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1. Introduction

Inventory represents an important asset to any business organization. After the pioneering work by
Harris (1915) who developed the classical economic order quantity (EOQ) model with known
constant demand, a great deal of researches on inventory modeling have been conducted to capture
many interesting and realistic situations. However, in real world inventory systems, there exist
parameters and variables which are uncertain or almost uncertain. When these uncertainties are
significant, they are usually treated by probability theory. Of course, to address such an uncertainty,
we need to prescribe an appropriate probability distribution. In some cases, uncertainties can be
defined as fuzziness or vagueness, which are characterized by fuzzy numbers of the fuzzy set theory.
Zadeh (1965) introduced fuzzy set theory to deal with quality-related problems with imprecise
demand. Bellman and Zadeh (1970) distinguished the difference between randomness and fuzziness
by showing that the former deals with uncertainty regarding membership or non-membership of an
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element in a set while later is concerned with the degree of uncertainty by which an element belongs
to a set. In an inventory control model, Petrovic and Sweeney (1994) fuzzified the demand, lead time
and inventory level into triangular fuzzy numbers. They used the fuzzy proposition method to obtain
the optimal order quantity. Ishii and Konno (1998) introduced fuzziness in shortage cost by an L-
shape fuzzy number when demand is stochastic. Gen et al. (1997) expressed the input data by fuzzy
numbers, where they used interval mean value concept to solve an inventory problem. Yao and
Chiang (2003) considered an inventory model with total demand and storing cost as triangular fuzzy
numbers. They performed the defuzzification by centroid and signed distance methods. Mondal and
Maiti (2002) applied genetic algorithms (GAs) to solve a multi-item fuzzy EOQ model. Maiti and
Maiti (2006) dealt with a fuzzy inventory model with two warehouses under possibility constraints.
Mahapatra and Maiti (2006) formulated a multi-item, multi-objective inventory model for
deteriorating items with stock- and time-dependent demand rate over a finite time horizon in fuzzy
stochastic environment. Halim et al. (2008) developed a fuzzy inventory model for perishable items
with stochastic demand, partial backlogging and fuzzy deterioration rate. The model is further
extended to consider fuzzy partial backlogging factor. Goni and Maheswari (2010) discussed the
retailer’s ordering policy under two levels of delay payments considering the demand and the selling
price as triangular fuzzy numbers. They used graded mean integration representation method for
defuzzification.

Lee and Yao (1998) developed an economic production quantity (EPQ) model in which the demand
and the production guantity are assumed to be fuzzy. Lo et al. (2007) presented an EPQ model which
includes uncertain factors like unreliability of the machineries, flaw of the products or shortage
caused by reworked process. They used fuzzy analysis hierarchy procedure (AHP) to calculate the
set-up, holding and internal failure costs which affect the optimum production quantity. Halim et al.
(2010) addressed the lot sizing problem in an unreliable production system with stochastic machine
breakdown and fuzzy repair time. They defuzzified the cost per unit time using the signed distance
method. Mahata and Goswami (2006) developed a fuzzy production-inventory model with
permissible delay in payment. They assumed the demand and the production rates as fuzzy numbers
and defuzzified the associated cost in the fuzzy sense using extension principle. Hsieh (2002)
considered two fuzzy production-inventory models: one for crisp production quantity with fuzzy
parameters and the other one for fuzzy production quantity. He used the graded mean integration
representation method for defuzzifying the fuzzy total cost.

