
Article

Stochastic Reorder Point-Lot Size (r,Q) Inventory
Model under Maximum Entropy Principle

Davide Castellano

Received: 17 October 2015; Accepted: 23 December 2015; Published: 30 December 2015
Academic Editor: Kevin H. Knuth

Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Largo Lucio Lazzarino, Pisa 56122, Italy;
davide.castellano@for.unipi.it; Tel.: +39-050-2218139

Abstract: This paper takes into account the continuous-review reorder point-lot size (r,Q) inventory
model under stochastic demand, with the backorders-lost sales mixture. Moreover, to reflect the
practical circumstance in which full information about the demand distribution lacks, we assume that
only an estimate of the mean and of the variance is available. Contrarily to the typical approach in
which the lead-time demand is supposed Gaussian or is obtained according to the so-called minimax
procedure, we take a different perspective. That is, we adopt the maximum entropy principle to
model the lead-time demand distribution. In particular, we consider the density that maximizes
the entropy over all distributions with given mean and variance. With the aim of minimizing the
expected total cost per time unit, we then propose an exact algorithm and a heuristic procedure. The
heuristic method exploits an approximated expression of the total cost function achieved by means of
an ad hoc first-order Taylor polynomial. We finally carry out numerical experiments with a twofold
objective. On the one hand we examine the efficiency of the approximated solution procedure. On
the other hand we investigate the performance of the maximum entropy principle in approximating
the true lead-time demand distribution.
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1. Introduction

When it is necessary to assign probabilities to mutually exclusive events in a sample space and
there is not any prior knowledge about them, then we should assume that all these events have equal
probability. This is called principle of insufficient reason or principle of indifference. It was originally
stated by J. Bernoulli in 1713 and then endorsed by Laplace in 1814 [1].

In the case that we become aware of some information about the probability distribution of the
outcomes, then we can adjust the assignment of probabilities accordingly. This is possible by means
of the maximum entropy (MaxEnt) principle, which is a variational method of statistical inference
originally proposed by Jaynes [2–4]. This principle basically works as follows: in the task concerned
with determining a probability density (or mass) function subject to constraints, we should use the
distribution satisfying those constraints that has the largest entropy. It is possible to prove that the
principle of indifference derives from the MaxEnt principle in the case of a finite sample space when
no constraint is imposed [5].

The MaxEnt principle has been widely adopted in a variety of fields. Taking into account some of
the most recent works, we can cite the following contexts: urban planning [6]; queueing systems [7];
structural dynamics [8]; insurance [9]; computer vision and multimedia [10]; computer algebra [11];
geology [12]; biomechanics [13]; signal processing [14]. The literature gives some reviews concerning
applications in ecology, finance, physics, chemistry, and biology [15–18].
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In recent times, the MaxEnt principle has been introduced in the operations management area to
approach the problem of evaluating the demand distribution or obtaining a demand forecast when
only partial information about the demand are accessible [19–21]. Information are partial in the case
the exact distribution is not available and only a certain number of observations is given.

With particular regard to the inventory management context, we would observe that, in practice,
the decision-maker may actually know only the estimate of the mean and of the variance of the
demand, but not the distribution type. In this circumstance, the traditional approach is to consider the
demand within a given period as a normally distributed random variable [22]. This also follows from
the assumption that individual demands are independent and identically distributed (i.i.d.) random
variables, and then, according to the central limit theorem, the gaussianity of their sum can readily be
deduced. However, this procedure is hardly valid in reality. In fact, single demands are generally not
i.i.d. random variables [20]. In addition, one should also consider that the normal distribution
is not recommended for items characterized by demand with large coefficient of variation [23].
A different approach to model the demand distribution is based on adopting the so-called minimax
distribution-free procedure [24–26]. However, this gives an upper bound of the true cost, which may
turn out in a not negligible error with respect to the optimal policy. To overcome the limitations
characterizing the previous two methods, researches have recently introduced the MaxEnt principle
in the task of optimizing an inventory system under partial information about the distribution of the
quantity demanded [20]. We would however observe that, to the authors’ knowledge, the number of
applications of the MaxEnt principle in the inventory management field are so far quite limited.

In the inventory management theory, the continuous-review reorder point-lot size (r,Q) model
is a well-known policy. The system is continuously reviewed and, whenever the inventory position
drops to or below r, an amount of Q units of goods is issued. The two control variables r and Q
have different purposes. The replenishment quantity Q affects the trade-off between production or
order frequency and inventory: a larger Q leads to few replenishments but higher average inventory
levels; a smaller Q turns out to produce low average inventory but more replenishments. The reorder
point r affects the stockout probability: a higher r gives larger inventory to assure a smaller stockout
probability; a smaller r reduces inventory at the expense of a greater stockout probability.

As real inventory systems are typically subject to demand uncertainties, the (r,Q) policy under
stochastic demand is therefore more practical. The literature proposes numerous works concerning
stochastic (r,Q) models. In this regard, there exist studies involving Gaussian lead-time demand
(e.g., [27–30]) or exploiting the minimax approach (e.g., [31–33]), as well as models that consider
single- (e.g., [28,31,32]) or multi-echelon (e.g., [27,29,30]) systems. However, to the best of our
knowledge, the MaxEnt principle has never been implemented into the (r,Q) policy.

We would point out that backorders-lost sales mixtures should not be neglected in a stochastic
inventory model. In fact, these mixtures are generally adopted to model the different purchasing
behaviors of customers when facing stockouts. Actually, some of them may wait until demand is
satisfied (such demands are backordered); while others may be impatient (such demands are lost).
Numerous studies involve this aspect (see, e.g., [34–36]).

Owing to the above observations, we consider the stochastic continuous-review reorder point-lot
size (r,Q) model with backorders-lost sales mixtures. We derive the total cost function taking into
account the MaxEnt principle. More precisely, we adopt the MaxEnt principle to model the lead-time
demand distribution, given certain mean and variance. The purpose is to determine the replenishment
policy that minimizes the expected total cost per time unit.

We present an exact algorithm and a heuristic solution procedure. The heuristic algorithm exploits
an approximated expression of the total cost function achieved by means of an ad hoc first-order Taylor
polynomial (i.e., a first-order truncation of the Taylor series expansion). We finally carry out numerical
experiments with a twofold objective. On the one hand we examine the efficiency of the approximated
solution procedure. On the other hand we investigate the performance of the MaxEnt principle in
approximating the true lead-time demand distribution. In this regard, the MaxEnt principle is firstly
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compared with the Gaussian approximation and the minimax procedure. Then, a comparison with the
approximation provided by the Weibull density is presented, as well. We would, in fact, compare the
MaxEnt principle with the modeling capability provided by the Weibull density.

