
Abstract Interpretation of Symbolic Execution

with Explicit State Updates�

Richard Bubel1, Reiner Hähnle1, and Benjamin Weiß2

1 Department of Computer Science and Engineering,
Chalmers University of Technology and Göteborg University

{bubel,reiner}@chalmers.se
2 Institute for Theoretical Computer Science,

University of Karlsruhe
bweiss@ira.uka.de

Abstract. Systems for deductive software verification model the seman-
tics of their target programming language with full precision. On the
other hand, abstraction based approaches work with approximations of
the semantics in order to be fully automatic. In this paper we aim at
providing a uniform framework for both fully precise and approximate
reasoning about programs. We present a sound dynamic logic calculus
that integrates abstraction in the sense of abstract interpretation theory.
In the second part of the paper, we apply the approach to the analysis
of secure information flow.

1 Introduction

Formal verification of software is desirable for many safety- and security-critical
applications. Following intense research during the last decade, the reach of for-
mal verification methods has been extended impressively. Different approaches
to verification are often categorized as “interactive” versus “automatic” depend-
ing on whether they in general require hints from human users or not. Typical
interactive systems include generic proof assistants and logical frameworks such
as Isabelle [20] as well as deductive verification systems such as KeY [5], KIV
[2], Spec# [3], and Why/Krakatoa/Caduceus [10].1 Typical automated systems
include model checkers such as Bogor [21], Java PathFinder [25], Spin [15] and
abstract interpreters such as ASTRÉE [8].

Deductive verification systems model the semantics of their target program-
ming language with full precision. This is the source of the need for user in-
teraction, because all interesting properties of Turing-complete programming
� This work was funded in part by the Information Society Technologies programme

of the European Commission, Future and Emerging Technologies under the IST-
2005-015905 MOBIUS project. This article reflects only the authors’ views and the
Community is not liable for any use that may be made of the information contained
therein.

1 We classify systems based on a verification condition generator architecture such
as Spec# or Why as interactive, because in general human users have to enrich
specifications incrementally until they can be proven.

F.S. de Boer et al. (Eds.): FMCO 2008, LNCS 5751, pp. 247–277, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357324563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

248 R. Bubel, R. Hähnle, and B. Weiß

languages are undecidable. Technically, the necessity of user interaction arises
when suitable invariants or induction hypotheses are required that characterize
the effect of unbounded loops or recursion.

Automatic verification approaches avoid interaction by working on abstract
execution models (and specification languages) that are decidable or even have a
finite state space. This allows the full exploration of the state space of a program
(as in model checking) or finite fixed point approximation of invariants (as in
abstract interpretation).

There are various attempts to combine the advantages of verification systems
and abstraction-based approaches, usually, by using the latter to boost the degree
of automation of the former (for example, [18,24]). In the present paper we set
a more ambitious goal: we want to provide a uniform theoretical basis for fully
precise reasoning about programs and for abstract interpretation at the same
time. The aim is to achieve a deep integration of deductive verification and
abstract interpretation. One obvious reason is to be able to re-use the substantial
investments and progress made in the context of deductive verification in the past
years to improve the precision of abstract interpretation. Another important
motivation for this work is the possibility to achieve automation of deductive
verification without completely losing precision.

Our starting point is a program logic that allows to cast symbolic program
execution as deduction in a sequent calculus. This so-called dynamic logic is an
extension of first-order logic and is complete relative to arithmetic. The software
verification systems KeY [5] and KIV [2] formally model large fragments of the
Java programming language based on dynamic logic. Our exposition in Sect. 2
is based on a simplified2 version of the KeY logic [5, Chapter 3].

Section 3 is the core of the paper: we define a calculus for logic-based symbolic
execution that allows for any program variable at any time to move from concrete
symbolic execution to computation in an abstract domain. The abstract domain
is a sound approximation of the program in the sense of abstract interpretation
theory [7]. The approach is based on the symbolic state updates featured by
our logic-based symbolic execution: a very compact language for representing
the intermediate results of symbolic computation. It is on these updates that
abstraction takes place, not on full target programs. While it is still possible to
use the calculus interactively and let the user specify the loop invariants, the
abstraction also makes an automatic procedure possible, where loop invariants
are derived without interaction by iterating symbolic execution of the loop body
until stabilization to a fixed point. The overall approach is illustrated by an
extended example in Sect. 4.

One potentially very rewarding area for a program logic with abstraction such
as suggested here is the analysis of secure information flow. This problem has
received a lot of attention in the past years with many type-based (see [23]
for an overview), some deduction-based (for example, [17,4,1,9,6,13]) and a few

2 Ultimately, we aim to cover as much of Java as done in the KeY system based
on the logic described in this paper, but in order to stay reasonably short and
comprehensible we give formal definitions only for a toy programming language.

Abstract Interpretation of Symbolic Execution with Explicit State Updates 249

abstract interpretation-based approaches (for example, [11]). The information
flow analysis problem has also been the original motivation for the work
undertaken here.

While type-based approaches to information flow analysis are automatic, but
suffer from limited precision, most deduction-based approaches recast flow anal-
ysis as a general verification problem [4,9,6] that typically requires user interac-
tion to prove it. Other deduction-based approaches provide a logical model of
type-based flow analysis [1,13], but this results in rather specialized calculi with
limited prospects of re-use of existing verification systems.

In the second part of this paper we extend our symbolic execution/abstract
interpretation framework to model secure information flow. It was shown by
Hunt & Sands [16] that information flow policies can be expressed as mappings
from a program variable to all those locations that may influence its value. This
property was exploited in [13] where the symbolic execution machinery and
update mechanism of a dynamic logic was used to keep track of the locations
that a program variable depends on. By virtue of a simple abstraction rule from
a certain point onwards during symbolic execution a program variable x could
be made to record dependencies on other variables instead of precise values.
Unfortunately, this meant that at this point all information on the symbolic
value of x was discarded. It also lead to some non-standard and non-deterministic
rules. In the present paper we avoid these disadvantages. In Sect. 5 we extend
the semantics of our programming language such that the dependencies of the
program variables are tracked explicitly. We give sound modifications of the
affected symbolic execution rules with respect to this semantics.

In Sect. 6 we discuss additional related work not mentioned above. In Sect. 7
we give directions for future work and summarize our results.

2 A Dynamic Logic with Updates

In this section, we describe our logic for reasoning about programs. It is a sim-
plified version of the dynamic logic of KeY [5, Chapter 3]. Compared to classical
dynamic logic [14] its most important new feature is a new syntactic category
called updates [22]. Updates are used to describe state changes in an explicit
and programming language independent way. Our overview begins with syntax
in Sect. 2.1, continues with semantics in Sect. 2.2, and ends with the calculus
used for symbolic program execution in Sect. 2.3.

2.1 Syntax

The syntax is based on a (first-order) signature:

Definition 1 (Signature). A signature is a tuple Σ = (F ,P ,PV,V), where F
is a set of function symbols, P is a set of predicate symbols, PV is a finite set
of program variables, and where V is a set of (logical) variables.

Function and predicate symbols have fixed arities. We require that F contains
infinitely many function symbols of each arity.

250 R. Bubel, R. Hähnle, and B. Weiß

Note that program variables (i.e., variables occurring in programs) and logical
variables (i.e., variables that may be quantified over) are separate syntactic cat-
egories. For the rest of this paper, we assume a fixed signature Σ. For this reason
we drop the signature as a parameter in all subsequent definitions.

Definition 2 (Syntax). Terms t, formulas ϕ, updates U and programs p are
defined by the following grammar, where f ∈ F ranges over function symbols,
p ∈ P over predicate symbols, x ∈ PV over program variables, and y ∈ V over
logical variables:

t ::= f(t, . . . , t) | x | y | if (ϕ)then(t)else(t) | {U}t
ϕ ::= true | false | p(t, . . . , t) | ϕ & ϕ | (ϕ | ϕ) | ϕ −> ϕ | !ϕ |

∀y.ϕ | ∃y.ϕ | t .= t | {U}ϕ | [p]ϕ
U ::= (x := t ‖ . . . ‖ x := t)
p ::= x = t | p;p | �� (ϕ) {p} ���� {p} | ����� (ϕ) {p}

Terms f(t1, . . . , tn) and formulas p(t1, . . . , tn) must respect the arities of the
symbols f and p, respectively. Terms and formulas that appear inside programs
may not contain any logical variables, quantifiers, updates, or nested programs.

An expression of the form [p]ϕ is a program formula. Intuitively, it denotes partial
correctness of the program p with respect to the postcondition ϕ. The symbol
.= denotes referential equality. Updates are lists of pairs of locations (program
variables) and terms. They are used to represent the incremental difference be-
tween two states within a computation. In the KeY system [5] updates render
symbolic execution efficient. In the present paper updates provide a convenient
layer between programs and logic where abstraction takes place.

We allow programs of the form �� (ϕ) {p}, i.e., conditionals without an
����-block. This can be seen as an abbreviation for �� (ϕ) {p} ���� {x = x},
where x ∈ PV is an arbitrary program variable.

Example 1. Let p denote the following program computing the Gaussian sum
for the first i numbers and storing the result in n:
n = 0;
����� (i>0) {

i = i-1;
n = n+i

}

We can state partial correctness of this program (with respect to a rather weak
postcondition), for example, by i ≥ 0 −> [p](i .= 0 & n ≥ 0).

2.2 Semantics

The semantics of terms, formulas, updates and programs is based on an inter-
pretation I of the function and predicate symbols, a state s giving values for the
program variables, and a variable assignment β assigning values to the logical
variables:

Abstract Interpretation of Symbolic Execution with Explicit State Updates 251

Definition 3 (Interpretations, States, Variable Assignments). Given a
universe D of values, an interpretation I is a function mapping every function
symbol f ∈ F with arity n to a function I(f) : Dn → D and every predicate
symbol p ∈ P with arity n to a relation I(p) ⊆ Dn. A state is a function s :
PV → D; the set of all states is denoted S. A variable assignment is a function
β : V → D.

