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Abstract

We study a multi-echelon, multi-product, multi-period retailing inventory system with stochastic
demand, where supply is subject to yield uncertainty and random disruptions. The distribu-
tion centres (DCs) and retailers follow a periodic order-up-to policy where orders are placed
in multiples of a fixed base quantity. Three mitigation strategies in the form of lateral trans-
shipments between the DCs, dual sourcing under demand substitution and inventory buffers
are proposed to protect against supply risk. We model the system as a two-stage stochastic
program. In the first stage, the order-up-to levels are decided for both echelons. In the second
stage, lateral transshipments can be used as a recourse action. Furthermore, we present a
framework for the modeling of disruptions and yield uncertainty.

Since the original mathematical formulation proves to be intractable even for very small
instances, we propose a continuous approximation of the fixed base quantities order logic. We
approximate the objective value of the resulting two-stage stochastic program using Sample
Average Approximation. The Mixed-Integer Linear Programs that follow from this method
are solved using the Progressive Hedging Algorithm. For the continuous order logic, our
numerical experiments show that under supply uncertainty the proposed mitigation strategies
lead to substantial cost and inventory reductions under fixed service levels.

To establish the practical value of our work, we conduct a case study at Jumbo Super-
markten. Slight savings are found under the continuous order logic. We present a heuristic to
translate the continuous approximation to the fixed quantity order logic. For the fixed quant-
ity order logic, our proposed policy achieves significant savings in costs and inventory while
keeping service level constant. We conclude that lateral transshipments and dual sourcing
under demand substitution are effective mitigation strategies to protect against disruptions
and yield uncertainty.
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Summary

In recent times, practitioners and researchers alike have increasingly more focused on supply
chain risk and disruption management. Disruptions such as the Tohoku Earthquake and the
COVID-19 pandemic demonstrate that supply risk should explicitly be considered by decision
makers. In this study, supply chain risk consists of both disruptions and yield uncertainty.
Disruptions occur when supply is subject to partial or complete failure, which means that
the capacity of a supplier becomes less than normal capacity. Yield uncertainty refers to the
uncertainty of deliveries of suppliers, where the quantity received might be different from the
quantity ordered (Tinani & Kandpal, 2017).

We propose three mitigation strategies to protect against supply risk: lateral transshipments,
dual sourcing under demand substitution and inventory buffers. To test the effectiveness of
these strategies, we consider a multi-echelon, multi-product, multi-period retailing inventory
system with stochastic demand and where supply can be disrupted and is subject to yield un-
certainty. We study a retailing system since product availability is key and since the company
that instigated this case study is a retailer.

The network is a standard retail system consisting of external suppliers, distribution
centres (DCs) and retailers. Both the DCs and retailers follow a periodic order-up-to policy
where orders are placed in multiples of a fixed base quantity. We propose to model the net-
work as a two-stage stochastic program where in the first stage, the order-up-to levels are
decided for a longer period. In the second stage, lateral transshipments can be utilized as a
recourse action when the uncertainties realize.

We present a methodology to model the uncertainty in supply. For this purpose, we first
introduce the re-parameterized Beta distribution that takes a mean and precision as argu-
ments.

Disruptions at an external supplier arrive according to a Poisson process. A disruption
is represented by a hit that has a certain intensity modeled by the re-parameterized Beta
distribution. A higher intensity means a higher impact on the capacity. The disruption also
has a duration, where the length of the disruption depends on the severity of the hit which
is modeled through the impact-duration function. Throughout the duration, the capacity
gradually recovers back to the undisrupted capacity by means of a recovery function. We
present some useful functions to model this behaviour.

We propose to model the yield uncertainty as a combination of the Bernoulli and re-
parameterized Beta distribution.

The uncertainty in demand and supply is modeled through the use of scenarios. A very
large number of scenarios are needed to completely model the stochastic nature of the real
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world. Since the model then becomes intractable, we use the Sample Average Approximation
by Shapiro (2008) to approximate the objective value by solving the two-stage stochastic pro-
gram with a representative set of scenarios. We present a method to determine the statistical
gap corresponding to a sample of scenarios. We deem a sample representative if the gap is
sufficiently small.

However, solving the model for a small instance and few scenarios already proved to be
impossible. Hence, we present a continuous approximation of the order logic. Specifically,
orders need not be in fixed base quantities anymore, but can be any size to bring the inventory
position precisely to the order-up-to level.

Since the deterministic MILPs that follow from the SAA are still intractable under the
continuous approximation, we adopt the Progressive Hedging Algorithm by Rockafellar &
Wets (1991) to solve the two-stage stochastic programs. This algorithm decomposes the two-
stage stochastic program horizontally by relaxing the problem using the method of Lagrange
multipliers, meaning that each scenario can be solved individually which greatly decreases
the computational burden. By iteratively solving these individual scenarios, the PHA con-
verges to equal order-up-to levels that aim to minimize costs over all scenarios. For the final
objective value, the full model with the representative sample of scenarios is solved with fixed
order-up-to levels that result from the PHA.

In our numerical experiments, we first show with a base case that the quality of our solution
is acceptable. Specifically, the statistical gap of the SAA is 2.4% when solving the model 5
times with 50 scenarios. Furthermore, the PHA optimality gap is on average 3% for these five
solves. We therefore conclude that we can draw meaningful conclusions from the numerical
experiments with our proposed solution methodology.

Furthermore, we perform a sensitivity analysis on the input parameters of the base case.
We draw conclusions about the impact of the input parameters on the solution.

Lastly, we conduct experiments where we solve our model with the continuous approxima-
tion for 25 different test beds. We find that our proposed policy that combines the mitigation
strategies performs well under supply uncertainty, achieving cost savings in the range of 4.5 to
7% and inventory reductions in the range of 15 to 20% while keeping the service level almost
constant. Lateral shipments mainly show cost savings and inventory reductions at the DC,
whereas demand substitution helps in saving inventory at the retailer. Moreover, disruptions
moderate the performance of the mitigation strategies. Yield uncertainty seems to have lim-
ited influence on the savings. The proposed policy is however more computationally intensive.

We conduct a case study at Jumbo Supermarkten. Since demand for the products in scope
is non-stationary concerning the weekdays, we adapt the model and define three safety stock
levels (low, medium, high) that correspond to certain weekdays. We use the demand fitting
procedure by Adan et al. (1995) to fit discrete distributions on the historical demand. For
the continuous order logic, we draw similar conclusions as for the numerical experiments,
although the savings are less substantial. Furthermore, we present a heuristic that translates
the continuous order logic back to the fixed base quantity order logic. The heuristic ensures
that each period the order is large enough to cover at least the continuous order amount while
taking into account whether there was an overshoot because of the fixed size in the previous
period. For the original order logic, significant cost and inventory savings are found under
almost equal service levels. The proposed policy is however computationally intensive at a
total runtime of 150 hours.
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Based on the findings of the case study, we advice Jumbo to investigate two possible im-
provements. The first improvement is to incorporate forecasting, for which they already have
existing processes, into the model. The second improvement concerns the designing of a
general lateral transshipment policy that also incorporates demand substitution.

Moreover, we recommend Jumbo to use the disruption and yield uncertainty modeling
framework to support decision making at various strategic levels, such as supplier selection or
assortment decisions. Lastly, we advice to collect and store certain delivery data to be able
to more adequately model disruptions and yield uncertainty.
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Chapter 1

Introduction

In recent times, practitioners and researchers alike have increasingly more focused on supply
chain risk and disruption management. Real-world examples that catalyzed the interest into
this domain are plenty. Well-known is the disruption caused by the Tohoku Earthquake, which
impacted the supply chain of Toyota greatly. After the earthquake, it took them three months
to get back to pre-disaster levels. The main issues were identifying missing parts within the
supply chain and having almost no backup suppliers or different sourcing options (Matsuo,
2015). More recently, the COVID-19 pandemic affected approximately 94% of Fortune 1000
companies (Sherman, 2020). Other examples include the case of a fire at a semi-conductor
plant of Phillips (Norrman & Jansson, 2004), the 9/11 terrorist attacks which suspended air
traffic for several days within the US and floods in Thailand that disrupted global supply
chains (Abe, 2014). These cases illustrate that decision makers have to take into account
supply risks explicitly when making decisions.

In this study, supply risk consists of both disruptions and yield uncertainty. We include both
as separate concepts since otherwise, significant cost increases can arise when evaluating the
system (Chopra, Reinhardt & Mohan, 2007). Disruptions occur when supply is subject to
partial or complete failure, which means that the capacity of a supplier becomes less than
normal capacity. Yield uncertainty refers to the uncertainty of deliveries of suppliers, where
the quantity received might be different from the quantity ordered (Tinani & Kandpal, 2017).

This study analyzes three possible mitigation strategies to protect against supply risk:
lateral transshipments, dual sourcing under demand substitution and higher safety stock
levels. Lateral transshipment refers to sharing stocks between entities in the same echelon.
The second strategy uses multiple suppliers to ensure ample product availability where one
product is sourced at one supplier and demand substitution can take place between those
products to still fulfill demand in case of stock-out. Note that this differs slightly from the
usual definition of dual sourcing in the literature since we do not explicitly place for ex-
ample emergency orders at a different supplier, but we only use demand substitution between
products sourced at different suppliers to hedge the risk of supply uncertainty. Lastly, holding
more inventory is a possible mitigation strategy. Throughout the study, this is done implicitly
by setting the order-up-to levels.

Motivated by a retailer that instigated this research, we study the effects of those mitigation
strategies on the inventory control in a retail setting. Availability of their products is of
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utmost importance. We note however that our model formulation is sufficiently general that
it can be applied to different settings after minor changes. An example is the blood supply
chain, where availability of products is also key and demand substitution is a major factor
(Salehi, Mahootchi & Husseini, 2019).

We model a multi-echelon, multi-product, multi-period retailing network where the sup-
ply can be influenced by disruptions and is subject to yield uncertainty. The network is a
standard retail system consisting of external suppliers, distribution centers (DCs) and retail-
ers. Both the DCs and retailers follow a periodic order-up-to policy where orders are placed
in multiples of a fixed base quantity which is a common policy for retailers (van Donselaar &
Broekmeulen, 2014). When modeling this supply chain, there are two decisions to be made:
setting the order-up-to level and deciding on lateral transshipments. Since these decisions
are made at different time granularities, we propose to model the system with a two-stage
stochastic program. The order-up-to levels are set for a longer period, whereas the lateral
transshipment decisions are made after the realization of uncertainties as a recourse action.

To account for the uncertainty in supply, we introduce a methodology that models both
disruptions and yield uncertainty. For supply disruptions, we adapt the framework of Klibi
& Martel (2012) to fit our general modeling approach. Disruptions occur following a Poisson
process, where a single disruption is represented by a hit intensity and a duration. After a
hit, the capacity of the external supplier gradually recovers back towards the base capacity.
We present useful distributions and functions that adequately model this behaviour.

We propose to model the yield uncertainty by a combination of the Bernoulli distribution
and the re-parameterized Beta distribution. This combination allows for the modeling of a
broad range of different cases of yield uncertainty. Note that it is also possible to use other
distributions if those better fit the situation.

The uncertainty is modeled by scenarios that represent the stochastic nature of the real
world. Solving the original model for a small instance and few scenarios already proves to
be impossible. We therefore propose a continuous approximation of the problem. However,
even then the two-stage stochastic with a very large number of scenarios as input is in-
tractable. Hence, we follow Shapiro (2008) and adapt the Sample Average Approximation
(SAA) to approximate the objective value by solving the model for a representative sample
of scenarios. We determine whether a sample is representative by calculating a statistical gap
corresponding to that sample. We deem the sample representative if the gap is sufficiently
small.

The Mixed-Integer Linear Programs (MILPs) that follow from the SAA are then solved
using the Progressive Hedging Algorithm (PHA) by (Rockafellar & Wets, 1991). This al-
gorithm decomposes the two-stage stochastic program horizontally by relaxing the problem
using the method of Lagrange multipliers, meaning that each scenario can be solved individu-
ally which greatly decreases the computational burden. By iteratively solving these individual
scenarios, the PHA converges to equal order-up-to levels that aim to minimize costs over all
scenarios. For the final objective value, the full model with the representative sample of scen-
arios is solved with fixed order-up-to levels that result from the PHA. Chapter 4 describes
the method of analysis in more detail.

The main contributions of this study are summarized as follows:
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1. We are the first to present a mathematical formulation of a multi-echelon, multi-product,
multi-period inventory system where supply can be both disrupted and subject to
yield uncertainty, ordering is done periodically in fixed base quantities and mitigation
strategies in the form of lateral transshipments, dual sourcing under demand substitu-
tion and inventory buffers through the setting of order-up-to levels are incorporated.

2. We present a generic and robust methodology to model both supply disruptions and
yield uncertainty.

3. Our solution method which combines the SAA and the PHA allows for the solving of
difficult two-stage stochastic programs within acceptable runtimes. Furthermore, since
the original mathematical formulation proves to be intractable, we present a continuous
approximation of the ordering logic that makes the model solvable.

4. The numerical experiments show that for the continuous order logic, our proposed
policy that combines the mitigation strategies performs well under supply uncertainty,
achieving cost savings in the range of 4.5 to 7% and inventory reductions in the range
of 15 to 20% while keeping the service level almost constant.

5. We draw similar conclusions for the continuous order logic in the case study, although
the savings are less substantial. Furthermore, we present a straightforward heuristic
that translates the continuous approximation back to the original order logic with fixed
quantities. For the original order logic, our proposed policy shows considerable savings,
reducing costs and inventory significantly while keeping service level constant.

The remainder of this study is structured as follows. In Chapter 2, we review the literature
related to this study. We present the modeling approach in Chapter 3. Chapter 4 describes the
solution methodology. The results of the numerical experiments are presented in Chapter 5.
In Chapter 6, we show the results of a case study at Jumbo Supermarkten. Lastly, we present
a discussion and conclusion in Chapter 7.
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Chapter 2

Literature review

This chapter presents the relevant literature for this study. Firstly, in Section 2.1, we give
relevant definitions and a framework of supply chain risk and its management. Secondly,
we discuss identifying, measuring and assessing those risks in Section 2.2. Next, we present
relevant literature on single-echelon inventory control under supply risk in Section 2.3. Lastly,
we discuss multi-echelon inventory management in Section 2.4. Specifically, we discuss dual
sourcing in Subsection 2.4.1, lateral transshipment in Subsection 2.4.2, two-stage stochastic
programming in Subsection 2.4.3 and the progressive hedging algorithm in Subsection 2.4.4.