The remainder of the paper is as follows. Section 2 introduces notation, assumptions and
optimization problem. In Section 3, we give the exact optimization procedure. In Section 4, we
propose an approximated optimization approach. Section 5 presents numerical experiments. Finally,
Section 6 deals with conclusions and further remarks.

2. Notation, Assumptions and Problem Definition

The main notation adopted is the following:

Decision variables:
Q Order quantity (quantity units).
r Reorder point (quantity units).
Parameters:
h Unit holding cost rate (monetary unit/quantity unit/time unit).
A Fixed ordering cost per order (monetary unit/order).
π Fixed penalty cost per unit short (monetary unit/quantity unit).
π0 Marginal profit per unit (monetary unit/quantity unit).
L Replenishment lead time (time unit).
„
µ Average demand rate (quantity unit/time unit).
„
σ Standard deviation of the demand rate (quantity unit/time unit).
β Fraction of shortage (i.e., demand during the stockout period) that will be lost.
Random variables:
X Lead-time demand, i.e., quantity demanded during the lead time.
Functions and operators:
f p¨q Probability density function (p.d.f.) of the lead-time demand.
x+ Maximum between 0 and x, i.e., x` ” max t0, xu.

The main assumptions are the following:

‚ Inventory is continuously reviewed. An order of size Q is issued when the on-hand inventory
reaches the reorder point r.

‚ The reorder point r is positive.
‚ The distribution of X is unknown/unspecified, but only its mean µ ” rµL and variance σ2 ” rσ2L

can be evaluated.
‚ The random variable X is continuous and nonnegative. That is, the lead-time demand can take

any value in R`0 .
‚ Shortages are allowed and partially backordered with ratio 1 ´ β. The fraction of shortage with

ratio β is lost.
‚ The time horizon is infinite.

Under our assumptions, the expected total cost per time unit is given by:

C pQ, rq “ A
rµ

Q
` h

„

Q
2
` r´ rµL`βB prq



` π
rµ

Q
B prq (1)

where π ” π` π0β, and

B prq “ E
”

pX´ rq`
ı

“

`8
ż

r

px´ rq f pxq dx (2)
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is the expected shortage at the end of the cycle. In Equation (2), E r¨s represents the mathematical
expectation. Cost function (Equation (1)) consists of the ordering cost, the inventory holding cost, and
the shortage cost [37]. Note that Equation (2) can be determined once the density f has been specified.

Optimizing replenishments in the inventory system under consideration means solving the
following problem:

pP1q min
pQ,rq

C pQ, rq ,

s.t. Q P R`,
r P R`,

where C pQ, rq is given by Equation (1). We remind that we are in the case where the actual density
f of X is unknown/unspecified, but only the mean µ and the variance σ2 of X can be assessed. In
this circumstance, we cannot solve problem (P1) directly, as the quantity B prq cannot explicitly be
calculated (since f is not given). Therefore, the exact solution that optimizes replenishments in the
considered system cannot be determined. Consequently, the problem can only be approached adopting
a suitable approximation.

In this regard, the procedure that is typically adopted in the literature (see, e.g., [27–33]) consists in
assuming that the density of X is Gaussian or is derived according to the minimax method. We take here
a different perspective, which is based on adopting the MaxEnt principle. That is, in Equation (2) we
replace f with the density f maximizing the entropy over all densities defined on R`0 with mean µ and
variance σ2. This maximization problem can be approached according to the following proposition [5]:

Proposition 1. (Maximum entropy distribution) Let us consider the problem of maximizing the entropy
h pgq “ ´

ş

Sg pxq logg pxq dx over all p.d.f.s g with support S satisfying the following constraints:

1. g pxq ě 0, with equality outside the support S,
2.

ş

Sg pxq dx “ 1,
3.

ş

S pi pxq g pxq dx “ αi, for i “ 1, 2, ..., m,

where, for i “ 1, 2, ..., m, Pi is a (measurable) function and αi is a real number. Let
g˚ pxq “ exp

 

λ0 `
řm

i“1 λi pi pxq
(

, x P S, where λ0, ..., λm are chosen so that g˚ satisfies the previous
constraints. Then g˚ uniquely maximizes h(g) over all probability density functions g satisfying the
previous constraints.

Thanks to Proposition 1, the density f maximizing the entropy over all densities defined on R`0
with mean µ and variance σ2 is given by

f pxq “ exp
!

ax2 ` bx` c
)

, x P R`0 (3)

where the quantities a, b, and c can readily be obtained by solving the following system of equations:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

`8
ş

0
exp

 

ax2 ` bx` c
(

dx “ 1,

`8
ş

0
xexp

 

ax2 ` bx` c
(

dx “ µ,

`8
ş

0
x2exp

 

ax2 ` bx` c
(

dx “ σ2 ` µ2.

In what follows, the density f will be also referred to as the maximum entropy (or MaxEnt) density.
If we replace f with f in Equation (2), the expected shortage at the end of the cycle becomes:

B prq “

`8
ż

r

px´ rq f pxq dx (4)
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and substituting B prqwith B prq in Equation (1) we get:

C pQ, rq “ A
rµ

Q
` h

„

Q
2
` r´ rµL`βB prq



` π
rµ

Q
B prq (5)

Ultimately, instead of solving problem (P1) directly (that is not possible, as the quantity B prq in
Equation (1) cannot explicitly be determined) we turn to approach the following:

pP2q min
pQ,rq

C pQ, rq ,

s.t. Q P R`,
r P R`,

where C pQ, rq is given by Equation (5). Evidently, solving problem (P2) is not equivalent to determining
the optimal solution to problem (P1). That is, the solution pQ˚, r˚q to problem (P2) is not optimal to
problem (P1). In fact, the maximum entropy density f is used to “approximate” the true density f
of the lead-time demand, which is unknown by assumption. Therefore, pQ˚, r˚qmay be considered
a “heuristic” (i.e., not optimal) solution to problem (P1). If the decision-maker had full information
about f , then it would clearly be preferable to approach problem (P1) directly.