Definition 4 (Semantics). Given a universe D, an interpretation I, a state
s and a variable assignment β, we evaluate terms t to a value valI,s,β(t) ∈ D,
formulas ϕ to a truth value valI,s,β(ϕ) ∈ {tt ,ff }, updates U to a result state
valI,s,β(U) ∈ S, and programs p to a set of states val I,s,β(p) ∈ 2S, where the
cardinality of valI,s,β(p) is either 0 or 1. The evaluation function valI,s,β is
formally defined in App. A.1.

A formula ϕ is called (logically) valid iff valI,s,β(ϕ) = tt for all interpretations
I, all states s and all variable assignments β.

For terms and formulas without updates and without programs, the evaluation
valI,s,β is essentially defined as usual in first-order logic. For an update U =
(x1 := t1 ‖ . . . ‖ xn := tn), the result of valI,s,β(U) is the state which results from
s by assigning the values of the terms ti to the program variables xi in parallel.
In case of a clash between two sub-updates (i.e., when xi = xj for i 	= j), the
rightmost update “wins” and overwrites the effect of the other. The meaning
of a term {U}t and of a formula {U}ϕ is that the result state of the update U
should be used for evaluating t and ϕ, respectively.

A program is evaluated to the set of states that it may terminate in when
started in s. We only consider deterministic programs, so this set is always
either empty (if the program does not terminate) or it consists of exactly one
state. The semantics of a program formula [p]ϕ is that ϕ should hold in all result
states of the program p, which corresponds to partial correctness of p wrt. ϕ.

2.3 Calculus

We reason about logical validity of dynamic logic formulas via a sequent calculus.
A sequent is an expression of the form Γ =⇒ Δ, where Γ (called the antecedent)
and Δ (called the succedent) are finite sets of formulas. The semantics of a
sequent is defined as valI,s,β(Γ =⇒ Δ) = val I,s,β(

∧
Γ −> ∨

Δ). As usual,
∧
Γ

stands for the conjunction (&) and
∨
Δ for the disjunction (|) of the formulas

in Γ and in Δ, respectively (in an arbitrary order). A sequent calculus rule is
an inference rule of the form

seq1 . . . seqn

seq

where seq1, . . . , seqn (called the premisses of the rule) and seq (called the con-
clusion of the rule) are sequents. A rule is called sound iff logical validity of all
the premisses implies logical validity of the conclusion.

A proof tree is constructed by starting with some root sequent to be proven,
and then applying sequent rules. Applying a rule means to find a leaf in the proof

252 R. Bubel, R. Hähnle, and B. Weiß

tree that is identical to the conclusion of a rule, and to add the rule’s premisses
as new children of the former leaf. Provided that all applied rules are sound,
it is guaranteed that at any time during this process, validity of all the leaves
implies validity of the root sequent. If one arrives at a tree whose leaves are all
obviously valid, one has proven the validity of the original proof obligation.

To achieve finite representation of a calculus, sequent rules are denoted
schematically. For example, the following schematic rule is applicable to all se-
quents where an arbitrary conjunctive formula ϕ1 & ϕ2 occurs in the antecedent:

andLeft
Γ, ϕ1, ϕ2 =⇒ Δ

Γ,ϕ1 & ϕ2 =⇒ Δ

We handle formulas with programs in them by transforming them into formulas
without programs. This process can be understood as symbolic execution of
the code: the rules walk through the program in a forward manner, at each step
discharging the first statement, until the program has been dealt with completely.
For example, an assignment statement is handled with the rule below:

assignment
Γ =⇒ {U}{x := t}[...]ϕ,Δ
Γ =⇒ {U}[x = t; ...]ϕ,Δ

The update U may have resulted from an assignment symbolically executed
earlier. As a border case, this update may be empty and disappear. The notation
“...” stands for an arbitrary “trail program” behind the assignment. As another
border case, this trail program may be empty; then, the subformula [...]ϕ in
the premiss is simply ϕ without a program attached to it.

The assignment rule transforms a program-level assignment into an equivalent
update. This is a useful step because updates are in general easier to reason
about than programs; for example, updates always terminate, and they never
have implicit side effects. The difference between programs and updates becomes
more profound when dealing with a more realistic programming language than
the toy language considered in this paper, such as Java. In particular, updates
are then helpful for a sound handling of the aliasing problem, without having
to do case splits for every assignment [5, Chapter 3].

A conditional statement can be handled by splitting the proof depending on
whether the guard is true or false:

ifElse
Γ, {U}g =⇒ {U}[p1; ...]ϕ,Δ Γ, {U} ! g =⇒ {U}[p2; ...]ϕ,Δ

Γ =⇒ {U}[if (g) {p1} else {p2}; ...]ϕ,Δ

For a loop, the simplest approach is to unwind it:

loopUnwind

Γ, {U}g =⇒ {U}[p; while (g) {p}; ...]ϕ,Δ
Γ, {U} ! g =⇒ {U}[...]ϕ,Δ

Γ =⇒ {U}[while (g) {p}; ...]ϕ,Δ

Obviously, unwinding is sufficient only if an upper bound on the number of loop
iterations is known statically. In general, an invariant rule is needed. Unlike the

Abstract Interpretation of Symbolic Execution with Explicit State Updates 253

other rules described here, such a rule usually cannot be applied automatically,
because it relies on the presence of a suitable loop invariant.

Updates can be simplified and applied to terms and formulas using the set of
(schematic) rewrite rules provided in App. B.

Example 2. Suppose we want to prove the validity of this sequent:

i > 0 =⇒ [n=0; i=i-1; n=n+i]n ≥ 0

Applying the assignment rule two times gives us:

i > 0 =⇒ {n := 0}{i := i− 1}[n=n+i]n ≥ 0

Since the two updates are independent of each other, this can be rewritten to:

i > 0 =⇒ {n := 0 ‖ i := i− 1}[n=n+i]n ≥ 0

Another application of assignment and another round of update rewriting yields:

i > 0 =⇒ {n := 0 ‖ i := i− 1 ‖ n := 0 + i− 1}n ≥ 0

Note that now, the effect of the sub-update n := 0 is overwritten by the rightmost
sub-update which also writes to n. Since the program has now been dealt with
completely, we can syntactically apply the update to the postcondition n ≥ 0
(also using the rewrite rules in App. B):

i > 0 =⇒ 0 + i− 1 ≥ 0

Proving this sequent is a matter of simple arithmetic reasoning.

3 A Dynamic Logic with Abstraction

The main motivation for incorporating abstraction into a symbolic execution
framework is to achieve automation. The core issue is to discover loop invariants
automatically instead of relying on a human user. Our main idea is to employ
a fixed point algorithm that performs repeated symbolic executions of the loop
body, interleaved with abstraction steps, until an invariant is found.

To this end, we first introduce a notion of an abstract domain in Sect. 3.1. We
expect an abstract domain to be a lattice of “abstract values”, each representing
a set of possible concrete values. For every abstract value, we introduce a partially
interpreted constant symbol into our logic. Partially interpreted in this context
means that the interpretation of such a symbol can vary on the concrete value as
long as the latter satisfies certain domain restrictions. These constant symbols
are used to represent abstract values within our updates. During construction
of a proof, abstraction can be performed as an instance of logical weakening, for
which we define a sound rule in Sect 3.2.

The invariants found by our algorithm can be used to get rid of loops by using
the loop invariant rule of Sect. 3.3. Since the invariants we derive are updates
instead of formulas, this rule is slightly different from the classical loop invariant
rule of dynamic logic. The algorithm itself is described in Sect. 3.4 and Sect. 3.5.

254 R. Bubel, R. Hähnle, and B. Weiß

3.1 Abstract Domains

Definition 5 (Abstract Domains). Given a universe D (which we will also
call concrete domain from now on), an abstract domain is a countable lattice A
with partial order � and join operator �. We require that A does not contain any
infinite ascending chains. Further, an abstract domain comes with an abstraction
function α : 2D → A and a concretization function γ : A → 2D with the following
properties (from [7]):

1. α and γ are monotone wrt. the partial orders ⊆ and �
2. for each a ∈ A : a = α(γ(a))
3. for each c ∈ 2D : c ⊆ γ(α(c))

The second property states that concretizing does not lead to a loss of informa-
tion, while the third one expresses correctness of the abstraction: no concrete
values are lost.

Example 3. As a simple example, our concrete domain may be D = ZZ, and
our abstract domain A may be the sign lattice depicted in Fig. 1. The abstrac-
tion function α and concretization function γ are as usual for this domain. For
convenience, γ is given in the right part of Fig. 1.

�

∅

≤ ≥

0neg pos

γ(�) = ZZ

γ(≤) = {i ∈ ZZ | i ≤ 0}
γ(≥) = {i ∈ ZZ | i ≥ 0}

γ(neg) = {i ∈ ZZ | i < 0}
γ(pos) = {i ∈ ZZ | i > 0}
γ(0) = {0}
γ(∅) = {}

Fig. 1. Abstract domain lattice for sign analysis

Definition 6 (Logical Representation of Abstract Domains). A signa-
ture ΣA for an abstract domain A is a signature where

– for every a ∈ A and every z ∈ ZZ, there is a constant symbol γa,z ∈ F
– for every a ∈ A there is a unary predicate symbol χa ∈ P

For a signature ΣA, we only consider interpretations I satisfying

– for every a ∈ A and every z ∈ ZZ: I(γa,z) ∈ γ(a)
– for every a ∈ A: I(χa) = γ(a)

The constant symbols γa,z are used to represent abstract values in logical formu-
las, in particular, on the right hand side of updates. For example, using the sign
lattice abstract domain from Ex. 3, the update (n := γ≥,1 ‖ i := γ≥,2) sets n and
i to unknown, not necessarily equal, non-negative values. The predicate symbols

Abstract Interpretation of Symbolic Execution with Explicit State Updates 255

χa are used to express membership of a concrete value in the concretization of
an abstract value.