Production of defective items in any manufacturing industry is a natural phenomenon. The number
of defectives may have a change from one lot to another that cannot be assessed by a crisp value. If
the uncertainty of the product flaw is treated as random then the estimation from the historical data of
the value(s) of the parameter(s) involved in the associated probability distribution may not always be
accurate. Chen and Chang (2008) developed a fuzzy economic production quantity (EPQ) model with
defective productions that cannot be repaired. In this model, they considered a fuzzy opportunity cost
and trapezoidal fuzzy costs under crisp production quantity or fuzzy production. Halim et al. (2009)
developed an EPQ model in which the fraction of defective items produced after process shift is
characterized by a fuzzy number. The production rate and demand rate are being known constants. In
another attempt, they assumed that the fraction of defective items follow an exponential probability
distribution where the parameter of the distribution is a fuzzy number. Similar to the defective item
production rate, it may be difficult to search for an appropriate probability distribution for the annual
demand rate and also to estimate the parameter(s) involved in the probability distribution. It is rather
easier to locate the annual demand in an interval. So, to capture the real situation better, this paper
considers the production and demand rates as fuzzy numbers besides fuzzy defective item production
rate. The paper is organized as follows. Notations and assumptions for the proposed models are given
in the next Section. The crisp model is presented in Section 3 for better understanding of the
production planning problem. Section 4 develops fuzzy model with fuzzy defective item production
rate and stochastic demand rate. This fuzzy model is also extended to consider fuzziness in the
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demand rate. Numerical examples are provided in Section 5 to illustrate the developed models and to
examine the sensitivity of the model parameters. Finally, in Section 6, some concluding remarks are

given.

2. Notations and Assumptions

The following notations are used throughout the paper:
T (> 0): scheduling period
t,(<T). production run time during the scheduling period T
d (> 0): annual demand rate
p(>d): production rate
X : random variable denoting the time to process shift
f, (.): probability density function of X
E(N): expected number of defective items produced during a production run
K (> 0): fixed cost per production batch
h (> 0): holding cost per unit item per unit time
c(>0): defective item cost per unit item.
S aconstant fraction, 0< <1

y . defective item production rate, 0 < y <1

To develop the proposed models the following assumptions are made:
(1) The production system which is operated by a single unit produces a single item.
(2) The production process is always in in-control state at the beginning of each
production run.
(3) The process may shift from the in-control state to the out-of-control state at any
random time when some defective items are produced.

(4) The elapsed time before process shift follows an exponential distribution with

probability density function

Ae ™, 0<t<t: 1>0,
fx(t): !
0, t>t,.

(5) Defective items are neither repaired nor replaced i.e. those are scrapped.
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(6) Shortages are not permitted.

(7) Production rate ( p) is dependent on the demand rate (d ) and is connected by the relation:

1
p:Ed, 0<p<1. (1)

Stock level
A

) Process shift time

p-d-E(N)/(t:-t)

N p-d-EIN)/t
/”4—-/
p-q/
. .
t t T Time

Fig. 1. Schematic diagram of the proposed production-inventory model

3. Formulation of the Crisp Model

To derive the inventory cost function for the first scheduling period T, we divide the time interval
[0, T] into two parts: [0, t,] and [t,, T]. The production starts at time t =0and stops at time t =t,.

So, stock builds up during the period [0, t, ] and declines during the period [t,, T]. The inventory path
pattern is depicted in Fig 1. If I (t)and I, (t) denote, respectively, the inventory levels at any time

during the time periods [0, tl] and[tl, T], then the differential equations representing the inventory
status are given by

aL g EN)

at tl , 0<t< tl with Il(O) = O, (2)
dl, (t :
%:—d, t, <t<T with 1,(T)=0, (3)

where E(N), the expected number of defective items produced during the production run is
calculated as given below:

If the process shifts at time t (0 <t <t,) then the total number of items produced after process shift is
p(t, —t). Hence, the expected number of defective items produced during the production run is

o 4 gy — WPl _
E(N) = Ip(t, ~1) f (Ot = [0(t, ~t)2e dt—;[e +at, —1]. @
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Using (4) in (2) and then solving the differential equations (2) and (3), we obtain

L) =(p—d)t—L e 4+ at, —1]t, 0<t<t,, 5)
t,
L) =d(T-1), t <t<T, (6)
Therefore, inventory holding cost is as follows,
! T _h 2 2 it
h| 1, @)t + 1, ©)dt —ﬂ[/lptl + 20T 2 = 22dt,T - ypt, (e + At ~1)],
0 1

and defective item cost is cE(N) :%(eﬂ‘l + At -1).
The total cost per unit time (W) which is the time average of the sum of set up cost, holding cost and
defective item cost is given by

K 1

—[h{Apt,® + AdT (T —2t,)}+p(2c —ht, ) (™ + At, —1)]. (7)

W =T o

Since 1,(t)) =1,(t,), therefore, we have T = i{}tptl — (e + At -}
Rearranging the terms, Eq.(7) can be rewritten as

W) =5 pT [Aht,” +y(2c —ht,)(e ™ + At, —1)] + d—Zh(T - 2t).