3. Exact Procedure to Solve Problem (P2)

We can first note that the integrals in the above system of equations can converge if and only if
a ă 0. Under this condition, it is possible to check that the complementary c.d.f. F0 associated to the
density f given by Equation (3) is expressed as follows:

F0 pxq “
ż `8

x
f ptq dt “

1
2

c

π

´a
e
´

b2

4a
`c

„

1´ erf
ˆ

´
2ax` b
2
?
´a

˙

, (6)

where erf p¨q is the Error function [38]. The related c.d.f. F is evidently given by F pxq “ 1´ F0 pxq.
Moreover, the quantity B in Equation (5), i.e., the expected shortage at the end of the cycle, can be
determined with the following relation:

B prq “
ş`8

r px´ rq f pxq dx “
ş`8

r F0 pxq dx

“ ´
1
2a

$

’

&

’

%

eax2`bx`c `
1
2

c

π

´a
p2ar` bq e

´
b2

4a
`c

„

1´ erf
ˆ

´
2ar` b
2
?
´a

˙

,

/

.

/

-

“ ´
1
2a

“

f prq ` p2ar` bq F0 prq
‰

.

(7)

The equality
ş`8

r px´ rq f pxq dx “
ş`8

r F0 pxq dx in Equation (7) is known in literature [39].
Equations (6) and (7) can be obtained exploiting the numerous properties of the Error function
given in [40].

From (7), we have that
d2

dr2 B prq “ f prq. Hence, we can affirm that B prq is a convex function of

r. Moreover, observing that E
”

pX´ rq`
ı

{Q is a convex function of pQ, rq, for Q ą 0 and r ą 0, for
any p.d.f. of X [41], the convexity of C pQ, rq in pQ, rq, for Q ą 0 and r ą 0, can readily be deduced.
Therefore, the solution to problem (P2) can be obtained by solving the First-Order Conditions of
optimality in pQ, rq.

If we impose the First-Order Condition in r, we obtain:

F0 pr pQqq “
h

hβ` π
rµ

Q

(8)
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where r pQq, which is the optimal r value for any Q, must satisfy Equation (8). In other terms,
the optimal r value for any Q can be found from Equation (8) by inverting F (we remind that
F0 pxq “ 1 ´ F pxq):

r pQq “ F´1

¨

˚

˚

˝

1´
h

hβ` π
rµ

Q

˛

‹

‹

‚

(9)

where F´1 is the inverse function of F. We can further observe that (5) can conveniently be rewritten
as follows:

C pQ, rq “ A
rµ

Q
` h

ˆ

Q
2
` r´ rµL

˙

` B prq
ˆ

hβ` π
rµ

Q

˙

(10)

Moreover, inserting Equations (7)–(9) into Equation (10) we obtain, after some algebraic
manipulations, the following expression:

C pQq “ A
rµ

Q
` h

ˆ

Q
2
´ rµL

˙

´
1
2a

„ˆ

hβ` π
rµ

Q

˙

f pr pQqq ` hb


(11)

In conclusion, the Q-component Q˚ of the solution to problem (P2) can be found by minimizing
Equation (11) in Q. Note that this can only be achieved by means of a numerical technique. In fact,
the First-Order Condition in Q imposed to Equation (11) (i.e., the equation dC pQq{dQ “ 0) cannot
be solved in Q in closed form. In other words, a closed-form formula that solves the equation
dC pQq{dQ “ 0 in Q does not exist. To minimize Equation (11) in Q, a standard constrained nonlinear
minimization algorithm can be used, e.g., the interior-point algorithm. This algorithm can, in fact, be
implemented numerically. The r-component r˚ of the solution to problem (P2) can then be determined
inserting Q˚ into Equation (9).

4. An Approximated Procedure to Solve Problem (P2)

We would observe that optimization approaches that are effective but also difficult to be
implemented in practice, e.g., because of large computational time and/or lack of a simple solution
procedure (which may consist in a simple formula), may have little relevance under a practical point
of view. For example, when a closed-form expression to the First-Order Conditions of optimality lacks,
the optimal solution may be obtained with a not negligible effort, which may make unpractical the
model itself. This may be the case of a large retailer that typically needs to manage thousands of items,
and the control variables are often required to be recalculated frequently. Therefore, the development
of efficient and practically applicable approximated optimization procedures is strongly encouraged in
these circumstances [42–44].

Owing to the above observations, in this section we propose an efficient approximated procedure
to approach problem (P2). In fact, we remind that the optimal solution can only be achieved by
means of a numerical technique, and this may limit the application of the model in practice. The
presented approximation method permits us to obtain a simple formula, which resembles the classic
EOQ expression.

The proposed near-optimal procedure is based on an ad hoc approximation of part of cost
function (11). In particular, we replace f pr pQqq with a first-order truncation of its Taylor series
expansion in Q centered in

Q ”

c

2rµA
h

which is the well-known optimal solution in the EOQ model. We would observe that we do not
investigate the convergence properties of the Taylor series expansion of f pr pQqq. This for two main
reasons: (i) this task is particularly hard to be analytically accomplished (in this regard, one should
also consider that the model involves several parameters, and the convergence is plausibly strongly
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dependent on their specific values); and (ii) we rely on the fact that, implementing an approximation
around the optimal solution in deterministic conditions, the true cost function is “close” to the
approximated expression (in particular around the minimum), with an error that is intuitively even
smaller as the variability in the system decreases. Although this last point is actually a heuristic
reasoning, it is supported by experimental evidences. The reader is referred to the numerical study
section (Section 5), where tests show the efficiency of our approximation method. We would finally
remind that a similar approach has successfully been implemented in previous researches [44,45].

Taking the first-order derivative in Q of both side of Equation (8), we have:

d
dQ

F0 pr pQqq “
d

dQ

¨

˚

˚

˝

h

hβ` π
rµ

Q

˛

‹

‹

‚

ñ
dF0 pr pQqq

dr pQq
dr pQq

dQ
“

hπrµ
pπrµ` hβQq2

ñ ´ f pr pQqq
dr pQq

dQ
“

hπrµ
pπrµ` hβQq2

ñ
dr pQq

dQ
“ ´

1
f pr pQqq

hπrµ
pπrµ` hβQq2

.

We can then note that:

d
dQ

f pr pQqq “
d f pr pQqq

dr pQq
dr pQq

dQ

“ p2ar pQq ` bq f pr pQqq

«

´
1

f pr pQqq
hπrµ

pπrµ` hβQq2

ff

“ ´p2ar pQq ` bq
hπrµ

pπrµ` hβQq2
.