For working with the partially interpreted γa,z and χa symbols, we need rules
for handling them; e.g., we want to be able to prove the validity of a sequent such
as ¬γ≥,1

.= 0 =⇒ γ≥,1 > 0, which depends on the restriction that I(γ≥,1) ≥ 0
for every interpretation I. We assume that these rules are provided together
with the abstract domain. From now on, we assume a fixed signature ΣA for an
abstract domain A.

3.2 Update Weakening and Abstraction Rule

In this section we extend the classical notion of logical weakening to updates for
which we give a weakening rule. Update weakening is used in the loop invariant
rule directly and also implicitly during loop invariant computation.

To formulate weakening, respectively, strengthening rules for updates, we need
to say what weaker, respectively, stronger means for updates. We define this
ordering here with respect to a given sequent proof P and a set of context
formulas (or constraints) C.

Definition 7 (
P,C-relation on updates). Let P denote a proof, U1 and U2

updates, and C a set of formulas. We call U2 P,C-weaker than U1, i.e.,

U1
P,C U2

if for any interpretation I, state s, and variable assignment β, where for all
ψ ∈ C we have val I,s,β(ψ) = tt, the following holds:

val I,s,β(U1) ∈ {valI′,s,β(U2) | I P,C I ′}

where I P,C I ′ means that I and I ′ coincide on all function and predicate
symbols occurring in P or C.3 In case of an empty set of context formulas C,
we omit C and write P -weaker and
P instead.

Example 4. Assume a proof P consisting of a single sequent

c > 0 =⇒ {i := i + 1 ‖ j := c+ 3
︸ ︷︷ ︸

U

}ϕ

with program variables i, j and a constant symbol c.

1. The update i := d + 1 ‖ j := e, where d, e are new constant symbols, is
P -weaker than U , because for any I, s, β, we can choose the interpretation
I ′ P I with I ′(d) = s(i) and I ′(e) = I(c) + 3.

2. The update i := f(1) ‖ j := g(c, 3), where f, g are new function symbols, is
P -weaker than U , because for any I, s, β we can choose the interpretation
I ′ P I with I ′(f)(1) = s(i) + 1 and I ′(g)(I(c), 3) = I(c) + 3.

3 Note that in particular val I′,s,β(ψ) = tt holds for all ψ ∈ C.

256 R. Bubel, R. Hähnle, and B. Weiß

3. The update i := j ‖ j := c + 3 is not P -weaker than U , as for any s′ with
s′(j) 	= s(i) + 1 the membership requirement from Def. 7 does not hold.

4. The update i := γ�,0 ‖ j := γpos,0, where γ�,0 and γpos,0 are new, is not
P -weaker than U , but it is {c > 0}, P -weaker.

Weakening by replacing the right hand side of an update with a suitable γa,z

symbol corresponds to abstracting to the chosen abstract domain. In the fol-
lowing, we restrict ourselves to this form of weakening. The rule weakenUpdate
below allows to use it in a sequent proof:

weakenUpdate
Γ, {U}(x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄), Δ Γ =⇒ {U ′}ϕ,Δ

Γ =⇒ {U}ϕ,Δ
where

– x̄ = (x1, . . . , xn) is a list of all program variables occurring on the left hand
side in U or U ′ (duplicate-free, in an arbitrary order)

– c̄ = (c1, . . . , cn) is a list of fresh constant symbols of the same length as x̄
– γ̄ = (γa1,z1 , . . . , γam,zm) is a list of all γa,z symbols introduced freshly in U ′

– the notation ∃γ̄.ψ is an abbreviation for ∃ȳ.(χā(ȳ) & ψ[γ̄/ȳ]), where ȳ =
(y1, . . . , ym) is a list of fresh logical variables of the same length as γ̄, and
where ψ[γ̄/ȳ] stands for the formula obtained from ψ by replacing all occur-
rences of a symbol in γ̄ with its counterpart in ȳ

– vector notation is used as an abbreviation: ∃ȳ.ψ stands for the multiply quan-
tified formula ∃y1. · · · .∃ym.ψ, t̄ .= t̄′ and χā(ȳ) stand for the conjunctions
t1

.= t′1 & · · · & tn
.= t′n resp. χa1(y1) & · · · & χam(ym)

The first premiss of weakenUpdate guarantees that U ′ is (P, Γ ∪ !Δ)-weaker
than U : for any initial I, s, β, it must be possible to choose an interpretation
of the newly introduced γ̄ such that with this interpretation, U ′ assigns to all
relevant program variables x̄ the same value as U . In the second premiss, the
proof of ϕ continues with the weaker update U ′ in place of U .

Lemma 1. The weakenUpdate rule is sound: if all of its premisses are logically
valid, then its conclusion is also logically valid.

The proof of this lemma is contained in App. C.1.

3.3 An Invariant Rule Based on Updates

Below we define a variation of the classical loop invariant rule, based on updates.
The rule makes use of an “invariant update” U ′, which must be provided instead
of an invariant formula.

invariantUpdate

Γ, {U}(x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄), Δ
Γ, {U ′}g, {U ′}[p](x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄), Δ
Γ, {U ′} ! g =⇒ {U ′}[...]ϕ,Δ

Γ =⇒ {U}[while (g) {p}; ...]ϕ,Δ

Abstract Interpretation of Symbolic Execution with Explicit State Updates 257

where x̄, c̄, γ̄, ∃γ̄.ψ and the vector notation are defined as in the weakenUpdate
rule.

The first premiss of invariantUpdate is identical to that of weakenUpdate. It
ensures that U ′ is weaker than U , or in other words, that the initial state for
the loop, as produced by U , can also be reached by executing U ′ (using some
suitable interpretation of the fresh γ̄ symbols). The second premiss states that
U ′ is “preserved” by the loop body p: for any state reached by executing first U ′

and then p, we can find an interpretation of the γ̄ such that U ′ directly produces
this state. Together, the first two premisses establish an inductive argument: any
state reachable by an arbitrary number of loop iterations can also be reached
directly by U ′, for some interpretation of the γ̄ symbols. The result of this in-
duction is used in the third premiss, where for handling the trail program “...”
we only have to consider runs starting in states which can be produced by U ′.

Example 5. The following sequent occurs after applying the assignment rule in
Ex. 1:

i ≥ 0 =⇒ {n := 0}[while (i>0) {i = i-1; n = n+i
︸ ︷︷ ︸

b

}](i .= 0 & n ≥ 0)

An appropriate choice for the “invariant update” is U ′ = (n := γ≥,1 ‖ i := γ≥,2).
We will later see how this update can be found automatically. With this choice,
the rule produces the following three sequents:

i ≥ 0, {n := 0}(n .= c1 & i
.= c2)

=⇒ ∃y1, y2.
(
χ≥(y1) & χ≥(y2) & {n := y1 ‖ i := y2}(n .= c1 & i

.= c2)
)

i ≥ 0, {n := γ≥,1‖i := γ≥,2}(i > 0), {n := γ≥,1‖i := γ≥,2}[b](n .= c1 & i
.= c2)

=⇒ ∃y1, y2.
(
χ≥(y1) & χ≥(y2) & {n := y1 ‖ i := y2}(n .= c1 & i

.= c2)
)

i ≥ 0, {n := γ≥,1 ‖ i := γ≥,2} !(i > 0)
=⇒ {n := γ≥,1 ‖ i := γ≥,2}(i .= 0 & n ≥ 0)

All of these sequents are logically valid, and provided that our calculus contains
rules covering the semantics of the γ≥,z and χ≥ symbols, they are proveable. For
the first two, one needs to instantiate the existential quantifiers with c1 and c2.

Lemma 2. The invariantUpdate rule is sound.

The proof of this lemma is contained in App. C.2.

3.4 The Proof Search Strategy

In this section we describe the proof search strategy. The proof search strategy
implements the fixed point algorithm for handling loops automatically without
needing to be provided with loop invariants by a human user.

As our calculus is not proof confluent, defining a good search strategy is cru-
cial. In particular, the proof search strategy needs to choose the right degree of

258 R. Bubel, R. Hähnle, and B. Weiß

abstraction and to maintain normal form-like properties of updates, terms and
formulas (this is important, for example, to actually find a fixed point).

Depending on the proof context (e.g., main or side proof to compute the loop
invariant) we will employ different proof search strategies.

Assume we intend to prove that after the execution of a program p the formula
ϕ holds:

Γ =⇒ [p]ϕ,Δ

The proof search strategy acts now like a symbolic interpreter on p and executes
assignments (applying rule assignment) as well as conditional statements (ifElse).
Note that these rules are precise in the sense that no information on the possible
poststate is lost.

The critical point in a proof P occurs when a loop statement is encountered
and we are faced with a situation similar to

Γ =⇒ {U}[while (g) {b}; ...]ϕ,Δ

In abstract-interpretation approaches, loop treatment involves the computation
of a safe approximation of the set of states observable after the loop termination.
It remains then to show that the formula [...]ϕ holds in all of them. The main
idea of our approach is to describe this set in terms of an (abstract) update Ua

such that for each I, β the set {s′ | s′ = valI′,s,β(Ua)(s), s ∈ S, f.a. I ′ P,C I} is
a safe approximation of the post loop states. A higher precision can be achieved
by requiring that the considered interpretations I satisfy additional formulas.

To compute abstract (weaker) updates, the proof search strategy spawns side
proofs. The purpose of these side proofs is to compute updates that capture
the state changes in successive executions of the loop body. The results of the
side proofs are later combined after suitable abstraction using the join rule.
Consequently, in the side proofs we handle the top-level loop by unwinding
(loopUnwind) while possible nested loops are treated by rule invariantUpdate. As
in the side proofs we are only interested in state changes, all proof branches that
do not involve symbolic execution are discarded.

Consider now one unwinding step: the proof search strategy executes the loop
body until the loop is about to be re-entered. In general, symbolic execution
of the loop body may result in several branches; the proof search continues on
these branches until they are either closed or the loop body has been completely
symbolically executed and the loop is about to be re-entered. After complete
execution of one loop iteration, the proof situation is similar to the one shown
in Fig. 2.