—_ + —_—
T 24
Now substituting p = %d and T = i{ﬂbpt1 — (e + At, —1)}in the above equation, we get

KAB Adp

R M 7 L A AL

W(t) =

dh -ty _ _
+ﬁ{/ﬂ1—7(e + A4 —1)}-dht,

which after simplification gives

Alcdt, +Kp)  dh (
A —ye ™+t -1 248

W(t,) = —%(2(: +ht,) + at, - y(e7 + At, —1)}. (8)

The objective of this crisp model is to find the optimal production time t,” which minimizes the cost
per unit time W .

4. Development of Fuzzy Models

In this section, we develop two fuzzy models corresponding to the crisp model developed in the
previous section. For the fundamental concept of fuzzy sets and numbers, we refer the readers to any
standard text book on fuzzy set theory (e.g. Dubois and Prade (1980); Kaufmann and Gupta (1992);
Zimmermann (1996); etc.). Furthermore, we introduce the following basic definitions of fuzzy sets
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and numbers (Chen and Hsieh (1999); Hsieh (2002) ) essential for development of the proposed fuzzy
models.

Definition 1. Generalized fuzzy number

A generalized fuzzy number A is a fuzzy set on R = (o0, 0) whose membership function x; (x)
satisfies the following conditions:

() u;z(x) isacontinuous mapping from R to the closed interval [0, 1],
(i) w;(x)=0, —o<x<a,

(iif) w5 (x) = L(x) is strictly increasing on [a,, a,],

(iv) u;(X)=w,, a,<x<a,,

(V) w;(x)=R(x) isstrictly decreasing on [a,, a,],

(Vi) u;(x)=0, a,<x<o

where O0<w, <1 and a,, a,, a, and a, are real numbers. The above generalized fuzzy number is
denoted by A=(a,, a,, a;, a,; W,) . When w, =1, A becomes A = (a,, a,, a5, a,) r-

Definition 2. Graded mean integration representation method (Chen and Hsieh, 1999)

The method is based on the integral value of graded mean h-level of a generalized fuzzy number for
defuzzification. The graded mean h-level value of a generalized fuzzy number

A=(a, a,, a,, a,; W,) . is given by h(L*(h)+R*(h))/2 where L> and R are the inverse
functions of L and R, respectively. Then, the graded mean integration representation of A with
grade w, denoted by P(,Z\) is defined as

PR = TR

0

™yan /P,

where 0 <h<w, and 0<w, <1. We use trapezoidal fuzzy numbers for all fuzzy parameters in our
proposed fuzzy production inventory models. Let B = (b, b,, by, b,) be a trapezoidal fuzzy number
defined on R = (—o0, ). Then, for B, the graded mean integration representation is

+b, +(b, —b, —b, +b,)h
2

b, +2b, +2b, +b,

P(B) = n( :
| ©)

1
ydh/[hdh =
0

Definition 3. Fuzzy arithmetic operation under function principle

Function principle was introduced by Chen (1986). Some fuzzy arithmetical operations of trapezoidal
fuzzy numbers under function principle are described as follows:

Let A= (a,, a,, a,,a,) and B = (b, b,, b, b,) be two trapezoidal fuzzy numbers where a,s and b,
s, 1=1, 2,3, 4 are real numbers. Then



(i) A®B=(a,+b,a,+h, a,+b, a,+b,).
(i) —B=(-h,,—b,, —b,, —b,).

(iiiy A®B=(a,—b,,a,-b,, a,-b, a,-b).
(iv) A®B=(c,¢c,,cC,,¢C,)

where E={ab,, ab,, a,b, a,b,}, E ={a,b,, a,b,, a,b,, a;b;}, c,=minE, c¢,=minE,, c; =
maxE,;, ¢c,=maxE. If a;s and b;s, i=1 2,3, 4 are all non zero positive real numbers, then
A®B = (a,b,, a,b,, a,b,, a,b,).