Therefore, with reference to a neighborhood of Q, we can write:

f pr pQqq « p0 ` p1
`

Q´Q
˘

(12)

where:
p0 ” f

`

r
`

Q
˘˘

,

p1 ” ´
`

2ar
`

Q
˘

` b
˘ hπrµ
`

πrµ` hβQ
˘2 .

With some algebraic manipulations, Equation (12) can conveniently be rewritten as follows:

f pr pQqq « s0 ` s1Q, (13)

where:
s0 ” p0 ´ p1Q
s1 ” p1.

Finally, inserting Equation (13) into Equation (11), we can approximate C pQq in a neighborhood
of Q with the following expression:

Ĉ pQq “
u
Q
` vQ` y, (14)
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where:
u ” Arµ´

1
2a

s0πrµ,

v ”
h
2
´

1
2a

s1hβ,

y ” ´
1
2a
ps0hβ` s1πrµ` hbq ´ hrµL.

We can observe that Ĉ pQq resembles the deterministic cost structure plus a constant term in Q.
The near-optimal Q-component Q̂ of the solution to problem (P2) can therefore be found solving the
equation dĈ pQq{dQ “ 0, which is equivalent to

N pQq ” vQ2 ´ u “ 0

Under the assumption that u and v are positive quantities, N pQq admits a unique positive root,
which evidently coincides with Q̂. In the numerical section, we will show that this fundamental
assumption is licit for a reasonably wide range of parameter values. Therefore, Q̂ is given by

Q̂ “

c

u
v

(15)

Once Q̂ has been obtained, the corresponding near-optimal value r̂ of r can be found inserting Q̂ into
Equation (9).

We would finally remark that the approximation procedure has allowed the derivation of
a near-optimal solution (in Q) in closed form. Moreover, this expression is particularly simple,
as it resembles the classic EOQ formula. Under a practical point of view, it is evidently simpler
implementing Equation (15) rather than minimizing Equation (11) with a numerical procedure. The
approximated solution method may therefore foster the implementation in practice of the model
proposed in this paper. In the next section, we will show that the solution found with Equation (15) is
efficient for a wide range of parameter values.

5. Numerical Experiments

This section presents numerical experiments whose purpose is that of examining two different
questions. First, we numerically evaluate the efficiency of the approximated optimization procedure
given in Section 4. The efficiency is assessed in terms of both computational effort required and error
achieved. Then, we investigate the performance of the MaxEnt principle in approximating the true
lead-time demand distribution under limited information, i.e., when only an estimate of the mean and
of the variance of the lead-time demand is available. In the first part of this analysis, we compare the
MaxEnt principle with two alternative procedures, i.e., the Gaussian approximation and the minimax
approach, taking into account several classes of demand distributions. In the second, and last, part,
we present a comparison between the MaxEnt principle and the approximation provided by the
Weibull density.

These experiments were performed on a PC with an Intelr Core™ i7 processor at 2.4 GHz and
with 16 GB of RAM. Moreover, MATLABr R2013b was used as computing environment.

5.1. Efficiency of the Approximated Optimization Method

Let us consider the following quantity:

APE ”

ˇ

ˇC pQ˚, r˚q ´ C
`

Q̂, r̂
˘
ˇ

ˇ

C pQ˚, r˚q
ˆ 100 (16)
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which is the Absolute Percentage Error (APE). In Equation (16), cost function C is given by Equation (5),
pQ˚, r˚q is the minimum-cost solution (obtained according to the procedure given in Section 3), and
`

Q̂, r̂
˘

is the near-optimal solution (obtained according to the procedure given in Section 4).
The error is evaluated by means of Equation (16) for different combinations of parameter values.

Parameter values are randomly drawn within the intervals shown in Table 1. Although the ranges
chosen are purely indicative, values are similar to those typically adopted in the inventory management
literature (see, e.g., [24,37,44]). Note that in Table 1 we consider cv ” rσ{rµ instead of rσ. Once rµ and cv

are fixed, the corresponding value of rσ is therefore given by rσ “ cv ¨ rµ.

Table 1. Intervals where parameters take values.

Parameters Intervals Units of Measurement

rµ r100, 1000s (units/year)
cv r0.05, 0.80s -
L r0.03, 0.17s (years)
A r100, 250s ($/order)
h r1, 25s ($/unit/year)
π r20, 70s ($/unit)
π0 r80, 150s ($/unit)
β r0.1, 0.9s -

Results of the error analysis are shown in Table 2. We can note that the approximated optimization
method mainly achieves a very small APE (i.e., APE < 1%). This happens for a reasonable wide range
of parameter values. In some experiments, it is less than 0.01%, and it can therefore be considered
negligible. In a few cases, the APE reaches values greater than 1%, but smaller than 2%. In general,
we can thus affirm that the error achieved is sufficiently small to consider reasonably good the
approximation made. It is worth noting that, in the cases where the error is large, i.e., APE > 1%,
cv is high. That is, it seems that a greater variability in the system leads to higher error. This is
expected, as the approximation is based on a Taylor series expansion around the optimal solution in
deterministic conditions.

Table 2. Results of the error analysis.

Test Number rµ cv L A h π π0 β APE

1 142 0.31 0.13 219 14 54 143 0.14 0.04%
2 276 0.59 0.13 232 15 23 145 0.74 <0.01%
3 987 0.59 0.15 165 12 48 99 0.70 0.92%
4 377 0.15 0.10 154 20 59 127 0.21 0.14%
5 371 0.75 0.17 143 21 65 122 0.81 1.93%
6 756 0.48 0.03 167 17 46 106 0.85 0.08%
7 435 0.50 0.15 240 17 30 126 0.16 0.61%
8 941 0.67 0.10 214 11 69 150 0.79 0.32%
9 322 0.69 0.15 237 14 50 90 0.82 0.38%

10 910 0.62 0.15 143 17 53 88 0.43 1.88%
11 355 0.72 0.15 158 13 55 139 0.59 0.54%
12 511 0.59 0.15 208 1 54 111 0.45 0.01%
13 392 0.23 0.08 156 14 48 108 0.42 <0.01%
14 956 0.59 0.09 255 4 23 85 0.23 0.07%
15 110 0.45 0.04 122 16 63 149 0.56 0.01%
16 564 0.30 0.09 174 2 65 84 0.45 <0.01%
17 652 0.66 0.15 240 5 33 143 0.57 0.15%
18 838 0.45 0.06 168 11 69 124 0.66 <0.01%
19 565 0.47 0.05 184 18 41 139 0.69 0.10%
20 448 0.63 0.13 164 18 68 135 0.66 0.67%
21 632 0.39 0.04 134 21 20 141 0.16 0.13%
22 296 0.48 0.05 201 15 22 84 0.22 0.05%



Entropy 2016, 18, 16 10 of 18

Table 2. Cont.