At this point the proof search strategy computes a weakened update repre-
senting a superset of all possible states reachable after this loop iteration. A new
sequent of the form

Γ ′ =⇒ {U ′}[while (g) {b}; ...]ϕ, Δ′

is created where update U ′ is the weakened (by abstraction) update computed
by comparing the updates U1, . . . ,Um from the open branches and update U

Abstract Interpretation of Symbolic Execution with Explicit State Updates 259

{U}[while (g) {b}; ...]ϕ

• {U}[b; while (g) {b}; ...]ϕ

{U1}[while(g){b};...]ϕ {U2}[while(g){b};...]ϕ . . . {Um}[while(g){b};...]ϕ

Fig. 2. Invariant computation: side proof after symbolic execution of one loop iteration

representing the symbolic state just before the loop unwinding. Γ ′ (Δ′) are
formula sets that are weaker (stronger) than any of the corresponding Γ1, . . . , Γm

(Δ1, . . . , Δm) belonging to the open leaves considered in Fig. 2. In Sect. 3.5 we
describe this join in detail. The constructed sequent is then appended at one
of the open branches. The other branches are closed, i.e. not further taken into
consideration.

The proof search strategy stops the side computation if after an application
of the join rule a fixed point is detected. A fixed point is reached when update
U taken from immediately before the last loopUnwind rule application is weaker
than (or equal to) update U ′ resulting from the current join operation.

To detect a fixed point the proof search strategy tries to prove for all program
variables x̄ that the states represented by update U subsume those of U ′:

∀ȳ′.∃ȳ.(Eq(ȳ′, ȳ) & χγ̄′(ȳ′) −> χγ̄(ȳ) & {U [γ̄/ȳ]}x̄ .= {U ′[γ̄′/ȳ′]}x̄) (1)

where

– γ̄, γ̄′ denote sequences of all γ symbols occurring in one of the sequents
– ȳ, ȳ′ are duplicate-free sequences of variables of same length as γ̄ resp. γ̄′

– Eq(ȳ′, ȳ) :=
∧

yi∈ȳ,y′
j∈ȳ′,

γai,i=γaj,j

yi = y′j and χγ̄(ȳ) :=
∧

γai,i∈γ̄,
yi∈ȳ

χai(yi) (analog. χγ̄′)

To find fixed points earlier the sequent side-formulas Γ,Δ, Γ ′, Δ′ can be used
in the proof. The join operation defined in the next section guarantees that if
the value of a variable x has been changed in the most recent loop iteration then
the abstraction produces an elementary update x := γk,a. In combination with
a finite abstract domain (1) becomes trivial to prove such that a fixed point is
guaranteed to be found.

3.5 Joining Proof Branches

In this section we describe how different execution paths are joined by the proof
search strategy in a side proof. The join rule introduced in this section is a
combination of a classical weakening and the update weakening rule. Deviating

260 R. Bubel, R. Hähnle, and B. Weiß

from other rules, it is not a sequent rule but a “meta rule” combining several
sequents. Let P denote a proof with several open branches

...
Γs0 =⇒ {Us0}[while (g){b}]ϕ, Δs0

...
Γs1 =⇒ {Us1}[while (g){b}]ϕ, Δs1 . . . Γsm =⇒ {Usm}[while (g){b}]ϕ, Δsm

Applying the join rule closes all except one of these open branches. The open
branch that is left is extended by adding the sequent

sm∨

i=s0

(Γsi & !Δsi) =⇒ {(Cs0 ,Us0) �̇ . . . �̇ (Csm ,Usm)}[while (g) {b}]ϕ

as a new leaf with

– formula set Csi := Γsi ∪ !Δsi and
– (C1,U1) �̇ (C2,U2) is an update join operation as defined below.

Definition 8 (Update Join · �̇ ·). The update join operation has the signature

�̇ : (2For × Updates) × (2For × Updates) → Updates

where 2For denotes the power set of formulas and is defined by the following
property:

Let U1 and U2 denote arbitrary updates occurring in a proof P and let C1, C2

be formula sets representing constraints on the update values. Then an update
(C1,U1) �̇ (C2,U2) must be (P,C1/2)-weaker than U1 resp. U2, i.e.

Ui
P,Ci (U1, C1) �̇ (U2, C2), i = 1, 2 .

Lemma 3. Rule join is sound.

The join rule, even though sound, is only used within side proofs that compute
loop invariants. Its correctness is not strictly necessary as the loop invariant rule
checks the invariance property and will reject unsuitable invariants, but increases
the likelihood that meaningful fixed points and, hence, loop invariants are found.

Finally, we describe the concrete realization �abs of an update join operator
for finite abstract domains.

Let U1, C1 and U2, C2 denote updates and their value restrictions. The update
join (U1, C1)�̇abs(U2, C2) computes the update Ures as follows: let x be a program
variable occurring on the left side of U1 or U2.

1. Try to prove

=⇒ ∃y.((C1 −> ({U1}x) .= y) & (C2 −> ({U2}x) .= y))

if the proof attempt succeeds, then the elementary update x := t1 occurring
last in U1 with x on the left side (resp. x := t2 if x occurred only on the
left side of U2) is added to Ures by parallel composition. Otherwise, if the
proof attempt fails (timeout or counterexample found) then continue with
the next step.

Abstract Interpretation of Symbolic Execution with Explicit State Updates 261

2. For each pair (Ci,Ui), i = 1, 2, for any abstract domain element a starting
with the smallest one, try to prove

Ci =⇒ χa({Ui}x)

and stop processing a pair as soon as an a has been found for which the
sequent is valid, i.e. a proof has been found (within a given timeout). After
termination we are left with two abstract domain elements a1, a2 for the resp.
pairs for which we compute a1 � a2 (or at least an upper bound). Finally,
the elementary update x := γa1�a2,z is added to update Ures by parallel
composition.

Example 6. Given the program variables i, n and the update/constraint pairs
(n := 0, i ≥ 0) and (n := i−1‖i := i−1, i > 0), the join computation proceeds
as follows:

Starting with program variable n, we check first, if n is evaluated to the same
value under both updates in their resp. context. Obviously, that does not hold
in a state where i has, for example, the value 10.

Thus we enter the abstraction phase. Starting with the minimal abstract do-
main element ⊥ the proof obligations described in step 2 are attempted to prove.
The attempts succeed for

i ≥ 0 =⇒ χ0({n := 0}n) and i > 0 =⇒ χ≥({n := i− 1 ‖ i := i− 1}n)

The join for the abstract domain elements is (≥ � 0) = ≥. Thus, we get as first
sub-update n := γ≥,0. A similar computation for program variable i gives us
finally the complete update

n := γ≥,0 ‖ i := γ≥,1

4 Example

Recall the proof obligation from Ex. 1:

i ≥ 0 =⇒ [n = 0; while (i > 0) i = i-1; n = n+i](i .= 0 & n ≥ 0) (2)

In this section, we illustrate our approach by slowly walking through the proof
for this sequent. We abbreviate the while-loop with W, the loop body with B and
the postcondition with ϕ. The first step is to apply the assignment rule, which
produces the following sequent:

i ≥ 0 =⇒ {n := 0}[W]ϕ (3)

At this point we open a side computation with this subgoal in order to determine
a suitable loop invariant update. After this side computation, we will return to
the main proof at sequent (3) and apply the invariantUpdate rule using this
update.

262 R. Bubel, R. Hähnle, and B. Weiß

The side computation starts by applying loopUnwind, which splits the side
proof into two branches:

i ≥ 0, {n := 0}(i > 0) =⇒ {n := 0}[B;W]ϕ
i ≥ 0, {n := 0} !(i > 0) =⇒ {n := 0}ϕ

The second of these branches is uninteresting to us in this side computation, and
we simply ignore it. Using update rewriting rules and some arithmetic simplifi-
cation, the first branch can be simplified to

i > 0 =⇒ {n := 0}[B;W]ϕ
Note that the path condition from the loop guard strengthens the precondition.
We continue by symbolically executing the loop body, which (after some update
rewriting) yields

i > 0 =⇒ {n := 0 ‖ i := i − 1 ‖ n := 0 + i− 1}[W]ϕ (4)

Now, we have completed our first iteration: we have unwound the loop once,
executed its body, and obtained a sequent where W is the first active statement
like in (3). We use the join rule to merge the current state (4) with the previous
state (3):

i > 0 | i ≥ 0 =⇒ {n := γ≥,1 ‖ i := γ≥,2}[W]ϕ (5)

The computation performed by join rule is explained in detail in Ex. 6 in Sect. 3.5.
We unwind the loop once more with loopUnwind, which gives us the following
for the loop entry branch:

i > 0 | i ≥ 0, {n := γ≥,1 ‖ i := γ≥,2}(i > 0) =⇒ {n := γ≥,1 ‖ i := γ≥,2}[B;W]ϕ
Update rewriting and arithmetic simplification turns this into:

i ≥ 0, γ≥,2 > 0 =⇒ {n := γ≥,1 ‖ i := γ≥,2}[B;W]ϕ
We symbolically execute the body a second time, which produces:

i ≥ 0, γ≥,2 > 0 (6)
=⇒ {n := γ≥,1 ‖ i := γ≥,2 ‖ i := γ≥,2 − 1 ‖ n := γ≥,1 + γ≥,2 − 1}[W]ϕ

This finishes our second iteration. We apply join to combine (6) and (5), which
yields:

i > 0 | i ≥ 0 | (i ≥ 0 & γ≥,2 > 0) =⇒ {n := γ≥,3 ‖ i := γ≥,4}[W]ϕ (7)

Now, we observe that the update U = (n := γ≥,3 ‖ i := γ≥,4) of the current
sequent (7) “implies” the corresponding update U ′ = (n := γ≥,1 ‖ i := γ≥,2) of
the previous iteration (5). The fixed point detection formula (1) from Sect. 3.4

∀y1, y2.∃y′1, y′2.
(

χ≥(y1) & χ≥(y2) −> (χ≥(y′1) & χ≥(y′2) &
(({n := y′1 ‖ i := y′2}n) .= ({n := y1 ‖ i := y2}n) &
({n := y′1 ‖ i := y′2}i) .= ({n := y′1 ‖ i := y′2}i))

)

Abstract Interpretation of Symbolic Execution with Explicit State Updates 263

becomes then trivial to solve as the existential quantifiers need only to be instan-
tiated with the skolem constant resulting from the enclosing universal quantifier.