(v) 1/B=B*= (l/b,,1/b,,1/b,, 1/b,), where b;, b,, b, and b, are all positive real numbers.

(vi) If a;sand b;s, i=1, 2, 3, 4 are all non-zero positive real numbers, then the division of A and
B, denoted by A¢ B is defined asA¢B = (a, /b,, a,/b,, a,/b,, a,/b,).

(Vi) For ceR, a®A= (ca,, ca,, ca,, ca,) when >0 and a®A= (ca,, aa,, aa,, ca,)
when a <0 where ¢, ®, ® and @ are the fuzzy arithmetical operations under function principle.

4.1. Model-1 with stochastic demand and fuzzy defective rate

In this sub-section, we develop a fuzzy model with stochastic demand treating the production rate p
and the defective item production rate y as fuzzy numbers. Let the annual demand be represented by

a random variable X which follows a uniform probability distribution with mean d and a range
d(l-a)tod(l+a), 0<a<l.

2ad

. 1
ie., £, (X)=42ag" dl-a)<x<d(l+a),
0, otherwise.

In this case, Eq. (8) takes the form

W(tl) =

R2p i, Act + Ot — (e 4+ At~} (26 +ht)]x.
M=y + A -0 At —y(er + A, -1) 248 2
Therefore, the expected inventory cost per unit time W, (t,) is given by
d(1+a

Wy(t,) = W) f, (x)dx

d(1-a)

o st e+ a —13- 2o+ hy))
M-y A -1 A -y A L) 248 2

A(cdt, + KB) n dh {at, —y(e™ + at, -1)}. (10)

= —9(2c+ ht,) + ~ {
2 At -y + A, -1) 248
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Suppose that g and y are two generalized fuzzy numbers, say ﬁ and y , respectively. Then, using
fuzzy arithmetical operations ¢, ®, ® and @ under function principle, we may rewrite the above
equation as

W, =W, (t,) = —[(d /2)(2c + ht,)] ® [{2 ® (cdt, ® K ® B)}
H{A07 ® (e + it, 1)} O [{dh ¢ (21 ® B)} {1, 07 ® (™™ + At, -1)}].  (11)

Let us assume £ and y as two non-negative trapezoidal fuzzy numbers, i.e., ﬁ = (,81, Lo Pa, ,84)
and y :(7/1, Vs Vas 7/4), where ;s and y;s, i=1, 2, 3,4 are determined by the decision maker.
Then, the expected cost per unit time is a fuzzy value and we obtain it by formula (11) as

;L(Cdti,i—ti_ Kﬂl) + dn {/Hl —7s (e_/ul + /ul _1)}!
At -y (e + At -1) 248,

W, =[—%(Zc+ ht,) +

A(cdt, + Kg,) N dh Ot -7, (7 + At, —D)},

—9(2c+htl)+ — {
2 Ay -y, (et + A -1 248,

Acdt, +KB)

{t, -y, (e + at, - 1)},
M-y At -0 228, 0t o{ 1~}

—%(ZC +ht,) +

M, IP) D, e+t -1, 12
At -y, (e + At -1)  24p,

—%(2c+ ht,) +

We defuzzify VVl using the graded mean integration representation method (see Chen and Hsieh
(1999); Hsieh (2002)) and estimate cost per unit time in the fuzzy sense by formula (9) as
P(V\~/1) _ _9(20 +ht,) +i[ Cdtl_; KA, N 2(cdt1_:: KS,)

2 6 At —y (e +At, -1 At -y, (e + At -1)

2(cdt, + Kg,) . cdt, + Kg,

A -y @™+ At —1) At -y, (e + AL, —1)]

dh 1 yh 2 —At
[ - (6 + At — D)+ {At, — (e + AL, —1
12/1[,34{ L= V4l -1} ﬂs{ L= 7( 1}
2 _ -ty _ i _ ! —
+_ﬂ {t, -y, (e + At -1} + 5 {At, -y (e + At —1)}]. (13)
2 1

If the objective function (13) is convex, then any suitable one dimensional search technique can be
applied to find numerically the optimal value tl*which minimizes P(W,).

Proposition: There exists at least one local optimal value of P(\A71) if g+y<1.