Test Number rµ cv L A h π π0 β APE

23 849 0.51 0.10 230 3 66 87 0.51 <0.01%
24 104 0.63 0.15 238 25 45 99 0.18 0.34%
25 787 0.11 0.12 178 5 67 121 0.45 <0.01%
26 507 0.68 0.10 183 18 38 96 0.56 0.01%
27 201 0.38 0.07 160 21 40 107 0.39 0.07%
28 178 0.37 0.07 144 11 26 115 0.67 0.02%
29 166 0.35 0.03 133 1 29 90 0.31 <0.01%
30 639 0.73 0.16 133 13 39 117 0.31 1.52%
31 256 0.07 0.16 165 25 58 80 0.64 <0.01%
32 597 0.21 0.14 134 10 65 140 0.42 <0.01%
33 920 0.73 0.11 150 22 42 144 0.13 1.46%
34 261 0.30 0.06 148 11 47 83 0.54 0.01%
35 319 0.17 0.16 241 21 57 92 0.39 <0.01%
36 663 0.46 0.09 143 13 58 134 0.56 0.23%
37 211 0.43 0.08 113 4 30 127 0.45 0.01%
38 108 0.45 0.07 242 23 40 81 0.64 <0.01%
39 151 0.39 0.11 203 18 53 131 0.40 0.06%
40 151 0.78 0.07 189 25 29 93 0.37 0.33%
41 346 0.16 0.09 156 4 42 86 0.59 <0.01%
42 811 0.23 0.09 185 2 45 125 0.28 <0.01%
43 862 0.43 0.07 212 6 68 124 0.58 0.03%
44 329 0.69 0.16 205 19 31 120 0.75 0.84%
45 181 0.29 0.10 109 19 48 117 0.76 <0.01%

With regard to the error analysis, we have carried out an additional investigation. APE has been
evaluated over 1000 randomly generated problems, with parameter values drawn within the intervals
in Table 1. Results are as follows:

‚ In about 42.49% of cases, APE < 0.01%;
‚ In about 51.16% of cases, 0.01% < APE ď 1%;
‚ In about 4.44% of cases, 1% < APE ď 2%;
‚ In about 1.92% of cases, APE > 2%;
‚ The maximum value achieved is 4.8%.

We can observe that, in more than 93% of cases, APE is smaller than or equal to 1%. While, in
more than 98% of cases, we have that APE ď 2%.

We now evaluate the computational effort required by the approximated method and by the
exact algorithm to solve problem (P2). To this aim, we consider the time required to solve 1000
random problems. In fact, although the time difference on a single problem is practically negligible,
the ratio of the computational times may become significant over several problems. In each problem,
parameter values are randomly drawn within the intervals shown in Table 1. Both algorithms are
tested on the same problems. That is, the comparison is made in terms of time needed to solve the
same batch of 1000 random problems, where, in each problem, parameter values are (randomly)
drawn within the intervals in Table 1. Results are as follows: the exact algorithm needed 99.42 s, while
the approximated solution method spent 6.84 s. That is, over identical 1000 random problems, the
percentage of computational time reduction achieved by the approximated solver is more than 93%.

In conclusion, we can assert that the approximated solution method is efficient, in terms of
both error achieved and computational effort required. It seems therefore promising for a practical
application. We would finally observe that, in every test, the assumption that u and v are positive has
been satisfied.
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5.2. Comparative Analysis

In this subsection, we investigate the performance of the MaxEnt principle in approximating
the true lead-time demand distribution, when only an estimate of the mean and of the variance is
given. In the first part of this subsection, this experiment is made taking into account several classes of
demand distributions: lognormal, gamma, and Weibull. The MaxEnt principle is compared with two
alternative procedures: the Gaussian approximation and the minimax approach. In the second, and
last, part of this subsection, the MaxEnt principle is compared with the approximation provided by the
Weibull density. In this second analysis, the true density of the lead-time demand is assumed to be a
mixture of lognormal distributions.

Let us begin with the first study. Table 3 shows the parameters whose value is kept fixed. These
parameter values have been randomly drawn within the ranges in Table 1. The other parameters, i.e.,
cv, L and h, take several different values. This is to study the sensitivity of the response with respect to
variations in the value of these parameters, which significantly affect the optimal replenishment policy.

Table 3. Parameters whose value is kept fixed.

Parameters Values Units of Measurement

rµ 834 (units/year)
A 237 ($/order)
π 24 ($/unit)
π0 99 ($/unit)
β 0.54 -

Each single experiment, which is defined for a given set of parameter values, is carried out
as follows.

The values of rµ, cv, and L are used to sample ten observations from the true distribution of the
lead-time demand. The parameters of the true lead-time demand distribution have clearly to be
determined by imposing that the mean and the standard deviation are rµL and cvrµ

?
L, respectively.

Note that the true distribution of the lead-time demand is unknown to the decision-maker in a
real-world application, but only an estimate of its mean and its variance can be obtained. Parameters h,
A, π, π0, L, and β are instead reasonably supposed to be known to the decision-maker. The observations
of the lead-time demand are used to calculate a guess of its true mean and variance. These estimates
are then exploited to find the (sub-)optimal replenishment policy in each “approximated” model
considered (imposing that the mean and the variance in the approximation model are equal to
the estimates of the true statistics). We also determine the optimal replenishment policy, and the
corresponding minimum cost, we would have adopted under complete information (i.e., if the true
lead-time demand distribution were known). Finally, we evaluate the true cost of the ordering rule
obtained under Gaussian approximation, minimax approach or MaxEnt principle. These true costs are
compared in terms of Absolute Percentage Error with respect to the true minimum cost.