Thus, U (or U ′) is a “fixed point”. At this point we leave the side computation.
We continue the main proof by applying the rule invariantUpdate to (3), which
eliminates the loop from our proof obligation, making the remainder of the proof
straightforward as shown already in Ex. 5.

In conclusion, we have constructed a proof for the validity of (2). Our use of
abstraction allowed us to do so in a completely mechanical process, which did
not require any manually supplied loop invariant.

5 Modeling Information Flow

The problem of information flow security is about preventing a program from leak-
ing “secret” data to output channels of a “lower security level”. Typically, the se-
curity levels to be distinguished are defined and ordered in a security lattice. In the
simplest case, one distinguishes only between the security levels High and Low.

Example 7. In the following example programs, h and l are program variables,
where h has security level High and l security level Low. A program is considered
secure if an attacker who reads the final values of the Low variables cannot infer
any information about the initial values of the High variables.

1. l=h is obviously insecure, because information flows directly from h to l.
2. �� (h>0) {l=1} ���� {l=2} is also insecure, because information about

the sign of the initial value of h flows indirectly to l.
3. �� (l>0) {h=1} ���� {h=2} is secure, because the value of l is not touched

at all.
4. �� (h>0) {l=1} ���� {l=2}; l=3 is secure, because the final value of l is

always 3, independently of the initial value of h.
5. h=0;l=h is secure, because the final value of l is always 0.
6. �� (h>0) {h=l;l=h} is secure, because the value of l is not changed.
7. �� (h>0) {l=2;h=1} ���� {l=2;h=2} is secure, because the final value of

l is always 2.
8. l=h-h is secure, because the final value of l is always 0.

The most common technique for a language-based analysis of information flow
is to use special type systems. The security levels are then used as types that are
assigned to program variables. The analysis ensures via type checking or type
inference that no information about the value of a High-labeled variable is leaked
to a Low-labeled variable.

Soundness of any approach to information-flow analysis entails that an inse-
cure program will not be classified as secure. To achieve full automation, however,
many approaches, in particular type-based ones, classify certain secure programs
as insecure. To identify program (4) as secure, the approach under consideration
has to be control-flow sensitive. Some, but not all, available analyses have this
property. In order to correctly identify programs (5), (6), (7) and (8) as secure,

264 R. Bubel, R. Hähnle, and B. Weiß

the analysis must be value-sensitive. At the moment this is only achieved by
some deduction-based systems [9,6,13] that require human interaction.

Information-flow analysis can be restated as an analysis of variable dependen-
cies (see [16]). Here, we want to find for any variable x the set of variables on
whose initial values the final value of x can at most depend. In particular, we
may ask whether the final value of a Low-labeled variable can depend on the
initial value of any High-labeled variable.

In this section we extend our program logic to allow the analysis of vari-
able dependencies in programs. In contrast to [9], where the dependencies of a
program variable are implicitly tracked using free logical variables, we use an ap-
proach where the dependencies are encoded explicitly into program states. The
execution of a program statement directly manipulates these dependencies. This
approach allows to apply the abstraction mechanism introduced in this paper
also to variable dependencies, which serves to achieve automation of our infor-
mation flow analysis while maintaining a high degree of precision and achieving
value-sensitivity in more cases than type-based systems.

We omitted formal correctness statements and proofs in this section which
are tedious, but do not offer additional insights.

5.1 Dependencies in Dynamic Logic

Formally, the dependencies of a variable can be defined as follows.

Definition 9 (Variable Dependencies). Given a program variable x and a
program p, the dependencies of x under p form the smallest set D(x, p) ⊆ PV of
program variables such that the following holds for all interpretations I and all
variable assignments β: if s1, s2 ∈ S are such that for all y ∈ D(x, p) we have
s1(y) = s2(y), then either

– valI,s1,β(p) = valI,s2,β(p) = ∅ (i.e., from both initial states the execution of
p does not terminate), or

– valI,s1,β(p) = {s′1} and valI,s2,β(p) = {s′2}, where s′1(x) = s′2(x) (i.e., from
both initial states the execution terminates and yields the same value for x).

The dependencies formalized in Def. 9 are difficult to reason about: they are
based on comparing all possible runs of a program p instead of being a local
property which is true or false in a given program state. To be able to talk
about dependencies in our logical formulas in the same way as about other
program properties, we extend our logic and the semantics of programs so that
dependencies are stored in states explicitly. The main idea is to associate with
every program variable x a program variable xdep that records the dependencies
of x with respect to the program that has been symbolically executed so far.
The variable xdep is updated by the program whenever x itself is changed, such
that in any state during program execution, xdep evaluates to a set of program
variables which contains all variables on whose initial value the current value of
x can depend.

Abstract Interpretation of Symbolic Execution with Explicit State Updates 265

Definition 10 (Logical Representation of Dependencies). Given a signa-
ture Σ = (F ,P ,PV,V), the dependency extension of Σ is a signature Σdep =
(Fdep ,Pdep ,PVdep ,V), where

– Fdep = F ∪ {{}, ∪̇} ∪ {{x} | x ∈ PV}, where {} is a constant symbol, ∪̇ is
a function symbol with arity 2, and where the {x} are function symbols with
arity 0,

– Pdep = P ∪ {⊆̇}, where ⊆̇ is a predicate symbol with arity 2, and
– PVdep = PV ∪ {xdep | x ∈ PV}.

For such a signature Σdep, we do not allow the new symbols to occur in pro-
grams: programs over a signature Σdep are built only from the symbols defined
in the sub-signature Σ. We only consider universes D ⊇ 2PV where every set of
program variables also occurs as a value in the universe. Finally, we only allow
interpretations I that fix the meaning of the additional symbols as follows:

– I({}) = ∅,
– for all P1, P2 ∈ 2PV : I(∪̇)(P1, P2) = P1 ∪ P2,
– for all x ∈ PV: I({x}) = {x}, and
– I(⊆̇) = {(P1, P2) | P1 ⊆ P2 ⊆ PV}.

Definition 11 (Program Semantics with Dependencies). Given a uni-
verse D, an interpretation I, a state s and a variable assignment β, we evaluate
programs p to a set of states val ′I,s,β(p) ∈ 2S as defined in App. A.2. As before,
our programs are deterministic, so the sets always have at most one element.

One difference to the program semantics without dependencies is that executing
an assignment x = t not only changes x, but also xdep : we assign to it the
value of deps(t), where for every term or formula t, deps(t) is a term which over-
approximates the precise semantic dependencies of t. For example, deps(n+i) =
ndep ∪̇ idep . The formal definition of deps is given in App. A.3.

The second difference is that after executing a conditional statement or a
loop iteration with guard g, we add deps(g) to xdep for every program variable x
which has been changed in the body of the conditional or loop. This is necessary
in order to cover implicit flow of information via control flow (see Ex. 7).

Example 8. Consider program (6) of Ex. 7. We can express security of this
program with the sequent

hdep .= {h}, ldep .= {l} =⇒ [if (h>0) {h=l;l=h}](ldep ⊆̇ {l})

The precondition in the antecedent means that we assume the initial value of
every variable to depend exactly on itself. The postcondition demands that after
running the program, the final value of l depends at most on the initial value of
l (so that in particular, it does not depend on the initial value of h).

Let s1 ∈ S be a state satisfying the precondition, i.e., s1(hdep) = {h} and
s1(ldep) = {l}. If we execute the assignment h=l in s1, this will produce a state
s2 with s2(hdep) = s1(ldep) = {l}, reflecting the fact that now the value of h
depends on the initial value of l.

266 R. Bubel, R. Hähnle, and B. Weiß

Continuing the execution of the program, the assignment l=h yields a state
s3 with s3(ldep) = s2(hdep) = {l}. After the end of the conditional statement,
the dependencies of the guard h>0 are injected into all variables changed inside
the conditional, yielding a state s4 where s4(ldep) = s3(ldep) = {l} (since l
has the same value in s3 at the end of the conditional as it had in s1 before the
conditional), and where s4(hdep) = s3(hdep) ∪ s1(hdep) = {h} (where s1(hdep)
are the dependencies of the guard).

Thus, the final state s4 satisfies s4(ldep) = {l}, meaning that the postcon-
dition is satisfied. As this holds for all initial states satisfying the precondition,
our sequent is logically valid.

Note that our formalisation of dependencies is control flow- and value-sensitive;
it correctly classifies programs (3)–(6) of Ex. 7 as secure. Nevertheless, it is
an overapproximation of the semantic dependencies as formalized in Def. 9. For
example, it conservatively classifies programs (7) and (8) as insecure, even though
they are in fact secure. This is a price we pay for the ability to reason about
dependencies in the same way as state properties.