2.1 Supply chain risk management

There is no clear consensus on a definition of both supply chain risk and its management
within the literature (Ho, Zheng, Yildiz & Talluri, 2015). Aqlan & Lam (2016) define supply
chain risk management as a ’systematic approach for identifying, assessing, mitigating, and
monitoring potential disruptions in the supply chain in order to reduce the negative impact
of these disruptions on supply chain operation’. Samvedi, Jain & Chan (2013) give four
dimensions that constitute supply chain risk: supply, demand, environmental and process
risks. We follow this classification where the focus is on supply risk. They define supply
risk as the risk emanating from the problems in a smooth flow from the downstream side.
An overview of definitions concerning supply chain risk can be found in e.g. Tang (2006)
and Ho et al. (2015). Furthermore, different frameworks can be followed when managing
supply risk. Examples are Franck (2007) and Bandaly, Satir, Kahyaoglu & Shanker (2012).
Following other papers within this field, we use the framework by Tummala & Schoenherr
(2011). It consists of three phases (see Figure 2.1). The first phase consists of three steps:
risk identification, risk measurement and risk assessment. The next phase concerns evaluation
and mitigation. Lastly, phase three consists of the continual monitoring and controlling of
the risks. Our study concerns the first two phases.
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Figure 2.1: Supply chain risk management framework by Tummala & Schoenherr (2011)

2.2 Identify, measure and assess supply risk

In this section, we present different methods of risk analysis in supply chains. Following
the risk framework of Tummala & Schoenherr (2011), this corresponds with the first phase:
risk identification, risk measurement and risk assessment. The boundaries between the three
sub-phases can however be vague and are therefore taken together. Tran, Dobrovnik &
Kummer (2018) distinguish between qualitative, semi-quantitative, quantitative and mixed
risk assessment methods. We focus on quantitative methods, which are used to accurately
estimate risk probability and other indicators, using observations as well as laws and theories,
since they fit the environment best. More specifically, we are interested in methods that use
simulation. Other methods are e.g. mathematical modeling (Bogataj & Bogataj, 2007; Sawik,
2017), Bayesian networks (Amundson, Brown, Grabowski & Badurdeen, 2014; Lawrence, Ibne

5



Hossain, Jaradat & Hamilton, 2020) and mean-variance analysis (Ray & Jenamani, 2016;
Mukherjee & Padhi, 2022) The reader is referred to Ho et al. (2015), Tran et al. (2018) and
Choudhary, Singh, Schoenherr & Ramkumar (2022) for a more complete overview.

Schmitt & Singh (2009, 2012) start with identifying types of disruption and estimating
the likelihood and duration of these with interviews and discussions with various stakeholders
within the researched supply chain. This is used as input for a Monte Carlo simulation, which
leads to the distribution of interarrival times and durations of disruptions. Risk profiles are
then built per facility. Findings are used to build a discrete event simulation of the whole
network that can now also incorporate disruptions. Other types of simulation used are e.g.
system dynamics (Mehrjoo & Pasek, 2016) and Petri-nets (Khilwani, Tiwari & Sabuncuoglu,
2011). We follow Klibi & Martel (2012), who apply Monte Carlo simulation to generate plaus-
ible future scenarios. The simulation is based on descriptive models that describe three event
types and their characterization: random, hazardous and deeply uncertain events. Findings
can be used for practitioners to evaluate their supply chain network and as input to other
modeling techniques such as stochastic programming. The framework as applied in this study
is described in more detail in Section 3.2.

2.3 Single-echelon inventory control under supply risk

As described in the Introduction and following the classification of Silver, Pyke & Peterson
(1998), our study follows an (R, s, nQ)-policy for inventory control. The policy was first
introduced by Morse (1959). The first exact search was presented by Zheng & Chen (1992),
who find that the cost-performance is insensitive to the choice of Q. For a system with lost
sales, van Donselaar & Broekmeulen (2013) present some useful approximations for the fill
rate, helping managers to determine the amount of safety stock needed (higher safety stock
being a higher s) in their systems to reach a certain fill rate.

In what follows, we present relevant papers on both supply disruptions and yield uncer-
tainty. For a more comprehensive overview, see Tinani & Kandpal (2017).

Under both supply disruptions and yield uncertainty, Parlar & Perry (1995) study the
(R, s, nQ)-policy where the availability of suppliers is modeled using a two-state continuous
Markov chain. One state corresponds to the supplier being available (ON state) and the
other state refers to the supplier being unavailable (OFF state). The yield uncertainty is
characterized by a Beta distribution. The objective function as the long-run average cost is
constructed by the renewal reward theorem. The reorder point, the order quantity during
the ON state and how long to wait for placing an order when the system is in the OFF state
are the decision variables that are found. They test the findings using a numerical sensitivity
analysis.

Another paper that combines both disruption and yield uncertainty is Chopra et al. (2007).
First, they present a case to make clear that disruptions and yield uncertainty should be ana-
lyzed separately when looking at supply variance. They then investigate a situation where
there is one primary supplier that is unreliable and one backup supplier that is reliable while
being more expensive. The unreliability of the unreliable supplier is modeled by both disrup-
tions and yield uncertainty, where the supplier can be disrupted by a probability p and the
yield uncertainty follows a density function f(). In a single-period setting with deterministic
demand, they derive closed-form solutions for the two decision variables (order quantity at the
primary supplier and reservation quantity at the backup supplier). By comparing the costs
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of their solution with the solution where disruptions and yield uncertainty are not looked at
separately, they find that the latter leads to significant cost increases.

Schmitt & Snyder (2012) stress the importance of looking at sufficient long time when
analyzing both disruptions and yield uncertainty since single-period models underestimate
the risk of both factors and lead to sub-optimal solutions. Disruptions are modeled by either
a simple discrete-time Markov process or from a more general supply process. The yield is
modeled as additive random quantity with a general distribution, independent of the order
size. They distinguish between two cases, one with only one unreliable supplier and a second
case where also a more expensive supplier is available. By determining the optimal order and
reserve qualities and comparing those with findings of a single-period approximation, they
find that there is an increase in cost for the latter situation.

Jeon, Lim, Peng & Rong (2021) look into an inventory system where two products are
partially substitutable and have different levels of supply reliability, where both disruptions
and yield uncertainty are used to model the reliability. Disruptions are modeled by ON and
OFF states, following exponential distributions. Yield uncertainty is modeled by a general
probability density function f(). Findings include the fact that under higher disruption risk,
order sizes for both products are increased, but that under higher yield uncertainty, only the
order sizes for one product increase.

2.4 Multi-echelon inventory control under supply risk

The nature of multi-echelon systems makes it difficult to study these, especially larger net-
works, analytically since models either become intractable or have to be vastly simplified
(Snyder & Shen, 2006). One example of a paper that takes a more analytical point of view
is Atan & Snyder (2012). They study a One-Warehouse Multiple-Retailer (OWMR) net-
work where supply can be disrupted and find optimal or near-optimal stocking levels for all
locations. They do not take any of our mitigation strategies into account.

We focus here on other solving methods. Specifically, we discuss two-stage stochastic
programming, as that is also the approach chosen in this research. Overviews that also
discuss other methods can be found in e.g. Tang (2006), Ho et al. (2015), Heckmann, Comes
& Nickel (2015), Snyder et al. (2016) and Xu, Zhang, Feng & Yang (2020). We first discuss
literature concerning the mitigation strategies in a multi-echelon environment. Thereafter,
we discuss the literature on our modeling and solution method. The literature in this section
thus corresponds to the second phase of the risk framework: risk evaluation and mitigation.

2.4.1 Dual sourcing under demand substitution

In this subsection, we discuss the literature concerning dual sourcing with unreliable suppli-
ers (either because of disruptions, yield uncertainty or both). We are indebted to Svoboda
et al. (2021) for supplying a comprehensive overview of the literature on dual and multiple
sourcing. The reader is referred to their paper for a complete overview. Another interesting
overview is given by Golmohammadi & Hassini (2020), who show an overview of supplier di-
versification under uncertain demand and supply. We focus on the case where dual scouring
is used in combination with demand substitution. In a retail setting, the idea is that product
substitution, where demand for one product is fulfilled by another product, takes place based
on either the assortment, the inventory or the price (Shin, Park, Lee & Benton, 2015). We
model the demand substitution following Yücel et al. (2009), who assume that substitution
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takes place when stock-out happens. They assume that for every substitution step, a part of
the original demand is substituted by another product and a part is lost sales.

Tomlin (2009) studies three different mitigation strategies (dual sourcing, backup supply
and demand switching) in the context of a two-product newsvendor. An interesting finding is
that demand switching works if the set of suppliers is different. Moreover, a firm that single-
sources products but uses different suppliers for each product is somewhat diversified as a
failure at one supplier does not disrupt its entire product portfolio (dedicated single source).
They present the optimal choice of strategy based on nine different attributes and find that
in general, demand switching is the least effective.

Lu, Huang & Shen (2011) consider a supply chain with two downward substitutable
products (i.e. a higher and lower grade product) and two suppliers, where one is reliable
but expensive, and one is unreliable. They find that product substitution is an effective way
to mitigate supply chain disruptions and find that the higher grade product is always strictly
preferred in the optimal sourcing policy.

Lastly, Wu, Gong, Peng, Yan & Wu (2020) study the situation where product substitution
is combined with dual sourcing and production lines of suppliers can partly fail, instead of
full disruption which is usually the case in this line of research. They present optimal policies
for both deterministic and stochastic demand. The effectiveness of their solutions is proved
in a real-world case study.

We extend the previously mentioned studies by also incorporating lateral transshipments
as a possible mitigation strategy. We discuss the literature on that topic in the next section.

2.4.2 Lateral transshipment

Lateral transshipment is the last mitigation strategy that we discuss. It concerns sharing
stocks between entities in the same echelon. We focus on proactive transshipment, where
the transshipment takes place before the realization of demand. Proactive transshipment is
most useful in a retail environment, since handling costs are often the most dominant cost
and proactive transshipment can be organized in such a way that those costs are minimized.
Interesting literature reviews on lateral transshipment are given by Kumari, Wijayanayake &
Niwunhella (2021), who focus on a retail environment, and Paterson, Kiesmüller, Teunter &
Glazebrook (2011).

A first influential paper on lateral transshipments is a study by Gross (1963), who analytically
studies a two-location network with negligible lead time and derives the optimal policy, which
is dependent on the starting inventory and cost parameters, when transshipment and order
decisions are taken at the same time.

When the transshipment is done between order moments, Tagaras & Vlachos (2002) find
that the performance of the system depends on the setting of this redistribution timing, where
this decision depends on characteristics such as the distribution of demand. Furthermore, they
note that transshipments can be advantageous, but mostly under a setting of highly variable
demand.

Feng, Fung & Wu (2017) study a centralized, one warehouse multiple retailers system
and find that using proactive shipments is valuable compared to having no transshipment,
arriving at the solution by a sorting heuristic based on dynamic programming.

Dynamic programming is also utilized by Meissner & Senicheva (2018). They find the
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near-optimal solution for a multi-location multi-period setting where a policy is formed that
guides the decisions on transshipments.

Avci (2019) study a typical retail system with multiple DCs and retailers under lateral
transshipment and expedited shipments. They present a general lateral transshipment policy
and find ordering policy parameters for the retailers by using simulation-based optimization.
They conclude that lateral transshipment is a cost-efficient stock-out risk mitigation strategy.

None of the studies mentioned in this section have included dual sourcing under demand
substitution as a possible mitigation strategy. Our study adds to the literature by also
incorporating demand substitution.

2.4.3 Two-stage stochastic programming

This section describes relevant literature on our modeling approach. Firoozi (2018) invest-
igates a capacitated multi-echelon supply chain with both stochastic demand and possible
disruptions in the supply chain where a periodic (s,S)-policy is applied at the various stages.
Uncertainty is included through scenarios based on the risk framework presented by Klibi &
Martel (2012), which we also follow in this research, in combination with Monte Carlo simu-
lation. Two mitigation strategies in the form of multi-sourcing and lateral transshipments are
incorporated in the second stage model, which is a MILP. Since there is an infinite amount
of scenarios possible, the Sample Average Approximation by Shapiro (2008) is used, where
the optimal solution is approximated by sampling techniques. By applying the proposed
solving method in a case study of a large retailer in France, it was found that the approach
fits the environment and that significant cost decreases can be achieved by including lateral
transshipment and multi-sourcing.

Jalali, Tavakkoli-Moghaddam, Ghomi-Avili & Jabbarzadeh (2017) study a closed-loop
supply chain where supply disruptions can take place, where the uncertainty is taken into
account through various scenarios. The decisions concerned in the model are the location of
the facilities, the quantity of products ordered and the amount of lost sales. The mitigation
strategies proposed are inventory buffers and lateral transshipments where it is found that
the latter significantly decreases costs.

Snoeck, Udenio & Fransoo (2019) use two-stage stochastic programming to test different
mitigation strategies within a supply chain to protect against disruptions. Interesting in their
approach is the fact that they distinguish between business as usual and disruption periods,
which leads to a decrease of approximately 85% in terms of model size and computational
power. A second interesting fact is that they include conditional value at risk in their ob-
jective function, by which the risk aversion of decision makers can be modeled. The model is
successfully applied in a case study of a chemical supply chain.

Sanci, Daskin, Hong, Roesch & Zhang (2021) apply a multi-stage stochastic programming
model to a case study at Ford, where they test multiple possible mitigation strategies related
to multiple sourcing and inventory buffers. Risks are incorporated through input of decision
makers, where it should be noted that precise estimations are not necessary for good results
which is a strength of the model. Investing in the mitigation strategy that is proposed by the
model decreases costs significantly compared to what would be optimal in a no-disruption
environment.

This study differs from the previously mentioned works in that we solve our two-stage
stochastic program by combining the Sample Average Approximation and the Progressive
Hedging Algorithm. In the next section, we present relevant literature on the algorithm.
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2.4.4 Progressive hedging

As mentioned in the introduction, we use the Progressive Hedging Algorithm (PHA) by
Rockafellar & Wets (1991) to solve the two-stage stochastic program (see Algorithm 2 for our
implementation). For convex, continuous cases, it is proven that the PHA converges to the
optimal solution (Rockafellar & Wets, 1991). Even though it does not necessarily converge
for mixed-integer models, it nevertheless can be used as an effective heuristic (Watson &
Woodruff, 2011; Løkketangen & Woodruff, 1996). Determination of the penalty factor ρ is
in this regard important to ensure proper convergence within tractable computational times
(Torres, Li, Apap & Grossmann, 2022). Within the literature, there is no definitive way to set
this factor (Listes & Dekker, 2005). From their experiments, Listes & Dekker (2005) find that
values between 50 and 100 work best. Contrary to that, Haugen, Løkketangen & Woodruff
(2001) use a ρ of 0.8 for their computations in stochastic lot-sizing. Watson &Woodruff (2011)
propose a variable ρ setting strategy based on the cost function of the decision variable where
the penalty factor is not one scalar value but can be different per component. They find
substantial improvement in the performance of the PHA. Kaisermayer, Muschick, Horn &
Gölles (2021) expand this strategy by introducing an adaptive update scheme where the ρ
can change per iteration, successfully implementing this in their experiments.