With a certain lead-time demand distribution and for given parameter values, the optimal policy
is determined by minimizing Equation (1) in pQ, rq. The quantity B prq can readily be obtained by
means of Equation (2) once the density f of the lead-time demand is specified. We remind that the
density p of the lead-time demand under the minimax approach is given by [39]:

p pzq “
1
2

1
b

`

1` z2
˘3

where z “ pr´ µq {σ.
Concerning the task of assessing the mean and the variance of the lead-time demand, we would

observe that ten observations are used as a trade-off between obtaining a good estimate and a too
special value. A similar argument was raised in [20].
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For each combination of parameter values, under a given true lead-time demand distribution,
five independent runs have been made. Results are shown in Table 4 and in Table 5 for the cases h “ 5
$/unit/year and h “ 15 $/unit/year, respectively. In these tables, the smallest error achieved in each
run is written in bold.

Table 4. Results of the comparative analysis for the case h “ 5 $/unit/year. L = (days).

Lognormal Weibull Gamma

cv L Gauss. Minimax MaxEnt Gauss. Minimax MaxEnt Gauss. Minimax MaxEnt

0.05

10

0.08% 1.42% 0.07% 0.10% 1.81% 0.09% 0.65% 4.36% 0.63%
0.20% 0.74% 0.17% 0.63% 0.82% 0.62% 0.01% 2.08% 0.01%
0.15% 1.53% 0.13% 0.78% 0.91% 0.74% 0.09% 2.15% 0.09%
0.23% 0.61% 0.14% 0.20% 2.04% 0.20% 0.43% 0.85% 0.43%
0.25% 2.91% 0.62% 0.97% 4.76% 0.99% 0.89% 4.99% 0.90%

30

2.16% 9.74% 2.18% 0.45% 2.21% 0.45% 0.81% 6.66% 0.81%
0.58% 1.49% 0.58% 0.74% 6.12% 0.74% 1.74% 0.72% 1.74%
1.94% 0.54% 1.94% 0.28% 2.17% 0.28% 0.32% 1.91% 0.32%
1.01% 1.29% 1.01% 0.07% 3.66% 0.07% 1.01% 6.88% 1.01%
0.09% 2.93% 0.09% 0.20% 3.74% 0.20% 0.68% 4.50% 0.68%

0.1

10

2.17% 0.35% 0.88% 2.87% 0.50% 1.88% 8.37% 0.48% 0.34%
0.48% 1.73% 0.03% 0.08% 3.45% 0.10% 0.83% 1.56% 0.18%
0.75% 1.41% 0.31% 1.02% 1.59% 0.45% 1.13% 9.12% 2.58%
0.35% 3.55% 0.32% 1.13% 1.36% 0.20% 0.24% 3.92% 0.20%
0.67% 1.82% 0.48% 1.03% 1.47% 0.22% 0.35% 2.62% 0.10%

30

2.17% 13.9% 2.32% 1.41% 3.05% 1.31% 1.83% 2.11% 1.82%
1.87% 2.07% 1.62% 3.85% 16.29% 4.79% 2.01% 2.31% 1.29%
4.82% 0.85% 4.75% 4.39% 1.28% 4.39% 0.39% 7.46% 0.39%
0.21% 4.30% 0.20% 1.71% 2.70% 1.66% 6.47% 21.88% 6.77%
0.40% 8.38% 0.41% 1.68% 2.62% 1.67% 4.08% 1.18% 3.52%

0.4

10

8.89% 0.14% 6.73% 4.42% 1.00% 2.91% 1.83% 14.07% 0.78%
1.95% 5.35% 1.94% 2.82% 16.90% 1.25% 12.33% 41.67% 8.31%

12.65% 1.82% 8.45% 15.54% 44.96% 11.27% 5.72% 35.48% 9.75%
2.22% 1.46% 1.19% 44.09% 17.38% 38.74% 0.84% 16.47% 2.11%

17.75% 56.42% 13.32% 3.27% 2.18% 2.12% 33.77% 12.12% 33.13%

30

30.02% 77.78% 41.28% 3.14% 4.73% 0.47% 1.74% 22.78% 4.97%
7.30% 1.08% 3.17% 6.71% 2.36% 1.75% 17.78% 2.52% 11.01%
3.39% 5.79% 2.36% 48.75% 12.09% 35.85% 7.78% 2.73% 1.87%
4.40% 3.13% 2.07% 3.71% 27.39% 7.84% 2.30% 6.14% 0.07%
2.41% 5.31% 1.66% 4.54% 3.78% 1.58% 4.03% 4.59% 0.45%

0.8

10

4.28% 4.06% 3.96% 62.38% 29.48 57.97% 59.99% 27.33% 56.03%
19.38% 44.14% 15.34% 11.06% 9.85% 2.69% 7.36% 9.78% 7.20%
4.15% 13.00% 5.18% 42.95% 39.25% 16.66% 38.41% 97.31% 32.12%
18.69% 52.28% 8.56% 5.78% 15.41% 6.80% 15.63% 14.12% 11.44%
49.02% 21.78% 42.87% 23.90% 4.51% 15.76% 6.47% 24.02% 8.12%

30

12.76% 14.23% 12.65% 10.02% 19.32% 9.11% 9.48% 26.01% 7.38%
10.68% 12.15% 10.10% 11.72% 9.36% 5.53% 35.53% 56.80% 24.43%
22.08% 49.01% 26.87% 13.32% 23.93% 11.69% 16.02% 0.84% 9.35%
59.61% 95.20% 50.06% 44.93% 79.67% 36.74% 19.49% 13.96% 1.23%
19.23% 1.42% 15.25% 59.82% 14.67% 47.38% 6.79% 15.96% 6.79%
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Table 5. Results of the comparative analysis for the case h “ 15 $/unit/year. L = (days).

