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Abstract 

In recent years computer technology has advanced to a state whereby large quantities of data 

can be processed. This advancement has fuelled a dramatic increase in research into areas of 

image processing which were previously impractical, such as automated vision systems for, 

both military, and domestic purposes. 

Automatic Target Recognition (ATR) systems are one such example of these automated 

processes. ATR is the automatic detection, isolation and identification of objects, often derived 

from raw video, in a real-world, potentially hostile environment. The ability to rapidly, and 

accurately, process each frame of the incoming video stream is paramount to the success of the 

system, in order to output suitable actions against constantly changing situations. 

One of the main functions of an AIR system is to identify correctly all the objects detected 

in each frame of data. The standard approach to implementing this component is to divide the 

identification process into two separate modules; feature extraction and classification. However, 

it is often difficult to optimise such a dual system with respect to reducing the probability of mis-

identification. This can lead to reduced performance. One potential solution is a neural network 

that accepts image data at the input, and outputs estimated classification. Unfortunately, neural 

network models of this type are prone to misuse due to their apparent black box solutions. 

In this thesis a new technique, based on existing adaptive wavelet algorithms, is implemented 

that offers ease-of-use, adaptability to new environments, and good generalisation in a single 

image-in-classification-out model that avoids many of the problems of the neural network 

approach. This new model is compared with the standard two stage approach using real-world, 

infrared, AIR data. 

Various extensions to the model are proposed to incorporate invariance to particular object 

deformations, such as size and rotation, which are necessary for reliable AIR performance. 

Further work increases the flexibility of the model to further improve generalisation. Other 

aspects, such as data analysis and object generation accuracy, which are often neglected, are 

also considered. 
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Chapter 1 

Thesis overview 

The thesis describes a project to enhance a section of an existing industrial system. A brief, 

preliminary, discussion outlines the naivety of this first scheme and proposes a new approach 

combining available, and novel, technology to simplify, and to enhance the performance of the 

product. To this end, a list of project aims is presented. The approach taken to achieve these 

new goals is then explained with reference to each chapter, with a note on why each particular 

chapter is important. Finally, the contributions to knowledge, that the thesis accomplishes, is 

discussed. 

1.1 Thesis background 

Automatic Target Recognition (ATR) is the automatic detection, isolation and identification of 

hostile objects in a real-world environment. The two main goals of a mainstream ATR system 

are, firstly, the detection of all potentially hostile objects in an environment, whilst minimising 

the number of false detections, and, secondly, the identification of all detected objects. 

A required improvement in both of these ATR performance measures in an existing system, 

employed by British Aerospace Systems and Equipment Ltd. (BASE), led to the proposal 

of three interesting research topics for the Electrical Engineering department at Edinburgh 

University, to be carried out in overlapping phases. The objectives of the project phases, 

dictated by BASE, included 

1 
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Improved rate of correct identification of detected objects, using still, infrared, 

images, without greatly decreasing classifier throughput, or increasing module storage 

requirements. 

Improved detection, and extraction of objects, using feedback, for reducing false 

detection rates. 

Improved object classification using both temporal, and three-dimensional object 

characteristics. 

A fourth phase, using classification to aid object tracking, was also planned and together 

this entire project was labelled, by the Edinburgh group, as the OSTRICH project: Object Seg-

mentation and Tracking using a Real-time Infrared Classification Hypothesis. The OSTRICH 

system design consists of all the modules required for a fully working ATR system, and was 

proposed by the Edinburgh group such that existing BASE components could be used, and that 

any new, improved, modules tested in the OSTRICH system, could be easily transferred back 

into the BASE system. 

This thesis concentrates on Phase I of the OSTRICH project, improving the rate of correct 

object identification achieved by the existing BASE classifier. The existing system uses a Multi-

Layer Perceptron (MLP), neural network, classifier designed with object image data segmented 

from a database of thermal infrared images. The original proposal for this thesis was to 

harmonise work already completed on the recognition system at BASE, with research carried 

out in the Integrated Systems Group (ISG) at Edinburgh University on improved classification 

through noisy learning in neural network classifiers • 

Unfortunately, as will be explained in detail in later chapters, the original classification 

results obtained by BASE were highly optimistic, due to a highly over-parameterised classific-

ation model and inappropriate test image database. The subsequent need for standard image 

processing techniques, to generate a set of low-dimensional object characteristics, or features, 

invalidated the requirement for research in connection with noisy learning, this area having 

'Applied Research project number 82140761,"Noise in Neural Training: Infrared Image 
Classification' 
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been recently investigated [32]. Consequently, a new approach and set of project aims, was 

considered. The objective of Phase I though, the BASE aims, remained as set out earlier in this 

section. 

Before examining the aims of the project it is important to discuss why the particular 

ATR methodology implemented in this thesis was used in preference to other known systems. 

The ATR methodology used in this thesis, as alluded to previously, is based on segmenting 

objects from a scene, deriving a set of features and then performing an object classification 

based on these features. This is a common approach used in many systems but there are other 

approaches, such as model matching, CORT-X filtering and the use of knowledge-bases and 

expert systems. [15,96,29,10]. The reasons for choosing the segment-feature-classify approach 

is listed below. 

Each of the approaches have their disadvantages. The approach taken in this thesis could 

potentially be confused by decoys, often because of the lack of range data and contextual 

information. In other systems, such as model matching, object occlusion can cause loss 

of symbol data, and clutter may produce false symbols and knowledge-based systems 

often require basic object detection and shape recognition in order to generate some of 

its decisions and, thus again, liable to the same problems as the previous approaches. 

For these very reasons listed in Point 1 these different approaches are sometimes used in 

parallel, and combined as to integrate the positive attributes of each of the approaches, 

and minimising the effects of the failures of each individual approach. Therefore, it is 

quite acceptable to examine, and improve the performance, of just one of these ATR 

methodologies. 

There are many existing systems that are in use that employ the segment-feature-classify 

approach and improvements to the approach are thus immediately beneficial to these 

systems. 

The original BASE system was based on this methodology and continuing with the same 

approach allowed a small manageable project to be contained. 
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1.2 Project aims 

The aims of the project are listed below. 

I. To highlight problems with the existing BASE ATR object classification module. 

To design a replacement classification module for the BASE ATR system. The module 

must be able to work on real-world data generated by the detection, and isolation, BASE 

ATR stages. Furthermore, the module must not require more storage than the existing 

BASE system, nor should its throughput be reduced. 

To provide improved classification, to be compared, not only with the existing BASE 

system performance, but also with the traditional approaches of improving classification 

rates. This enhancement is to be done using a single stage classification process, using 

image input data, yet maintaining a low number of adaptive classifier model parameters. 

To design a classifier that is adaptive to new environments and applications. The classifier 

should also be easy to generate and have a minimal number of control settings. Traditional 

approaches often fail, if performed correctly, in one or more of these characteristics. 

To analyse the real data provided for the project, and the processes used in generating the 

classifier inputs, including determining any assumptions that were made in these steps. 

To incorporate invariance to size, position, or two-dimensional rotations of the object 

image, into the classification model. This ability to continue correctly classifying objects 

regardless of particular object deformations is a very important attribute of an ATR 

system. 

To identify potential weakness in the new classification module. This identification must 

include analysis of classification failures, and examination of the effects of failure of any 

weak assumptions made in the generation of the data. The latter will require the module 

to be able to detect non-object, rogue, or inaccurately generated, data from previous ATR 

stages. 
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1.3 Thesis outline 

This thesis is a chronological, and systematic, presentation of the work completed in achieving 

the aims set down in Section 1.2. The initial chapters provide background information to the 

project, the data used and how it was produced. The thesis then covers the standard methods 

for automatically processing the data introduced in the previous chapters. Then, a relatively 

new approach for simplifying these methods is reviewed, applied, and extended to improve 

both functionality, and performance. This new model, achieving many of the project aims, is 

then subjected to more realistic data to fully test its capabilities. A more detailed breakdown 

of all the chapters is now provided. 

Chapter 2 introduces the various basic techniques involved in pattern recognition and 

Automatic Target Recognition (ATR.) Many of these techniques are used in later chapters. 

An outline of the OSTRICH project is also provided to clarify the needs and functions of 

an improved classification module, as is a description of the raw data that was provided, and 

acquired, for the project. The significance of the chapter is that it provides much of the 

necessary background for understanding why, and how, the project commenced. 

The processing of the raw image data, described in the previous chapter, for generating a 

set of object databases for classification is described in Chapter 3. This chapter is specific to 

the database provided for the OSTRICH project, and covers object segmentation, analysis and 

preprocessing. Objects are extracted from their parent images, labelled according to a defined 

classification tree, analysed to determine specific object attributes useful for discrimination, 

and finally, preprocessed to remove any unwanted characteristics that generate misleading, 

or unrepresentative, information. This chapter lists the assumptions that were made when 

generating the object data, and is significant as it provides the basis on which satisfactory, and 

realistic, solutions can be reached. 

Before any new improved classification model can be examined it is necessary to process 

the data using techniques currently employed in other systems. The object identification 

technique, in use in many classification and ATR systems, currently uses a two stage method of 

feature extraction and selection, followed by feature classification [10,13]. This is applied, as 

explained in Chapter 4, to the object databases with many popular feature extraction algorithms 
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and classification models implemented. This chapter is significant as it provides a set of 

benchmark results against which any new ATR classification module can be compared, and 

shows where improvements can be made, with reference to specific types of object classification 

failures. 

Chapter 5 introduces the relatively new, single stage approach, for object classification 

that uses adaptive kernel feature extraction combined with a standard linear discrimination 

procedure. This is applied to the databases used in Chapter 4. The results are contrasted with 

those of the previous chapter. The model is then extended to use a nonlinear discrimination 

procedure in an attempt to improve performance further. This chapter is significant as it shows 

how to easily generate a classification model that produces good generalisation without the 

need for the unwanted complexities of the standard approaches. 

The model analysed in Chapter 5 lacks invariance to a required set of object deformations. 

This invariance is very important to a real-world ATR system. Thus, Chapter 6 further extends 

the work of the previous chapter and attempts two solutions to this invariance problem. One 

result is shown to be far superior, and is compared with standard methods for achieving 

invariance. This chapter is significant as it extends the knowledge of the new classification 

model, as well as satisfying the invariance requirement given in Section 1.2. 

Chapter 7 investigates the effect on the standard, and new, classification models when some 

of the assumptions concerning the creation of the object database are relaxed. This relaxation 

generates far more realistic data than the more idealised data used up to this point. This chapter 

examines methods for identifying much of the rogue data that is now passed to the classification 

module. This is the preliminary work required for the second phase of the OSTRICH project 

that is being completed in parallel with the phase described in this thesis. Also in Chapter 

7, the new classification ATR module is put to the ultimate test of flexibility to real-world 

environments when it is exposed to a completely new database. This chapter is significant as 

it tests the integration of the new classification model into the AIR environment. 