As stated before, in a mixed-integer setting, the PHA does not necessarily converge. How-
ever, we still want to assess the quality of the solution. For this purpose, we follow Gade et
al. (2016), who propose constructing lower bounds based on the dual prices of the standard
PHA (in our notation, the dual prices, which we call weights, are denoted by λ). They show
that the lower bounds indeed converge towards the optimal value.

The PHA is successfully used in multiple supply chain related studies. Kim, Wu & Huang
(2015) study a multi-period, two-echelon newsvendor problem with non-stationary demand
and find that the PHA can find good quality solutions in relatively low computational times.
Poudel, Quddus, Marufuzzaman, Bian & Burch (2019) use the PHA in the biomass sup-
ply chain where there is uncertainty in supply to solve their stochastic programming model.
Ghorashi Khalilabadi, Zegordi & Nikbakhsh (2020) look at supply chain risk with demand
substitution as possible mitigation strategy and propose an improvement on the PHA for
solving larger instances based on their specific problem setting.
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Chapter 3

Modeling approach

In this chapter, we present the mathematical formulation of our problem. Secondly, we present
our modeling approach for the disruptions and yield uncertainty.

3.1 Model formulation

We model a multi-echelon, multi-product, multi-period network with yield uncertainty and
supply disruptions that can take place. The network consists of external suppliers, distribu-
tion centres (DCs) w ∈ W := {1, 2, ..., |W |} where W denotes the set of distribution centres
and retailers n ∈ N := {1, 2, ..., |N |} where N denotes the set of retailers. Each echelon is fed
from the higher echelon. We consider products p ∈ P := {1, 2, ..., |P |} where P denotes the
set of products. Stock-out based demand substitution can take place between two products.
Stock-out based demand substitution means that when a customer finds his/her preferred
item to be out of stock, he/she will decide to either choose a different similar product or not
purchase anything at all, in which case a lost sale takes place. Motivated by the case study
that instigated this study, we assume that for a product p, a retailer is assigned to only one
DC. It is possible to store all products at all locations, without inventory capacity limitations.
A lateral transshipment option exists between the DCs which means that shipments within
the same echelon are possible.

We consider a time horizon τ ∈ T := {1, 2, ..., |T |} that is partitioned in planning peri-
ods ψ ∈ Ψ := {1, 2, ..., |Ψ|} of equal size. If not otherwise specified, a period refers to
τ ∈ T . The corresponding periods of each planning period ψ ∈ Ψ are denoted by Tψ :=
{|T |/|Ψ|(ψ − 1) + 1, ..., (|T |/|Ψ|)ψ}. In the remainder of this study, we assume |T |/|Ψ| ∈ N.
If for example we have 2 planning periods and 28 periods, T 2 would be the set {15, 16, ..., 28}.

The timing of the events in a period τ is as follows, where for ease of exposition we omit
all indices related to time and product:

1. A shipment F (a shipment from supplier to DC) and/orR (either a lateral transshipment
or a shipment from a DC to a retailer) arrive at the start of the period and can be used
to fulfill orders or demand in that time period

2. The actual demand at the retailers of that period realizes and is either fulfilled or lost
based on the available inventory
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3. The retailer can place an order of size Q at the DC where the retailer is assigned to
based on the ordering logic that we explain in the next paragraph

4. The DC can place an order at the supplier and/or use lateral transshipment

5. An order arrives after a certain deterministic leadtime L where we assume that the
leadtime is at least two because when a retailer (DC) orders at the DC (supplier), it can
be used to fulfill demand the earliest in two days because of handling and transportation
times.

The two echelons in control of the decision maker (DCs and retailers) follow an (R, s, nQ)-
policy which means that every review period, it is checked whether the inventory position IP
is lower than the order-up-to level s. If that is the case, a replenishment order is placed of
size n ·Q where Q is the fixed base quantity (e.g. a case pack holds 12 consumer units) and n
the minimum integer which is needed to bring the inventory position after ordering back to or
above the order-up-to level s. In the remainder of this study, we review our inventory every
time period. Note that we use different notation than Silver et al. (1998) in our model: fq is
used for fixed quantity and Q for the total order quantity. See Table 3.1 for more information
on the notation. For now, we omit all subscripts for ease of exposition. For the DCs, the
inventory position is defined as the inventory on-hand I plus the scheduled receipts (orders
that are in transit) F and incoming lateral transshipments minus the backorders BO. Since
we model lost sales for the retailer, the inventory position for them is defined as the inventory
on-hand I plus the scheduled receipts R. The retailers face uncertain random demand. We
discuss the modeling of uncertainty in a later paragraph.

The actual shipment F to the DC depends on the available capacity of the supplier which
can be lower than normal because of disruptions. Because it is difficult to judge the capacity
of an external supplier, we assume that the supplier is uncapacitated in undisrupted periods.
To make a clear distinction between disruptions and yield uncertainty, we assume that the
former is known at the moment of ordering, whereas the latter gets known when the shipment
arrives. For a retailer, the actual shipment depends on the available on-hand inventory at the
DC.

As mentioned in the paragraph before, the actual shipment can be lower than the order
quantity. When this is the case between a retailer and DC, the quantity that cannot be
shipped is backordered. As previously mentioned, customers do not backorder at the retailers
since we assume that either the sale is lost or stock-out based demand substitution takes place.

Within the model, there are three variables that we assume to be random. Again, we omit
the indices for ease of exposition. The first random variable is the demand D for a product
at each retailer per period. Note that the demand can follow any distribution and can also
be non-stationary. Demand across periods is independently distributed, but need not be
identical. The second random variable is the capacity K of a supplier which is random be-
cause of disruptions that take place. These capacities are modeled through the framework of
Klibi & Martel (2012). In this choice we follow Firoozi (2018), who successfully apply this
framework in a two-stage stochastic program in a similar setting. Lastly, we assume that the
yield uncertainty γ is random. Furthermore, we assume that yield uncertainty is independent
of order size, multiplicative (i.e. a fraction of the order quantity) and only becomes known
when the shipment arrives (contrary to uncertainty in the capacity, which is known at the

12



order moment) since this fits the retailing environment and makes the modeling of the uncer-
tainty straightforward. More details on our modeling approach concerning disruptions and
yield uncertainty are given in Section 3.2. This is a generally applicable modeling frame work
that has merit on itself beyond this specific study.

We model the uncertainty in the form of scenarios. These scenarios are meant to represent
the stochastic nature of the real world. A scenario ω has a probability p(ω) of occurrence.
Section 4.1 describes our procedure to generate scenarios.

The decisions of the model are the the order-up-to levels for both the DCs and the retailers,
and the usage of lateral transshipment. The order-up-to levels are set for a longer period of
time. The lateral transshipments however can be used as a flexibility option when the safety
levels set by the order-up-to levels are not sufficient after uncertainty in supply and demand
realizes. Thus, these decisions happen at different time granularities. We therefore propose
to model the problem as a two-stage stochastic program. Specifically, in the first stage, the
order-up-to levels are set for a planning period ψ and decided upon based on the expectation
of uncertainties, thus before the actual realization of the variables. On the other hand, in the
second stage, lateral transshipment decisions are made every period τ based on the realization
of the uncertainties. We study a static problem, i.e. we do not consider any roiling horizon
and solve the problem for the planning periods at one point in time.

The goal of the two-stage stochastic program is to minimize the costs associated with
those decisions. Specifically, the costs consist of holding costs ch per unit, internal backorder
costs cb per unit, fixed and variable lateral transshipment costs (ctf per shipment and ctv per
unit respectively), substitution costs csc per unit and a lost sales penalty cl per unit. The in-
ternal backorder costs are included because of the situation at the company of the case study
that instigated this research. At the company of the case study, retailers are entrepreneurs
themselves and expect a certain delivery performance from the DC. A penalty has to be paid
if the delivery performance is insufficient. Hence the inclusion of internal backorder costs.
We denote the optimal solution of the first stage variables as s∗, which is a vector containing
all order-up-to levels, the optimal solution of the second stage variables as y∗, which is a
vector containing all decision (lateral transshipments) and auxiliary (e.g. orders, shipments)
variables and the objective value where the costs are minimized by z∗.

In the remainder of the section, we firstly present the notation in Table 3.1. Secondly, we in-
troduce the mathematical formulation of the model. Lastly, we explain the objective function
and the different constraints in more detail.
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Table 3.1: Notation

Sets

N set of retailers n ∈ N where N = {1,2,3,...}
W set of DCs w ∈W where W = {1,2,3,...}
P set of products p ∈ P where P = {1,2,3,...}
Nwp set of retailers assigned to DC w for product p where Nwp ⊆ N
T set of periods τ ∈ T where T = {1,2,3,...}
Ψ set of planning periods ψ ∈ Ψ where Ψ = {1,2,3,..}
Tψ set of periods τ ∈ Tψ where Tψ = {|T |/|Ψ|(ψ − 1) + 1, ..., (|T |/|Ψ|)ψ}
Ω set of scenarios ω ∈ Ω where Ω = {1,2,3,...}
Cost parameters

chip holding cost per period for location i ∈ {W,N} and product p

clp lost sales cost of product p

cscp penalty cost of substitution from product p to another product

ctfww′p fixed cost of a transshipment between w and w′ for product p

ctvww′p variable cost for a transshipment between w and w′ per unit for product p

cbp internal backorder cost per period for product p

Parameters

t a planning period
τ a period
p(ω) probability of scenario ω happening
Dnpτω demand at retailer n for product p in period τ in scenario ω
γwpτω fraction of order delivered at DC w of product p in period τ in scenario ω
Kpτω capacity at the supplier for product p in period τ in scenario ω
wkp substitution rate, i.e. proportion of customers whose preference is product p

that substitute product p with product k where k ∈ P \ p
wlp proportion of customers whose preference is product p and that refuse to

substitute product p with any other product
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Decision variables

sipψ order-up-to level of location i ∈ {W,N} for product p in planning period ψ
Rww′pτω lateral transshipment quantity arrived in period τ of product p at w′ shipped from

w in scenario ω where w ̸= w′

Auxiliary variables

Iipτω the inventory on-hand of location i ∈ {W,N} for product p in period τ in scenario ω
BOnpτω backorders of retailer n at the DC for product p in period τ in scenario ω
IPipτω the inventory position of location i ∈ {W,N} for product p in period τ in scenario ω
Oiτω binary variable that takes value 1 if i ∈ {W,N} orders in period τ in scenario ω
Qipτω quantity ordered of product p by i ∈ {W,N} in period τ in scenario ω
Rijpτω quantity arrived in period τ of product p at j ∈ {W \ i,N} shipped from i ∈W in

scenario ω
Fwpτω quantity arrived in period τ of product p at w shipped from an external supplier

in scenario ω
qipτω integer multiple of the order quantity for location i ∈ {W,N} for product p in

period τ in scenario ω
x0npτω amount of satisfied demand of product p without substitution in period τ at retailer n

(that is, demand satisfied by product p when it is available in stock) in scenario ω
xsnkpτω amount of product k ∈ P \ p used to satisfy substitution from product p in period τ

at retailer n (if p is out of stock in τ) in scenario ω
xlnpτω lost sales of product p in period τ (if p is out of stock in τ) at retailer n in scenario ω
lww′pτω binary variable equal to 1 if a lateral transshipment takes place between DCs w

and w′ ̸= w for product p in period τ for scenario ω
Constants

M large number
Li deterministic leadtime after which an order of i ∈ {W,N} arrives
fq ip fixed base quantity for product p if you order as i ∈ {W,N}
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min
∑

ω∈Ω p(ω)[
∑

τ∈T [
∑

p∈P [
∑

w∈W [chwpIwpτω] +
∑

n∈N [c
h
npInpτω + cbpBOnpτω +

∑
k∈P\k[c

sc
p xsnkpτω] +

clpxlnpτω] +
∑

w∈W
∑

w′∈W
w′ ̸=w

[ctfww′plww′p + ctvww′pRww′p(τ)ω]]]]
(3.1)

s.t. Inp(τ−1)ω +Rwnp(τ)ω − x0npτω −
∑
k∈P\p

xsnpkτω = Inp(τ)ω ∀n ∈ N, p ∈ P, τ ∈ T, ω ∈ Ω (3.2)

Iwp(τ−1)ω + γwpτωFwp(τ)ω −
∑

n∈Nwp
Rwnp(τ+Ln)ω +∑

w′∈W
w′ ̸=w

Rw′wp(τ)ω −
∑

w′∈W
w′ ̸=w

Rww′p(τ+Lww′ )ω = Iwp(τ)ω ∀w ∈W,p ∈ P, τ ∈ T, ω ∈ Ω (3.3)

IPnpτω = Inp(τ)ω +
∑

x∈1...(Ln−1)

Rwnp(τ+x)ω ∀n ∈ N, p ∈ P, τ ∈ T, ω ∈ Ω (3.4)

IPwpτω = Iwp(τ)ω +
∑

x∈1...(Lw−1) Fwp(τ+x)ω +∑
w′∈W
w′ ̸=w

Rw′wp(τ)ω −
∑

n∈N BOnpτω
∀w ∈W,p ∈ P, τ ∈ T, ω ∈ Ω (3.5)

IPipτω −M(1−Oipτω) ≤ sipψ ∀i ∈W ∪N, p ∈ P,ψ ∈ Ψ, τ ∈ Tψ, ω ∈ Ω (3.6)

IPipτω +MOipτω > sipψ ∀i ∈W ∪N, p ∈ P,ψ ∈ Ψ, τ ∈ Tψ, ω ∈ Ω (3.7)

qipτωfq ip +M(1−Oipτω) ≥ sipψ − IPipτω ∀i ∈W ∪N, p ∈ P,ψ ∈ Ψ, τ ∈ Tψ, ω ∈ Ω (3.8)

qipτωfq ip −M(1−Oipτω) < sipψ − IPipτω + fq ip ∀i ∈W ∪N, p ∈ P,ψ ∈ Ψ, τ ∈ Tψ, ω ∈ Ω (3.9)

qipτωfq ip = Qip(τ)ω ∀i ∈W ∪N, p ∈ P,ψ ∈ Ψ, τ ∈ Tψ, ω ∈ Ω (3.10)