Proof: Differentiating equation (13) with respect to t,, we obtain the optimality condition for
minimization of P(\A71) as:
dh 2 ich — (cdt, + KB,) & . ich — (cdt, + Kﬂi)f,ﬁj]

2 62 Ai2 i=2 Ai2

dP
t)=—=
g(t,) it
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dh g LA o1 dA
12/1[§ﬁ dt, .z,B dt] 0

where A =t (1-y,)+y,1-e"),i=123 4.

Clearly, g(0)=-
and
Now,
(Cdt + K,Bl) i (_ form)

t1—>oo

qiwﬁfnﬂmwwm

(using L’ Hospital’s rule)

tg—o0 2A1 i
_ 2 —ltl 3 —Ml
= lim 2cdiye "+ A 7/21 _l(tht +K5) (using L’ Hospital’s rule)
e 2(GH): —22 e A
~9o.
o0

Similarly, it can be shown that

ot + K,B) dtl

tl —0

=0 for i=23, 4.

ﬁ[l_%+2(1_72)+2(1_73)+1_74 —6]>0 if 1-7, >1,

Therefore, g(«) = 2t 3 ; 7 7 7

-~ 7

because p,, B,, B <pB, and y,, v,, y; <y, implying that >1 for i=1 2,3 when

B, +7, <1.Hence the proposition is proved.

4.2. Model-11 with fuzzy demand and fuzzy defective rate

In this sub-section, we will extend the previous model by assuming the demand rate d as fuzzy. The
reason behind this assumption is that it is sometimes easier to locate annual demand rate in an interval
rather than finding an appropriate probability distribution for it. We fuzzify d by assuming it to be a

non-negative trapezoidal fuzzy member J:(dl,dz,ds,d4) where d,,d,,d, and d, are

determined by the decision maker. In this case, the expected fuzzy cost V'\72 EVV2 (t,) per unit time can
be obtained by formula (11) as:
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l(cdt +KB) | dh

— 7,7 + At -1},
et 1) 2/1,84 7l 1~}

W, = ——(Zc+ht)

AL £ KA) | G e+t — 1),

d,
——(2c+ht) +
2 ( 1) —;/z(e*itl + At -1) 2/1ﬂ31

At +KB,)  dh

{At, -y, (e + at, -1
At -y (e + At —1) 248, " 72( b

—%(20 +ht,) +
Aedt, +KB)  dih

e ety A GG R T (14)
4 1 1

—d—21(2c +ht,) +

Similar to the previous sub-section, we defuzzify VVZ using the graded mean integration
representation method by formula (9) as

P(W,) = —%(Zc +ht,)(d, +2d, +2d, +d,)

A cd,t, + KB, L 2cdst +Kpy)
6 At —y, (e + At —1) At —y, (e + At, —1)

2(cd,t, + KB,) N cd,t, + Kg,

At =y (@™ + At —1) At -y, (e + At - 1)]
_ 2d _
ﬁ[ﬂ_{’“ —r, 7+ At - D}+ ﬁ—z{/ul — 57 + At 1)}
4 3
2d3 -ty d4 il
/3 N (R} ) ) = F{Ml —7, (™ +at, - D}. (15)
2 1

The objective here is to find the optimal value of t, which minimizes VVZ (t,). Similar to Model-I, it

is difficult to prove the convexity property of the cost function P(V\~/2) analytically. However, an
appropriate search technique can be applied to find the optimal solution numerically.

5. Numerical Results

In order to illustrate the numerical outcomes of the models developed in Sections 3 and 4, we
consider the following input data: K =600, d =80, h=1, c=5, 4=05, =05, y=0.15 in
appropriate units. Using the numerical computational software Mathematica, we obtain the optimal
crisp value of the production time t,” as 2.84289 units and the corresponding expected cost per unit

time W (t,,) as 241.352 units. For the fuzzy models, instead of taking £ = 0.5 we now take {8 around

0.5. Also, we consider the defective rate around y = 0.15 i.e. good-quality rate is about 0.85. The

optimal production time and the minimum expected cost per unit time in the fuzzy sense
corresponding to the fuzzy Models | & Il are presented in Table 1. Here, we use a general rule to
transfer the linguistic data, “greater or less than Z ” or “around Z ”, into trapezoidal fuzzy number as:
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“greater or less than Z ” or “around £” =(0.9Z, 0.95Z,1.05Z,1.1Z). Then, by the above rule, the
fuzzy parameters in this example can be transferred as follows:

