128 research outputs found

    A periodic review inventory model with stock dependent demand, permissible delay in payment and price discount on backorders

    Get PDF
    In this paper we study a periodic review inventory model with stock dependent demand. When stock on hand is zero, the inventory manager offers a price discount to customers who are willing to backorder their demand. Permissible delay in payments allowed to the inventory manager is also taken into account. Numerical examples are cited to illustrate the model

    Optimising replenishment policy in an integrated supply chain with controllable lead time and backorders-lost sales mixture

    Get PDF
    This paper aims to optimize the inventory replenishment policy in an integrated supply chain consisting of a single supplier and a single buyer. The system under consideration has the features such as backorders-lost sales mixture, controllable lead time, stochastic demand, and stockout costs. The underlying problem has not been studied in the literature. We present a novel approach to formulate the optimization problem, which is able to satisfy the constraint on the number of admissible stockouts per time unit. To solve the optimization problem, we propose two algorithms: an exact algorithm and a heuristic algorithm. These two algorithms are developed based on some analytical properties that we established by analysing the cost function in relation to the decision variables. The heuristic algorithm employs an approximation technique based on an ad-hoc Taylor series expansion. Extensive numerical experiments are provided to demonstrate the effectiveness of the proposed algorithms

    Efficient near-optimal procedures for some inventory models with backorders-lost sales mixture and controllable lead time, under continuous or periodic review

    Get PDF
    This paper considers a number of inventory models with backorders-lost sales mixture, stockout costs, and controllable lead time. The lead time is a linear function of the lot size and includes a constant term that is made of several components. These lot-size-independent components are assumed to be controllable. Both single- and double-echelon inventory systems, under periodic or continuous review, are considered. To authors knowledge, these models have never been previously studied in literature. The purpose of this paper is to analyse and optimize these novel inventory models. The optimization is carried out by means of heuristics that work on an ad hoc approximation of the cost functions. This peculiarity permits to exploit closed-form expressions that make the optimization procedure simpler and more readily applicable in practice than standard approaches. Finally, numerical experiments investigate the efficiency of the proposed heuristics and the sensitivity of the developed models

    Aggregate constrained inventory systems with independent multi-product demand: control practices and theoretical limitations

    Get PDF
    In practice, inventory managers are often confronted with a need to consider one or more aggregate constraints. These aggregate constraints result from available workspace, workforce, maximum investment or target service level. We consider independent multi-item inventory problems with aggregate constraints and one of the following characteristics: deterministic leadtime demand, newsvendor, basestock policy, rQ policy and sS policy. We analyze some recent relevant references and investigate the considered versions of the problem, the proposed model formulations and the algorithmic approaches. Finally we highlight the limitations from a practical viewpoint for these models and point out some possible direction for future improvements

    [[alternative]]Ordering Strategy of the Inventory System for Considering the Effect of Controllable Lead Time, Time Value of Money and Inflation

    Get PDF
    計畫編號:NSC91-2416-H032-005研究期間:200208~200307研究經費:394,000[[sponsorship]]行政院國家科學委員

    Stochastic Reorder Point-Lot Size (r,Q) Inventory Model under Maximum Entropy Principle

    Get PDF
    This paper takes into account the continuous-review reorder point-lot size (r,Q) inventory model under stochastic demand, with the backorders-lost sales mixture. Moreover, to reflect the practical circumstance in which full information about the demand distribution lacks, we assume that only an estimate of the mean and of the variance is available. Contrarily to the typical approach in which the lead-time demand is supposed Gaussian or is obtained according to the so-called minimax procedure, we take a different perspective. That is, we adopt the maximum entropy principle to model the lead-time demand distribution. In particular, we consider the density that maximizes the entropy over all distributions with given mean and variance. With the aim of minimizing the expected total cost per time unit, we then propose an exact algorithm and a heuristic procedure. The heuristic method exploits an approximated expression of the total cost function achieved by means of an ad hoc first-order Taylor polynomial. We finally carry out numerical experiments with a twofold objective. On the one hand we examine the efficiency of the approximated solution procedure. On the other hand we investigate the performance of the maximum entropy principle in approximating the true lead-time demand distribution

    Agent Based Modeling and Simulation Framework for Supply Chain Risk Management

    Get PDF
    This research develops a flexible agent-based modeling and simulation (ABMS) framework for supply chain risk management with significant enhancements to standard ABMS methods and supply chain risk modeling. Our framework starts with the use of software agents to gather and process input data for use in our simulation model. For our simulation model, we extend an existing mathematical framework for discrete event simulation (DES) to ABMS and then implement the concepts of variable resolution modeling from the DES domain to ABMS and provide further guidelines for aggregation and disaggregation of supply chain models. Existing supply chain risk management research focuses on consumable item supply chains. Since the Air Force supply chain contains many reparable items, we fill this gap with our risk metrics framework designed for reparable item supply chains, which have greater complexity than consumable item supply chains. We present new metrics, along with existing metrics, in a framework for reparable item supply chain risk management and discuss aggregation and disaggregation of metrics for use with our variable resolution modeling

    Opportunity Loss Minimization and Newsvendor Behavior

    Get PDF
    To study the decision bias in newsvendor behavior, this paper introduces an opportunity loss minimization criterion into the newsvendor model with backordering. We apply the Conditional Value-at-Risk (CVaR) measure to hedge against the potential risks from newsvendor’s order decision. We obtain the optimal order quantities for a newsvendor to minimize the expected opportunity loss and CVaR of opportunity loss. It is proven that the newsvendor’s optimal order quantity is related to the density function of market demand when the newsvendor exhibits risk-averse preference, which is inconsistent with the results in Schweitzer and Cachon (2000). The numerical example shows that the optimal order quantity that minimizes CVaR of opportunity loss is bigger than expected profit maximization (EPM) order quantity for high-profit products and smaller than EPM order quantity for low-profit products, which is different from the experimental results in Schweitzer and Cachon (2000). A sensitivity analysis of changing the operation parameters of the two optimal order quantities is discussed. Our results confirm that high return implies high risk, while low risk comes with low return. Based on the results, some managerial insights are suggested for the risk management of the newsvendor model with backordering
    corecore