 and z2 on the proposed model, 
respectively. The increased values of z1 and z2 result in the same value of n*. In addition, when the 
value of z1 is increased continually, the values of TCv, TCb, and JTC are decreased. Whereas, when the 
value of z2 is increased, the values of TCv, TCb, and JTC are increased. Hence, we can point out that the 
changes in z1 and z2 give different impacts to the model, yet the impacts from both parameters are 
equally significant.

Table 6. The impact of the changes in backorder ratio (β) on the proposed model
β n* T* (years) P* (units) Vendor cost (TCv) Buyer cost (TCb) Total cost (JTC)
0.1 4 0.1767 2,232 $56,471.75 $65,631.63 $122,103.38

0.2 4 0.1767 2,232 $56,471.75 $65,631.33 $122,103.09

0.3 4 0.1766 2,232 $56,471.76 $65,631.03 $122,102.79

0.4 4 0.1765 2,232 $56,471.77 $65,630.73 $122,102.50

0.5 4 0.1764 2,232 $56,471.77 $65,630.44 $122,102.21

0.6 4 0.1764 2,232 $56,471.78 $65,630.14 $122,101.92

0.7 4 0.1763 2,232 $56,471.78 $65,629.84 $122,101.62

0.8 4 0.1762 2,232 $56,471.79 $65,629.55 $122,101.34

0.9 4 0.1761 2,232 $56,471.80 $65,629.25 $122,101.05

Table 7. The impact of the changes in z1 on the proposed model (for z2 = 50)
z1 n* T* (years) P* (units) Vendor cost (TCv) Buyer cost (TCb) Total cost (JTC)
60 4 0.1761 2,231 $57,044 $66,301 $123,345 

70 4 0.1762 2,231 $56,903 $66,136 $123,039 

80 4 0.1764 2,232 $56,762 $65,971 $122,733 

90  4 0.1766 2,232 $56,621 $65,806 $122,427 

100 4 0.1767 2,233 $56,480 $65,640 $122,120 

110 4 0.1770 2,233 $56,331 $65,467 $121,798 

120 4 0.1771 2,233 $56,190 $65,302 $121,492 

130 4 0.1774 2,234 $56,049 $65,137 $121,186 

140 4 0.1775 2,234 $55,908 $64,972 $120,880 



Page 19 of 24

Jauhari et al., Cogent Engineering (2017), 4: 1308653
http://dx.doi.org/10.1080/23311916.2017.1308653

Tables 9 and 10 summarise the results of the changes in fixed production cost (a1) and variable 
production cost (a2) on the proposed model. Both parameters show different influence on the mod-
el’s decision variables and JTC, yet the impacts are not equally significant. The increases in a1 will 
substantially change the optimal values of n*, T*, and P*. Moreover, we actually found an interesting 
result. The increases of a1, from 2,100 to 2,200, will increase the value of T* yet the value will gradu-
ally be lower for the increases of a1 from 2,200 to 2,900. It is caused by the change in n*, from 5 to 4 
deliveries only. The impacts on T* ranged from 8.96 to 11.14%, while the impacts on P* ranged from 
9.59 to 30.63% and these suggest that the review period and production rate remain sensitive to the 
changes in fixed production costs. Whereas, the increases in variable production cost (a2), will gradu-
ally increase the value of T* in the range of 0.17 to 1.88% and decrease the value of P* in the range 
of 1.77 to 15.12%. From these results, we can conclude that a1 gives greater impacts on the model 
than a2. It can be a suggestion for the managerial team to be more careful in controlling the param-
eter a1 rather than a2, since a1 has a greater effect on the model.

Production setup cost (S) is a cost incurred by the vendor and must be paid in order to run one 
production cycle. The sensitivity analysis result of the changes in S on the proposed model is shown 
in Table 11. From these results, one can see that a higher value of S will eventually lead to a higher 
vendor cost as well as joint total cost. The increases in TCv, as a result of changes in S, ranged from 
0.45 to 2.04%. It indicates that the model is sensitive to the changes in production setup cost. The 
value of n* tends to be higher as the value of S increases. This implies that it will be more economical 
for the vendor to send more number of shipments if the production setup cost is high. To minimise 
the joint total cost, the model will determine a lower value of T* and P*, as S increases. It suggests 
that the vendor should produce less units of product and the buyer should take a shorter review 
period when the production setup cost is increased.

Table 9. The impact of the changes in fixed production cost (a1) on proposed model (for 
a2 = 1/2,500)
a1 n* T* (years) P* (units) Vendor cost (TCv) Buyer cost (TCb) Total cost (JTC)
2,100 5 0.1607 1,875 $56,285 $65,631 $121,916

2,200 4 0.1786 2,054 $56,333 $65,633 $121,966

2,300 4 0.1780 2,116 $56,380 $65,632 $122,012

2,400 4 0.1774 2,175 $56,427 $65,632 $122,059

2,500 4 0.1768 2,233 $56,472 $65,632 $122,104

2,600 4 0.1763 2,289 $56,516 $65,632 $122,148

2,700 4 0.1759 2,343 $56,558 $65,631 $122,189

2,800 4 0.1755 2,397 $56,600 $65,631 $122,231

2,900 4 0.1751 2,449 $56,641 $65,631 $122,272

Table 8. The impact of the changes in z2 on the proposed model (for z1 = 100)
z2 n* T* (years) P* (units) Vendor cost (TCv) Buyer cost (TCb) Total cost (JTC)
10 4 0.1774 2,234 $55,916 $64,980 $120,896