Chapter 8 summarises, and provides the final conclusions to, the thesis. 
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1.4 Areas of contribution 

Publicised classification results derived from real, infrared, image databases, of the kind used 

in this thesis, are scarce. This is often due to the nature of the sponsoring companies products. 

Results from databases where there is exceptionally high clutter to object ratios, object van-

ability, poor image quality, and object obscuration are even less frequently reported. This is 

perhaps due to the disappointing classification rates compared with synthetic database results. 

This thesis uses such real-world data, and not only applies a relatively new type of classification 

algorithm to it, but analyses the practical implications of a non-ideal, classifier-data-generation, 

mechanism. 

The combined feature extraction and classification model used is not itself novel. However, 

as just stated, the application of the model for differentiating between these type of real, and 

non-ideal, objects is unknown, at the time of writing, to the author. Furthermore, the combined 

model is extended in this thesis, and provides new information, with respect to three important, 

and different, aspects. 

• The model used is greatly simplified in terms of the feature extraction mechanism, 

the form of the mother kernel. Many other authors have adopted a multi-parameter, 

wavelet, kernel, without, it seems, testing the possible usage of a much simpler, single, 

or dual parameter kernel. This simplification is tested, and analysed, in this thesis 

using the real, non-ideal data. 

• The linear discrimination algorithm used in the combined model is replaced, and 

tested, with a nonlinear classification algorithm, with only an extra layer of processing. 

This has been suggested but it has never been applied, or results published, using real-

world data. 

• Invariance to size, position, and two-dimensional rotation, is incorporated and tested 

in the combined model. Invariance in the new model, as far as is known, has never 

been attempted with neither synthetic, nor real-world, data. 
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1.5 Review 

This chapter has described the project aims and the format of the following thesis. It has 

illuminated the areas in which this thesis will uncover fresh results and ideas. 



Chapter 2 

Automatic target recognition and the 

OSTRICH project 

Automatic target recognition (ATR) systems are designed to detect, isolate, identify and track 

user-defined objects of interest within a potentially hostile environment. This chapter provides 

the necessary background for understanding various ATR, and classification, concepts with 

particular reference to a specific ATR system. This system is shown to have several fundamental 

flaws, each of which this thesis shall address. Also, a real-world ATR scenario is outlined and 

two simple experiments demonstrate that this type of recognition, on real infrared data, is 

definitely not as easy as it may sound! 

2.1 Recognition 

Great White Sharks, contrary to popular belief, have excellent visual acuity. Even so, on 

occasion, they attack humans. One theory suggests that sharks mistake the human outline with 

that of a seal. In comparison, the retinal ganglion response of the frog [5], performing gross 

visual feature extraction, compels the frog to strike at any suspected prey albeit a fly at 10cm or 

a plane at 1km. The frog wrongly identifies the prey from a lack of depth information and not 

by shape, like the shark. These examples merely illustrate that lack of complete, or misguided, 

information can lead to errors in recognition. 

These mistakes may seem simplistic but even humans are not immune to errors in visual per-

ception, especially in tasks which tend to habituation or are stressful due to rapidly developing, 

or hostile, environments. In these situations humans are slow, unreliable, and vulnerable [131]. 
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These problems are often compounded when the focus of attention undergoes geometrical 

distortions, such as scaling, repositioning and often, more importantly, rotation [110]. 

There became .a requirement to develop automated vision systems that were fast, accur-

ate, expendable, and could cope with common geometrical distortions in high risk military 

situations, or where accurate, high throughput was required, such as medical imaging for dia-

gnosis [131]. One particular research area that has received a lot of attention, is automatic 

target recognition. 

2.2 Automatic target recognition (ATR) 

The term "automatic target recognition" was coined in the early 1980's with the development of 

the LANTIRN ' system and now represents the specific field of military-based image analysis 

and machine vision [102]. Since LANTIRN there have been many ATR related projects 

including Honeywell's PATS project, the SAIRS program, PAIRSTECH, KMBAA, Hughes' 

SAHTIRN target recognition system, and the ANVIL program [95,94]. Good introductions 

to the historical aspects of ATR, spanning 35 years of research, can be found in articles by 

Roth [91], Brown and Swonger [17], Bhanu [10], and two recent special journal issues dedicated 

to ATR [94,51]. However, to define an ATR system first requires knowledge of the expected 

ATR environment. 

ATR systems typically operate in military environments where there exist many constituent 

types of data. In this thesis four components are identified: 

• Objects: These are components of specific interest. They are subdivided into particular 

categories and influence the action that must be taken by the ATR system. 

• Clutter: The components that have properties, for example heat radiation, similar to all 

classes of objects, yet are irrelevant, and must be rejected by the system with no action 

taken. 

1  Low Altitude Navigation and Targeting Infrared for Night 
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Background: The remaining components of no specific interest on which, again, no 

action is invoked 

. Noise: This is the global, disruptive, property of the environment on the other three types 

and is dependent on sensor quality, climatic and atmospheric conditions. 

The modern ATR system arose as a method for distinguishing and processing these type of 

components, and is defined, in this thesis, as a pipelined processor of multi-sensor sequence 

data, often including visual and infrared images, to detect, isolate, identify and track objects in 

a high risk, military, environment. Within this context, the system has to make decisions, offer 

suggestions, or even perform actions, based on two fundamental objectives: 

. Primary: To detect all objects, at all times, in a hostile environment whilst main-

taming a low clutter detection rate. 

. Secondary: To distinguish between object categories as well as between objects 

and clutter. 

The most common approach to satisfying these objectives is to subdivide the ATR system 

into several distinct, functional modules [10].  Typically these modules, as shown in Figure 2-1, 

include data preprocessing, object detection and segmentation, feature extraction, and finally 

classification. This last stage provides outputs to be interpreted, with all other available 

information, such that an action can be suggested to an operator. 

Detection and 	Feature 
Preprocessing 	segmentation 	extraction 	Classification 

Sensor 
data 

Classification 
of each object and 

identification of clutter 
based on features 

Filtered 	Objects and 	Set of features 
data 	 clutter 	for both objects 

and clutter 

Figure 2-1: A common serial ATR system. 
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One major drawback of a serial system though is that the output is dependent on the 

performance of all preceding modules, even the acquisition of the data. An inappropriate 

set of sensors will partially or even completely fail to register an object's existence making 

the problem of detection exceptionally difficult or even impossible. Subsequently, much 

consideration has been given in the literature to the object-background separability properties 

of sensors in particular environments [91,76,1 32]. 

ATR sensors 

There are two main types of vision-based ATR sensor; passive and active. Active sensors 

transmit electromagnetic energy to illuminate an object surface and receive Doppler shifted 

backscatter echoes to generate an image. Synthetic aperture radar (SAR) is a good example 

of an active sensor. SAR is a popular ATR sensor due to the relationship between image 

magnitude and object range. Unfortunately, active sensors are often susceptible to detection 

and countermeasures. 

Passive sensors, such as forward looking infrared (FUR) sensors, generate images based 

on the radiation naturally emitted by an object and so are far less detectable. FUR sensors 

typically operate in the 8-12itm region of the electromagnetic spectrum, as shown in Figure 2-2, 

and react to active thermal signatures. A property common with many man-made objects. This 
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Figure 2-2: A section of the electromagnetic spectrum. 
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is important in ATR systems as man-made objects are often the components of interest. 

There are, of course, considerable drawbacks to FUR, as given in Figure 2-3, but their 
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proven technology still make it popular in modern ATR systems. A description of the history, 

construction and operating environments of thermal passive sensors is given by Norton [76]. 

The choice of ATR sensor is also problem specific. Requirements may be dictated by a 

required field of view (FOV), signal-to-noise ratio (SNR), range, atmospheric conditions, day 

or night operation, possible countermeasures and many other effects. These are outlined in 

Figure 2-3. One, expensive, solution is to combine different types of sensor. 

Roth comments that with multi-sensor fusion "The utilisation of multiple sensors to acquire 

data for target detection and recognition is a major consideration in significantly improving 

ATR performance" [91]. This improved sensor array is not only restricted to image and range 

data. Absolute co-ordinate information, external beacons, sensor orientation and climatic 

information, such as temperature, may also be beneficial to an ATR system. 

Preprocessing 

Preprocessing is required to enhance signals before any further operations are performed. Image 

enhancement is designed to improve object contrast and reduce noise, as well as to control 

image focus, gain and bias. Suitable techniques include median filtering, unsharp masking, 

and histogram equalisation [ 1 01. 

Detection and segmentation 

Object detection and segmentation determines the locality of a potential object within a region 

of interest (ROT) of an image and extracts it from the background as accurately as possible. 

This is the primary objective of an ATR system as stated earlier. An undetected object can not 

be classified. 
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Feature extraction 

A set of features are then derived from the localised sensor data, such that the detected objects 

can be classified. These features must be discriminative between and not representative of of an 

object. For example, to distinguish between a triangle and a rectangle only requires knowledge 

of the number of vertices. Other information, such as size, colour, angles, which would be 

required to reconstruct each object are superfluous. Feature extraction reduces the degeneracy 

that exists in the sensor data. Furthermore, a small optimal set of features will reduce the 

computational load of the actual classification whereas a poor set of features may require a 

highly complex and highly parameterised discriminant. 

Classification 

In this thesis, the term classification will be used with reference to the categorisation of an 

unlabelled object based on a set of previously labelled features. In the neural network literature 

this is often called supervised classification, and in the statistical literature as discriminant 

analysis [98]. Discrimination is the process of dividing the space spanned by the labelled 

features into regions such that classification can be performed. The more complex the feature 

space the harder the discrimination, often producing degraded classification. 

One of the main project aims, as set down in Chapter 1, was to improve the original 

classification ATR module. Thus, it is necessary to understand more of the fundamentals of 

object classification, before commenting on the original modules performance. 