Rww′p(τ)ω ≤ lww′pτωM ∀w ∈W,w′ ∈W \ w, p ∈ P, τ ∈ T, ω ∈ Ω (3.11)

lww′pτω ≤ Rww′p(τ)ωM ∀w ∈W,w′ ∈W \ w, p ∈ P, τ ∈ T, ω ∈ Ω (3.12)

lww′pτω ̸= lw′wpτω ∀w ∈W,w′ ∈W \ w, p ∈ P, τ ∈ T, ω ∈ Ω (3.13)

x0npτω +
∑
k∈P\p

xsnkpτω + xlnpτω = Dnpτω ∀n ∈ N, p ∈ P, τ ∈ T, ω ∈ Ω (3.14)

xsnkpτω ≤ (dnpτω − x0npτω)wkp ∀n ∈ N, p ∈ P, k ∈ P \ p, τ ∈ T, ω ∈ Ω (3.15)

Fwp(τ+Lw)ω = min(Qwpτω,Kpτω) ∀w ∈W,p ∈ P, τ ∈ T, ω ∈ Ω (3.16)∑
n∈Nwp

Rwnp(τ+Ln)ω = min(
∑

n∈Nwp
Qnpτω, (Iwpτω +∑

n∈Nwp
Rwnp(τ+Ln)ω))

∀w ∈W,p ∈ P, τ ∈ T, ω ∈ Ω (3.17)

Rwnp(τ+Ln)ω ≤ Qnpτω ∀n ∈ N, p ∈ P, τ ∈ T, ω ∈ Ω (3.18)

BOnpτω = Qnpτω −Rwnp(τ+Ln)ω ∀n ∈ N, p ∈ P, τ ∈ T, ω ∈ Ω (3.19)

Oipτω ∈ {0, 1} ∀i ∈W ∪N, p ∈ P, τ ∈ T, ω ∈ Ω (3.20)

lww′pτω ∈ {0, 1} ∀w ∈W,w′ ∈W \ w, p ∈ P, τ ∈ T, ω ∈ Ω (3.21)

qipτω ∈ Z ∀i ∈W ∪N, p ∈ P, τ ∈ T, ω ∈ Ω (3.22)

IP ipτω ∈ R ∀i ∈W ∪N, p ∈ P, τ ∈ T, ω ∈ Ω (3.23)

Iwp0ω, Inp0ω = 0 ∀w ∈W,n ∈ N, p ∈ P, ω ∈ Ω (3.24)

Iwp(τ)ω, Inp(τ)ω, Rwnp(τ)ω, Fwp(τ)ω, Qwpτω, Qnpτω, BOnpτω, x0npτω, xlnpτω, xsnkpτω, Rww′p(τ)ω, sipψ ≥ 0 (3.25)
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The objective function (3.1) consists of the holding costs, internal backorder costs, substitu-
tion costs, lost sales costs and both fixed and variable costs of lateral transshipments.

Constraint (3.2) is the inventory on hand balance equation for a retailer. Lost sales are
assumed, so if the demand is higher than the previous inventory on hand, plus what is de-
livered because of an order a leadtime ago, the inventory on hand becomes 0 and no backorders
are logged. Inventory on-hand either decreases because demand for the product itself is filled
(x0npτω) or the product is used as a substitute for another product (xsnpkτω).

Constraint (3.3) is the inventory on hand balance equation for a DC. In this case, back-
orders are assumed. The inventory of period τ depends on the inventory of the previous
period, plus deliveries from the supplier with a yield uncertainty factor, which is a fraction
smaller than 1 taken as value from scenario ω, minus the amount that is shipped to the re-
tailers. Furthermore, the outbound lateral transshipments to other DCs and inbound lateral
transshipments from other DCs are included. Note that there is no specific lateral transship-
ment logic and that if there is available on-hand inventory, the model is allowed to decide
whether to transship or not.

Constraint (3.4) determines the inventory positions of the retailer. It is defined as the in-
ventory on hand plus the scheduled receipts. (3.5) determines the inventory position of the
DC. It depends on the inventory on hand, the amount of stock in transit including lateral
transshipments and the outstanding backorders.

Constraints (3.6) until (3.10) determine the order quantity for either the DC or retailer.
The binary variable Oipτω has been introduced to ensure linearity of the order logic. It is
forced to 1 when the inventory position drops below the order-up-to level s, i.e. when an
order is placed. If an order is placed, the order quantity is forced to be an integer q of the
fixed base quantity fq . The last constraint then sets qipτωfq ip, which has been used to ensure
the fixed quantity, to Qiτω, the amount ordered.

Constraints (3.11) and (3.12) exist to be able to model fixed costs when a lateral trans-
shipment takes place. The binary variable lww′pτω is forced to 1 if a shipment takes place
between DC w and DC w′ where w ̸= w′. Constraint (3.13) makes it impossible for DCs to
let transshipments arrive at each other in the same period.

Constraints (3.14) and (3.15) model demand fulfillment and the substitution effect follow-
ing Yücel et al. (2009). In constraint (3.14), it is stated that the demand for a product at a
retailer should either be filled by the product itself (x0npτω) or by substitution of a different
product (xsnkpτω) or it is lost (xlnpτω). The substitution is then modeled in constraint (3.15).
The substitution demand is less or equal to the amount of demand not in the first hand filled
by the original product times the substitution rate. Contrary to Yücel et al. (2009), we leave
the lost sales unconstrained and only look at one level of substitution. The lost sales are
unconstrained to be able to model the case where the possible substitution product is also
out of stock. One level of substitution is enough in our situation because the substitution
amounts get significantly lower when looking at higher levels of substitution and one level of
substitution is conceptually easier to understand and use.
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Constraint (3.16) ensures that the actual quantity shipped by the supplier towards the DC
does not exceed the capacity of the supplier. If the capacity is sufficient, this constraint makes
the actual quantity shipped equal to the order quantity.

Constraint (3.17) ensures that the quantity shipped from a DC to the retailers is the minimum
of the on-hand inventory of the DC and the total quantity ordered by the retailers (either the
DC can ship all orders, or the DC ships all available on-hand inventory). Constraint (3.18)
ensures that each actual flow from the DC to a retailer does not exceed the total quantity
ordered.

The backorders are given by constraint (3.19) and are defined as the difference between what
the retailer has ordered and what is shipped by the DC. Clearing backorders is not incor-
porated into the model. Therefore, the backorders are calculated for each period without
carrying over backorders from the previous period. This is realistic because of the lost-sales
situation at the retailer, which means that backorders cannot exceed the order-up-to level
and can thus be recalculated each time period.

The last constraints model the type (real, binary or integer), non-negativity and the initial-
ization of the different variables.

3.2 Modeling disruptions and yield uncertainty

As explained in the section before, the capacity of the supplier and the yield are uncertain
in our model. In this section, we propose an approach of modeling disruptions and yield
uncertainty. Note that the framework presented here is sufficiently general and can be used
in many other applications. We first introduce the re-parameterized Beta distribution (Ferrari
& Cribari-Neto, 2004), since we use it for both uncertainties. The distribution takes a mean
µ ∈ (0, 1) and precision ϕ > 0 as arguments, where for a fixed µ, a larger value of ϕ leads
to a smaller variance. We denote the distribution by BETA(µ, ϕ). The probability density
function is obtained by redefining the α and β variables of the standard Beta distribution as
follows: α = ϕµ and β = ϕ(1− µ). The probability density function of the re-parameterized
Beta distribution is given in Equation 3.26:

fX(x : µ, ϕ) =
Γ(ϕ)

Γ(ϕµ)Γ(ϕ(1− µ)
xϕµ−1(1− x)ϕ(1−µ)−1 (3.26)

where Γ(r) denotes the Gamma function:

Γ (r) =

∫ ∞

0
tr−1e−tdt (3.27)

We use this distribution because it has two desirable properties. Firstly, the distribution is
bounded between 0 and 1, which is useful for both the disruptions and yield uncertainty.
Secondly, with the two parameters presented above, several distributions can be constructed.
For example, a µ of 0.5 and ϕ of 2 will give a uniform distribution between 0 and 1. By setting
ϕ to 5 and varying µ, distributions with different skewness can be made, see Figure 3.1. This
distribution can therefore be easily applied to many cases.
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Figure 3.1: Different probability density plots of the re-parameterized Beta distribution
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(b) µ = 0.5, ϕ = 5
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(c) µ = 0.7, ϕ = 5
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3.2.1 Modeling disruptions

For modeling the disruptions, we present an adaptation of the framework of Klibi & Martel
(2012). Our approach is sufficiently generic and robust, which makes it usable in many
environments where disruptions are concerned. The goal of the framework is to model the
effect of disruptions on the capacity of the external supplier over time. Examples of disruptions
are the failure of a production line or unanticipated shortage of production material. A
disruption at the supplier is caused by a hit that has a certain intensity. A higher intensity
means a higher impact on the capacity. The disruption also has a duration, where the length
of the disruption depends on the severity of the hit. Throughout the duration, the capacity
gradually recovers back to the undisrupted capacity.

In the remainder of this subsection, we present functions and distributions that model the
behaviour of the disruptions as described before.

Following the general approach in the literature, we assume a Poisson process for the disrup-
tions taking place which means that the time between two disruptions happening is modeled
by an exponential distribution with 1

λ as parameter, where λ is the rate of arrivals per time
unit and 1

λ is thus the mean inter-arrival time between two disruptions taking place (Klibi &
Martel, 2012).

A disruption that takes place has a hit intensity β ∈ [0, 1] which models the impact of the
hit. A higher hit intensity means that the negative impact on the capacity of the supplier is
higher. For example, a hit with intensity 0.8 will decrease the initial capacity by 80%.

Furthermore, a disruption has a duration θ, measured in time periods. The duration θ
depends on the hit intensity β by the so-called impact-duration function. Let this function
be given by f . Hence θ = f(β). This function maps the intensity to a duration, that is:

f : [0, 1]→ N

If the length of a duration is for example linearly related to the hit intensity, the duration
can be modeled by the following function: θ = ⌊ηβ⌋ where η is a positive constant greater
than zero and ⌊x⌋ is the floor function that takes as input x and returns the greatest integer
less than x.

The hit intensity and duration are linked to the capacity by a recovery function, where
gradually over the length of the disruption the supplier recovers towards their normal capacity.
This function is not necessarily linear. For example, after a disruption, it can take some time
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for countermeasures to come into place. Note that since we source at external suppliers, we
do not have influence on these measures. After implementation of these measures at the
suppliers, the capacity will gradually grow back towards normal levels. Let rp be the recovery
function of a supplier supplying product p which takes the hit intensity β and time period τ
as input, having the following property:

rp : [0, 1]× N→ R

An example of a recovery function is the following (recall that the duration θ depends solely
on β through the impact-duration function):

rp(β, τ) =

{
1− β τ = 1, .., ⌈0.25θ⌉
1− θ−τ+1

⌊0.75θ⌋β τ = ⌈0.25θ⌉+ 1, .., θ
(3.28)

For this specific example, it takes 25% of the duration for countermeasures to come into place.
After the countermeasures, the capacity linearly grows back to the undisrupted capacity. One
point of the recovery function is thus a fraction of the initial capacity. Hence if a disruption
happens in time τ ′, the capacity in each period τ = τ ′+1, τ ′+2, . . . , θ is given by the following
formula:

Kτ = rp(β, τ − τ ′ + 1)Kbase (3.29)

where Kbase is the capacity of the supplier in an undisrupted period. Since we assume an
uncapacitated supplier for undisrupted periods, we let Kbase be equal to the maximum order
quantity of a DC at the supplier in a model without any disruptions or yield uncertainty.
Note that it is possible for double hits to happen. However, for notational clarity, we only
regard one hit in our formulas. After the first example, we explain the mechanisms involved
for the occurrence of a double hit by means of an extension of the example.

We now discuss an example. Let a hit happen at a supplier with a base capacity of
100 at time period 2 (τ ′) with an intensity of 0.8 (β). We assume a linear impact-duration
function with a constant of 10, i.e. θ = ⌊10β⌋ = 8. The recovery function is the same as
the example given in Equation 3.28. The capacity K of the supplier over time is given in
Table 3.2 and shown in Figure 3.2. We observe that after the hit in period 2, it takes three
periods for countermeasures to come into place. Thereafter, the capacity linearly grows back
to the base capacity. Note that we round down the capacity to the nearest integer since that
is necessary for the implementation of our model. However, it is not necessary for applying
this framework.

Table 3.2: Capacity over time for the example

τ 1 2 3 4 5 6 7 8 9 10 11

K 100 20 20 20 33 46 60 73 87 100 100

The framework allows for double hits to happen. When calculating the capacity after the
second hit, the base capacity Kbase in Equation 3.29 should be replaced by the capacity from
the first hit. Using the same example as before, let a second hit happen at τ ′ = 5 with a hit
intensity of 0.1. The duration θ is then 1. Using Equation 3.28 and Equation 3.29 with Kbase

set to 33, the capacity at time 5 becomes 29. The rest of the capacities remains the same as
reported in Table 3.2.

20



Figure 3.2: Capacity recovery after a hit for the example
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Furthermore, it is worth mentioning that it is possible to model different types of dis-
ruptions at the same time. Per disruption type, a different 1

λ , hit intensity distribution,
impact-duration function or recovery function can be set to best fit the environment. One
can for example distinguish between low impact, high frequency disruptions and high impact,
low frequency disruptions. The former can be modeled with a lower 1

λ and a β distribution
that is more skewed towards lower values compared to the latter.

3.2.2 Modeling yield uncertainty

In this subsection, we describe our method for modeling yield uncertainty using a combination
of the Bernoulli and the re-parameterized Beta distribution.

As explained in Section 3.1, we assume that the yield uncertainty is independent of order
size, multiplicative and gets known only when the shipment arrives. The first two properties
make the modeling of the yield uncertainty straightforward. The yield uncertainty is modeled
as a fraction of an order that gets delivered and is thus between 0 and 1 since this fits the
retailing environment.

We propose to use a combination of distributions. Based on our experience in the retail
sector, we believe that this combination enables us to adequately model the yield uncertainty
as it is seen in practice. First, we run a Bernoulli trial where with a chance p, no yield
uncertainty takes place and thus everything that is ordered, gets delivered. With a chance
1 − p, only a fraction of the order is delivered. This fraction is then modeled by a re-
parameterized Beta distribution with parameters µ and ϕ which have the same properties as
described before. The yield uncertainty γ ∈ [0, 1] is thus given by:

γτ =

{
1 w.p. p

BETA(µ, ϕ) w.p. 1− p
(3.30)

To give an example, let p be 0.8, µ 0.5 and ϕ 5 (see Figure 3.1 for the shape of the density
of this re-parameterized Beta distribution). Intuitively, this means that for about 20% of the
deliveries, approximately 50% is delivered. On average, for 80% of the cases, the delivery is
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done in full. Table 3.3 gives a possible sample based on the aforementioned parameters.