Lognormal Weibull Gamma

cv L Gauss. Minimax MaxEnt Gauss. Minimax MaxEnt Gauss. Minimax MaxEnt

0.05

10

0.61% 0.98% 0.61% 5.81% 1.69% 5.81% 0.10% 1.00% 0.08%
3.69% 8.90% 4.14% 0.97% 1.15% 0.96% 0.58% 3.22% 0.58%
5.22% 7.15% 1.54% 0.24% 2.34% 0.23% 0.17% 0.69% 0.14%
0.68% 0.21% 0.67% 0.22% 2.46% 0.22% 5.97% 1.28% 4.60%
0.04% 0.95% 0.04% 0.29% 0.55% 0.28% 0.02% 1.49% 0.02%

30

4.51% 0.87% 4.51% 1.60% 6.43% 1.60% 0.35% 3.58% 0.35%
0.10% 1.71% 0.10% 0.04% 2.05% 0.04% 0.59% 4.71% 0.59%
0.05% 1.93% 0.05% 0.39% 4.13% 0.39% 0.05% 1.76% 0.05%
1.50% 6.22% 0.87% 0.89% 5.08% 0.89% 12.55% 3.55% 12.55%
0.69% 0.85% 0.54% 1.59% 0.57% 1.59% 0.09% 1.68% 0.09%

0.1

10

1.90% 0.25% 1.01% 7.67% 11.49% 3.53% 1.01% 1.07% 0.90%
6.06% 11.44% 3.39% 3.57% 11.81% 5.29% 0.55% 3.82% 0.13%
0.95% 0.47% 0.38% 3.44% 1.05% 3.30% 0.40% 3.92% 0.20%
0.74% 0.58% 0.18% 1.59% 7.46% 1.79% 4.60% 0.99% 3.79%

19.46% 9.78% 2.05% 9.64% 3.09% 0.13% 0.52% 0.96% 0.08%

30

0.08% 3.35% 0.06% 16.25% 5.70% 15.32% 3.22% 1.34% 2.20%
0.38% 6.00% 0.46% 1.13% 8.15% 1.07% 4.01% 1.46% 3.80%
1.79% 1.23% 1.77% 3.05% 2.92% 1.67% 0.51% 6.69% 0.08%
1.11% 1.63% 0.99% 0.19% 3.12% 0.15% 0.32% 5.84% 0.12%
2.88% 11.44% 2.80% 0.02% 4.12% 0.02% 0.01% 4.30% 0.01%

0.4

10

42.57% 10.27% 5.72% 45.67% 39.91% 25.42% 45.89% 40.65% 20.36%
7.16% 5.78% 0.50% 3.59% 2.09% 2.99% 24.15% 20.00% 7.81%

71.38% 63.72% 52.63% 2.13% 6.52% 1.87% 43.84% 38.95% 21.29%
33.73% 16.26% 29.05% 77.76% 70.58% 53.89% 16.72% 35.84% 12.60%
7.53% 18.78% 9.79% 78.57% 96.12% 67.02% 42.80% 85.00% 7.28%

30

62.65% 34.62% 28.38% 60.80% 26.07% 49.36% 6.62% 0.83% 2.57%
9.05% 0.17% 4.59% 32.01% 48.62% 24.21% 52.75% 40.63% 19.79%

20.44% 2.18% 12.44% 10.02% 16.37% 7.68% 8.27% 16.60% 5.99%
7.11% 13.86% 9.19% 10.14% 0.34% 3.81% 84.95% 35.44% 15.45%
10.49% 15.52% 7.41% 15.16% 25.96% 9.61% 9.56% 0.66% 3.92%

0.8

10

56.30% 52.72% 39.39% 39.65% 60.42% 34.22% 73.52% 19.11% 44.42%
49.82% 44.38% 30.34% 34.35% 14.10% 9.72% 50.13% 46.24% 18.41%
32.46% 14.42% 25.41% 50.12% 46.07% 20.51% 56.26% 51.99% 21.75%
81.37% 76.52% 54.42% 28.73% 8.95% 15.81% 25.50% 6.47% 23.44%
37.60% 34.12% 15.54% 63.66% 59.47% 34.73% 17.25% 18.67% 16.50%

30

56.91% 79.41% 63.78% 18.99% 5.04% 15.77% 17.16% 5.73% 14.44%
17.84% 12.34% 16.83% 72.99% 25.19% 62.53% 57.31% 46.60% 13.48%
21.47% 15.97% 2.85% 67.05% 54.49% 21.08% 16.78% 13.63% 6.51%
23.91% 18.87% 2.21% 87.97% 76.52% 30.85% 18.06% 4.48% 12.11%
16.40% 15.76% 13.40% 25.65% 37.94% 19.86% 20.36% 16.52% 2.61%

We can first observe that relative performances do not significantly change for different values of
h, as well as varying L for fixed cv. We can also note that the error of all approximation methods is
increasing as cv and h become larger, which confirms results of the error analysis.

For small cv, the performance of the (r,Q) policy with Gaussian lead-time demand or under
MaxEnt principle is substantially similar. In fact, it is known that the Gaussian approximation works
well for small cv, as in such case the normal density is nearly 0 in the negative real semi-axis. In this
condition, we can argue that the normal density and the maximum entropy distribution are very close.
In contrast, the performance of the Gaussian approximation evidently deteriorates for higher cv. We
can also observe that its performance worsens as h increases for fixed cv.

With regard to the minimax approach, its performance improves as the coefficient of variation of
the lead-time demand increases. That is, when higher variability is involved, it seems a good choice to
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approximate the true lead-time demand distribution. In contrast, the approximation provided by the
normal density appears to be preferable for small cv.

However, results clearly highlight that using the MaxEnt principle seems the best choice, under
the considered conditions. In fact, its performance is very good under all investigated configurations
and overcomes that of the other approaches in the majority of cases analyzed. Moreover, it looks
to be not much sensitive to variations in the parameter values. This is a significant outcome, as it
makes the MaxEnt principle a promising method to model the lead-time demand distribution when
the decision-maker is provided with limited information about the true distribution.

We have then carried out additional experiments to compare the performance of the MaxEnt and
Weibull distributions in approximating the true lead-time demand distribution. Note that the Weibull
density is not typically adopted to represent the lead-time demand (more generally, the demand in
a given time interval) [39,41,46]. However, it is known to have great flexibility to model many types of
data, in particular thanks to the shape parameter k that allows the density to attain several shapes [47].

These tests are performed similarly to those presented in the first part of this subsection; that is,
the procedure is the same. Again, Table 3 shows the parameters whose value is kept fixed. In this
session, we have considered only one value for h, i.e., h = 5 $/unit/year. Parameters cv and L take
the same values that have been adopted in the previous experiments. The true density p pxq of the
lead-time demand is assumed to be expressed as follows:

p pxq “ 0.4 ¨ p
´

x;µ1,σ2
1

¯

` 0.3 ¨ p
´

x;µ2,σ2
2

¯

` 0.3 ¨ p
´

x;µ3,σ2
3

¯

where p
`

x;µi,σ2
i
˘

, for i “ 1, 2, 3, is a lognormal density with parameters µi and σ2
i . That is, p pxq is

a mixture of lognormal densities. This choice is not based on a specific criterion; basically, we have
considered a density that was not “standard”, i.e., belonging to a specific class. Parameters µi and σ2

i ,
for i “ 2, 3, are kept fixed and take the following values: µ2 “ 1.07, µ3 “ 2.69, σ2

2 “ 0.23, and σ2
3 “ 0.16.