2.3 Object classification 

At the centre of a typical ATR system are the feature extraction and classification stages. These 

units are required to identify each detected object based on a fixed set of patterns or features that 

are derived from each object. This identification is often based on a set of N M-dimensional 

feature vectors, d E D = {d 1 , .., d, .., dN}, previously labelled with one of C classification 

classes, c(d) E Q where Q = {w 1 , .., w, ..,WC  [30,73,56,40,52,28]. Each of these classes 

is assumed to have some form of class dependent probability distribution, p(d I w) and an a 
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priori probability of occurrence 2,  P(w). The latter is usually estimated from the occurrence 

of a class in the feature database such as Ni/N where Ni is the number of occurrences of a 

feature vector labelled wi in the database D. If the actual class conditional probability density 

functions, p(d I w1), can also be sufficiently modelled then the a posteriori probability of any 

object, P(wi I d), can be determined from the feature vector using Bayes Theorem which states 

P(wi I d) - 
p(d w)P(w) 

(2.1) 
- 	p(d) 

The value of P(w1  I d) gives the probability that an object belongs to class Wi  given a feature 

vector, d. The probability of misclassification is minimised by classifying d as of class w 

if P(w x) > P(w d) V i j [13,52,30]. However, the form of the class conditional 

probability density functions are often unknown. In this case, the task is often reformulated to 

estimate C discriminant functions, zk(d), such that z(d) > z(d) V d E D for i j given 

that c(d) = w. If zk  is set equal to P(wk I x) then the classification decision is based on 

a requirement of minimising the probability of misclassifying a new pattern. However, this 

1-of-C decision criterion is sometimes not the most appropriate. For example, in ATR there 

are situations where there are far more serious consequences of misclassifying an object as a 

non-target than as a target. Although this concept, known as Bayes risk [30], is very important 

to ATR the simple 1-of-C scheme is suffice at this stage of the investigation of adaptive feature 

extraction classifiers. More complicated criterions that incorporate risk, for example, can easily 

be tested at a later stage. 

Various statistical models that have the ability to generate approximations of the zk functions 

shall be discussed in the next section. They are divided into two broad categories; parametric 

and non-parametric. The next sections shall discuss three types of classifiers from both these 

groups. The critical issue in developing all of these models though is generalisation. 

Generalisation is a measure of a models ability to classify correctly previously unseen 

features [90]. Poor generalisation is sometimes attributed to the discriminant functions having 

too much flexibility and learning the labelled data used to generate the model and not learning 

the process that generated the data; the underlying probability distributions. Other reasons 

2Notation: In this thesis p o will be used to define a probability density function and PQ to define a 
probability [13]. 
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for poor generalisation, and a method for estimating generalisation, is given in the section on 

Multi-layer perceptrons. 

2.3.1 Linear classifiers 

In particular problems, such as whenp(d I w) are normally distributed with identical covariance 

matrices, the Bayes decision boundaries are linear. In this case a linear discriminant is required. 

These are implemented as single layer networks of the form 

zk(d; 0) = Wok + wd, 	 (2.2) 

where 0 is a vector containing model parameters, wk and, Wok. These are sometimes known in 

the literature as weights and biases. 

The parameter vector estimate, 0, is chosen as to minimise a suitable error criterion, E(0). 

A commonly used error function is the sum-of-squares error (SSE), and is defined as 

N C 

SSE(0) = 	{ z(d,;0) - fkn} 	 (2.3) 
n=1 k=1 

where tkn is the target value for an observation, n, with a 1-of-C output encoding scheme where 

kn = 1 for k=w 
	

(2.4) 

= 0 otherwise. 

The least squares (LS) estimation method that minimises E(0) is found by either iterative 

techniques such as steepest descent or conjugate gradients (see Appendix A), or more directly 

using a pseudo-inverse [ 1 3]. 

Linear discriminants are parametric and are a subset of much larger class of functions known 

as generalised linear discriminants (GLD's), which use predefined functional transformations 

of input features [28,40,30]. The GLD is defined as 

M 

zk(d;0) = Wok + E Wk(,O(d), 	 (2.5) 
j=1 
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where ço is known as the basis function. An example of the GLD is the quadratic classifier 

which uses a second order polynomial discrimination boundary. Quadratic boundaries are 

Bayes optimal for normally-distributed data when the the covariance matrices differ. An 

example of this is given in Figure 2-4. 
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Figure 2-4: Optimal quadratic decision boundary for a two class problem. 

2.3.2 K-nearest neighbour classifiers 

The k-nearest neighbour algorithm examines the nearest k labelled samples, according to a 

suitable distance metric, for example Euclidean, from an unlabelled point in feature space [24, 

52]. If km  of the k samples are of class m and km  = max {k} for i = 1,.., C then this point is 

classified as belonging to class Wm. Alternatively, this can be considered as measuring ki  of the 

k samples in a hyperspherical volume of feature space, V. where either V or k can be adjusted 

to vary the amount of smoothing applied to what is effectively a piecewise linear classifier. 

Furthermore, the k-NN estimator of p(d I wi), for class W m , is defined as km /Nm  V. However, 

the k-NN estimator can not be treated as a density function because the integral of the estimator 

over the feature space does not sum to unity. 

The k-NN algorithm is purely a nonparametric technique and, consequently, has the usual 

disadvantages of a large memory requirement and the time-consuming need to re-examine every 
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point in the stored database for each object classification. These two problems make the k-NN 

classifier impractical for this ATR system, even though there have been many improvements, 

such as pruning techniques, in order to reduce the effects [52]. However, it is an excellent 

method for quickly testing a set of potential features. 

2.3.3 Multi-layer perceptron classifiers 

It is unimportant to dwell on the historical issues of multi-layer perceptrons (MLP's) and other 

types of artificial neural networks as it is suffice to say that an MLP is purely "one of a class 

of flexible non-linear regression methods which can be used to classify via regression" [89]. 

They are a method of parameterising a fairly broad set of non-linear discriminant functions 

and are in fact are universal approximators in that given sufficient complexity and data they 

can approximate virtually any function [135]. For background information on MLP's, and 

neural networks in general, there exists an extensive literature [13,68,92,8,54,100]. A more 

comprehensive viewpoint of neural networks, especially MLP's, from a statistical perspective 

can be found in [98,89,90,22]. 
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Figure 2-5: Architectural diagram of an MLP. 
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Figure 2-5 shows the architecture of the standard MLP. They comprise, typically, of three 

layers, known as the input, hidden and output layers, and are defined by the equation 

zk(d; 0) = Wok + 	Wk( WOj + WT d) 	 (2.6) 

wheEe the set of discriminant functions, zd, are characterised by the parameter vector, 0, which 

is comprised of all the weights and biases in the network. The hidden layer non-linearity, q, is 

usually the logistic (sigmoid) function, given in Equation 2.7 and plotted in Figure 2-6. 

(z) = l/(l + e_z), 	 (2.7) 

As with the linear classifier, the parameter vector contains the, hopefully small number of, 

adjustable weights and biases for the model. When estimating these MLP model parameters it 

is important now to consider both the error function but also the amount of flexibility allowable 

in the model. There have been many approaches taken to this, data-dependent, problem of 
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Figure 2-6: The logistic function commonly used as the MLP non-linearity, W. 

model complexity [13,90]. Too little flexibility causes model bias but too much results in 

variance leading to over-fitting of the data and subsequently poor generalisation. An example 

of this bias-variance dilemma, known as Occam's Razor, is to attempt to fit a sampled quadratic 

function with a linear model (bias) or a polynomial with degree greater than two (variance.) 
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Another example is given in Figure 2-7. The linear fit has not enough flexibility to match the 

Bayes optimal boundary, which the highly flexible non-linear attempt has over-fitted, resulting 

in a high classification rate for the training data but poor generalisation. Two ways used to 
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Figure 2-7: Too little, and too much, flexibility resulting in model bias and variance. 

control model complexity in this thesis are varying the number of hidden nodes, H, using early 

stopping to halt optimisation [90] and the regularisation technique known as weight decay [64]. 

To measure generalisation data is randomly split into three separate sets of data; training, 

validation, and testing. In this thesis a split ratio of 2:1:1 is used. Model parameters are 

estimated using the training data. The validation data is used to determine when to stop the 

optimisation process. The method of early stopping halts the optimisation when the validation 

set error begins to increase, suggesting over-fitting. Usually though optimisation is performed 

twice, optimisation stopping when the minimum validation error of the first run is achieved. 

Generalisation is the classification rate achieved by the model on the independent test data set. 

Experiments are often repeated several times with different random splits of the data. 

Weight decay, which is equivalent to ridge regression, as shown in Equation 2.8, adds a 

term to the error term, E, such as to penalise large weights in the model and uses a variable, 

), to control the amount of regularisation. This has the effect of constraining the hidden node 

6 

5 

4 

3 

2 

I- 
	

1 

FJ 	0 

-1 

-2 

-3 
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effective model complexity. 

E'(0) = E(0) + > 	 (2.8) 

Earlier the LS estimation method was used for determining parameter estimates for the 

linear classifiers. The choice of LS is attractive as the derivatives of E, with respect to the 

weights and biases, can be backpropagated from output to input by use of the chain rule. This 

can be extended to the matrix of second derivatives, known as the error Hessian, H. Both 

the Hessian and the first derivatives can be used in the iterative optimisation techniques used 

minimise E for the MLP (see Appendix A). Unfortunately, there are drawbacks to LS. These 

include the fact that LS is not particularly suited to fitting a function with target values of 0 or 

1 and is also not particularly robust to outliers in the data [89].  Most importantly though is 

that the goal of classification is to minimise the misclassification rate and not the SSE error. 

However, for reasons of simplicity, ease-of-use and that the fact that historically it has been 

shown to work well, LS will be used in this thesis. 

The MLP is flexible, adaptive, and requires significantly less storage than its k-NN non-

parametric rival. The decision boundaries are continuous and non-linear, though it is difficult 

to encapsulate classes in feature space. Finally, its simple, parallel, structure allows for high 

classification throughput in an easily implementable format. 

2.3.4 Other classifiers 

Two other supervised classifiers used in this thesis include radial basis functions (RBF's) and 

multivariate adaptive regression splines (MARS). 

Radial basis function neural networks approximate functions using linear combinations of 

non-linear basis functions, , centred in feature space [16]. They are identical to the GLD's 

discussed previously in Equation 2.5 with the exception that the nonlinear function, p,  is 

typically a Gaussian basis 

p3  (d)= expd—doII21 
	

(2.9) 

where d 03  are basis centres in feature space, and a 3  the width, or coverage, of the basis. These 

extra parameters can be included in the model parameter vector. In this thesis a fully supervised 
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approach is taken to estimating all the parameters in the model at the same time, as opposed 

to the two stage unsupervised approach [13]. This is purely for reasons of simplicity. The 

advantage of the RBF network is that they can easily form closed decision boundaries. 

The other classifier used in this thesis are the MARS classifiers [37]. It is a popular statistical 

classification model and is defined, like the RBF, with a nonlinear basis, in this case 

Pa  

= 	q(d) 
	

(2.10) 
P=1 

where the degree is the largest value of P, and 0 are, in this thesis, piecewise cubic splines, as 

suggested by Friedman, for smoothing decision boundaries. 