Table 3.3: Yield uncertainty example

τ 1 2 3 4 5 6 7 8 9 10

γ 1 0.68 1 1 1 1 0.43 1 1 0.55

For example, if the leadtime is 2 and the DC ordered 100 units at time period 5, the actual
delivery will be 43 in time period 7.
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Chapter 4

Solution methodology

In this chapter, we present the solution methodology of this study. Firstly, we discuss the
Sampling Average Approximation and scenario generation in Section 4.1. Secondly, we present
a continuous approximation of our model since the original mathematical formulation proves
to be intractable even for small instances. Lastly, we introduce the Progressive Hedging
Algorithm to be able to solve the two-stage stochastic program in acceptable runtimes.

4.1 Sample Average Approximation

In this section, we present the methodology of the Sample Average Approximation (SAA).
Since the SAA uses scenarios, we first explain how we generate a scenario. Subsequently,
we explain the SAA method where our main goal is to determine how many scenarios are
sufficient to be able to adequately approximate the objective value of our two-stage stochastic
program. Lastly, we rigorously define the steps of the methodology in Algorithm 1.

Recall that we have three random variables that are represented by scenarios: demand D,
capacity K and yield uncertainty γ. The generation of a scenario is straightforward. For the
demand, we sample from a distribution for each combination of retailer, product and time
period. Depending on the problem at hand, this distribution can be different per retailer,
product or time period.

The capacities over time for one scenario are generated following the framework presented
in Section 3.2. Firstly, the timing of the hits and their intensity are sampled using the
aforementioned distributions. Secondly, the duration is calculated using the impact-duration
function. Thirdly, using the hit intensity, the values of the recovery function are calculated
over the duration period using Equation 3.28. Lastly, using Equation 3.29, the capacities
from this hit per time period are calculated.

The yield uncertainties are sampled for each combination of DC, product and time period
following the distribution as presented Equation 3.30. Similar to the sampling of the demand,
the parameters of this distribution can differ between DCs, products and time periods.

However, to be able to draw meaningful conclusions, one scenario is not a good enough
representation of the real world. A very large number of scenarios is necessary to entirely
shape the demand and supply uncertainty. However, this makes the model intractable. We
therefore follow Shapiro (2008), who propose to model the two-stage stochastic program as a
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deterministic MILP where the latter is solved with a sample of scenarios that is representative
of the real world.

The SAA uses Monte-Carlo scenario sampling method to approximate the objective value
of our two-stage stochastic program. Monte-Carlo sampling takes statistical information as
basis and uses this information to generate future scenarios that can occur. One scenario
is generated as described in the previous paragraph. The Monte-Carlo method then gen-
erates N independent scenarios that have equal probability of occurring. The probability
p(ω) as mentioned in the objective of our model (see (3.1)) is thus equal to 1/N . A high
N however makes the model intractable. We therefore solve M deterministic MILPs with
N independently generated scenarios to approximate the objective value of our two-stage
stochastic program.

Furthermore, the framework by Shapiro (2008) proposes a methodology to compute the
statistical gap that belongs to a combination of M and N . If the computed gap is deemed to
be acceptable, the corresponding combination of M and N can be used to approximate the
objective value of our two-stage stochastic program. The steps of the gap determination of
the SAA are as follows, adapted from Firoozi (2018):
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Algorithm 1 Gap determination of the SAA

1: Generate M samples of size N using Monte-Carlo sampling.
2: For all M samples, solve the model as formulated in Chapter 3. Let zNm be the objective

value corresponding to sample m with size N and let sNm be the solution of the order-up-to
levels, i.e. sNm is a vector containing all sipt.

3: Compute the mean and variance of the M models by the following two equations:

z̄M,N =
1

M

M∑
m=1

zNm (4.1)

σ̂2M,N =
1

M(M − 1)

M∑
m=1

(zNm − z̄M,N )
2 (4.2)

4: Using the mean and variance computed in the previous Step, calculate a 100(1 − α)%
confidence upper bound based on a t-distribution, where θ is the α-critical value with
M − 1 degrees of freedom.

UM,N = z̄M,N + θα,M−1σ̂M,N (4.3)

5: Generate a sample of size N ′, where N ′ >> N .
6: Solve the model for all scenarios of N ′ with s̄N as fixed input values where s̄N is the

average solution of the order-up-to levels among the M samples. Let ẑN ′ be the objective
value.

7: Solve the model for all individual scenarios ω ∈ N ′ with s̄N as fixed input values. Let ẑω
be the objective value for one scenario.

8: Calculate the 100(1−α)% confidence lower bound for the expectation of z∗ in Equation 4.5
based on the variance calculated by Equation 4.4.

σ̂2N ′ =
1

N ′(N ′ − 1)

N ′∑
ω=1

(ẑω − ẑN ′)2 (4.4)

LN ′ = ẑN ′ − zασ̂N ′ (4.5)

9: Calculate the optimality gap with the following Equation:

gapN,M,N ′ =
UM,N − LN ′

UM,N
× 100% (4.6)

If the gap is acceptable, terminate. Otherwise, increase N and/or M and return to Step
1.

4.2 Continuous approximation

In this section, we present a continuous approximation of our model which is necessary be-
cause of computational issues with the original mathematical formulation. As previously
mentioned, solving the model in the extensive form, i.e. giving the model a very large num-
ber of scenarios as input and solving it as a deterministic MILP, is impossible due to the
combinatorial complexity of the many possible scenarios. However, for our problem, solving
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a small instance for one scenario and a short time horizon already proves to be a challenge.
We refer to an instance with two DCs and two retailers per DC. Even without disruptions
and yield uncertainty, under a realistic parameter setting, our linear solver still reports an
optimality gap of 26% after 6 hours for a time horizon of 18 time periods (τ) and 1 planning
period (ψ). We can already conclude that solving the model for multiple planning periods is
unrealistic. Furthermore, it is clear that the solving time of the model needs to be greatly
decreased to be able to run meaningful experiments.

It is generally known that binary and integer variables increase the difficulty of Linear
Programming problems. We therefore propose a continuous approximation of our ordering
logic. Specifically, we approximate the (R, s, nQ) inventory system by an (R, s) model.
This means that in the new situation, every review period R, an order is placed that brings
the inventory position exactly to the order-up-to level s. For the model, this means that
constraints (3.6) - (3.10) are replaced by the following constraint:

Qipτω = sipψ − IPipτω ∀i ∈ {W,N}, p ∈ P,ψ ∈ Ψ, τ ∈ Tψ, ω ∈ Ω (4.7)

We compare the continuous approximation with a straightforward heuristic that transforms
the order quantities back to multiples of a fixed base quantity in the case study in Chapter 6.

Under the same setting as before, we now find acceptable runtimes where the model solves
to optimality within a few seconds. However, solving the reduced MILPs resulting from the
SAA method is still not possible within acceptable runtimes. We therefore use a heuristic
called the Progressive Hedging Algorithm (PHA). We explain the heuristic in more detail in
the next section.

4.3 Progressive Hedging Algorithm

In this section, we discuss the Progressive Hedging Algorithm (PHA). We first give a high-level
explanation of the algorithm. Secondly, we discuss the PHA in more detail by presenting new
notation for our problem and a pseudo-code of the algorithm. Lastly, we construct a lower
bound on the solution of the heuristic and discuss possible improvements of the classical PHA.

The most desirable property of the PHA in our situation is the fact that it decomposes
the problem horizontally. This means that we do not have to solve the model with all the
scenarios at the same time, but that we can solve each scenario individually. Of course it is
still necessary to enforce equal order-up-to levels over all scenarios. Therefore, when iterat-
ively solving the individual scenarios, we extend the objective function of each sub-problem
with two factors that penalize deviation from a common solution. After several iterations,
the order-up-to levels then converge to a common value which is the end solution of the PHA.
Lastly, the model is solved using these order-up-to levels to get the final objective value.
Note that the model with fixed order-up-to levels and all scenarios is solvable in acceptable
runtimes.

The PHA is based on the split-variable formulation of our two-stage stochastic program
(Kaisermayer et al., 2021), which in short can be written as
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s∗ = argmins̄
∑
ω∈Ω

p(ω)(cω · yω) (4.8)

s.t. (sω,yω) ∈ Qω,∀ω ∈ Ω (4.9)

sω − s̄ = 0,∀ω ∈ Ω (4.10)

where cω denotes the cost coefficients for vector yω. Vector yω contains all second-stage de-
cision and auxiliary variables. The decision variables are the variables that concern lateral
transshipments, whereas the auxiliary variables refer to all other variables in the model (e.g.
order and substitution variables). Note that here, s refers to the vector containing the order-
up-to levels per entity and product. Furthermore, (sω,yω) ∈ Qω means that the solution
should be implementable, i.e. it must satisfy all constraints of each scenario. Equation 4.10
enforces the non-anticipativity of the solution by setting all sω equal to the common solution
s̄. Since this is the constraint that prohibits the horizontal decomposition of the scenarios,
the PHA applies the method of Lagrange multipliers to relax this constraint. The Lagrange
multipliers which we call weights are denoted by λω. A penalty factor ρ and termination
threshold ϵ are input parameters for the PHA. The steps of the PHA are shown Algorithm
2, adapted from Watson & Woodruff (2011).

Algorithm 2 Progressive Hedging Algorithm

1: k ← 0
2: For all ω ∈ Ω, s

(k)
ω ← argmins,ys

(cs · ys) : (s,ys) ∈ Qω
3: s̄(k) ←

∑
ω∈Ω p(ω)s

(k)
ω

4: For all ω ∈ Ω, λ
(k)
ω ← ρ(s

(k)
ω − s̄(k))

5: k ← k + 1
6: For all ω ∈ Ω, s

(k)
ω ← argmins,ys

(λ
(k−1)
ω s+ ρ/2

∥∥s− s̄(k−1)
∥∥2 + cs · ys) : s,ys) ∈ Qω

7: s̄(k) ←
∑

ω∈Ω p(ω)s
(k)
ω

8: For all ω ∈ Ω, λ
(k)
ω ← λ

(k−1)
ω + ρ(s

(k)
ω − s̄(k))

9: g(k) ←
∑

ω∈Ω p(ω)
∥∥∥s(k)ω − s̄(k)

∥∥∥
10: If g(k) > ϵ, then go to Step 5. Otherwise, or when the iteration limit is reached, terminate.

The first step of the PHA is the initialization of the iteration variable k. In Step 2, the indi-
vidual scenarios are solved. The aggregate solution s̄ is then calculated. Step 4 updates the
weights based on the penalty factor ρ. After these initialization steps, the algorithm follows
more or less the same steps as in the initialization until termination; only now, in Step 6,
two terms are added to the objective function compared to the previous function. Firstly, the
weights λ are included to influence the first-stage decision on s. Secondly, a proximal term is
included in the form of the L2-norm to penalize deviation of the scenario solution from the

aggregate solution s̄. The algorithm terminates when all s
(k)
ω have converged sufficiently to s̄

(i.e. g(k) is under a certain threshold ϵ, which we set to 0.001 for all our experiments) or when
an iteration limit has been reached. The final objective value is then calculated by solving
the model for all scenarios with s fixed to s̄. Note that the duration of this last calculation is
included when reporting runtimes of the algorithm.
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At termination of the algorithm, we can use the weights (λ
(k)
ω ) of the last iteration to construct

a lower bound on our solution following the method of Gade et al. (2016). Recall that our
problem has an optimal value which we denote by z∗. Let

∑
ω∈Ω p(ω)λω = 0 (component-

wise). Note that this holds for all steps of the PHA (Gade et al., 2016). Furthermore, let

Φ(λω) := min
(sω ,yω)∈Qω

(cωyω + λωsω) (4.11)

Then

Φ(λ) :=
∑
ω∈Ω

p(ω)Φ(λω) ≤ z∗ (4.12)

For the complete proof and numerical experiments that show that this lower bound indeed
converges to the optimal solution, we refer the reader to Gade et al. (2016). Thus, by com-
paring our solution to the lower bound Φ(λ), we can assess the quality of the solution by
defining the following gap, where z is the final objective value calculated through the PHA:

gapPHA =
|Φ(λ)− z|

z
× 100% (4.13)

We use this gap as metric to make claims about the quality of the solution of the PHA. In
words, the gap means that the solution of the PHA cannot be improved by more than that
percentage.

As described in the Literature Review in Subsection 2.4.4, it is important to properly set the
penalty factor ρ. Since runtimes are an issue for this research, we use a relatively high penalty
factor to force convergence. We show in our experiments that this still leads to acceptable
gaps.

Furthermore, we experimented with improvement suggestions on the classical PHA as
presented in the literature. Firstly, we implemented bundling of scenarios, where instead of
solving one scenario in Step 2 and 6 in Algorithm 2, multiple scenarios are solved. This is
known to increase solution quality, although at greater computational burden (Gade et al.,
2016). Preliminary experiments however show for our problem that the extra computational
burden is not worth the increase in quality. For some settings, the complete PHA can be
finished for multiple scenarios within the time it takes the model to even solve the first
bundle of two scenarios in Step 2. We therefore do not use any scenario bundling.

Secondly, Kaisermayer et al. (2021) propose to use a different penalty function. The
classical PHA uses the L2-norm as penalty function. Since this makes the problem quadratic,
the computational complexity for the solver greatly increases. They therefore suggest to use
either the L1-norm or the L∞-norm. However, when implementing the first norm for our
model, the problem became either unbounded or infeasible. Therefore, for our experiments,
we use the classical PHA as it is presented in Algorithm 2.
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Chapter 5

Numerical experiments

In this chapter, we present the numerical experiments. The goal of the experiments is to
assess the quality of our solution as well as to draw robust conclusions about our proposed
mitigation strategies for the continuous approximation.

Firstly, we discuss the objective and design of the experiments. Secondly, we assess the
quality of our solutions by studying the PHA and SAA on one test bed. Thirdly, we conduct
a sensitivity analysis on the same test bed. Lastly, we present the results of the numerical
experiments for twenty-five randomly generated test beds.