5.2 Dependency Aware Rules

For working with the changed semantics of Def. 11 in our calculus, we need to
adapt the symbolic execution rules from Sect. 2.3 and also the update invariant
rule from Sect. 3.3 accordingly. The other rules (in particular, weakenUpdate
and join) are not affected, because they do not deal with programs. For the
assignment rule, we can simply add the update xdep := deps(t):

assignmentdep
Γ =⇒ {U}{x := t ‖ xdep := deps(t)}[...]ϕ,Δ

Γ =⇒ {U}[x = t; ...]ϕ,Δ

For conditional statements, the new semantics introduces an additional state
transition after execution of the conditional where the dependencies of the guard
are retroactively added to the dependencies of all variables modified inside the
conditional. We capture these additional dependencies in the rule by inserting a
suitable update V into our premises:

ifElsedep

Γ, {U}g, {U}(ȳ .= ȳpre) =⇒ {U}[p1]{V}[...]ϕ,Δ
Γ, {U} ! g, {U}(ȳ .= ȳpre) =⇒ {U}[p2]{V}[...]ϕ,Δ
Γ =⇒ {U}[if (g) {p1} else {p2}; ...]ϕ,Δ

where

– ȳ = (y1, y
dep
1 , . . . , yn, y

dep
n) is a list of all program variables occurring in g,

p1 or p2, together with the corresponding dependency variables
– ȳpre = (ypre1 , ypredep1 . . . , ypren , ypredepn) is a list of fresh constant symbols of

the same length as ȳ
– V is the update

Abstract Interpretation of Symbolic Execution with Explicit State Updates 267

ydep
1 := if (y1

.= ypre1)then(ydep
1)else

(
ydep
1 ∪̇ {ȳ := ȳpre}deps(g))

‖ . . . ‖
ydep

n := if (yn
.= ypren)then(ydep

n)else
(
ydep

n ∪̇ {ȳ := ȳpre}deps(g))

The fresh constant symbols ȳpre are used to store the pre-state values of the
program variables ȳ. The update V compares the current values of all (non-
dependency) program variables with their pre-state values, and adds deps(g) to
variable’s dependencies if the value has been changed. A subtle detail is that
deps(g) must be evaluated in the pre-state, which is achieved by prefixing it
with the update ȳ := ȳpre .

The same idea can be applied to the loopUnwind and invariantUpdate rules
(where ȳ, ȳpre and V are as above):

loopUnwinddep

Γ, {U}g, {U}(ȳ .= ȳpre) =⇒ {U}[p]{V}[while (t) {p}; ...]ϕ,Δ
Γ, {U} ! g =⇒ {U}[...]ϕ,Δ

Γ =⇒ {U}[while (g) {p}; ...]ϕ,Δ

invariantUpdatedep

Γ, {U}(x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄), Δ
Γ, {U ′}g, {U ′}(ȳ .= ȳpre), {U ′}[p]{V}(x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄), Δ
Γ, {U ′} ! g =⇒ {U ′}[...]ϕ,Δ

Γ =⇒ {U}[while (g) {p}; ...]ϕ,Δ

5.3 Dependency Aware Abstraction

To apply abstraction in the dependency-aware version of our calculus two ab-
stract domains have to be defined:

1. The abstract domain Aval for the value abstraction of normal program vari-
ables that carry values. The choice of Aval depends on the application con-
text. An example is the sign domain for integers used for illustration in the
previous sections.

2. The abstract domain Adep for the value abstraction of the dependency pro-
gram variables. Again, the suitable choice depends on the application con-
text. In an information-flow security context, a natural choice for Adep is
suggested by the security lattice.

The proof search strategy remains nearly unchanged from the standard version
as defined in Sec. 3.4. When computing an abstraction, the abstract domain Aval

is used for normal program variables x ∈ PV and Adep for dependency program
variables xdep ∈ PVdep .

Example 9. Assume that we are given a security policy with security levels High
and Low for program variables PV = {l1, l2, h}.

268 R. Bubel, R. Hähnle, and B. Weiß

For regular values, we keep using the sign domain from previous sections as
Aval . For dependencies, we use Adep := {∅, Low,High, �dep} with γ(∅) = ∅,
γ(Low) = 2{l1,l2}, γ(High) = 2{h}, γ(�dep) = 2PV . Consider now the following
simple program P:

l1=0; l2=0; ����� (h<0) { l2=l2+1; h=h+1 }
︸ ︷︷ ︸

W

; �� (l2<0) { l1=1 }
︸ ︷︷ ︸

C

To check whether P satisfies the specified security policy for program variable
l1, the sequent

l1dep .= {l1}, l2dep .= {l2}, hdep .= {h} =⇒ [P]
(
l1dep ⊆̇ {l1} ∪̇ {l2}

)

needs to be proven. The precondition demands that program variables depend
on themselves in the initial state, as in Ex. 8.

Applying rule assignmentdep twice yields an update where l1 and l2 are set
to 0 and where all dependencies of l1 and l2 have been erased, i.e. l1dep , l2dep

are assigned the empty set {} (= deps(0)). The resulting sequent is:

l1dep .= {l1}, l2dep .= {l2}, hdep .= {h}

=⇒ {l1 := 0 ‖ l1dep := {} ‖ l2 := 0 ‖ l2dep := {}}[W;C](l1dep ⊆̇ {l1} ∪̇ {l2}
)

At this point the loop invariant update needs to be computed in a side proof as
described in Sect. 3.4, which automatically yields as invariant update UInv :

l1 := 0 ‖ l1dep := {} ‖ l2 := γ≥,0 ‖ l2dep := γHigh,0 ‖ h := γ�val ,0 ‖ hdep := {h}
Note that we keep the precise value for l1 and l1dep , as l1 is not modified

by the loop. The other variables may be changed and have to be abstracted. In
particular l2 may depend on h due to the implicit information-flow caused by
the loop guard, which is reflected in the value for l2dep .

Applying now rule invariantUpdatedep and instantiating U ′ with UInv creates
three new branches. For lack of space we focus on the third branch:

l1dep .= {l1}, l2dep .= {l2}, hdep .= {h}, {UInv} !h < 0

=⇒ {UInv}[C](l1dep ⊆̇ {l1} ∪̇ {l2})

Applying rule ifElsedep results in two branches. As we know that the condi-
tional guard l2<0 under UInv is never satisified, we can close the then-branch
immediately. We continue on the else-branch and after a few rule applications
and simplifications we are left with

l1dep .= {l1}, l2dep .= {l2}, hdep .= {h}, γ�val ,0 ≥ 0 =⇒ {} ⊆̇ {l1} ∪̇ {l2}

This formula is obviously valid, and thus the program does not leak any infor-
mation on the initial value of h to l1. Note that we would not have been able
to prove that fact with a value-insensitive approach as we would then need to
consider the possibility of the then branch injecting implicitly a High dependency
into l1dep via the conditional’s guard. Note also that the security policy does
not hold for program variable l2, and that the proof would not close if we had
included l2dep ⊆̇ {l1} ∪̇ {l2} in our postcondition.

Abstract Interpretation of Symbolic Execution with Explicit State Updates 269

6 Related Work

Several approaches for combining deductive verification and abstract interpre-
tation exist. One example is the “loop invariants on demand” technique [18],
where an abstract interpretation system is invoked by a theorem prover to pro-
duce invariants for a specific program context. If the generated invariant is too
weak, the abstract interpreter is iteratively called again using a more expressive
abstract domain. Nevertheless, the theorem prover and the abstract interpreter
are separate entities. In [19], a widening operator is built into a theorem prover.

Our goal of deeply integrating abstract interpretation into deductive verifi-
cation based on dynamic logic is also pursued in [26]. There, the abstraction is
done on logical formulas instead of on updates, using the technique of predicate
abstraction [12]. The approach of [26] has not been applied to the problem of
secure information flow.

For information flow analysis, our approach is more precise than typical secu-
rity type systems, because it is flow- and value-sensitive. It is also more precise
than the abstract interpretation defined in [11]. For example, in our setting not
all locations to which a value is assigned in the body of a conditional or loop
need depend on the guard (see Ex. 8).

Deductive approaches for reasoning about information-flow have been already
listed in Sect. 1. Only some of the approaches focused on automation as one
major concern. Papers [6] and [13] aim at the embedding of type-based analyses
into program logics. To achieve full automation type-based systems are needed
to construct either a certain formula entailing non-interference [6] or a derivation
that can be translated into a proof of the program logic [13]. Neither includes a
proof search algorithm.

The approach presented in [1] uses a Hoare logic and does not need a theorem
prover to generate necessary invariants. On the other hand, it tracks only the
independence relationship among variables and is therefore not value-sensitive.
In [4] the authors use self-composition of programs to show information-flow
security considering a formalisation of non-interference for a Hoare logic and an
encoding in CTL. For the first one, automation is not targeted and for the second
one model checking would be possible but is restricted to finite state programs.

7 Conclusion and Future Work

In this paper we presented a sound and relatively complete dynamic logic calcu-
lus that integrates abstract interpretation and keeps track of variable dependen-
cies. The abstract domain is not fixed and the abstraction can be dynamically
changed during symbolic execution. In the first part, we described an algorithm
to compute loop invariants by abstraction-on-demand for a classical definition
of a program logic. In the second part of the paper we extended the program
logic to keep also track of variable dependencies so that information-flow can be
modelled in a straightforward manner. We achieve the same degree of automa-
tion as type-based approaches while increasing the number of provable programs

270 R. Bubel, R. Hähnle, and B. Weiß

due to value-sensitivity. The resulting calculus is close to the one used for Java
in the KeY system [5] and we expect much of the machinery can be re-used.

In the future we want to focus on the followinng aspects: (i) extending the
program logic to cover the sequential subset of Java; (ii) tracking dependencies
even more precisely, e.g. currently an assignment such as l = h-h introduces
h in the dependency set of l, even though it is a constant value in each pro-
gram run and the symbolic execution machinery is in principle able to detect
this. We have ideas how to treat such cases by extending our program logic
semantics to include a trace semantics; (iii) supporting more sophisticated ab-
stract interpretations involving infinite relational domains such as linear inequa-
tions; (iv) implementation and experimental evaluation including a comparison
to other approaches.