The classifiers considered, and implemented, in this thesis are but a few of the possible 

models available and were mainly chosen due to their ease-of-use, implementability, and 

current popularity in the research literature. Other well known classifiers include correlators, 

projection pursuit regression, logistic discriminants, classification trees, piecewise linear, and 

many unsupervised techniques. There are also many alternative approaches to estimating 

model parameters such as MacKay's application of of Bayesian inference techniques to neural 

networks [69,74]. However, there was insufficient time in the project to examine all these types 

of classifiers and estimation methods. 
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2.4 The OSTRICH ATR system 

Figure 2-8 illustrates the ATR model proposed for the Edinburgh OSTRICH (Object Segment-

ation and Tracking using a Real-time Infrared Classification Hypothesis) project. This model 

allowed for the use of the existing modules available from BASE and provided scope for future 

work. The model is simplistic in comparison to the BASE system but allows for testing of 

new modules, which can then be migrated to the BASE model. The modules that have been 

constructed to this date, or are currently under development, are shaded in the Figure. 

Phase I of the OSTRICH project involved improved feature extraction and classification of 

large, infrared, objects and clutter, O. This is the work described in this thesis. Phase II seeks 

to improve object segmentation using a resegmentation technique involving localised classi-

fication feedback [85,86]. Phase III originally considered temporal classification issues but is 

now concentrating on the three-dimensional aspects of objects for classification purposes [ 23]. 

2.4.1 System overview 

Each infrared image, I, is enhanced using a separable median filter. This reduces speckle 

yet preserves object edges. Segmentation of these images then generates both small, O, and 

large objects, O', as well as positional, X n , and object range data, D. Range is extracted, for 

example, from a range image, R. The objects of small pixel size, determined by a suitable 

threshold, can not be classified by shape and must use high level information, Q,. This is a 

subset of the contextual data, S, derived from knowledge bases, K,,, co-ordinate and climatic 

data, C, and reference points such as horizons and beacons, B. 

The classification of all the objects and clutter provide both probabilities of correct classi-

fication, P, and also measures of novelty, Nn . Phase III will also hopefully determine object 

poise, A n . 

A parallel process tracks the objects over series of frames using positional data and previous 

classification results. Tracking is an important issue in ATR. Significant information can often 
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Figure 2-8: System overview at t1L  time step 
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be derived by measuring an object's position (x), velocity (), acceleration (X), and trajectory. 

Reisher provides a summary of object trackers [87]. Information of this type is sometimes 

enough to identify an object. 

All information is collated by the interpretation module. This could be based on an Al 

framework, such as an expert system, and combines the contextual, temporal, positional, and 

classification results to form an overall vector of possible actions for each object, Z. The 

system may decide to dismiss the object classifications as irrational with the other information 

dominating. 

However, the principal module considered in this thesis, covering Phase I of the project, 

was the classification unit, and how classification performance could be improved. 

2.4.2 Original classification module 

The original BASE neural classifier is a non-linear, three layer structured MLP with various 

object images passed directly to the neural network inputs from the segmentation stage. This 

implied that no separate feature extraction stage was required as the features were derived 

directly from the actual objects. This classifier had a high throughput, was reasonably simple 

to implement, and produced excellent classification results with real infrared object data [50, 

49,48]. So, why was there a requirement to improve the current module? 

2.4.3 Problems with the original module 

The neural classifier BASE implemented, though appearing to provide excellent classification 

rates, was flawed in several respects: 

There was no consideration that the discrimination boundary was, perhaps, linear. The 

non-linear MLP classifier would overfit the correct solution. 

The segmentation and detection stages were assumed ideal and were manually adjusted 

to generate unrealistically well-segmented data. 
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The model was underdetermined. The input layer typically consisted of a 16x16 pixel 

array, with between 16 and 512 hidden layer units and 5 outputs. With one particular 

database a model was used that required a total of 133,636 adaptive model parameters to be 

estimated. These parameters were estimated with typically 2000 labelled samples! Even 

with the self-correlation that exists within the images, which may partially alleviate the 

underdeterminedness, the network was acting as a storage element and not generalising 

to the problem. 

Due to the lack of data the labelled samples were randomly split into only two separate 

sets using a uniformly distributed source. The first set was used to derive the model 

parameters and the second to validate the model during optimisation. The latter was used 

to determine when optimisation was complete but also used to measure classification 

performance. The use of no independent test set meant the results were biased. They 

were biased even further because the results were only based on one random split of the 

data. This indicates poor generalisation. 

The labelled data was derived from continuous image sequences. This meant that objects 

in one frame were highly probable to have a corresponding twin object in the preceding 

frames. When splitting the data there was then a high likelihood that objects would be 

split across the sets. Once again this produces biased results, again poor generalisation. 

There was only rudimentary scaling invariance built into the classifier which meant when 

objects rotated, or existed any position slightly away from the norm, the classifier failed 

to correctly identify the object. 

2.4.4 A solution 

The previous section outlined several problems with the original BASE classifier. This thesis 

attempts to address these problems by designing a new ATR classifier using both fixed and 

adaptive feature extraction techniques to significantly reduce the number of adaptive model 

parameters, maintain good classification rates, incorporate invariance, whilst still maintaining 

the attractive MLP architecture. 



Automatic target recognition and the OSTRICH project 	 28 

2.5 Databases available 

This section describes the data available for testing the standard algorithms, discussed in this 

chapter, and any new classification module proposed. The data includes: 

• Simple test data 

• NIST digit database 

• Forward-looking infrared images 

- FUR seascape imagery 

- FUR land-based imagery 

2.5.1 Simple test data 

These databases include the Fisher iris data and multivariate Gaussian. The Fisher iris data 

contains 150 examples of various features, such as sepal length, of three different varieties of 

the iris plant; Iris Setosa, Iris Versicolour and Iris Virginica [34]. This is a classic database used 

to test discrimination. Another simple data set with a model for the underlying distribution 

is based on the multivariate Gaussian. A method for generating M-dimensional Gaussian 

distributed class conditional data, via Equation 2.11, can be found in [83], 

p( d 
1 Nm 

Wm) = 7_ 	(27r)(M/2) I Em  m 
j7exp{-0.5(dom - di)TE(dOm - d)} (2.11) 

where d is the data vector, Wm the required class, Nm  the number of examples in the class, dø m  

the data class mean, and finally, Em  the class covariance matrix. 

2.5.2 NIST digit database 

The National Institute of Standards and Technology (NIST) database,fl3, is comprised of 3,471 

examples of ten handprinted digits from 49 different writers [136]. The samples were collected 

from a series of handprinting sample forms by the U.S. Bureau of the Census with geographical 
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sampling according to population density within the United States. The forms were scanned at 

300 pixels per inch and stored at 8 pixels per byte. Each character on the form was segmented 

and spatially normalised to a size of 3202 pixels. A set of examples from the NIST database 

is shown in Figure 2-9. 

oO / £23A/ 

Figure 2-9: NIST: Examples from the 0 database. 

The NIST database was chosen deliberately as it was very different from the BASE data 

and provided a different application on which to test the flexibility of a new classifier. 

2.5.3 Forward-looking infrared (FLIR) images 

Two sets of real, infrared, image databases were provided by BASE to test the improved 

ATR classification module. However, only the primary database was readily available to the 

Edinburgh group, and this was the database used for the majority of the experiments. The 

second database was used to test the adaptability of the system to new environments. Both 

were captured with a military thermal sensor. 

The thermal sensor used was a class II Thermal Imaging Common Module (TICM II). 

The TICM is a mechanically scanning, infrared camera operating in the 8-1 2m region of 

the electromagnetic spectrum. Using the camera it was possible to capture 512x512 pixel, 

8 bit resolution, image frames consisting of two interlaced field signals. Unfortunately, the 

interlacing of these fields was not correctly synchronised with this camera but this was solved 

by considering only single field data, which effectively halved the height of the images. 

Another problem was that when objects left or entered the FOV the TICM compensated by 

altering the thermal window, the linear operating region of the camera, to maintain a constant 

signal energy in the image. This causes the apparent heat of objects remaining in the scene to 
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change. Conversely, fixing the position of the thermal window led to object saturation at the 

extremities. 

One particular set of 608 TICM infrared images were extracted from a total of 7 hours 

video footage of various coastal locations around Falmouth, S.W. England [114]. The images 

include a variety of sea-faring crafts taken from a constant depression angle and at many 

different perspectives. The craft were easily detected due to their internal heat sources, and 

the hot summer weather. The 608 scenes were chosen to minimise the probability of object 

repeatability, and an example of one of the images is shown in Figure 2-10. 

Figure 2-10: Seascape: Typical infrared database scene. 

An example of the required output of the system to be developed is shown in Figure 2-11. 

In this example different types of class are labelled with different colours by an automatic 

classification system. The sail boats are indicated by the colour green, the motor boats blue 

and the buoys red. The system fails in two particular cases and these are denoted by grey 

colouring . 

3 This is an actual response from the OSTRICH system. 
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Figure 2-11: Seascape: Example of the required classifier response. 

2.6 A nontrivial problem 

From a human perspective identifying these type of objects contained in the seascape database 

is an apparently simple task. There is an abundance of information immediately available 

contained in the scene, as well as, in the actual object. Figure 2-12 though demonstrates 

how adding different levels of information can significantly ease recognition and reduce the 

probability of misclassification. In Figure 2-12(a) there exists no scaling, rotational, positional 

or greyscale information. Adding greyscale data and correcting object orientation, as shown in 

Figure 2-12(b), is an improvement as information has been added but the object is still difficult 

to identify. This is the type of object data that will be presented to the classifier. However, 

Figures 2-12(c) and 2-12(d) demonstrate the benefit of extra contextual information, such as 

the surrounding objects, the object range, and previous classifications. 
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As a further demonstration of the nontrivial nature of the problem a set of experiments was 

performed on eight people, one of whom was deemed an expert at classifying objects extracted 

from the sailboat image database. The other subjects had previous exposure to sample frames 

from the data and their own mental images of typical seascape objects. In experiment A 

subjects were each shown 100 random selections from the object database, an example is given 

in Figure 2-12(b), and asked to classify each object as sailboat, motor boat, buoy or 'anything 

else'. In experiment B subjects were shown 100 randomly selected objects situated in their 

original frame and again asked to classify the objects. The results are given in Table 2-1 and 

sample confusion matrices for experiments A and B are given in Table 2-2. 

Subject Experiment A Experiment B Improvement 

Expert 92 98 6 
I 87 92 5 
II 78 89 11 
III 76 83 6 
IV 71 93 22 
V 69 77 8 
VI 63 92 29 
VII 58 89 31 

Table 2-1. Seascape: Human subject classification results. 

Correct class 
Guess Sail Motor Buoy Else 
Sail 26 0 	0 0 
Motor 4 20 	2 1 
Buoy 7 0 	5 1 
Else 3 8 	3 20 

(a) Experiment A (71% correct)  

Correct class 
Guess Sail Motor Buoy Else 
Sail 35 0 	3 0 
Motor 0 21 	0 2 
Buoy 0 0 	13 0 
Else 0 8 	1 24 

(b) Experiment B (93% correct) 

Table 2-2. Seascape: Confusion matrix for human classifiers. 

