20 research outputs found

    Reducing the Number of Annotations in a Verification-oriented Imperative Language

    Full text link
    Automated software verification is a very active field of research which has made enormous progress both in theoretical and practical aspects. Recently, an important amount of research effort has been put into applying these techniques on top of mainstream programming languages. These languages typically provide powerful features such as reflection, aliasing and polymorphism which are handy for practitioners but, in contrast, make verification a real challenge. In this work we present Pest, a simple experimental, while-style, multiprocedural, imperative programming language which was conceived with verifiability as one of its main goals. This language forces developers to concurrently think about both the statements needed to implement an algorithm and the assertions required to prove its correctness. In order to aid programmers, we propose several techniques to reduce the number and complexity of annotations required to successfully verify their programs. In particular, we show that high-level iteration constructs may alleviate the need for providing complex loop annotations.Comment: 15 pages, 8 figure

    Verification and falsification of programs with loops using predicate abstraction

    Get PDF
    Predicate abstraction is a major abstraction technique for the verification of software. Data is abstracted by means of Boolean variables, which keep track of predicates over the data. In many cases, predicate abstraction suffers from the need for at least one predicate for each iteration of a loop construct in the program. We propose to extract looping counterexamples from the abstract model, and to parametrise the simulation instance in the number of loop iterations. We present a novel technique that speeds up the detection of long counterexamples as well as the verification of programs with loop

    Falsifying safety properties through games on over-approximating models\r\n

    No full text
    AbstractAbstractions of programs are traditionally over-approximations and have proved to be useful for the verification of safety properties. They are presently perceived as being useless for the falsification of safety properties, i.e. showing that program execution definitely reaches a “bad” state. Alternative techniques, such as the computation of under-approximating must transitions, have addressed this shortcoming in the past. We show that over-approximating models can indeed falsify safety properties by relying on and exploiting the seriality and partial determinism of programs: programs don't just stop for no reason, and most program statements have deterministic semantics. Our method is based on solving a two-person attractor game derived from over-approximating models and makes no assumptions about the abstraction domain used. An example demonstrates the successful use of our approach, and highlights the role played by seriality and our handling of nondeterminism. Finally, we show that our method can encode must transitions, if supplied, by a simple modification of the ownership of nodes in the attractor game derived from the over-approximating model

    Multi-dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs

    Get PDF
    International audienceProving the termination of a flowchart program can be done by exhibiting a ranking function, i.e., a function from the program states to a well-founded set, which strictly decreases at each program step. A standard method to automatically generate such a function is to compute invariants for each program point and to search for a ranking in a restricted class of functions that can be handled with linear programming techniques. Previous algorithms based on affine rankings either are applicable only to simple loops (i.e., single-node flowcharts) and rely on enumeration, or are not complete in the sense that they are not guaranteed to find a ranking in the class of functions they consider, if one exists. Our first contribution is to propose an efficient algorithm to compute ranking functions: It can handle flowcharts of arbitrary structure, the class of candidate rankings it explores is larger, and our method, although greedy, is provably complete. Our second contribution is to show how to use the ranking functions we generate to get upper bounds for the computational complexity (number of transitions) of the source program. This estimate is a polynomial, which means that we can handle programs with more than linear complexity. We applied the method on a collection of test cases from the literature. We also show the links and differences with previous techniques based on the insertion of counters

    Program analysis is harder than verification: A computability perspective

    Get PDF
    We study from a computability perspective static program analysis, namely detecting sound program assertions, and verification, namely sound checking of program assertions. We first design a general computability model for domains of program assertions and correspond- ing program analysers and verifiers. Next, we formalize and prove an instantiation of Rice\u2019s theorem for static program analysis and verifica- tion. Then, within this general model, we provide and show a precise statement of the popular belief that program analysis is a harder prob- lem than program verification: we prove that for finite domains of pro- gram assertions, program analysis and verification are equivalent prob- lems, while for infinite domains, program analysis is strictly harder than verification

    Exploiting shared structure in software verification conditions

    Get PDF
    Abstract. Despite many advances, today’s software model checkers and extended static checkers still do not scale well to large code bases, when verifying properties that depend on complex interprocedural flow of data. An obvious approach to improve performance is to exploit software structure. Although a tremendous amount of work has been done on exploiting structure at various levels of granularity, the fine-grained shared structure among multiple verification conditions has been largely ignored. In this paper, we formalize the notion of shared structure among verification conditions, propose a novel and efficient approach to exploit this sharing, and provide experimental results that this approach can significantly improve the performance of verification, even on pathand context-sensitive and dataflow-intensive properties.

    Bounding the Computational Complexity of Flowchart Programs with Multi-dimensional Rankings

    Get PDF
    Proving the termination of a flowchart program can be done by exhibiting a ranking function, i.e., a function from the program states to a well-founded set, which strictly decreases at each program step. A standard method to automatically generate such a function is to compute invariants for each program point and to search for a ranking in a restricted class of functions that can be handled with linear programming techniques. Our first contribution is to propose an efficient algorithm to compute ranking functions: It can handle flowcharts of arbitrary structure, the class of candidate rankings it explores is larger, and our method, although greedy, is provably complete. Our second contribution is to show how to use the ranking functions we generate to get upper bounds for the computational complexity (number of transitions) of the source program, again for flowcharts of arbitrary structure. This estimate is a polynomial, which means that we can handle programs with more than linear complexity. We applied the method on a collection of test cases from the literature. We also point out important extensions, mainly to do with the scalability of the algorithm and, in particular, the integration of techniques based on cutpoints

    Loop invariant synthesis in a combined abstract domain

    Get PDF
    Automated verification of memory safety and functional correctness for heap-manipulating programs has been a challenging task, especially when dealing with complex data structures with strong invariants involving both shape and numerical properties. Existing verification systems usually rely on users to supply annotations to guide the verification, which can be cumbersome and error-prone by hand and can significantly restrict the usability of the verification system. In this paper, we reduce the need for some user annotations by automatically inferring loop invariants over an abstract domain with both shape and numerical information. Our loop invariant synthesis is conducted automatically by a fixed-point iteration process, equipped with newly designed abstraction mechanism, together with join and widening operators over the combined domain. We have also proven the soundness and termination of our approach. Initial experiments confirm that we can synthesise loop invariants with non-trivial constraints

    Abstract interpretation of symbolic execution with explicit state updates

    Get PDF
    Systems for deductive software verification model the semantics of their target programming language with full precision. On the other hand, abstraction based approaches work with approximations of the semantics in order to be fully automatic. In this paper we aim at providing a uniform framework for both fully precise and approximate reasoning about programs. We present a sound dynamic logic calculus that integrates abstraction in the sense of abstract interpretation theory. In the second part of the paper, we apply the approach to the analysis of secure information flow
    corecore