68 research outputs found

    Construction of a complete set of orthogonal Fourier-Mellin moment invariants for pattern recognition applications

    No full text
    International audienceThe completeness property of a set of invariant descriptors is of fundamental importance from the theoretical as well as the practical points of view. In this paper, we propose a general approach to construct a complete set of orthogonal Fourier-Mellin moment (OFMM) invariants. By establishing a relationship between the OFMMs of the original image and those of the image having the same shape but distinct orientation and scale, a complete set of scale and rotation invariants is derived. The efficiency and the robustness to noise of the method for recognition tasks are shown by comparing it with some existing methods on several data sets

    Image Description using Radial Associated Laguerre Moments

    Get PDF
    This study proposes a new set of moment functions for describing gray-level and color images based on the associated Laguerre polynomials, which are orthogonal over the whole right-half plane. Moreover, the mathematical frameworks of radial associated Laguerre moments (RALMs) and associated rotation invariants are introduced. The proposed radial Laguerre invariants retain the basic form of disc-based moments, such as Zernike moments (ZMs), pseudo-Zernike moments (PZMs), Fourier-Mellin moments (OFMMs), and so on. Therefore, the rotation invariants of RALMs can be easily obtained. In addition, the study extends the proposed moments and invariants defined in a gray-level image to a color image using the algebra of quaternion to avoid losing some significant color information. Finally, the paper verifies the feature description capacities of the proposed moment function in terms of image reconstruction and invariant pattern recognition accuracy. Experimental results confirmed that the associated Laguerre moments (ALMs) perform better than orthogonal OFMMs in both noise-free and noisy conditions

    Multi-Technique Fusion for Shape-Based Image Retrieval

    Get PDF
    Content-based image retrieval (CBIR) is still in its early stages, although several attempts have been made to solve or minimize challenges associated with it. CBIR techniques use such visual contents as color, texture, and shape to represent and index images. Of these, shapes contain richer information than color or texture. However, retrieval based on shape contents remains more difficult than that based on color or texture due to the diversity of shapes and the natural occurrence of shape transformations such as deformation, scaling and orientation. This thesis presents an approach for fusing several shape-based image retrieval techniques for the purpose of achieving reliable and accurate retrieval performance. An extensive investigation of notable existing shape descriptors is reported. Two new shape descriptors have been proposed as means to overcome limitations of current shape descriptors. The first descriptor is based on a novel shape signature that includes corner information in order to enhance the performance of shape retrieval techniques that use Fourier descriptors. The second descriptor is based on the curvature of the shape contour. This invariant descriptor takes an unconventional view of the curvature-scale-space map of a contour by treating it as a 2-D binary image. The descriptor is then derived from the 2-D Fourier transform of the 2-D binary image. This technique allows the descriptor to capture the detailed dynamics of the curvature of the shape and enhances the efficiency of the shape-matching process. Several experiments have been conducted in order to compare the proposed descriptors with several notable descriptors. The new descriptors not only speed up the online matching process, but also lead to improved retrieval accuracy. The complexity and variety of the content of real images make it impossible for a particular choice of descriptor to be effective for all types of images. Therefore, a data- fusion formulation based on a team consensus approach is proposed as a means of achieving high accuracy performance. In this approach a select set of retrieval techniques form a team. Members of the team exchange information so as to complement each other’s assessment of a database image candidate as a match to query images. Several experiments have been conducted based on the MPEG-7 contour-shape databases; the results demonstrate that the performance of the proposed fusion scheme is superior to that achieved by any technique individually

    Analysis of the image moments sensitivity for the application in pattern recognition problems

    Get PDF
    Momenti slike su numerički deskriptori koji sadrže informaciju o svojstvima invarijantnim na translaciju, rotaciju, promjenu skale i neke oblike distorzije, a njihova analiza je jedna od metoda koje se često koriste pri analizi slika i raspoznavanju uzoraka. U okviru ove radnje razvijeni su algoritmi za računanje geometrijskih, Legendreovih, Zernikeovih, Fourier – Mellinovih te tri tipa Fourier – Jacobijevih momenata, kao i iz njih definiranih invarijanti slike u programskom jeziku MatLab uz rješavanje inverznog problema rekonstrukcije početnog ulaza. Za sve tipove momenata osim najjednostavnijih geometrijskih definirani su vektori osjetljivosti na rotaciju i promjenu skale čije su komponente oni članovi skupa koji nose značajnije informacije o ulaznoj slici. Primjenom novih deskriptora na klasifikaciju rukom pisanih slova i identifikacijskih fotografija osoba pokazano je da je relevantna informacija o ulazu na taj način sačuvana, a njihov je izračun znatno brži i jednostavniji uz zadržanu sposobnost jednoznačnog raspoznavanja uzoraka. Korištenjem momenata slike i vektora osjetljivosti analizirani su znakovi s dvaju glagoljskih spomenika te utvrđeno postojanje mješavine znakova trokutastog i okruglog modela glagoljice. Metoda je primijenjena i na klasifikaciju tragova puzanja ličinki mutanata vinske mušice za potrebe proučavanja odgovora živčanog sustava na različite podražaje.Image moments are numerical descriptors invariant to translation, rotation, change of scale and some types of image distortion and their analysis is one of the most often used methods in image processing and pattern recognition. In this work, algorithms for calculation of geometric, Legendre, Zernike, Fourier – Mellin and three types of Fourier – Jacobi moments were implemented in MatLab. Hu's, affine and blur invariants were also obtained as well as inverse problem of input image reconstruction solved. For each type of image moments exept geometric ones the set of sensitivity vectors for rotation and scale were defined. Their components are those image moments which describe more important features of the input image. These new descriptors were applied for classification of handwritten letters and identifying personal photos. It was shown that the process of such descriptor calculation is much faster and simpler while preserving all the relevant information about input image. Using this method, the signs carved in two glagolitic inscriptions were analyzed and the mixture of triangular and round glagolitic letters found. The method was also applied to classification of the mutant fruit fly larvae crawling trails which is needed in studying responses of the nervous system to different stimuli