Table 2-1 shows a marked increase, as expected, in classification performance in experiment 

B where the extra contextual information is provided to the subject. Without contextual 
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information many of the misclassifications are between buoys and sailboats, and also between 

motor boats and clutter. This is an early indication of the problems in discriminating objects 

within the seascape database. An important final note is that even experts classify incorrectly 

occasionally, and that perhaps a module that will provide an assured 100% accurate classification 

rate will not be possible! 

2.7 Review 

This chapter has outlined various concepts concerning pattern recognition from both a statistical 

and also an overall ATR system perspective. The OSTRICH system was introduced as an 

example of such a system and several problems, that will be addressed in this thesis, were 

addressed. It has also outlined the main problem of identifying infrared objects in the seascape 

images and remarked on the simplicity, or not, of object recognition. The next chapter processes 

and analyses the seascape image database in an attempt to automatically detect and extract 

objects for classification. 



Chapter 3 

IR object segmentation, analysis and 

preprocessing 

To design an enhanced object feature extraction and classification stage for a real-world ATR 

system required explicit knowledge of the data the system, typically, would encounter. This 

included the type of environment, the definition of an object, their attributes and qualities, how 

they were normalised, as well as, their detection, and isolation from any background sensor 

data. Other issues included any assumptions made in the generation of the objects, and how 

accurately these operations were performed. 

This prior knowledge is not only helpful, but often essential in guiding a designer to realistic 

solutions and conclusions, and often is completely ignored in many recognition systems. The 

importance of this type of information is listed below. 

• Provides preliminary guidance on the system design. For example, what type of sensor to 

incorporate for reliable object detection,or what features may prove successful in classifying 

the objects, and which will be bound to fail, due to a known preprocessing operation. 

• Relates system performance, and output, directly to tangible, possibly physical, object charac-

teristics, and consequently allows feedback into the design. For example, a flower classification 

system may fail to discriminate between two similar roses because colour has not been included 

as a feature. Also, it allows for the reasoning of individual object classification failures, such 

as when attempting to identify a rose with no petals. 

• Identifies potential problems for later processing stages, for example, one highly populated 

class of object may dominate classifier parameter estimation. 

• Alerts a designer to check the effects of failures in any of the assumptions made in the 

generation of the objects. For example, a particular climatic season may have been assumed. 

35 
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This chapter details the prior knowledge that was available from the seascape database, and 

is divided into three sections; segmentation, analysis, and preprocessing. Figure 3-1 shows 

how this relates to the OSTRICH AIR system, outlined in the previous chapter. 

Image Segmentation 

Jfljeci DDI.Yreprocessang. 

...,. 

/------------------------------------------------ i'_'_ 
Real object database no interest in this thesis 

Figure 3-1: OSTRICH: Creation of an object database. 
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3.1 Object segmentation 

Segmentation is the process of detecting, isolating and extracting sections of interest in a 

data signal for further analysis. For this to be feasible, these sections must possess some 

form of distinguishing localised homogeneity. For example, in an JR-based ATR system, this 

homogeneity exists as a strong thermal signature typically emitted by a man-made object. 

In any purely object-based automated recognition scheme, the ability to accurately perform 

this segmentation process, such as identifying single word units from speech (phonemic isol-

ation) or handwritten characters from a page of written text (field isolation), is fundamental 

to the success of any subsequent analysis, for the only indicators of object identification, 

given an uninformative background for all objects, are encapsulated within the segmented 

boundary. Shustorovich and Thrasher state, in their application of character recognition, that 

"....segmentation problems account for approximately 70% of all classification errors." [1121 

So, for the purpose of this thesis, the segmentation system was not completely automated 

and the segmentation parameters were adjusted manually, on a frame by frame basis, in order 

to produce as many accurately segmented objects as possible. Therefore, a simple gradient 

based operator, a Sobel filter, combined with various morphological processes, was sufficient. 

But to test the recognition system with more realistic data where the segmentation process is 

automated and non-ideal, a secondary object database of poor segmentation quality was also 

generated. This secondary database was created in parallel with the accurately segmented data, 

as within each frame it was exceedingly difficult to set the segmentation parameters such that 

all objects were correctly extracted. 

The following sections outline the Sobel segmentation algorithm, the generation of the 

seascape object databases and some specific problems that were encountered with segmenting 

objects from this type of image database. 
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3.1.1 Sobel-based segmentation 

The Sobel-based segmentation module, depicted in Figure 3-2, was designed for IR image 

segmentation, and was implemented in the OSTRICH system [114,115]. It consists of four 

basic processing units; Sobel intensity discontinuity detection, boundary detection, object 

determination and filtering. 

Many such segmentation systems rely upon discovering the similarities and discontinuities 

that occur within an image, f(x, y), where strong edges denote object boundaries. The Sobel 

filter is an image gradient operator and is used for edge detection [46]. It assumes regional 

homogeneity around transitions, with the magnitude of the local derivative operator, \7f (x, y), 

used to detect the edges. This operator is defined as 

[ af(x,y) af(x,y) T 

Vf(x,y)= 	
a 	a 	

] = [H HY]T. (3.1) 

The magnitude of Vf(x, y), usually is approximated by the sum of the magnitude of two 

directionally-dependent local derivative operators, Hx  and H, which are calculated by passing 

the pair of 3x3 spatial masks, shown in Figure 3-3, across the image. These masks are known 

as Sobel operators, and the resulting transformed image is known as an edge map. 

Generating edge maps with the seascape image database produced its own particular prob-

lems, especially when processing objects that were near, or even straddled, strong natural edges 

such as an horizon, or shoreline. These edges, erroneously, would be treated as part of the 

required object. Careful selection of the segmentation parameters though was not sufficient to 

minimise the effect of these edges, so a vertically orientated, low pass filter, shown in Figure 3-

4, was applied to the edge map. This filter reduced the edge strength of very thin horizontal 

lines, such that later processes were able to remove the horizons completely. 

Once the edge map was generated, it was necessary to detect the strong edges that denoted 

object boundaries. A two-step process was applied. First, a grey-value histogram based on the 

edge map was created and using a suitable threshold, the top percentage of edge pixels were 

set to unity, the rest to zero, generating a binarised version of the edge map. The application 

of this method to the seascape data was a crude but effective step, though choosing the correct 

threshold value proved to be difficult. To ensure that all objects in an image were detected 

and extracted, a reasonably high threshold was set but this subsequently extracted significant 
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Figure 3-2: OSTRICH: Sobel segmentation module. 
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amounts of clutter to process and, more importantly, introduced the possibility of objects in near 

proximity merging. Conversely, setting the threshold too low would lead to under-segmentation 

or, even worse, undetected objects. 

There are many, more standard, approaches for generating binarised edge maps. One 

approach includes the local processing of the edge data using both derivative magnitude, 

117f (x, y),  and directional, Vf(x, y), information. The second approach is global and uses 

techniques such as the Hough transform or graph-theoretic principles [58]. The OSTRICH 

method was already available and there was no time to test these standard, more efficient, 

algorithms. 

Next, the binarised edge map was operated on using an 8-way directional edge walker. 

This morphological process identifies an object as a connected group of unitary pixels in the 

binarised edge map. The edge walker makes the assumption that if the central pixel in a 3x3 grid 

is unitary then that pixel is part of the same object as any other unitary pixel in the surrounding 

8 pixels. Again, this was crude but effective step with the seascape data. 

Once detected the interior of each closed boundary binary object was filled. This generated 

an object mask which was subsequently tagged with an identification number. Then, each 

tagged object was bounded by the smallest possible rectangular box into which the object 
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could fit inside. This structure is termed a bounding box, and is characterised by two image 

co-ordinates. The bounding box vector, consisting of all the bounding boxes created in a 

particular frame, was then filtered in order to remove exceptionally large and small objects, as 

well as, objects with aspect ratios too thin or too wide, under the assumption that these objects 

were irrelevant. Finally, the tagged binary objects and the revised bounding box vector, were 

combined to extract, from the original frame data, a vector of rectangular, grey scale, object 

images, with their associated binary foreground masks. 

With the seascape images the segmentation process parameters were chosen to extract 

particular types of raw pixel object data, namely sea craft. Typical values for the segmentation 

parameters, found by trial and error, are given in Table 3-1. These settings on a typical frame 

generated 40 objects, of which approximately 50% were segmented correctly. 

Segmentation parameter Value 

Edge histogram threshold 4% 

Minimum bounding box size 30 

Maximum bounding box size 10,000 

Minimum aspect ratio 0.125 

Maximum aspect ratio 8 

Table 3-1: Typical segmentation parameter values. 

This data was then hand labelled and the procedure for doing this is detailed in the following 

section. 

3.1.2 Hand labelling of segmented objects 

To design and test classification algorithms it was necessary to possess a set of correctly 

labelled objects typical of those to be encountered in the final working environment. For the 

seascape image database the objects were labelled according to the tree structure depicted in 

Figure 3-5 [114]. 

Figure 3-5 shows objects divided into 4 main categories or classes: sailboat (class 0), 

motor boat(1), buoy(2) and clutter(3). In the seascape image database sailboats were found to 
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Figure 3-5: Seascape: Classification tree for the object databases. 

dominate and most of the sequences contained modern sailboats, either competing in races or 

cruising the shoreline. These modern sailboats varied little in basic design but the ability to hoist 

or lower one or more sail could alter their shape significantly. Three sail states were considered 

adequate: no sail, full sail (all sails hoisted) and half sail (only main sail.) It was also possible 

for the sailboats to change considerably in shape by rotating out of the image plane. Thermally, 

long exposure to the sun, as in racing, or use of an inboard motor caused heating and easier 

detection. However, the reflective nature of white sail sheets, often a large percentage area of 

the object, made heat absorption very difficult and led to sails being hardly distinguishable from 

the background; a difficult segmentation task. Compounding this difficulty, a large thermal 

gradient existed between the hot hull of the boat and a very cold sea. The warmed wash around 

a moving boat led to further difficulties in shape definition. Lastly, it was usual for the cockpit 

of the boat, situated at the rear, to be the hottest section of the boat. 

The motor boats existed in various shapes and sizes, ranging from simple motor dinghies 

to large cruisers and ferries. They were typically very hot, oblong in shape with a vertical 

protrusion, a cabin or perhaps a sailor, at the rear. Conceptually, each could be thought of as 
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an horizontal L. Easy segmentation was hampered only by long, thin trails of wash generated 

by the boat. This was countered by the horizon filter in the segmentation algorithm. 

The buoys fell into three distinctive categories: bell, ball and as vertical markers, or 

rods. They did not change shape with perspective. Mostly they were small and well defined. 

Unfortunately, in basic shape, at low resolution, they were easily confused with certain types 

of sailboat. Their distinguishing attribute was a significant thermal gradient down the buoy, the 

tip of the buoy being the warmest and the base, being near the water, the coolest. 