References

1. Amtoft, T., Banerjee, A.: Information flow analysis in logical form. In: Giacobazzi,
R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 100–115. Springer, Heidelberg (2004)

2. Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system devel-
opment with KIV. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, p. 363–366.
Springer, Heidelberg (2000)

3. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

4. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: 17th IEEE Computer Security Foundations Workshop, CSFW-17, Pacific
Grove, CA, USA, pp. 100–114. IEEE Computer Society Press, Los Alamitos (2004)

5. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

6. Beringer, L., Hofmann, M.: Secure information flow and program logics. In: 20th
IEEE Computer Security Foundations Symposium CSF, Venice, Italy, pp. 233–248.
IEEE Computer Society, Los Alamitos (2007)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Fourth
ACM Symposium on Principles of Programming Languages (POPL), Los Angeles,
pp. 238–252. ACM Press, New York (1977)

8. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005)

9. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of secure
information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol. 3450,
pp. 193–209. Springer, Heidelberg (2005)

10. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

11. De Francesco, N., Martini, L.: Abstract interpretation to check secure information
flow in programs with input-output security annotations. In: Dimitrakos, T., Mar-
tinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2005. LNCS, vol. 3866, pp.
63–80. Springer, Heidelberg (2006)

Abstract Interpretation of Symbolic Execution with Explicit State Updates 271

12. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

13. Hähnle, R., Pan, J., Rümmer, P., Walter, D.: Integration of a security type system
into a program logic. Theoretical Computer Science 402(2-3), 172–189 (2008)

14. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundations of Computing. MIT
Press, Cambridge (2000)

15. Holzmann, G.J.: The SPIN Model Checker. Pearson Education, London (2003)
16. Hunt, S., Sands, D.: On flow-sensitive security types. In: 33rd ACM Symposium on

Principles of Programming Languages (POPL), pp. 79–90. ACM Press, New York
(2006)

17. Joshi, R., Leino, K.R.M.: A semantic approach to secure information flow. Science
of Computer Programming 37(1-3), 113–138 (2000)

18. Leino, K.R.M., Logozzo, F.: Loop invariants on demand. In: Yi, K. (ed.) APLAS
2005. LNCS, vol. 3780, pp. 119–134. Springer, Heidelberg (2005)

19. Leino, K.R.M., Logozzo, F.: Using widenings to infer loop invariants inside an
SMT solver, or: A theorem prover as abstract domain. In: Proc. 1st International
Workshop on Invariant Generation, WING 2007 (2007)

20. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

21. Robby, M.B.D., Hatcliff, J.: Bogor: A flexible framework for creating software
model checkers. In: McMinn, P. (ed.) Testing: Academia and Industry Conference;
Practice And Research Techniques (TAIC PART), Windsor, United Kingdom, pp.
3–22. IEEE Computer Society, Los Alamitos (2006)

22. Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures.
In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp.
422–436. Springer, Heidelberg (2006)

23. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5–19 (2003)

24. Velroyen, H., Rümmer, P.: Non-termination checking for imperative programs. In:
Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 154–170. Springer,
Heidelberg (2008)

25. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering 10(2), 203–232 (2003)

26. Weiß, B.: Predicate abstraction in a program logic calculus. In: Leuschel, M.,
Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 136–150. Springer, Heidelberg
(2009)

A Formal Semantics

A.1 Basic Semantics

valI,s,β(f(t1, . . . , tn)) = I(f)(val I,s,β(t1), . . . , val I,s,β(tn))

val I,s,β(x) = s(x)

val I,s,β(y) = β(y)

val I,s,β(if (ϕ)then(t1)else(t2)) =

{
valI,s,β(t1) if val I,s,β(ϕ) = tt
valI,s,β(t2) otherwise

val I,s,β({U}t) = val I,s′,β(t) where s′ = val I,s,β(U)

272 R. Bubel, R. Hähnle, and B. Weiß

val I,s,β(true) = tt

val I,s,β(false) = ff

val I,s,β(p(t1, . . . , tn)) = tt iff (val I,s,β(t1), . . . , val I,s,β(tn)) ∈ I(p)

val I,s,β(ϕ1 & ϕ2) = tt iff ff �∈ {val I,s,β(ϕ1), val I,s,β(ϕ2)}
valI,s,β(ϕ1 | ϕ2) = tt iff tt ∈ {val I,s,β(ϕ1), val I,s,β(ϕ2)}

val I,s,β(ϕ1 −> ϕ2) = val I,s,β(!ϕ1 | ϕ2)

valI,s,β(!ϕ) = tt iff val I,s,β(ϕ) = ff

val I,s,β(∀y.ϕ) = tt iff ff �∈ {val I,s,βv
y
(ϕ) | v ∈ D}

val I,s,β(∃y.ϕ) = tt iff tt ∈ {val I,s,βv
y
(ϕ) | v ∈ D}

val I,s,β(t1
.
= t2) = tt iff val I,s,β(t1) = val I,s,β(t2)

valI,s,β({U}ϕ) = val I,s′,β(ϕ) where s′ = val I,s,β(U)

val I,s,β([p]ϕ) = tt iff ff �∈ {val I,s′,β(ϕ) | s′ ∈ val I,s,β(p)}
val I,s,β(x1 := t1 ‖ . . . ‖ xn := tn) =

{
x �→ s(x) | x �∈ {x1, . . . , xn}

} ∪
{
x �→ val I,s,β(tk) | x = xk and x �∈ {xk+1, . . . , xn}

}

val I,s,β(x = t) =
{
val I,s,β(x := t)

}

val I,s,β(p1;p2) =
{
val I,s′,β(p2) | s′ ∈ val I,s,β(p1)

}

val I,s,β(��(g){p1} ���� {p2}) =

{
valI,s,β(p1) if val I,s,β(g) = tt
valI,s,β(p2) otherwise

valI,s,β(����� (g) {p}) =

{⋃
s1∈S1

valI,s1,β(�����(g) p) if val I,s,β(g) = tt

{s} otherwise

where S1 = val I,s,β(p)

A.2 Semantics Enriched with Dependency Tracking

val ′I,s,β(x = t) =
{
val I,s,β

(
x := t ‖ xdep := deps(t)

)}

val ′I,s,β(p1;p2) =
{
val ′I,s′,β(p2) | s′ ∈ val ′I,s,β(p1)

}

val ′I,s,β(��(g){p1} ���� {p2}) =

{
S′

1 if val I,s,β(g) = tt
S′

2 otherwise

where S1 = val ′I,s,β(p1), S2 = val ′I,s,β(p2),

S′
i = ∅ iff Si = ∅, otherwise S′

i = {s′i} where

s′i(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

si(x) if x ∈ PV or

x = ydep and
si(y) = s(y)
for Si = {si}

si(x) ∪ val I,s,β(deps(g)) otherwise

val ′I,s,β(����� (g) {p}) =

{⋃
s′1∈S′

1
val ′I,s′1,β(�����(t) p) if val I,s,β(g) = tt

{s} otherwise

where S1 = val ′I,s,β(p),

and where S′
1 is derived from S1 as above

Abstract Interpretation of Symbolic Execution with Explicit State Updates 273

A.3 Dependencies of a Term or Formula

This section defines the function deps which takes a term or a formula (occur-
ing inside a program) and returns a term that overapproximates the semantic
dependencies of the argument. It is used both in the semantics with dependency
tracking (App. A.2) and in the dependency-aware calculus rules (Sect. 5.2).
Since logical variables, quantifiers, updates, nested programs, and dependency
variables xdep ∈ PVdep are not allowed to occur in programs, we refrain from
providing a definition for these cases.

deps(f(t1, . . . , tn)) = deps(t1) ∪̇ . . . ∪̇ deps(tn)

deps(x) = x
dep

deps(if (ϕ)then(t1)else(t2)) = deps(ϕ) ∪̇ deps(t1) ∪̇ deps(t2)

deps(a) = {} where a ∈ {true, false}
deps(p(t1, . . . , tn)) = deps(t1) ∪̇ . . . ∪̇ deps(tn)

deps(ϕ1 ∗ ϕ2) = deps(ϕ1) ∪̇ deps(ϕ2) where ∗ ∈ {&, |,−>}
deps(!ϕ) = deps(ϕ)

deps(t1
.
= t2) = deps(t1) ∪̇ deps(t2)

B Update Rewriting Rules

A rewrite rule a � b is applicable to any occurrence of a within a sequent, and
applying it means to replace that occurrence of a with b.

{U}{x1 := t1 ‖ . . . ‖ xn := tn} � {U ‖ x1 := {U}t1 ‖ . . . ‖ xn := {U}tn}
{U}f(t1, . . . , tn) � f({U}t1, . . . , {U}tn)

{x1 := t1 ‖ . . . ‖ xn := tn}x �
{
x if x �∈ {x1, . . . , xn}
tk if x = xk and x �∈ {xk+1, . . . , xn}

{U}a � a where a ∈ V ∪ {true, false}
{U}if (ϕ)then(t1)else(t2) � if ({U}ϕ)then({U}t1)else({U}t2)

{U}p(t1, . . . , tn) � p({U}t1, . . . , {U}tn)

{U}(ϕ1 ∗ ϕ2) � {U}ϕ1 ∗ {U}ϕ2 where ∗ ∈ {&, |,−>}
{U} !ϕ � !{U}ϕ

{U}Qy.ϕ � Qy.{U}ϕ where Q ∈ {∀,∃}, y �∈ free(U)

{U}(t1 .
= t2) � {U}t1 .

= {U}t2

C Proofs

C.1 Lemma 1: Soundness of weakenUpdate

Proof. We assume that the following two statements hold for all I, s, β:

val I,s,β

(
Γ, {U}(x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄), Δ

)
= tt (8)

val I,s,β

(
Γ =⇒ {U ′}ϕ,Δ)

= tt (9)

274 R. Bubel, R. Hähnle, and B. Weiß

Let I0, s0, β0 be an arbitrary interpretation, state, and variable assignment.
We need to show that valI0,s0,β0

(
Γ =⇒ {U}ϕ,Δ)

= tt . If valI0,s0,β0

(∧
Γ

)
= ff

or if valI0,s0,β0

(∨
Δ

)
= tt , then we are done immediately. Thus, we assume

val I0,s0,β0

(∧
(Γ ∪ !Δ)

)
= tt (10)

and aim to prove that valI0,s0,β0

({U}ϕ)
= tt .

Let s1 = val I0,s0,β0(U), i.e., s1 is the state reached by starting in s0 and
executing U . Our goal is to prove that valI0,s1,β(ϕ) = tt .