5.1 Objective and design of the experiments

In our numerical experiments, we consider a supply chain with two DCs, two retailers per
DC, and two products. This supply chain is sufficiently rich to draw meaningful conclusions
yet not to large to run into computational issues. The supply chain is depicted in Figure 5.1.
We assume identical retailers and products. Both the leadtime between a supplier and a DC
and between a DC and a retailer is 2. Demand at a retailer for a product follows a Negative
Binomial distribution. We use a Negative Binomial distribution to model demand because
that distribution fits the retail environment well (Agrawal & Smith, 2015). The other random
variables are modeled as described in Section 4.1. We consider a time horizon of 18 days with
1 planning period. Note that this models exactly two weeks, since the first two (initialization
of the system) and last two days (no orders placed anymore, since they will not be delivered
on time) are non-standard. Setting of the parameters is done per experiment and explained
in the respective section. Throughout the numerical experiments, we assume a linear impact-
duration function with a constant of 8, i.e. θ = ⌊8β⌋. For the recovery function, we follow
the example of Klibi & Martel (2012) as given in Equation 3.28, that is:

rp(β, τ) =

{
1− β τ = 1, .., ⌈0.25θ⌉
1− θ−τ+1

⌊0.75θ⌋β τ = ⌈0.25θ⌉+ 1, .., θ

The objective of the experiments is to measure the effect of lateral transshipments and dual
sourcing under demand substitution on the total costs, inventory levels and service level, which
we denote by the fill rate (% of demand that is filled). Furthermore, we are interested in how
this effect is moderated by disruptions and yield uncertainty. For this purpose, we design
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Figure 5.1: Model instance

a baseline policy and compare three other policies to this benchmark. The baseline policy
takes neither lateral transshipment or substitution into account. The three other policies
do incorporate lateral transshipments (LT) and/or demand substitution in the model. The
policies are given in Table 5.1.

Table 5.1: Policies of the experiments

Policy LT Substitution

Base
NoSub x
NoLT x
Both x x

Note that not taking substitution into account means that first you solve the model without
substitution which gives a certain decision concerning the order-up-to levels. The objective
value reported is then calculated by using these values as input for the model where substi-
tution is incorporated again. This methodology enables one to state that the decision is x%
worse if one does not take substitution into account. If one would only report the objective
value of the model where substitution is not included, one can only state that one judges the
costs x% worse and not state anything about the quality of your solution.

We evaluate the performance of the three policies (’Both’, ’NoLT’ or ’NoSub’) by comparing
the solution of a policy with the solution of the benchmark policy under the same experi-
mental setting. Comparison of the policies is done on costs, the average inventory and the fill
rate. Since we are interested in the moderating effect of disruptions and yield uncertainty, we
define three levels for both. Disruptions either do not take place, occur at a high frequency
with a low impact or occur at a low frequency with a high impact. For the yield uncertainty,
we define no, low and high yield uncertainty. The specific parameters per level can be found
in Table 5.3. We then compare the policies under the same level of disruption and yield un-
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certainty for every combination of the different levels by calculating the savings they achieve
compared to the benchmark policy. We define the savings as

SAVE =
kbase − k
kbase

× 100% (5.1)

where k is the performance indicator (either the costs, average inventory or fill rate). Note
that for the fill rate, the numbers in the nominator are switched (i.e. k− kbase) since a higher
fill rate is a saving, whereas e.g. for the costs a saving is reached when the policy has a lower
cost.

The fill rate is defined as the percentage of demand that is filled. We calculate it over the
entire system, meaning that we divide the total demand for all products for all retailers over
the complete time horizon minus all lost sales by the total demand. Substituted demand is
seen as filled demand. The average inventory is calculated per time period per entity type
over the whole system. The results of the experiments are reported in Section 5.4.

The experiments were conducted on the supercomputer Snellius, a cluster computer available
for Dutch universities and research institutes (SURFSara, 2022). We ran our experiments on
’thin’ nodes, where each node contains two AMD EPYC 7H12 (2nd gen. Rome) multicore-
CPUs, each consisting of 64 cores with 2.6 GHz and 8 memory channels. Each experiment
runs on a single core. We use Python version 3.10.4 and CPLEX version 22.1.1. Since no
consistent improvement could be found by changing parameters of CPLEX, we use the default
settings. Each solve within the iterations of the PHA has a time limit of five minutes. When
solving the full model, the time limit is one hour.

5.2 Solution quality

Firstly, we determine the number of scenarios we have to run to get acceptable SAA gaps
using the methodology described in Section 4.1. Secondly, we assess the quality of our PHA
using the lower bound and gap defined in Section 4.3. We look at a base case with parameters
as given in Table 5.2. Note that µ and ϕ refer to the parameters of the re-parameterized Beta
distribution as explained in Section 3.2.
Setting M = 5, N = 50, i.e. solving the model with 50 scenarios 5 times, leads to a SAA
gap of 2.43% following the steps of Algorithm 1. We find this gap acceptable. Note that the
SAA usually assumes that the model is solved to optimality. However, because of the long
runtimes, we used the PHA to solve the models in Step 2 of the SAA.

With M = 5 and N = 50, we find that on average the PHA has a gap of 3.09% with a
runtime of 10.75 minutes. Note that with the inclusion of lateral transshipment, substitution,
yield uncertainty and disruptions, this is one of the more difficult cases for the model. Since
the PHA finds an acceptable gap here, it is reasonable to assume that the quality of our
solution is good across all cases.

Since the PHA finds good quality solutions and we have a small SAA gap, we conclude
that we can use the PHA in combination with running 50 scenarios 5 times to draw meaningful
conclusions from the experiments.
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Table 5.2: Base case input

Variable/Parameter Value/Distribution

Demand NB(5, 0.5)
Disruptions λ = 1

10 , µ = 0.5, ϕ = 5
Yield uncertainty p = 0.7, µ = 0.5, ϕ = 5
chw 1
chr 3
cb 5
csc 3
cl 16
ctf 20
ctv 2
wkp 0.3
Policy Both
ρ 1000

5.3 Sensitivity analysis

In this section, we discuss the sensitivity analysis. By varying various variables and parameters
of the base case shown in Table 5.2, we try to isolate the influence of the input of the model.
Note that a full factorial test bed is not possible due to the many combinations of input
variables and parameters, which would lead to intractable total computation times. However,
the analysis presented in this section combined with the usage of randomly generated test
beds in Section 5.4 gives sufficient insight in the robustness of the model.

Because of the long runtimes, we could only conduct these experiments with few scenarios.
For the plots, we vary the input parameter on the x-axis, while on the y-axis, we show the
resulting costs or other interesting performance measure. The costs are normalized based on
the objective value corresponding to the lowest x-axis value in the plot.

Firstly, we analyze the lost sales cost. In Figure 5.2a and Figure 5.2b, we plot on the x-axis
the ratio between the lost sales cost and the retail holding cost and on the y-axis the fill rate
and the total costs respectively. We see that it gets increasingly more costly to fill demand.
Specifically, with approximately 50% more costs, only 5% more demand gets filled. Increasing
the fill rate to 96% proves to be very costly. These plots show a clear trade-off between costs
and service level. A decision maker should therefore use these plots to monitor this trade-off
and carefully set the lost sales cost, especially since high service levels are usually desired in
the retail sector.

Secondly, we investigate the effect of the lateral transshipment costs. The sensitivity analysis
is shown in Figure 5.3 and Figure 5.4. The LT shipment percentage is calculated by dividing
the total lateral transshipments by the total deliveries from the suppliers. We observe that
the effect of the lateral transshipment costs on the total costs gradually gets less. This can
be explained by Figure 5.3b and Figure 5.4b, where it is visible that lateral transshipments
get utilized less as the costs increase. However, it is interesting to note that this relationship
is not linear. Even under high lateral transshipment costs, there is still some usage of lateral
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Figure 5.2: Sensitivity analysis of the lost sales cost

(a) Fill rate vs. lost sales cost ratio
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(b) Total costs vs. lost sales cost ratio
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transshipment. An explanation is that in a period with disruptions and/or yield uncertainty
and high demand, it is still beneficial to use lateral transshipment to minimize the internal
backorder costs and especially the lost sales costs, even if lateral transshipment is costly. The
effect on the total cost size of both cost parameters is however limited, as the costs only
increase about 5% under high parameter setting.

Figure 5.3: Sensitivity analysis of the LT fixed cost

(a) Total costs vs. fixed LT cost
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(b) Total LT shipments (%) vs. fixed LT cost
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Figure 5.4: Sensitivity analysis of the LT variable cost

(a) Total costs vs. variable LT cost
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(b) Total LT shipments (%) vs. variable LT cost
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Thirdly, we examine the substitution parameters in Figure 5.5 and Figure 5.6. Substituted
demand is given as a percentage of the total demand. We observe a linear relationship for
both the substitution cost and the substitution rate with the two performance measures. Es-
pecially the substitution rate has a high influence on the total costs and substituted demand.
Relatively, the substitution cost has a low influence.

Figure 5.5: Sensitivity analysis of the substitution cost

(a) Total costs vs. substitution cost
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(b) Substituted demand (%) vs. substitution cost
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Figure 5.6: Sensitivity analysis of the substitution rate

(a) Total costs vs. substitution rate
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(b) Substituted demand (%) vs. substitution rate
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Fourthly, we are interested in the effect of varying input parameters concerning the disrup-
tions. The graphs are shown in Figure 5.7. Varying the µ, which models the hit intensity
through the re-parameterized Beta distribution, has a large influence on the costs from a
certain threshold. As shown in Figure 5.7a, it seems that µ values smaller than 0.3 have
almost no influence on the costs. This can be explained by the manner in which we set the
base capacity. Recall that we set Kbase equal to the highest order amount in a setting without
disruptions or yield uncertainty. In a lot of the time periods, the order quantity is not close
to that number. Hence a small disruption that only reduces the capacity by for example 10%
will usually not have a large influence. However, as the hit intensity increases, the effect of
disruptions increases as well, which subsequently leads to higher costs.

The sensitivity analysis on the arrival rate of disruptions is shown in Figure 5.7b. Note
that we plot 1/λ, which denotes the average time between disruptions. The line is not smooth
because the experiments here are done with few scenarios, which is inadequate to model the
random process of disruption arrivals. We do observe that the costs decrease as the time
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between disruptions increases. This effect seems to gradually lessen as the time between dis-
ruptions increases.

Figure 5.7: Sensitivity analysis of the disruptions

(a) Total costs vs. disruption severity
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(b) Total costs vs. time between disruptions
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Lastly, we analyze the parameters concerning the yield uncertainty in Figure 5.8. From
Figure 5.8a, we can conclude that varying the µ only has a marginal influence on the total
costs. The decrease in costs from a µ value where often hardly anything is delivered to a
value where almost everything is delivered, is only approximately 8%. An explanation can
be that the probability that yield uncertainty occurs is relatively low in this setting, thereby
limiting its influence.

The influence of the probability of yield occurring also seems limited on the total costs as
can be seen in Figure 5.8b. Even when in every period a fraction of the order gets delivered,
the total costs seem to only increase by approximately 10%. Based on these observations
concerning the yield uncertainty, we tentatively conclude that the effect of yield uncertainty
is limited and/or that our proposed mitigation strategies are effective in mitigating the risk
of yield uncertainty.

Figure 5.8: Sensitivity analysis of the yield uncertainty

(a) Total costs vs. yield uncertainty severity
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(b) Total costs vs. yield uncertainty probability
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5.4 Results for randomly generated test beds

In this section, we discuss the results of the numerical experiments. Scenarios and parameter
values for a total of 25 test beds were generated according to Table 5.3. These values are
based on our experience within the retail sector, the sensitivity analysis and are in accordance
with the literature. Note that we model discrete demand even though the order-up-to levels
are continuous but we expect that this will have no significant impact. We let u(a, b) denote
the uniform distribution with upper bound a and lower bound b. Note that we use a fixed
lost sales cost because we are only interested in the ratio between the retail holding costs and
the lost sales cost, and therefore randomizing both is not logical.

Table 5.3: Experimental input

Variable/Parameter Value/Distribution

Demand NB(5, 0.5)
High frequency, low impact disruptions λ = 1

10 , µ = 0.5, ϕ = 5
Low frequency, high impact disruptions λ = 1

18 , µ = 0.8, ϕ = 5
Low yield uncertainty p = 0.8, µ = 0.7, ϕ = 5
High yield uncertainty p = 0.7, µ = 0.5, ϕ = 5
chw 1
chr u(2, 4)
cb u(3, 7)
csc u(2, 4)
cl 16
ctf u(15, 30)
ctv u(1.5, 3)
wkp u(0.2, 0.4)
ρ 1000

The results are reported in Table 5.4, Table 5.5 and Table 5.6. The two max columns give the
maximum solution and maximum runtime respectively over all test beds. The values for one
test bed are calculated by the average of the 5 (M) models with 50 (N) scenarios. The other
columns show the average over the 25 test beds. For the base policy, the absolute values are
reported. For the other three policies, the values in the tables refer to the savings percentage
as defined in Equation 5.1. The time columns refer to the total runtime of the 5 models, i.e.
one test bed.

The main observations drawn from the numerical results can be summarized as follows:

• The policy ’Both’ performs well in all settings. Cost savings under disruption range
from 4.5 to 7% with almost equal fill rates. Savings of total inventory range from 15 to
20%. The highest savings are achieved under high frequency, low impact disruptions.
Without disruptions, cost savings amount to approximately 1-2% with slightly lower fill
rates.