These values are purely indicative. In each experiment, the value of µ1 and σ2
1 is determined to assure

that the mean and the standard deviation of p pxq are equal to rµL and cvrµ
?

L, respectively (we, in fact,
remind that the lead-time demand has mean and standard deviation respectively given by rµL and
cvrµ
?

L, where cv ” rσ{rµ).
For each combination of parameter values, three runs have been made. Table 6 shows the results

of the comparison between the MaxEnt and Weibull distributions. Performance is measured in terms of
Absolute Percentage Error (APE) with respect to the true minimum cost. In addition, note that Table 6
gives the value that the shape parameter k of the Weibull density takes in each run. We can note that
the MaxEnt distribution achieves a better performance, as this model has been able to obtain a smaller
APE in the majority of tests. In addition, the performance of the Weibull model seems to deteriorate,
with respect to the performance of the MaxEnt model, as the variability in the system grows. That is,
with increasing cv, the MaxEnt distribution has turned out to realize the lowest APE more frequently
than for small/medium values of cv. With regard to the APE magnitude, we can observe that it is
increasing in cv, as expected. This result is in accordance to the outcomes in the previous experiments.
With regard to the shape parameter k of the Weibull density, this has taken relatively small values.
In particular, the greatest value has been observed to be equal to 1.68. A final remark: k appears to be
decreasing as the variability in the system increases; that is, in such circumstance, the Weibull density
tends to have null mode.
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Table 6. Results of the comparison between MaxEnt and Weibull distributions. L = (days).

cv L MaxEnt Weibull k

0.05

10
3.54% 4.61% 1.68
2.39% 3.22% 1.41
0.72% 1.04% 1.24

30
6.19% 6.84% 1.46
6.46% 6.32% 1.28
6.07% 5.98% 1.19

0.1

10
12.15% 15.04% 1.08
12.22% 11.95% 1.22
0.64% 0.99% 1.27

30
4.76% 4.92% 0.58
0.49% 1.37% 0.75
1.56% 1.20% 0.67

0.4

10
13.70% 12.45% 1.14
12.12% 24.11% 0.73
8.22% 8.56% 1.31

30
6.86% 7.27% 0.44
3.05% 5.63% 1.02
6.84% 13.94% 0.57

0.8

10
80.44% 86.71% 1.54
59.43% 57.70% 1.14
7.84% 14.20% 0.72

30
11.28% 3.31% 0.63
13.28% 21.06% 0.95
10.27% 13.27% 0.76

6. Conclusions and Further Remarks

In this paper, we took into account the continuous-review reorder point-lot size (r,Q) policy
under stochastic demand, with backorders-lost sales mixture. We modelled the lead-time demand
distribution according to the MaxEnt principle. That is, we considered the density that maximizes
the entropy over all densities with given mean and variance. This approach is suitable when the
decision-maker is provided with limited information about the true distribution of the lead-time
demand. This is the case, for example, in which the true distribution is unknown, but only some
observations of the demand are available, which allow estimating the mean and the variance of the
lead-time demand.

We developed an optimization problem aimed at minimizing the expected total cost per time unit.
To approach this problem, we then presented an exact algorithm and a heuristic method. The heuristic
algorithm is based on an approximated expression of the cost function achieved by means of an ad hoc
first-order truncation of the Taylor series expansion.

Numerical experiments were finally carried out to investigate two aspects. First, the heuristic
algorithm was evaluated in terms of both error achieved and computational effort required. Tests
proved that the approximated solution procedure is efficient for a wide range of parameter values.
Then, we investigated the capability of the MaxEnt principle to approximate the true lead-time demand
distribution under partial information. This analysis was firstly made considering the performance of
two alternative approaches: the Gaussian approximation and the minimax method. Results highlighted
that the MaxEnt principle performed better that the other methods. In fact, it achieved the best outcome
in the majority of cases analyzed. A second set of experiments was then carried out to compare the
MaxEnt principle with respect to the approximation provided by the Weibull density. Again, the
MaxExt principle turned out to be preferable, as it achieved the best result in the majority of tests.
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In conclusion, the MaxEnt principle seems a promising practical approach to model the lead-time
demand distribution under partial information.

The developed model considers the lead time a constant and deterministic quantity, which can
therefore be supposed to be known to the decision-maker. However, the case of a random lead time
can be taken into account, too. In this regard, it is reasonable to follow a similar argument to what said
above concerning the distribution of the lead-time demand. That is, when the lead time is a random
variable, full information about its true distribution may not be available to the decision-maker. In this
circumstance, only some observations about the lead-time duration can be obtained. To include
stochastic lead time into our model, in the relevant case characterized by partial information, we
can proceed as follows. A premise is needed: we refer to the condition with sequential deliveries
independent of the lead-time demand, which is characterized by orders that cannot cross in time [46].
Note that this is the most common situation in practice, since it is almost always true that orders
are received in the same sequence in which they were placed [41,46]. Hence, let us assume that the
decision-maker is aware of only some observations about (i) the demand in given time periods; and
(ii) the length of lead time. These observations allow estimating the mean and the variance of the
lead time (i.e., µL and σ2

L, respectively) and of the demand per time unit (i.e., µD and σ2
D, respectively).

These quantities can then be adopted to assess the mean µ and the variance σ2 of the lead-time demand
according to the following expressions [46]:

µ “ µDµL,
σ2 “ σ2

DµL ` µ2
Dσ

2
L.

Finally. µ and σ2 can be exploited to estimate parameters a, b, and c of the density maximizing
the entropy, which will be used to model the distribution of the lead-time demand, as described in
Section 2.

Future researches may be devoted to several studies. For example, the suitability to implement
the MaxEnt principle into different inventory systems (e.g., multi-echelon supply chains) may be
investigated. In addition, the entropy maximization principle may be applied to generalized entropies,
e.g., to Tsallis entropy [48]. Finally, a more general formulation of the expected shortage may also
be considered. In particular, the expression known in the risk management literature as “shortfall
risk” [49,50] may be taken into account in place of the standard quantity.
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