Let I ′0 be the interpretation which is identical to I0 except that I ′0(c̄) = s1(x̄),
i.e., I ′0 interprets the constant symbols c̄ like the corresponding program variables
x̄ are interpreted in s1. This definition of I ′0 implies val I′

0,s0,β0(x̄
.= c̄) = tt , and

thus (as the symbols c̄ do not occur in U)

valI′
0,s0,β0

({U}(x̄ .= c̄)
)

= tt (11)

Since the symbols c̄ occur neither in Γ nor in Δ, and since I ′0 is otherwise
identical to I0, we get from (10) that

val I′
0,s0,β0

(∧
(Γ ∪ !Δ)

)
= tt (12)

Combining (12), (11) and the first premiss (8) yields

valI′
0,s0,β0

(∃γ̄.{U ′}(x̄ .= c̄)
)

= tt (13)

This means that there is an interpretation I ′′0 which is identical to I ′0 except in
the interpretation of the symbols γ̄, and which satisfies

valI′′
0 ,s0,β0

({U ′}(x̄ .= c̄)
)

= tt (14)

Let s′1 = val I′′
0 ,s0,β0(U ′), i.e., s′1 is the state reached by starting in s0 and exe-

cuting U ′ under the interpretation I ′′0 . Equation 14 is equivalent to

val I′′
0 ,s′

1,β0(x̄
.= c̄) = tt (15)

This means that s′1(x̄) = I ′′0 (c̄). Also, by definition of I ′′0 and I ′0, we have I ′′0 (c̄) =
I ′0(c̄) = s1(x̄). Thus, s′1(x̄) = s1(x̄), i.e., s′1 and s1 are identical on all program
variables x̄ which are potentially changed by either U or U ′. Since both s1 and s′1
are derived from s0 by executing one of these updates, this implies that s′1 = s1.
Inserting the definition of s′1, this reads as

val I′′
0 ,s0,β0(U ′) = s1 (16)

Let I1 be the interpretation identical to I ′′0 except that the symbols c̄ are in-
terpreted as in I0. Since the symbols c̄ do not occur in U ′, we get from (16)
that

valI1,s0,β0(U ′) = s1 (17)

Abstract Interpretation of Symbolic Execution with Explicit State Updates 275

Since the γ̄ do not occur in Γ nor in Δ, (10) tells us that

val I1,s0,β0

(∧
(Γ ∪ !Δ)

)
= tt (18)

Combining (18) with the second premiss (9) yields

valI1,s0,β0

({U ′}ϕ)
(19)

With (17), this implies

valI1,s1,β0(ϕ) = tt (20)

Since the symbols γ̄ do not occur in ϕ, and since I1 is otherwise identical to I0,
we get

valI0,s1,β0(ϕ) = tt (21)

which is what we had to show. ��

C.2 Lemma 2: Soundness of invariantUpdate

Proof. We assume that the following three statements hold for all I, s, β:

valI,s,β

(
Γ, {U}(x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄), Δ

)
= tt (22)

valI,s,β

(
Γ, {U ′}g, {U ′}[p](x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄), Δ

)
= tt (23)

val I,s,β

(
Γ, {U ′} ! g =⇒ {U ′}[...]ϕ,Δ)

= tt (24)

Let I0, s0, β0 be an arbitrary interpretation, state, and variable assignment. We
need to show that valI0,s0,β0

(
Γ =⇒ {U}[while (g) {p}; ...]ϕ,Δ

)
= tt . If

valI0,s0,β0

(∧
Γ

)
= ff or if valI0,s0,β0

(∨
Δ

)
= tt , then we are done immediately.

Thus, we assume

val I0,s0,β0

(∧
(Γ ∪ !Δ)

)
= tt (25)

and aim to prove that valI0,s0,β0

({U}[while (g) {p}; ...]ϕ
)

= tt .
Let s1 = val I0,s0,β0(U), i.e., s1 is the state reached by starting in s0 and

executing U . If the loop does not terminate when started in s1, then our proof
goal val I0,s0,β0

({U}[while (g) {p}; ...]ϕ
)

= tt holds trivially. Therefore, we
assume that the loop terminates. From the programming language semantics,
we know that there is a finite sequence of states s1, . . . , sk, where

valI0,si,β0(p) = {si+1} i ∈ {1, . . . , k − 1} (26)
valI0,si,β0(g) = tt i ∈ {1, . . . , k − 1} (27)
valI0,sk,β0(g) = ff (28)

Our task is to show that val I0,sk,β0

(
[...]ϕ

)
= tt .

276 R. Bubel, R. Hähnle, and B. Weiß

We will use induction to prove that for all i ∈ {1, . . . , k}, there is an interpre-
tation Ii which is identical to I0 except for the interpretation of the symbols γ̄,
and for which valIi,s0,β0(U ′) = si. Intuitively, this means we show that for every
state si of the chain, we can find an interpretation Ii of the symbols γ̄ such that
applying U ′ to the initial state s0 with this interpretation Ii directly produces
si. Afterwards, we will use this result and the third premiss (24) for showing
valI0,sk,β0

(
[...]ϕ

)
= tt .

– Base case (i = 1). As our first premiss (22) is identical to the first premiss
of the weakenUpdate rule (8), we can construct an interpretation I1 with the
desired properties in the same way as we did in the proof of updateWeaken
(see (17)). For lack of space, we do not repeat this construction here.

– Step case (i ∈ {2, . . . , k}). We assume that the induction hypothesis holds
for i − 1, i.e., there is an interpretation Ii−1 identical to I0 except for the
interpretation of the symbols γ̄, and which satisfies

valIi−1,s0,β0(U ′) = si−1 (29)

Let I ′i−1 be the interpretation which is identical to Ii−1 except that I ′i−1(c̄) =
si(x̄). This definition of I ′i−1 implies valI′

i−1,si,β0(x̄
.= c̄) = tt . As the symbols

c̄ do not occur in p, we can combine this with (26) to get

val I′
i−1,si−1,β0

(
[p](x̄ .= c̄)

)
= tt (30)

By the induction hypothesis and the definition of I ′i−1, I
′
i−1 is identical to I0

except in the interpretation of the symbols γ̄ and c̄. Since all of these occur
neither in Γ nor in Δ, we get from (25) that

val I′
i−1,s0,β0

(∧
(Γ ∪ !Δ)

)
= tt (31)

As the c̄ do not occur in U ′, and as I ′i−1 is otherwise identical to Ii−1, the
induction hypothesis (29) also gives us

valI′
i−1,s0,β0(U ′) = si−1 (32)

Together, (32) and (30) imply

valI′
i−1,s0,β0

({U ′}[p](x̄ .= c̄)
)

= tt (33)

Since the symbols γ̄ and c̄ do not occur in g, we can combine (32) with (27)
to get

valI′
i−1,s0,β0

({U ′}g) = tt (34)

Taken together, (31), (34), (33) and the second premiss (23) yield

valI′
i−1,s0,β0

(∃γ̄.{U ′}(x̄ .= c̄)
)

= tt (35)

Abstract Interpretation of Symbolic Execution with Explicit State Updates 277

This means that there is an interpretation I ′′i−1 which is identical to I ′i−1

except in the interpretation of the symbols γ̄, and which satisfies

val I′′
i−1,s0,β0

({U ′}(x̄ .= c̄)
)

= tt (36)

Let s′i = valI′′
i−1,s0,β0(U ′), i.e., si is the state reached by starting in s0 and

executing U ′ under the interpretation I ′′i−1. Equation (36) is equivalent to

valI′′
i−1,s′

i,β0(x̄
.= c̄) = tt (37)

This means that s′i(x̄) = I ′′i−1(c̄). Also, by definition of I ′′i−1 we have I ′′i−1(c̄) =
si(x̄). Thus s′i = si. Inserting the definition of s′i, this reads as

val I′′
i−1,s0,β0(U ′) = si (38)

Let Ii be the interpretation identical to I ′′i−1 except that the symbols c̄ are
interpreted as in Ii−1. Since the c̄ do not occur in U ′, we get from (38) that

valIi,s0,β0(U ′) = si (39)

Since Ii also differs from I0 only in the interpretation of the symbols γ̄, it
has both desired properties.

This finishes our induction. We know now that in particular for i = k, there is
an interpretation Ik which is identical to I0 except for the interpretation of the
symbols γ̄, and for which

valIk,s0,β0(U ′) = sk (40)

Since the symbols γ̄ do not occur in g, we can combine this with (28) to get

valIk,s0,β0

({U ′}g) = ff (41)

Since the γ̄ also do not occur in Γ nor Δ, (25) tells us that

val Ik,s0,β0

(∧
(Γ ∪ !Δ)

)
= tt (42)

Combining (42) and (41) with the third premiss (24) yields

val Ik,s0,β0

({U ′}[...]ϕ)
(43)

With (40), this implies

valIk,sk,β0

(
[...]ϕ

)
= tt (44)

Since the symbols γ̄ do not occur in [...]ϕ, and since Ik is otherwise identical
to I0, we get

valI0,sk,β0

(
[...]ϕ

)
= tt (45)

which is what we had to show. ��

	Abstract Interpretation of Symbolic Execution with Explicit State Updates
	Introduction
	A Dynamic Logic with Updates
	Syntax
	Semantics
	Calculus

	A Dynamic Logic with Abstraction
	Abstract Domains
	Update Weakening and Abstraction Rule
	An Invariant Rule Based on Updates
	The Proof Search Strategy
	Joining Proof Branches

	Example
	Modeling Information Flow
	Dependencies in Dynamic Logic
	Dependency Aware Rules
	Dependency Aware Abstraction

	Related Work
	Conclusion and Future Work
	Formal Semantics
	Basic Semantics
	Semantics Enriched with Dependency Tracking
	Dependencies of a Term or Formula

	Update Rewriting Rules
	Proofs
	Lemma 1: Soundness of weakenUpdate
	Lemma 2: Soundness of invariantUpdate

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