20 4 0.1773 2,234 $56,057 $65,145 $121,202

30 4 0.1771 2,234 $56,198 $65,310 $121,508

40 4 0.1769 2,233 $56,339 $65,475 $121,814

50 4 0.1767 2,233 $56,480 $65,640 $122,120

60 4 0.1766 2,232 $56,621 $65,806 $122,427

70 4 0.1764 2,232 $56,762 $65,971 $122,733

80 4 0.1762 2,231 $56,903 $66,136 $123,039

90 4 0.1761 2,231 $57,044 $66,301 $123,345
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In short, some managerial insights can be obtained from the results of this study. The model is 
more realistic and applicable since it considers factors such as fuzzy demand, defective items, in-
spection errors and adjustable production rate which are commonly found in the real world. This 
model can help managers to keep the supply chain inventories more efficiently. It can assists man-
agers to decide the optimum review period and level of production rate. Furthermore, it may also 
give guidance to managers to reduce the risk of type I inspection errors and defective rate by alter-
ing the review period.

7. Conclusion and future research directions
This study presented a model that extends the model of Lin (2010) by addressing more considera-
tions, including fuzzy annual demand, stochastic demand, inspection error, partial backorder, and 
adjustable production rate. Previous studies on this problem have only considered common stochas-
tic demand using a probability density function with a known finite mean and standard deviation. 
Whereas in real situations, there are certain types of product that not only follow stochastic de-
mand, but also have fuzzy annual demand. In this study we considered that the annual demand is 
represented by a triangular fuzzy number. We developed a JELP inventory model for the system 
consisting of a vendor and a buyer, with a periodic review inventory control. We minimized the inte-
grated joint total cost by determining the optimal number of deliveries, the optimal buyer review 
period, and the optimal vendor production rate. We also considered a partial backorder for the 
amount of expected inventory shortages per year as well as inspection error faced by the buyer. 
Since the production process conducted by the vendor is not always perfect, the screening process 
is needed to classify the products into non-defective or defective ones. In addition, the inspection 
process itself is not perfect. There are some errors caused by the inspector’s fault in categorizing a 

Table 10. The impact of the changes in variable production cost (a2) on the proposed model (for 
a1 = 2,500)
a2 n* T* (years) P* (units) Vendor cost (TCv) Buyer cost (TCb) Total cost (JTC)
1/2,900 4 0.1753 2,407 $56,354 $65,640 $121,994 

1/2,800  4 0.1756 2,365 $56,383 $65,640 $122,023 

1/2,700 4 0.1760 2,322 $56,413 $65,640 $122,053 

1/2,600 4 0.1763 2,278 $56,446 $65,640 $122,086 

1/2,500 4 0.1767 2,233 $56,480 $65,640 $122,120 

1/2,400 4 0.1772 2,187 $56,516 $65,641 $122,157 

1/2,300 4 0.1776 2,140 $56,554 $65,641 $122,195 

1/2,200 4 0.1781 2,092 $56,595 $65,641 $122,236 

1/2,100 4 0.1786 2,043 $56,639 $65,641 $122,280 

Table 11. The impact of the changes in setup cost (S) on the proposed model
S n* T* (years) P* (units) Vendor cost (TCv) Buyer cost (TCb) Total cost (JTC)
100 2 0.1779 2,509 $55,884 $65,632 $121,516

200 3 0.1718 2,379 $56,133 $65,630 $121,763

300 3 0.1902 2,234 $56,314 $65,638 $121,952

400 4 0.1768 2,233 $56,472 $65,632 $122,104

500 5 0.1669 2,108 $56,609 $65,630 $122,239

600 5 0.1762 2,083 $56,726 $65,632 $122,358

700 6 0.1672 1,957 $56,835 $65,630 $122,465

800 7 0.1612 1,820 $56,934 $65,631 $122,565

900 7 0.1678 1,786 $57,023 $65,630 $122,653
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product to be non-defective or defective. The proposed mathematical inventory model has been 
presented herein. We suggested an iterative procedure to find the local optimum solution and gave 
an numerical example along with sensitivity analysis to study the behaviour of the model in dealing 
with uncertainty of the values of some uncontrollable parameters in the real system.

The results show that the influential parameters that give a significant effect to the model are for 
example, the parameters of fuzzy annual demand (z1 and z2) and vendor production setup cost (S). 
Therefore, the determination of z1 and z2 by decision makers must be in accordance with the actual 
uncertain annual demand trend in the real market. The decision makers also need to control the 
production setup cost since the change in this parameter affects the model decisions.

Finally, future research can be done by including more parties in the supply chain, such as 3PL, 
wholesaler, and/or retailer into the investigated system. The inspection process can be performed on 
the vendor side or perhaps on both sides, since each party actually has its own acceptable quality 
level. Moreover, the inventory cost function formulated in this study can be developed further to 
show the interdependencies between production rate, quality of product, and carbon emission that 
may be emitted to the environment as a consequence from the production process. Other interest-
ing points are to accommodate other treatments, such as recovery, repair, or remanufacture, for 
defective products that are returned to the vendor and also to implement a policy related to cus-
tomer reward, as a form of discounted price, for those who are willing to do backordering.
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