The final class was the clutter class. Clutter was any object that the segmentation process 

extracted which was deemed, by definition of the project, uninteresting. It was often localised 

in space, but not necessarily in frequency, and essentially, a form of noise. Examining the 

clutter generated by the seascape database it was found that many were short, and wide, for 

example, the wash from boats or a section of coastline. One objective of a segmentation module 

is to minimise the occurrence of clutter whilst detecting all the objects of interest. Of course, 

with the sensor used in this project, it was impossible to reject all clutter because clutter could 

easily possess a strong thermal signature, as well as, be suitably sized. In fact, no attempt was 

made to improve clutter rejection in the segmentation module as this data would be required to 

test classifiers for their clutter rejection capabilities. 

Clutter existed in two distinct subclasses; non-transient, and transient. The non-transient 

clutter were objects that remained stationary (for example, buildings), decayed over time (for 

example, wash) or could be tracked (for example, seagulls). All had some specific recognisable 

form. The transient clutter was assumed to be removed by a temporal classification stage, of 

no concern in this thesis. 

Figure 3-6 shows the frequency of occurrence of each of the objects drawn from the 4003 

objects extracted from the 608 seascape images. 
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Figure 3-6: Seascape: Subclass populations of all 4003 segmented objects. 

3.1.3 Confirmation of the labelled data 

These manual classifications were confirmed by an independent human expert and 161 (4.0%) 

objects were found to be manually misclassified by the original labelling. However, this 

included 112 objects that were comprised of multiple, connected, objects and originally clas-

sified as clutter. These were re-labelled as badly segmented objects. 

Ultimately, only 19 objects were completely discarded due to irreconcilable indecision over 

correct classification. There remained 3028 non-clutter objects, and they were assumed to be 

all correctly classified. This confirmation process highlighted two important points: 

• Care must be taken in creating the original labelling scheme. 

• Human classifiers are not infallible. 
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3.1.4 Seascape segmentation problems 

As previously stated, two separate object databases were created from all the extracted object 

data. The first database contained the accurately segmented objects, for classifier experi-

ments, whilst the second database consisted of clutter and poorly-segmented data. The poorly-

segmented objects were created due to the lack of localised segmentation for each object as 

global segmentation parameters were not suitable for every object in a frame. 

One common type of segmentation failure was non-closure. This was caused by an inap-

propriate choice of segmentation edge histogram threshold and was dominant in the sailboat 

class because of the lack of definition between the white, reflective, hull and sails, as mentioned 

before, and the background 1 . The edge map was subsequently not strong enough to denote an 

object boundary, and this led to the edge-walker unable to form a closed object. An example 

of non-closure is given in Figure 3-7. 

i1.. 

Figure 3-7: Seascape: An example of the non-closure segmentation problem. 

There were, of course, many other problems associated with this type of segmentation and 

image data [10]. These included object overlapping, similar to the problem of connected letters 

in character recognition, as well as horizon interference, frame interlacing, object saturation, 

wash from boats, and ill-defined boundaries. These problems manifested themselves as either 

wrongly sized bounding boxes (external segmentation) or distorted binary masks (internal 

segmentation), of which non-closure was an extreme case. 

These problems will exist when the segmentation process finally is automated in a real-

world system, even with an improved algorithm. Hence, to test the ability of the system to 

1 1n FUR it is common for parts of objects to be colder than the background [10]. 
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identify inaccurate segmentation, all the objects in the second database were labelled, not only 

with their object class, but also with a measure of segmentation accuracy. Unfortunately, there 

was no time to develop a quantitative measure of segmentation accuracy, so a qualitative score, 

based on experience was implemented. 

The objects were classified by both their internal (IN), and external (EX), segmentation 

quality with a score between 0 and 3: good segmentation (0), too large (1), too small (2) and 

exceptionally poor segmentation (3). The results for the sailboat, motor and buoy classes are 

shown in Table 3-2 with the final matrix representing the total for all three types of object. The 

database of well-segmented objects was determined by the number of objects with both good 

internal, and external, segmentation (INO EXO). 

Sail Motor 
IN IN 

EX 0 1 	2 3 Total EX 0 1 2 3 Total 
O 738 169 	107 486 1500 0 533 45 11 75 664 
1 44 15 	7 44 110 1 59 10 1 10 80 
2 23 28 	18 128 197 2 2 0 1 8 11 
3 16 4 	1 17 38 3 1 1 0 3 5 
Total 821 216 	133 675 1845 Total 595 56 13 96 760 

Buoy All 
IN IN 

EX 0 1 	2 3 Total EX 0 1 2 3 Total 
o 338 47 	6 7 398 0 1609 261 124 568 2562 
1 8 13 	0 2 23 1 111 38 8 56 213 
2 0 1 	0 0 1 2 25 29 19 136 209 
3 0 0 	0 1 1 3 17 5 1 21 44 
Total 346 61 	6 	10 423 	Total 1762 333 152 781 3028 

Table 3-2. Seascape: Segmentation quality of all non-clutter objects. 

The results showed some interesting statistics specific to the database and segmentation 

process: non-closure of sailboats (EXO 1N3 [26% of sail class]), elongated motor boats due 

to wash (EX1 INO), and loss of sail and mast with sailboats (EX2 INO). The last-mentioned 

was especially interesting as a sailboat without a mast is effectively a motor boat and would be 

misclassified. 
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The results also determined the amount of well-segmented data available. If the following 

stages of the ATR system were not to use the internal object mask, and only require good external 

segmentation, there would be 2562 well-segmented non-clutter objects available. However, 

if the internal mask was needed this would reduce the well-segmented database to only 1609 

objects, 53% of the original raw database. The latter case is summarised in Figure 3-8 where 

it is shown that sailboats, with their white sails, thin masts, and high probability of straddling 

strong natural edges such as horizons, were the hardest class of object to segment, and most 

prone to segmentation failure. 
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Figure 3-8: Seascape: Review of the 4003 segmented objects. 

For completeness, the following section lists some of the other segmentation algorithms that 

were available. Many of these processes could have provided improved segmentation quality 

but as stated earlier using the Sobel-based approach allowed for the generation of as much 

rogue data, as well-segmented data, in order to fully test any new ATR classification system; 

under the assumption that any real AIR segmentation module will always produce some rogue 

objects. 
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3.1.5 Other segmentation techniques 

There are many techniques for performing object detection and segmentation. Sobel-based 

segmentation, which performs both these actions, works best on images with sharp intensity 

transitions and relatively low noise. Zero-crossing operators such as the 2-D Laplacian of a 

symmetric Gaussian can offer reliable edge location and tend to perform better where edges 

are blurred, or in noisy images. However, these have a much higher computational cost [46]. 

A good introduction to modern segmentation techniques can be found in a review by Pal 

and Pal [4]. These include simple grey-level histogram and thresholding approaches, as well 

as spatial filtering, boundary-based approaches, clustering, template matching, motion-based 

routines, fuzzy sets, Markov random fields and the use of neural network architectures [59,4]. 

There have also been many approaches to the specific problem of ATR segmentation 

utilising either single frame with range data or more advanced motion-based, multi-sensor, 

systems working on sequences of multi-spectral data [10,132,79]. The actual algorithms 

range from simple spatial filters, wavelets or texture analysis to more complicated, and often 

neural techniques, such as Ruck's Doppler segmentation; Tong's range segmentation algorithm 

utilising conditional neighbourhood filtering [129]; scanning supervised learning segmentation; 

and many cortical-based models. 

There are also many methods purely for detecting an object. These include the hit-miss 

transform (HMT), wavelet transforms (for example, Haar) and hierarchical distortion-invariant 

filters [18] 
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3.2 Object analysis 

There were many ways in which to characterise the seascape objects. Information could be 

representational, describing the attributes of a particular class, or subclass, or discriminatorial, 

describing the differences that exist between classes, or subclasses within a class. At the 

start of the chapter it was stated that in order to design a classification system information 

of this type could be very beneficial. This section describes the empirical measures that 

were employed to characterise the well-segmented seascape objects. These measures hoped to 

highlight the similarities and disparities that exist between objects in the database, noting useful 

discriminatorial features, and identifying sources of misleading or over-optimistic information. 

Table 3-3 lists the features found useful for describing the well-segmented seascape objects 

in this way. The characteristics were divided into five levels, according to the type of object 

data from which the features were derived. These levels included bounding box, object outline, 

binary mask, grey-level pixel data and abstract level. 

Bounding Box Outline Binary 	Grey 	Abstract 

Width Bending energy % foreground 	Centre of mass 	Rotation 
Height Compactness Symmetry 	Temporal 

Aspect ratio Elongation Pixel value 
Corners Texture 

Histogram 

Table 3-3. Seascape: Object characteristics divided into five levels. 

3.2.1 Bounding box analysis 

This basic level of analysis provided information regarding an object's position, population 

and relative size. The position of an object, either relative or absolute, itself can not provide 

directly any clues to object identification but can be used in later ATR interpretation stages, 

combined with knowledge base data and tracking information, to improve greatly classification 

reliability. The number of objects detected in a frame was also irrelevant for individual object 
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classification. Though, as with object location, could possibly provide information to the ATh 

interpretation stage leading to a different course of action being taken. 

The relative size of all the well-segmented object bounding boxes in the seascape database 

is given in Figure 3-9. The height versus width plot 2  shows distinct divisions existing between 

the classes with respect to height, width and aspect ratio. Sailboats tend to be tall and thin, 

and range broadly in pixel size, as shown in the object size frequency plot, also in Figure 3-9. 

Motor boats are similarly distributed but are, generally, much wider than they are high. Buoys 

are smaller in size with aspect ratio's close to unity. Finally, the clutter, like the motor boats, 

tends to be short and wide, but unlike the motor boats are mainly small in total pixel size. 
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Figure 3-9: Seascape: Distribution of well-segmented, object sizes. 

'The size of the parallelogram is controlled by object size and aspect ratio filter segmentation 
parameters. 
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The table in Figure 3-9 provides mean (u), standard deviation (a), and skew (ic) pixel values 

with respect to width and height, for each of the four classes. 

Unfortunately, the size of an object's bounding box is a function of an object's range, as 

well as, physical size. As range data was unavailable with the seascape data, size information 

had to be ignored, or normalised. For example, an unlabelled test object would be classified as 

either clutter, or buoy, simply because it was small although it may have been simply a sailboat 

in the distance. In a practical ATR system identification of a potential target must occur as 

soon as possible, when the object is in the distance, and not when the object close enough to 

constitute a threat. So, object size, without range data, is useless but aspect ratio, which is not 

a function of range, was found to be a useful discriminative feature. 