• By examining the ’NoSub’ policy, we observe that lateral transshipments seem to have
the most benefit regarding cost and inventory reductions, especially at the DC. The
’NoLT’ policy shows that dual sourcing under demand substitution seems to mostly
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Table 5.4: Results for no disruptions

Policy Yield Costs Max costs I (DC) I (retailer) I (total) Fill rate Time (min) Max (min)

Base No 2761.56 3078.11 3.96 2.93 3.28 91.72 46.92 83.59
Low 2810.32 3130.65 4.38 2.97 3.44 91.71 43.51 70.23
High 2941.18 3279.81 5.49 3.00 3.83 91.54 36.70 54.15

NoSub No 0.37 0.18 3.03 1.37 2.13 0.18 83.33 153.52
Low 0.64 0.41 5.94 2.36 4.07 0.23 108.97 317.03
High 1.66 1.36 12.39 3.67 7.83 0.31 112.32 222.59

NoLT No 0.89 1.34 -3.28 9.22 4.27 -1.33 72.75 136.70
Low 0.79 1.08 -3.42 9.43 4.07 -1.29 55.09 109.08
High 0.54 0.76 -4.55 9.00 2.35 -1.36 40.18 63.54

Both No 1.18 1.38 -0.25 10.24 6.10 -1.16 69.38 116.16
Low 1.39 1.42 2.28 11.45 7.56 -1.09 82.51 152.57
High 2.25 2.12 7.83 12.33 10.18 -0.94 128.93 277.01

Table 5.5: Results for high frequency, low impact disruptions

Policy Yield Costs Max costs I (DC) I (retailer) I (total) Fill rate Time (min) Max (min)

Base No 3250.79 3574.61 7.73 3.16 4.68 90.17 35.27 48.39
Low 3243.87 3570.67 7.96 3.12 4.73 90.36 35.26 62.82
High 3377.67 3713.00 9.06 3.14 5.11 90.13 32.16 40.40

NoSub No 4.76 4.16 23.54 4.43 14.96 0.89 78.40 193.81
Low 4.49 3.76 23.12 4.17 14.59 1.09 75.40 114.78
High 4.95 4.25 21.52 5.10 14.68 1.09 98.20 226.12

NoLT No -0.07 -0.13 -4.79 9.81 1.71 -1.25 30.37 35.99
Low 0.10 0.13 -3.39 9.62 2.33 -1.03 30.96 36.91
High 0.09 0.22 -4.08 9.24 1.37 -1.19 31.24 35.49

Both No 4.97 4.34 19.53 13.29 16.67 -0.37 83.77 181.21
Low 4.59 4.14 19.60 12.82 16.70 -0.18 91.43 279.82
High 5.17 4.69 17.88 13.69 16.05 -0.12 96.47 212.27

Table 5.6: Results for low frequency, high impact disruptions

Policy Yield Costs Max Costs I (DC) I (retailer) I (total) Fill rate Time (min) Max (min)

Base No 3676.01 4003.89 11.32 3.21 5.91 89.13 26.93 32.19
Low 3823.75 4152.47 12.83 3.23 6.43 88.81 29.67 34.51
High 3908.88 4233.90 14.27 3.21 6.90 89.03 32.39 43.09

NoSub No 6.96 6.10 26.33 4.36 18.27 1.29 51.33 90.89
Low 7.02 6.26 23.15 4.64 16.95 1.11 48.17 65.40
High 6.35 5.83 17.03 4.67 13.19 1.53 50.63 64.95

NoLT No 0.02 -0.08 -2.92 9.66 1.52 -1.25 28.70 31.29
Low 0.06 0.03 -1.87 9.60 1.87 -1.59 29.08 31.55
High 0.11 0.03 -2.10 9.03 1.45 -1.25 25.13 28.60

Both No 7.03 6.18 23.50 13.71 19.80 0.06 37.70 67.79
Low 5.66 6.32 21.98 14.24 19.44 -0.88 34.99 47.93
High 6.58 6.10 15.49 13.71 14.93 0.31 42.52 84.83
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ensure lower inventory levels at the retailer with the same costs as the base policy,
while having a small decrease in fill rate. By combining lateral transshipments and
demand substitution, the ’Both’ policy captures the benefits of the individual policies,
leading to substantial cost and inventory savings at both echelons with equal fill rates
compared to the base policy.

• The performance of the policies is moderated by disruptions. Under disruptions, sav-
ings increase compared to the setting with no disruptions. The lower savings for the
setting with no disruptions can be explained by the fact that we aim to protect against
supply risk. Since this setting has no disruptions, the policy only mitigates the effect of
yield and demand uncertainty, thus having a lower influence. Furthermore, the policies
protect especially well against low frequency, high impact disruptions. An explanation
is that even high safety stock levels are usually not sufficient to prevent stock-outs from
occurring when a high impact disruption takes place. When these stock-outs then occur,
the proposed mitigation strategies are highly effective.

• It seems that the influence of yield uncertainty on the savings is limited. There is
no clear pattern visible in the savings for the three levels of yield uncertainty. The
absolute values of the costs however increase approximately 6% between no and high
yield uncertainty.

• On average, the solution method is able to find good quality solutions in 25-130 minutes
of computational time. Policies with lateral transshipment have a higher average solving
time. This can be explained by the fact that the inclusion of lateral transshipment in
the model adds some binary variables which usually makes a model more difficult to
solve. Moreover, in general, the setting with low frequency, high impact disruptions has
a lower solving time. Lastly, we observe that the maximum computational time can
sometimes be as high as three times the average.

Based on these observations, we conclude that the proposed mitigation strategies are effective
in mitigating the risk of supply uncertainty, especially when implemented together. Significant
cost and inventory savings are achieved while keeping the service level constant. However,
these improvements come at a higher computational cost.
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Chapter 6

Case study

In this chapter, we discuss the application of our model in a case study at Jumbo Super-
markten. Firstly, we introduce the company and its supply chain. Secondly, we discuss the
goal and scope of the case study. Thirdly, we present the parameter setting and scenario
generation. Lastly, we report and discuss the results.

6.1 Company introduction

Jumbo Supermarkten is the second biggest chain of supermarkets within the Netherlands with
over 700 stores and a market share of 21.8% at the end of 2021, having only Albert Heijn in
front of them. Total revenue in 2021 was e9.91 billion. The headquarters, from which all
operations are run, is located in Veghel. Outside of Veghel, Jumbo has 8 distribution centres
with the newly opened, fully automated centre in Nieuwegein drawing the most attention.
There are five different types of stores that are part of Jumbo Supermarkten: Jumbo Su-
permarkets (their core type of supermarkets), Jumbo City (smaller, urban supermarkets for
short shopping), Jumbo Foodmarkt (a full experience, with professional chefs and fresh pro-
duce), Jumbo.com (their online department) and Jumbo Golf & Hockey. Since recent times,
they are also active in Belgium, having opened almost 30 stores. These Belgian stores are
supplied from the DCs in the Netherlands (Jumbo, 2021). The focus of this case study is on
the normal supermarkets.

6.2 Supply chain

Jumbo has a general retailer network. It consists of external suppliers, distribution centres
(DCs) and retail locations, which in this case are the supermarkets. Suppliers can be from all
over the world, although the main sourcing locations are within the Netherlands, and partly
Belgium. There are DCs all over the Netherlands, having various functions. For example,
Jumbo’s DC for frozen products is located in Raalte. DCs of interest for this research are
the four regional DCs (RDC), where roughly speaking the top 1200 fast movers are placed.
From those DCs, the various stores across the country are replenished. Note that one store
is always assigned to one RDC and can only be supplied by that RDC. The DCs can also act
as cross-docking locations, which means that the deliveries from the suppliers are not added
to the inventory, but immediately loaded on new transportation to go directly to the stores.
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These type of shipments are also possible between the CDC (central distribution centre) and
the RDC. Cross-docking is out of scope for this research. The general supply chain structure
is given in Figure Figure 6.1.

Figure 6.1: The general supply chain of Jumbo

For their replenishment of non-perishable goods, Jumbo uses what they call Multi-Echelon
Replenishment (MER). This system uses the forecasts of demand of the stores as basis. Fore-
casting is not in scope for this case study. For one product, the sales forecast of one store is
translated into an order forecast (OF) for that store, which is then aggregated for all stores
into an AOF (aggregated order forecast) on DC level. This AOF is then used to determine
how much the DC has to order from the suppliers based on the inventory policy.

As inventory control policy for both the stores and the DCs, Jumbo uses a standard order-
up-to policy. Recall that this means that every review period R, it is checked whether the
inventory position (IP) is below the order-up-to level s. When this is indeed the case, an
order of size n times Q is placed, where n is an integer and Q is the order quantity (e.g. a
certain product can only be ordered in multiples of 5), to take the inventory position to or
above the order-up-to level. We denote this policy as an (R, s, nQ) inventory model. The
order-up-to level is based on two factors: first, the forecasted demand in periods R + L and
second, a safety stock based on certain safety factors. One safety factor is based on the
standard deviation of the AOF, where based on the normal distribution a factor (based on
the desired service level) times the standard deviation is added to protect against demand
fluctuations. The second factor is based on a risk profile or a combination of profiles that
a product can have. It is sufficient to know that these profiles add extra safety stock. Our
model sets one order-up-to level which represents the combination of these factors.

Jumbo measures the performance within the supply chain by various measures. The goal is
to minimize the costs while still achieving certain service levels. The service level is given by
both the ISA (in-store availability), defined as the percentage of items in the store that still
have positive inventory on hand before a delivery moment, and the fill rate, defined as the
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percentage of demand that is fulfilled. As in the numerical experiments, we use the fill rate
as the performance measure.

Furthermore, internally, Jumbo strives to deliver the retailers from the DC with a certain
performance. They measure this by the OTIF (on time, in full) percentage, which is defined
as the percentage of orders that arrive in the quantity that was ordered (in full), on the time
that the order had to arrive (on time). Within our model, we set the internal backorder costs
in such a way that this norm for this performance measure is approximately achieved.

6.3 Goal and scope

In recent times, suppliers of Jumbo have more and more difficulty supplying in a reliable
way. Disruptions such as the COVID-19 pandemic and the Russian invasion of Ukraine are
a major factor in this. Furthermore, yield uncertainty is of influence. Yield uncertainty can
for example happen when the quality of a product is not deemed sufficient and can therefore
not be taken as inventory, leading to a delivery quantity that is less than expected. We have
identified three mitigation strategies, which are the same as we have used throughout the
research, to mitigate supply risk. The first strategy is having more safety stock. Secondly, the
possibility of lateral transshipments between DCs is identified as possible mitigation strategy.
Lastly, dual sourcing in combination with demand substitution is explored as an option. The
goal of this case study is to investigate whether and how much it is beneficial for Jumbo to
use those mitigation strategies to protect against supply risk.

Unfortunately, because of the runtime issues already explained before, it is not possible
to precisely model the inventory system and supply chain of Jumbo as it is described in the
previous section. The challenge of this case study mainly lies in converting the analysis of the
continuous approximation towards relevant findings for the realistic situation of fixed order
quantities. For this purpose, we propose a heuristic where we accumulate the orders until it
is a multiple of the fixed order size.

We use the same network as in the numerical experiments, i.e. we have four identical
retailers and two DCs. We investigate products within the seasonal category ’kruidnoten’.
These are identified by Jumbo as key products that need high availability. The costs of lateral
transshipments can therefore be worthwhile for this product category. Furthermore, there are
two brands that are sourced from different suppliers. Lastly, there is a large possibility of
demand substitution between those brands. To not increase the computational burden, we
only focus on two products. One is the own brand of Jumbo, while the other is a premium
brand.

Lastly, we look at a period of 18 days for the same reasoning as in the numerical experi-
ments.

6.4 Parameter setting and scenario generation

As already mentioned before, these products fall within a seasonal category. When Sinter-
klaas (a national holiday in the Netherlands, rather similar to Christmas) gets closer, more
kruidnoten will be sold. Furthermore, for retailers, there can be significant variations in sales
across different weekdays. Both of these factors are clearly visible in the plot in Figure 6.2a.

It is clear that we can not use a stationary distribution like the Negative Binomial distri-
bution of the numerical experiments to represent the demand a retailer faces for the complete
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Figure 6.2: Aggregated demand for the premium brand per day
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(b) For the chosen time period in 2021
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time period. We can however use the available historical demand data to fit different distri-
butions on different days. More specifically, we take a period of 18 days just before the end
of Sinterklaas because then the supply chain of Jumbo is most pressurised, and fit a different
distribution per day. We take 13-11 until 30-11 for 2021. Note that we want the weekdays
to align between the years, so for 2020 we look at the period of 14-11 until 01-12. The data
of 2022 was deemed unrepresentative because of a large number of stock-outs. We can fit a
distribution for each individual day, such as the first Saturday, Sunday, and so on, thereby
accounting for both the variability across weekdays and the non-stationarity of demand. Note
that we have a slight bias in our data since in case of a stock-out, lost demand does not get
registered. Hence demand in reality is probably slightly higher than our reported values.
However, since Jumbo strives for a fill rate of 95%, we believe that the impact of this is low.

For the fitting of the distributions, we use the procedure by Adan, Eenige & Resing
(1995) who use the first two moments to fit a discrete probability distribution on a set of
real numbers. The procedure works as follows. Let D be the vector of historical demand
points as described before, e.g. belonging to the first Saturday. Based on the expectation
E(D) and coefficient of variation cD, either a Poisson distribution, a mixture of two Binomial
distributions, a mixture of two Negative Binomial distributions or a mixture of two Geometric

distributions is fitted. This is based on the the value a, where a :=
c2D−1

E(D) . The eventual choice
for the best distribution and the corresponding parameters is done based on the description
in Appendix A, where Y is the final fitted variable that matches the first two moments of D.
We refer the reader to Adan et al. (1995) for proofs and for showing the effectiveness of the
procedure.

For most days, the procedure fits the Negative Binomial distribution with slightly different
parameters. For a few days, the Geometric distribution is fitted. However, since the Geomet-
ric distribution is a special case of the Negative Binomial distribution, we can conclude that
the demand can in general be modeled by a Negative Binomial distribution. Note that since
we look only at a small period, there is at most a small trend in the data as can be seen in
Figure 6.2b.

For the capacities of the suppliers and the yield uncertainties, the parameters of the distri-
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butions are set together with an expert panel within Jumbo because relevant data is not
available for the products in scope. Based on their experience, we concluded that disruptions
take place relatively often, but that the intensity is not that high. For the yield uncertainty, in
the time period we are focusing on, we determined that the full amount is delivered quite of-
ten and that if it is not the full amount, the amount is distributed around 50-70% of the order.

Together with the same expert panel as mentioned before, the other parameters are set. The
choices are made with the goal to achieve different norms Jumbo has for their KPIs and to
let the model show desired behaviour. The final values of the parameters can be found in
Table 6.1. If there is no subscript, the parameters are equal for both products. Otherwise,
1 refers to the premium brand and 2 to the Jumbo brand. The parameters of the SAA are
equal to that of the numerical study, i.e. M = 5 and N = 50. The functions regarding
the disruption modeling framework are set in the same way as in the numerical experiments.
Hence, θ = ⌊8β⌋ and the recovery function is equal to the example of Klibi & Martel (2012) as
given in Equation 3.28. We need to set a higher penalty factor to ensure convergence because
for the new model, three instead of one s values have to converge. The next paragraph
explains this in more detail. The penalty factor ρ is thus set to 5000.