Fuzzy demand rate="greater or less than 80"=d = (d,, d,, d;, d,)=(72, 76, 84, 88),
Fuzzy p="around 0.5 ":ﬁ =(B,, B,, Bs, B,) =(0.450, 0.475, 0.525, 0.550),

Fuzzy y=*“around 0.15"=y = (7, 7,, 7s» ¥4) = (0.1350, 0.1425, 0.1575, 0.1650) .

Table 1

Optimal results of the proposed fuzzy models

Model tl* Wl* (tl*)
I 2.8087 242.958
I 2.8067 243.848

5.1 Sensitivity Analysis

We will now perform the sensitivity analysis to examine the effects of changes in the input
parametersK, d, h, ¢, A, B and y on the optimal results obtained in Model-I. At first, we find the
optimal values of t, and W, by changing each of the parameters by 50%, 20%, —20% and —50%,
taking one parameter at a time and keeping the remaining parameters unchanged. Then we calculate
the percentage change of t, and W, with the base value. The results are shown in Table 2. The
following observations can be made from the sensitivity analysis:

(i) From Table 2, we see that the percentage change in the cost is almost equal for small changes
(both positive and negative) of all the parameters.

(i) The model is moderately sensitive to the changes in the parametersK, d , h and g.

(iii) The model shows low sensitivity with respect to the parameters ¢, 4 and .
(iv) t, is highly sensitive with respect to the parameter 2.

It is also noted that W, (t,’) increases with the increase in all the parameters K, d, h, ¢, 4 and
whereas it decreases with the increase in the parameter £ . The reason is that when g increases, the

production rate decreases (by Eg. (1)). As a result, the machine produces less in quantity.
Consequently, the defective items produced are also less. Thus, the lower holding cost and defective
item cost result in a decrease in the average cost. Similar characteristics are observed in Model-II.



190

Table 2
Sensitivity analysis with respect to the parameters in Model-I

Parameter % change in parameter % change in t,” % change in W, (t,")
+50 26.6686 20.9332
K +20 11.1902 8.9472
-20 -12.1084 - 10.0026
-50 - 32.7970 - 28.0464
+50 - 20.8459 23.8070
d +20 - 10.0150 10.1038
-20 13.8690 -11.1583
-50 49.8861 - 30.8769
+50 -17.6284 18.5250
h +20 - 8.2999 7.8046
-20 11.0489 - 8.5031
-50 37.8951 -23.1707
+50 - 5.1280 6.0327
Cc +20 - 2.1120 2.4395
-20 2.1960 - 2.4753
-50 5.6510 - 6.2571
+50 2.8825 2.7342
1 +20 1.1080 1.2117
-20 - 1.0055 - 1.3928
-50 - 2.2512 - 3.8682
+50 177.4230 -27.9472
B +20 41.3540 - 9.0481
-20 - 28.1796 7.1708
-50 - 60.3870 16.2361
y +50 0.7747 5.4754
+20 0.4262 2.1106
-20 - 0.5469 - 2.0119

-50 - 1.5406 - 4.8576
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6. Concluding Remarks

Uncertainties in demand, production, defective item production etc. are inherent in any unreliable
manufacturing system. In this article, we have developed two production planning models for an
unreliable manufacturing system. In the first model, the demand rate was assumed to be stochastic
whereas in the second model, the demand rate was assumed to be fuzzy. The production rate was
proportional to the demand rate where the constant of proportionality was assumed to be a fuzzy
number. Well known trapezoidal membership function was used for all the fuzzy numbers. Though
several approaches viz. random number technique, probability theory including fuzzy set theory have
the capability to capture uncertainties arising in inventory system but it is still difficult to identify
which technique performs better. However, the advantage of the fuzzy approach is that it relaxes the
rigid assumptions such as constant defective rate, constant demand rate etc. Also, it eases the
difficulties in searching for suitable probability distribution function to represent the random behavior
of uncontrollable variables.
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