3.2.2 Outline analysis 

The segmentation process, discussed earlier, generated two binary images: an object boundary, 

and an object mask. The boundary defines the shape of the object. A visual inspection of the 

database suggested that most object outlines consisted of mainly low-frequency components. 

Four descriptors, often used to describe the outline of an object, were applied to the seascape 

data. These included bending energy, compactness, elongation, as well as the number of 

corners. 

Bending energy measures the twistedness of an outline. If the curvature at a point t along 

an object's boundary of length T is defined as I tc(t) 1 2 = ( d2y/dt 2 ) 2  + (d2y/di 2 ) 2  then the 

total bending energy of the object is f6 I i(t) 2  /Tdt. A similar attribute, y = T 2/4ir(area), 

measures object roundedness, or compactness. Hence, for a circle -y = 1 [58]. 

The results, given in Figure 3-10, show that buoys tend to be simplistic in shape and 

approximately circular, whilst the motor boats and sailboats are more complex. Clutter, as was 

expected, displays a broad range of convoluted boundaries. 
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The number of corners in an object was measured by thresholding the curvature, I ,c(t)  , 
at some suitably large value. This is demonstrated in the top plot of Figure 3-11 where the 

sailboat is seen to have three distinctive corners; A, B, and C. 
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Figure 3-10: Seascape: Box-plots for bending energy and compactness in each class. 

The application of this technique though was found to be unreliable, but generally supported 

the view that buoys are typically round to triangular, sailboats definitely triangular and motor 

boats rectangular. 
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The left-lower plot in Figure 3-11 shows the normalised radial distance from the centre of 

mass to various points along the boundary. The ratio ,Omax/Pmin was useful as a measure of 

object elongation, similar to bounding box aspect ratio. 

Figure 3-11: Seascape: Curvature and (p, 0) plot for a sailboat outline. 

3.2.3 Binary mask analysis 

The binary mask covers one object within the associated set of bounding box co-ordinates and 

was used to determine the percentage foreground of an object within the limiting rectangle. 

Knowledge of the amount of area covered by an object within the confines of its bounding box 

was essential in assessing the effect, or risk, of interference from overlapping objects in the 

background. 
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Table 3-4 provides the mean percentage foreground estimates for each class of well-

segmented object. The large percentage background with the sailboat class was attributed to 

the triangular nature of boats with sails, and more particularly to boats with only a mast, for 

example as shown in Figure 3-17. 

Class Mean Standard 
(%) deviation (%) 

Sail 55.7 12.3 
Motor 69.4 9.3 
Buoy 77.1 8.5 

Clutter 52.8 15.8 

Table 3-4. Seascape: Mean percentage of bounding box area filled by object. 

3.2.4 Grey-level analysis 

The grey-level value of each object pixel is dependent on the temperature of the heat source. 

Unfortunately, this value is also a function of the overall number of heat sources in the 

scene. This is due to the variable thermal window discussed in Chapter 2. However, this 

dependency upon the number of objects in each frame was found to be not severe and the small 

linear shifts introduced into the grey-level histograms could be compensated for by suitable 

normalisation. Figure 3-12 shows foreground, grey-level, histograms for three different well-

segmented objects, given as a percentage of the total number of pixels in each image. 

Attributes are often derived from grey-level histograms to distinguish between foreground 

and background but, as can be seen, the distribution of data is similar for each of the three 

non-clutter classes; broad, multi-modal and often saturated at the maximum grey-level value of 

255. To discriminate between the classes, an analysis of the spatial relationships of the grey-

levels was more appropriate. These analyses ranged from localised features such as texture, to 

more global attributes such as symmetry and centre of mass. Texture has been shown to be an 

excellent feature for determining identity in research areas such as remote sensing [53]. In these 

applications the shape of the object is often irrelevant; for example the shape of a field is usually 

no indicator of the vegetation. However, in most ATR problems, for distinguishing between 
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Figure 3-12: Seascape: Foreground grey-level histogram for a sailboat, motor boat and buoy. 
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foreground object classes, general shape and energy distribution is crucial. Consequently, the 

distribution of pixel values across the object was an important issue. For example, as previously 

stated, the main heat source on a motor boat is the engine at the rear of the craft. 

The lowest order image moment is the centre of mass (, ), or centroid, measure [122]. 

Figure 3-13 plots the normalised centroid positions, (/width, ti/height), for each class. The 
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X 	 x 

Figure 3-13: Seascape: Class normalised centroid distributions. 

sailboats and buoys show little variance in centroid position. For the sailboat data the mean 

centroid value was found in the lower regions of the object, due to the hot hull and the tall, 

cool, white sails. For the buoy the opposite was true, though less extreme, with more mass in 

the upper regions due to the thermal gradient down the buoy, as mentioned earlier. However, 

the motor boats and clutter exhibited highly variant centroids. This variance was expected 

for the clutter class, but not for the motor boats. It was realised that motor boat centroid 

distribution was at least bimodal, in that the centre of mass would depend on the direction of 

travel. Travelling left-to-right meant the large mass of the hot engine would move the centroid 

towards the left, and vice-versa. Excluding clutter, these observations indicated that centroid 
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position was a good indicator of object classification; centroids shifted down for sailboats, left 

or right for motor boats and a slight upward shift for buoys. 

Another grey-level analysis performed measured object symmetry. Figure 3-14 shows the 

distribution of the angles of minimum asymmetry (maximum symmetry) for each non-clutter 

class across the seascape database. A line of minimum asymmetry passes through the object 

centroid and is orientated such that an asymmetry measure is minimised. The asymmetry 

measure used with the seascape data calculated the absolute difference between a point, p, 

and its mirror image, p', through the line of asymmetry, summed over the image. For an 

• 
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Figure 3-14: Seascape: Angles of minimum asymmetry (maximum symmetry.) 

8-bit, grey-level, image an asymmetry value of 128 represents complete asymmetry and 0 exact 

symmetry. The mean and standard deviation of the asymmetry values in the upright position 

are given in Figure 3-14. In the upright position (90 degrees), the objects were, unsurprisingly, 

most symmetric. The mean asymmetric values indicated that, at 90 degrees, the motor boats 
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were the least symmetric. This, again, was due to the heat of the engine in the left, or right, 

extremities of the image. The buoys exhibited the highest amount of symmetry. 

Returning to the actual distribution of minimum asymmetry angles in Figure 3-14 there 

exist greater deviations about 90 degrees with both the motor boat, and sailboats. This tilting, 

or rotating, was found in both objects when travelling at speed. The power of the engine pushed 

the nose of a motor boat up, and the combination of the wind and sharp turning manoeuvres 

pushed the sailboats over. An example of this is provided in the 90 degree image in Figure 3-15. 

3.2.5 Abstract level analysis 

The final level of analysis considered the object in the original image and, in particular, its 

three dimensional properties. Knowledge of out-of-plane object rotations was important as 

two dimensional profiles often altered with this property. This was irrelevant for the buoy 

class as their appearance did not alter with out-of-plane rotation but boats, however, changed 

considerably in shape, especially aspect ratio. 

Each of the objects in the seascape database was labelled with one of eight out-of-plane 

orientations: 0, 45, 90, 135, 180, 225, 270 and 315 degrees. This was adequate for determining 

the distributions of directions of motion. Figure 3-15 shows how the sailboat class is divided 

among the different orientations. Similar distributions were found with the motor boats, but 

with many more existing in the 0 and 180 degree bins (79% in total). It appeared that many 

object images were taken from a side-on perspective. Also, it was noted that 45, 135, 225, and 

315 orientations were often very similar in overall shape to objects oriented at 0, 90, 180 or 

270. Finally, objects at 90 and 270 (coming towards or away) were hard to discriminate, and 

both 0 and 180 orientated objects, assuming both fore and aft sails were raised, were similar 

by symmetry. Hence, only 2, possibly 3, orientational subclasses, in each class, needed to be 

considered for the boats. 

A final type of analysis that could have been performed was temporal analysis, examining 

how objects altered over frames. This information was not available with the seascape data as 

contiguous frames of video were not captured. This was due to the lack of time and processing 

resources, and to ensure that the seascape database did not contain objects that were practically 

identical because they were, for example, images of the same sailboat only captured fractions of 
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Figure 3-15: Seascape: Rose diagram showing directional populations of sailboat class. 

seconds apart. However, the transient clutter was assumed to be filtered out by such a temporal 

analysis in later stages of the ATR system. 

3.2.6 Analysis conclusions 

Table 3-5 summarises the analysis of the seascape database discussed in the previous sections. 

Overall, each class has excellent discriminative properties but there were similarities that could 

cause confusion. Furthermore, the intra-class variabilities that exist in each class, for differing 

reasons, could increase the complexity of the classification model. 
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Class 	Results 

Sailboat • Most common non-clutter class 

• Subclasses much alike in terms of design, but sail state considerably effects shape 

• Further subclasses due to out-of plane rotation 

• Triangular, tall and thin 

• Mass resides in lower section of image 

• Large percentage of image is background 

• Difficult to segment 

• Tilts 10-15 degrees when travelling at speed, or turning 

Motor 	• Mass centred towards left, or right, extremes, due to hot engine 

• Rectangular, short and wide 

• Subclasses due to design, and direction of travel 

• Least symmetric of all non-clutter classes 

• Smaller, faster motor boats tilt up when travelling at speed 

Buoy 	• Least common non-clutter class 

• Round, though less so with rod buoy subclass 

• Three distinct classes due to design 

• High two, and three, dimensional symmetry 

• Most likely to be confused with a sailboat 

Clutter 	• Rectangular, short and wide but small in total pixel size 

• Two subclasses, but one filtered out in later ATR stages 

• No single distinctive shape, or centre of mass 

• An often convoluted boundary 

• Most likely to cause confusion with the motor class 

Table 3-5: Seascape: Analysis conclusions. 
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3.3 Object preprocessing 

The detailed analysis of the raw object data, described in this chapter, highlighted many of the 

intra- and inter-class variations that exist in the seascape database. The inter-class variations 

are highly desirable for classification purposes, but the intra-class are highly undesirable. There 

were other properties that varied from object to object, such as scale, background influence and 

grey-level shifts, the effects of which all required suitable preprocessing, and normalisation, 

for reasons described earlier in the chapter. This section describes the actual preprocessing 

method. 

The grey-level image data for each object was, initially, low-pass filtered to reduce noise 

and some of the high frequency artifacts peculiar to individual objects. The foreground of each 

object was then histogram equalised. This countered some of the effects of the variable thermal 

window. The next step was to scale each object, whilst preserving the aspect ratio, in order to 

counter, for example, changes in camera zoom. By rescaling the objects a rudimentary form of 

size invariance was achieved and allowed for easier handling of the object data in the feature 

extraction and classification stages. 