Table 6.1: Case study input

Variable/Parameter Value/Distribution

Demand Fit by Adan et al. (1995)
Disruptions λ = 1

10 , µ = 0.6, ϕ = 5
Yield uncertainty p = 0.7, µ = 0.65, ϕ = 5
chw 1
chr 3
cb 5
csc 8
cl1, c

l
2 24, 36

ctf 40
ctv 2
w12, w21 0.2, 0.4
fqn1, fqn2, fqw1, fqw2 10, 12, 20, 24
ρ 5000

In addition to the generation of scenarios and the setting of parameters, it is also necessary to
modify the model for the case study. Recall that we concluded that demand is seasonal per
weekday. Intuitively, setting one order-up-to level for the whole time horizon does not make
sense since the level will probably be too high for the days with lower demand (e.g. Monday,
Tuesday) but too low for other days (e.g. Friday, Saturday). It proved to be computationally
impossible to set a different s per day. We therefore propose to define three levels for the
order-up-to level, i.e. sip becomes sipl where l is either low (Sunday, Monday, Tuesday), me-
dium (Wednesday, Thursday) or high (Friday, Saturday). The order at time τ then depends
on expected demand, e.g. if τ is a Monday and all leadtimes are equal to two, the retailer
places an order based on the medium order-up-to level (τ + Ln is a Wednesday) and the DC
based on the high order-up-to level (τ + Ln + Lw is a Friday). Note that the s for each time
period still needs to be equal across all scenarios.
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Furthermore, in this case study, we are interested in translating our continuous approxima-
tion back to an inventory model where orders are placed in multiples of a fixed base quantity.
We propose a simple heuristic that accumulates the orders from the continuous model into
multiples of the fixed quantity. In what follows, we omit all subscripts for ease of exposition.
Let Q be a vector of orders placed over the time horizon for one entity, Q an element of that
vector, fq the fixed quantity and q the integer multiple of the fixed quantity. Furthermore,
we define a variable E that denotes how much the fixed quantity overshoots the orders of the
continuous model. In words, the heuristic ensures that each period the order is large enough
to cover at least the continuous order amount while taking into account whether there was
an overshoot because of the fixed size in the previous period.

Let E be initialized to zero. The new order size Qnew is equal to qfq where q is the smallest
integer such that qfq is greater than or equal to Q − E. The overshoot is then updated to
E = E−Q+Qnew. By following these steps for the whole time horizon, we calculate the new
order quantities. After using this heuristic, we recalculate the objective value with the order
sizes set to the newly calculated values Qnew. An example of the application of the heuristic
is given in Table 6.2, where the fixed quantity is 20. Note that we let the orders be integers
for this example for straightforward computations, but that this is usually not the case for
the order quantities that follow from the continuous approximation.

Table 6.2: Example of order heuristic

Time (τ) 1 2 3 4 5 6 7 8

Continuous (R, s) 2 3 12 6 6 9 7 15
Fixed quantity (R, s, nQ) 20 0 0 20 0 0 20 0

The results of the experiments for the continuous approximation are shown in Table 6.3 and
for the fixed base quantity order model in Table 6.4. The savings shown for the ’NoSub’,
’NoLT’ and ’Both’ policies are calculated by Equation 5.1.

Table 6.3: Results for the continuous approximation

Policy Costs I (DC) I (retailer) I (total) Fill rate p1 Fill rate p2 Time (h)

Base 5066.59 7.53 5.37 6.09 89.07 90.79 3.23
NoSub 0.44 11.29 2.61 6.08 0.97 1.12 35.09*
NoLT 0.49 -2.39 7.82 3.61 -2.57 -0.18 7.25
Both 1.60 8.234 11.17 10.01 -1.79 0.90 151.28*

* The PHA did not converge fully within the iteration limit for eight of the cases. However, since the convergence

value is very close to the termination value, we believe this does not impact the solution quality greatly.

Table 6.4: Results for the fixed base quantity order model

Policy Costs I (DC) I (retailer) I (total) Fill rate p1 Fill rate p2

Base 5378.60 15.15 7.29 9.91 93.64 97.71
NoSub 6.37 9.17 10.70 9.89 1.27 0.79
NoLT 3.88 9.04 3.70 6.36 -0.54 -0.01
Both 8.65 13.80 13.58 13.72 0.06 0.69
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For the continuous order logic, we can draw similar conclusions as for the numerical experi-
ments, although the savings are less substantial. The ’Both’ policy seems to perform well with
slight cost savings, significant inventory reductions, a slightly worse fill rate for the premium
brand but a slightly better fill rate for the Jumbo brand. Regarding costs, both individual
strategies have equal savings. We observe the same patterns as before regarding the invent-
ory and fill rate. The ’NoSub’ policy has inventory reductions for both echelons, whereas the
’NoLT’ policy has substantial inventory reductions at the retailer. The combination of the
two mitigation strategies takes the advantages of both policies and thereby performs well.

An explanation for the lower cost savings compared to the continuous experiments is the
fact that the cost parameters regarding the mitigation strategies are set at a much higher
level compared to the numerical experiments. The lateral transshipment fixed costs are set at
such a high level because Jumbo does not have any standard redistribution of stocks among
its warehouses, which makes lateral transshipments very costly. The substitution costs are set
at this level because for this product category, customer satisfaction is key and substitution
should thus be minimal.

Even though the ’Both’ policy achieves the best savings, the computational burden is very
high at a total computational time of 150 hours, which is significantly more than the other
three policies. The higher computation times can be explained by the fact that three s values
have to be optimised compared to only one for the numerical experiments. Furthermore,
incorporating both lateral transshipments and demand substitution makes the model in each
iteration of the PHA more difficult to solve.

For the fixed base quantity order model, we observe more significant savings for the three
policies. First however it is interesting to note that compared to the continuous order system,
the heuristic has less costs for all policies except the base policy at higher fill rates, although
total inventory is higher. Upon closer inspection of the output, an explanation seems to be
that the higher order quantities sometimes act as a buffer against heavy disruptions, thereby
offsetting the substantially higher inventory costs by lower lost sales and internal backorder
costs.

Again, the ’Both’ policy performs the best of all policies. Significant cost and inventory
savings are achieved while keeping service level constant. The other two policies also exhibit
considerable savings. ’NoSub’ outperforms the ’NoLT’ policy which is as expected since the
benefit of the ’NoLT’ policy, setting the order-up-to levels exactly to the right level consider-
ing substitution, is lessened because precise order-up-to levels have less influence because of
the ordering heuristic. However, the combination of lateral transshipment and substitution
still achieves a better performance than the other two policies.

From the results of the case study, we conclude that the ’Both’ policy could lead to sig-
nificant savings for Jumbo.
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Chapter 7

Conclusion and discussion

In this study, we have considered a multi-echelon, multi-product, multi-period retailing net-
work where the supply can be influenced by disruptions and is subject to yield uncertainty.
To protect against supply risk, we have evaluated three mitigation strategies in the form of
lateral transshipments, dual sourcing under demand substitution and inventory buffers. We
have modeled the system as a two-stage stochastic program, where in the first stage, the
order-up-to levels are decided for a planning period and in the second stage, lateral trans-
shipments can be used as a recourse action. Furthermore, we have presented a generic and
robust methodology to model both supply disruptions and yield uncertainty that has merit
in itself beyond this specific application in the retailing sector.

Since the original mathematical formulation where orders are placed in fixed base quant-
ities was intractable, we have proposed a continuous approximation of the order logic that
is solvable. The objective value of the resulting formulation was approximated by the SAA.
The deterministic MILPs that resulted from the SAA were solved by the PHA. The numerical
experiments show that considerable cost and inventory savings can be achieved under equal
service levels when both mitigation strategies are implemented.

In this research, we have focused on the retailing environment. However, the generality
of the model allows for the modeling of similar two-echelon inventory systems within other
environments. One example is the blood supply chain, where availability is also key and
substitution between different products takes place often (Salehi et al., 2019). Moreover, the
model itself is also adaptable to other situations. For example, instead of lost sales at the
lowest echelon, backorders can be implemented. Assumptions such as that one retailer is
assigned to one warehouse can be relaxed to fit other supply chains.

There are several directions in which this research can be extended. The first direction of
future research concerns the PHA. One of the main advantages of this algorithm is the pos-
sibility of parallelization. Recall that the PHA decomposes the problem horizontally, making
each scenario individually solvable. Per iteration, each of these individual solves can be done
in parallel, which can greatly help in reducing the computation times.

Secondly, it can be interesting to not only include supply disruptions, but also disruptions
throughout the supply chain. Examples can be a disruption at the DC or at the transport
lanes between any of the entities. The proposed mitigation strategies could protect against
these risks as well.
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Lastly, it can be worthwhile to implement a lateral transshipment policy. Currently, the
model can freely decide on the lateral transshipments, which can lead to great fluctuations
depending on different inputs and situations. However, this is not desirable in practice. A
policy, such as the three parameter lateral transshipment policy presented by Avci (2019), can
make the proposed lateral transshipment mitigation strategy more robust and implementable
in practice. The three parameter policy defines two thresholds per entity. If the inventory
position of an entity drops below the lower threshold, the entity will request a lateral trans-
shipment from another entity whose inventory position is above the second, higher threshold.

We have conducted a case study at Jumbo Supermarkten to show the benefits of the proposed
mitigation strategies in practice. For the continuous order logic, similar conclusions as for the
numerical experiments were drawn, although the savings were less substantial. Furthermore,
we presented a heuristic to translate the continuous order logic to the original order logic
where orders are placed in multiples of fixed base quantities. For the fixed order quantity
model, considerable savings were found. Costs and inventory were substantially reduced under
almost equal fill rates. We therefore advise Jumbo to use this study as a basis to implement
the mitigation strategies into their inventory system. Specifically, they should investigate two
ways that could improve the model in their situation.

The first improvement is to incorporate forecasting, for which they already have processes
in place as explained in Section 6.2, into the model. In our study, the order-up-to levels are
given as a single number. However, these can also be defined as forecast plus some safety
stock. The model could then use the forecast as input and optimise the safety stock setting,
thereby adequately using information that is already available within Jumbo.

The second improvement has previously been proposed as topic of future research. Fol-
lowing the same reasoning, we believe that to be able to successfully implement lateral trans-
shipments in practice, Jumbo should investigate designing a general lateral transshipment
policy. Such a policy should also incorporate demand substitution.

Furthermore, we believe that the disruption and yield uncertainty modeling framework can
have benefits for Jumbo in other applications as well. One example is supplier selection. When
deciding between two suppliers that have different risk profiles, the framework can help in
giving insight into the supply risk for Jumbo concerning these suppliers, thereby supporting
the decision to source at one or both of the suppliers. Another example could be product
assortment decisions.

A last remark for Jumbo regards their data collection. Currently, only dynamic delivery
data is stored. Dynamic in this sense means that when an employee of Jumbo moves the
delivery date because a supplier has notified them beforehand that a delivery will not be
successful, the delivery is still counted as in full in time if the supplier delivers on the new
date. However, to properly estimate disruption and yield uncertainty parameters, the static
delivery data can be more insightful. For the static delivery data, the promised delivery date
is not moved, and if the order is not delivered on that date, it is counted as too late. We
therefore recommend that Jumbo also collects and stores the static delivery data to be able
to more adequately model disruptions and yield uncertainty.

47



References

Abe, S. (2014). Impact of the great thai floods on the international supply chain. Malaysian
Journal of Economic Studies, 51 , 147-155.

Adan, I., Eenige, M. & Resing, J. (1995). Fitting discrete distributions on the first two
moments. Probability in the Engineering and Informational Sciences, 9 , 623 - 632.

Agrawal, N. & Smith, S. A. (2015). Multi-location inventory models for retail supply chain
management. In N. Agrawal & S. A. Smith (Eds.), Retail supply chain management:
Quantitative models and empirical studies. Springer US.

Amundson, J., Brown, A., Grabowski, M. & Badurdeen, F. (2014). Life-cycle risk modeling:
Alternate methods using bayesian belief networks. Procedia CIRP , 17 , 320-325.

Aqlan, F. & Lam, S. S. (2016). Supply chain optimization under risk and uncertainty: A case
study for high-end server manufacturing. Computers & Industrial Engineering , 93 , 78-87.

Atan, Z. & Snyder, L. V. (2012). Disruptions in one-warehouse multiple-retailer systems.
Available at SSRN 2171214 .

Avci, M. G. (2019). Lateral transshipment and expedited shipping in disruption recovery: A
mean-cvar approach. Computers & Industrial Engineering , 130 , 35-49.

Bandaly, D., Satir, A., Kahyaoglu, Y. & Shanker, L. (2012). Supply chain risk management —
i: Conceptualization, framework and planning process. Risk Management , 14 (4), 249–271.

Bogataj, D. & Bogataj, M. (2007). Measuring the supply chain risk and vulnerability in
frequency space. International Journal of Production Economics, 108 (1), 291-301.

Chopra, S., Reinhardt, G. & Mohan, U. (2007). The importance of decoupling recurrent and
disruption risks in a supply chain. Naval Research Logistics (NRL), 54 (5), 544-555.

Choudhary, N. A., Singh, S., Schoenherr, T. & Ramkumar, M. (2022). Risk assessment in
supply chains: a state-of-the-art review of methodologies and their applications. Annals of
Operations Research.

Feng, P., Fung, R. Y. & Wu, F. (2017). Preventive transshipment decisions in a multi-location
inventory system with dynamic approach. Computers & Industrial Engineering , 104 , 1-8.

Ferrari, S. & Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions.
Journal of Applied Statistics, 31 (7), 799-815.

48



Firoozi, M. (2018). Multi-echelon Inventory optimization under supply and demand uncer-
tainty (Doctoral dissertation). Université de Bordeaux.
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Appendix A

Demand fitting procedure

1. If −1/k ≤ a ≤ −1/(k + 1) for certain k = 1, 2, 3, . . ., then

Y =

{
BIN(k, p) w.p. q,

BIN(k + 1, p) w.p. 1− q,

where

q =
1 + a(1 + k) +

√
−ak(1 + k)− k

1 + a
, p =

E(D)

k + 1− q
.

2. If a = 0, then Y = POIS(λ) with λ = E(D).

3. If 1/(k + 1) ≤ a ≤ 1/k for certain k = 1, 2, 3, . . ., then

Y =

{
NB(k, p) w.p. q,

NB(k + 1, p) w.p. 1− q,

where

q =
(1 + k)a−

√
(1 + k)(1− ak)

1 + a
, p =

E(D)

k + 1− q + E(D)
.

4. If a ≥ 1, then

Y =

{
GEO (p1) w.p. q1
GEO (p2) w.p. q2

where

p1 =
E(D)

[
1 + a+

√
a2 − 1

]
2 + E(D)

[
1 + a+

√
a2 − 1

] , q1 =
1

1 + a+
√
a2 − 1

,

p2 =
E(D)

[
1 + a−

√
a2 − 1

]
2 + E(D)

[
1 + a−

√
a2 − 1

] , q2 =
1

1 + a−
√
a2 − 1

.
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