    Analysis of the image moments sensitivity for the application in pattern recognition problems

    Get PDF
    Momenti slike su numerički deskriptori koji sadrže informaciju o svojstvima invarijantnim na translaciju, rotaciju, promjenu skale i neke oblike distorzije, a njihova analiza je jedna od metoda koje se često koriste pri analizi slika i raspoznavanju uzoraka. U okviru ove radnje razvijeni su algoritmi za računanje geometrijskih, Legendreovih, Zernikeovih, Fourier – Mellinovih te tri tipa Fourier – Jacobijevih momenata, kao i iz njih definiranih invarijanti slike u programskom jeziku MatLab uz rješavanje inverznog problema rekonstrukcije početnog ulaza. Za sve tipove momenata osim najjednostavnijih geometrijskih definirani su vektori osjetljivosti na rotaciju i promjenu skale čije su komponente oni članovi skupa koji nose značajnije informacije o ulaznoj slici. Primjenom novih deskriptora na klasifikaciju rukom pisanih slova i identifikacijskih fotografija osoba pokazano je da je relevantna informacija o ulazu na taj način sačuvana, a njihov je izračun znatno brži i jednostavniji uz zadržanu sposobnost jednoznačnog raspoznavanja uzoraka. Korištenjem momenata slike i vektora osjetljivosti analizirani su znakovi s dvaju glagoljskih spomenika te utvrđeno postojanje mješavine znakova trokutastog i okruglog modela glagoljice. Metoda je primijenjena i na klasifikaciju tragova puzanja ličinki mutanata vinske mušice za potrebe proučavanja odgovora živčanog sustava na različite podražaje.Image moments are numerical descriptors invariant to translation, rotation, change of scale and some types of image distortion and their analysis is one of the most often used methods in image processing and pattern recognition. In this work, algorithms for calculation of geometric, Legendre, Zernike, Fourier – Mellin and three types of Fourier – Jacobi moments were implemented in MatLab. Hu's, affine and blur invariants were also obtained as well as inverse problem of input image reconstruction solved. For each type of image moments exept geometric ones the set of sensitivity vectors for rotation and scale were defined. Their components are those image moments which describe more important features of the input image. These new descriptors were applied for classification of handwritten letters and identifying personal photos. It was shown that the process of such descriptor calculation is much faster and simpler while preserving all the relevant information about input image. Using this method, the signs carved in two glagolitic inscriptions were analyzed and the mixture of triangular and round glagolitic letters found. The method was also applied to classification of the mutant fruit fly larvae crawling trails which is needed in studying responses of the nervous system to different stimuli

    Generic polar harmonic transforms for invariant image description

    Get PDF
    International audienceA class of rotation-invariant orthogonal moments is proposed using a complex exponential in the radial direction. Each member of this class, while sharing beneficial properties to image representation and recognition like orthogonality and rotation-invariance, has distinctive properties depending on the value of a parameter, making it more suitable for some particular applications. The computation of moments is simpler and more stable than existing methods. Experimental results show the effectiveness of this class of moments in term of description performance and pattern recognition ability

    Automatic Segmentation and Classification of Red and White Blood cells in Thin Blood Smear Slides

    Get PDF
    In this work we develop a system for automatic detection and classification of cytological images which plays an increasing important role in medical diagnosis. A primary aim of this work is the accurate segmentation of cytological images of blood smears and subsequent feature extraction, along with studying related classification problems such as the identification and counting of peripheral blood smear particles, and classification of white blood cell into types five. Our proposed approach benefits from powerful image processing techniques to perform complete blood count (CBC) without human intervention. The general framework in this blood smear analysis research is as follows. Firstly, a digital blood smear image is de-noised using optimized Bayesian non-local means filter to design a dependable cell counting system that may be used under different image capture conditions. Then an edge preservation technique with Kuwahara filter is used to recover degraded and blurred white blood cell boundaries in blood smear images while reducing the residual negative effect of noise in images. After denoising and edge enhancement, the next step is binarization using combination of Otsu and Niblack to separate the cells and stained background. Cells separation and counting is achieved by granulometry, advanced active contours without edges, and morphological operators with watershed algorithm. Following this is the recognition of different types of white blood cells (WBCs), and also red blood cells (RBCs) segmentation. Using three main types of features: shape, intensity, and texture invariant features in combination with a variety of classifiers is next step. The following features are used in this work: intensity histogram features, invariant moments, the relative area, co-occurrence and run-length matrices, dual tree complex wavelet transform features, Haralick and Tamura features. Next, different statistical approaches involving correlation, distribution and redundancy are used to measure of the dependency between a set of features and to select feature variables on the white blood cell classification. A global sensitivity analysis with random sampling-high dimensional model representation (RS-HDMR) which can deal with independent and dependent input feature variables is used to assess dominate discriminatory power and the reliability of feature which leads to an efficient feature selection. These feature selection results are compared in experiments with branch and bound method and with sequential forward selection (SFS), respectively. This work examines support vector machine (SVM) and Convolutional Neural Networks (LeNet5) in connection with white blood cell classification. Finally, white blood cell classification system is validated in experiments conducted on cytological images of normal poor quality blood smears. These experimental results are also assessed with ground truth manually obtained from medical experts
    corecore