Rescaling was performed by reconstructing the original image and then re-sampling at the 

new frequency. Theoretically, this could be performed exactly, if the image was band limited 

and a sinc-based kernel interpolator used [58,77]. However, in practice, the problem was to 

find a suitable kernel with respect to reconstruction error and computational overhead. 

(a) Blocky effect of nearest 	 (b) Smoothing effects of 
neighbour resampling 	 B-spline resampling 

Figure 3-16: Re-sampling examples 
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Parker, Kenyon and Troxel provide an excellent comparison of several common interpol-

ating methods for image re-sampling [77] including nearest neighbour, linear, cubic B-splines 

and high resolution cubic splines. Examples are shown, for a seascape object, in Figure 3-16. 

They suggest the use of the a = —0.5 high resolution cubic spline as most appropriate when 
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Figure 3-17: Seascape: Grey-level histograms for a typical sailboat. 

further mathematical processing of the objects is to be performed. This process was applied 

to both the grey and binary object images such that the objects were rescaled to either 16x16 

or 3202 pixel images, with quantisation effects reduced due to histogram equalisation. The 

pixel elements then were labelled from 0 to either 15, or 31, in each direction. However, to aid 

processing in later stages, a secondary set of labels, uniformly ranging from -1.0 to 1.0, were 

introduced spanning each axis of the image. 

As described in the binary analysis section a large proportion, 40%, of the object image is 

comprised of background. This was further increased during rescaling because the bounding 

box was enlarged to generate a square in order to maintain aspect ratio. The probability of 

background interference, in a cluttered environment, was too great and for this reason the 
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background pixel values in the grey-level object image were set to zero. Thus, there was a 

heavy dependence on segmentation accuracy. Figure 3-17 demonstrates the possible influence 

of retaining the background pixel values. Note the two dominant, low variance, peaks caused 

by the sea, with low mean, and especially the sky, with high mean. An identical object, with 

no sky in the background, would have a completely different profile and subsequently generate 

possibly very different features. 

A review of this section of the OSTRICH system is provided in Figure 3-18 . 

Low pass Filter 

Raw grey object images Histogram Equallse Cast Image  

A) R-aff4de 	 Foreground 

Raw binary masks Processed object 
Hi-res -0.5 

Threshold 

Hi-res -0.5 

Figure 3-18: OSTRICH: The preprocessing system. 

3.4 Review 

This chapter has reviewed the process of generating two object databases derived from the 

seascape image database described in Chapter 2. The first database contained three classes 

of accurately segmented objects, whilst the other consisted of all the other products of this 

extraction process. 

The chapter has examined how each of the databases were created, how each of the objects 

were labelled, processed, assessed for quality, and how the well-segmented data was analysed 

and characterised. Features were described that both represented classes of objects, features 

that discriminated between classes of objects, and features, such as range data, that would have 

significantly aided analysis, had they been available. Furthermore, all assumptions that were 

made in creating the data were listed. Some of the key assumptions are listed on the next page: 

3 The "Cast Image' operator is required by the OSTRICH system and is of no concern here. 
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• Object boundaries will always be well defined in the seascape environment. 

• Aspect ratio filtering will not remove any objects of interest. 

• No object could possibly exist in more than one class. For example, a dinghy with 

an outboard motor, and a sail. 

• Transient clutter can be removed by later temporal processing. 

• After confirmation of the data labelling, all objects are correctly classified in the 

database. 

• The segmentation module will always generate rogue data, whether clutter or poorly 

segmented. 

• Out-of-plane rotations of objects can be treated as a small number of subclasses. 

• A constant aspect angle is used. 

• The analytical tools used were appropriate. 

• Object bounding box size was irrelevant without range data, and was required to 

normalised. 

• No false, artificial, or misrepresentative information has been introduced through 

any of the preprocessing stages. 

• And finally, object databases are representative of the real-world data to be 

encountered in the final operating system. This is actually a very weak assump-

tion due to the lack of variation in the seascape image database, as described in 

Chapter 2. 

The next chapter uses the analysis of the well-segmented data to generate sets of features, 

some of which were introduced in this chapter, for classification. Later chapters will make use 

of the other data, and information, created in this chapter. 



Chapter 4 

Feature extraction and classification 

The previous chapter has described how the well-segmented objects were extracted, and norm-

alised, from the database of real, infrared, seascape images. These well-segmented objects were 

now to be used as a basis to test new classification algorithms with a confidence that the objects 

had known characteristics. In the previous chapter it was shown that some of these character-

istics, or features, made it possible to separate the objects from the background. Unfortunately, 

this rudimentary form of classification was unable to perform the finer differentiation required 

to determine object class. Thus, different, and often more complicated, features were required 

to perform the object classification. 

Feature extraction is the process of mapping originally high dimensional image patterns, 

generated by a segmentation process, into a much lower, and manageable, dimensional sub-

space. This transformation is intended to remove any redundancy or correlations in the data 

and to reduce the number classifier inputs without significantly reducing the class separability 

that exists in the original space. A classifier with fewer inputs requires less model parameters 

to be estimated, possibly improves generalisation due to a higher parameter to size of database 

ratio, reduces weight storage and is faster to train. Now ideally, both the feature extraction 

and classification stages should be optimised together but this is often restricted by practical 

constraints and the two stages often have to be treated separately [13](page  305.) 

The problem with both the seascape, and NIST, data was how to extract reasonably-sized, 

independent, sets of features for classification. This chapter discusses the standard feature 

extraction and classification techniques that were tested, and the statistical feature selection 

techniques that were applied to predict which of the extracted features would provide the 

easiest discrimination of classes. Furthermore, this chapter reports on the complications that 

were encountered due to treating the feature extraction and classification stages as separate 

Mol 
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entities. The chapter also shows that different features were required to provide the best 

classification for each database tested. Figure 4-1 shows how the standard systems integrated 

into the overall system design. 

Real 

Object classificatiOns 
and confidence 

Figure 4-1: OSTRICH: Feature extraction and classification stages. 
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4.1 Feature extraction 

The feature extraction stage, highlighted in Figure 4-1, was provided with object data from the 

segmentation process. Consequently, features could be derived only from within the boundary 

of the object. This excluded data such as geographical or environmental information, allowing 

for an unbiased classification based on object shape alone, at one particular instant. This would 

provide independent data to the later interpretation stage. The challenge was to determine a 

suitable set of shape-based features that would provide good generalisation. 

This section explains why feature extraction was necessary, outlining the various feature 

extraction techniques that have been used previously for character recognition and ATR. The 

techniques examined were from two different sources: statistical, describing features that 

were derived from each object through analysis, as in Chapter 3; and linear spatial mappings 

whereby features were generated through linear transformations of the image data. Due to time 

limitations of the project, only these type of features were considered. 

4.1.1 Determinedness 

In Chapter 2 the current BASE classifier was described as having approximately 130,000 model 

parameters, which were estimated using a finite training database of 2000 samples. Model 

estimates were thus under-determined, even with the inherent self-correlation of the images. 

A 200 parameter model which would be faster to train, provide improved generalisation, and 

require significantly less storage was a far more attractive proposition. This implied a classifier 

with about 10 inputs. 

This problem of under-determinedness is also known as Bellman's curse of dimensionality 

and is covered in many texts [13]. In short, as the number of inputs increases, the number of data 

samples required to define the class boundaries increases exponentially. Thus, classifiers with 

fewer inputs are more desirable. Cheng and Titterington comment on the generalisation ability 

of Le Cun's Zip-code image recognition system with a 16x16 pixel input array [22]. This had 

9760 independent parameters and was trained with 7291 data samples. A significant increase 

in the generalisation ability was achieved when the number of parameters was decreased by 
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a factor of four [22]. Feature extraction is a standard method of significantly reducing the 

number of inputs, and subsequently parameters. 

Having now discussed why feature extraction was required, the two types of feature, derived 

from statistical measures and linear sub-spatial mapping, are described further. 

4.1.2 Statistical features 

Table 4-1 lists 32 statistical features that have been used previously to classify successfully 

various object databases. Features 1 through 12 were introduced in Chapter 3. The other 

features are statistical measures used to describe the grey level pixel distribution of the object, 

also described in Chapter 3. These pixel-distribution features are reliant on the size of the 

pre-normalised object being large enough to produce valid distributional estimates. 

4.1.3 Linear spatially-mapped features 

Features derived from linear spatial mappings are simple to generate. Each M-dimensional 

feature vector, d, is related to the N2 x 1-dimensional vector representation, f, of an N by N 

pixel image f(x, y), by the equation 

d = A f 	 (4.1) 

where A is an MxN 2  matrix and, usually, M << N2 . Alternatively, this can be given as 

NN 

dm = E E f(x,y)g m (x,y), 	 (4.2) 

where g (x, y) V m = 1, 2, .., M are the feature extracting kernels. Kernel selection is directly 

related to the quality of the features generated for classification. 
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Index, d, Feature Notes 

1-3 Height/Width/Aspect ratio Bounding box description 

4 Compactness Roundness or circularity 

5 Bending energy Object boundary complexity 

6 Elongation Stretch factor 

7 Number of corners A difficult feature to derive 

8 Number of holes Useful for character recognition 

9-10 Centre of mass Identifies position of greatest pixel mass 

11 Symmetry 

12 Texture More appropriate for remote sensing applica- 

13 Population 

14 Arithmetic mean 

15 Root mean square 

16 Median 

17 Lower quartile 

18 Upper quartile 

19 First decile 

20 Ninth decile 

21 Variance 

21 Absolute deviation about median 

23 Coefficient of variance 

24 Quartile coefficient of skewness 

25 Percentile coefficient of skewness 

26 Moment coefficient of skewness 

27 Percentile coefficient of kurtosis 

28 Moment coefficient of kurtosis 

29-30 Lowest/Highest pixel value 

31 3rd moment 

32 4th moment 

tions, as well as, segmentation 

Percentage object foreground 

Measure of pixel central tendency 

Another measure of central tendency 

Lower and higher quarters of distribution 

Lower and higher 10% of distribution 

Measure of distribution spread 

>(occupancy* I f(x, y) - d 16  I)/d12 

100.0 * /v/d 13  
(d 17  - (2 * d15 ) + d 16)/(d 17  - d 16 ) 
(d 19  - (2 * d15 ) + d 18 )1(d 19  - d 18 ) 
d30// 
0.5 * (d 17  - d 16 )/(d 19  - d18 ) 
d31  /d220  

Contrast measure 

>(occupancy * (f (x, y) - d 13 ) 3 )/d 12  

>1(occupancy * (f (x, y) - d 13 ) 4 )/d 12  

Table 4-1: Statistical features. 
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Zoning 

One simple example of a linear spatial mapping is known as zoning. Zoning subdivides NxN 

pixel images into M, non-overlapping, constant-valued, rixn kernels that completely tile the 

image, such that Mn' = N2  and gm  (x, y) = 1/n2  [128]. This technique is also known as pixel 

averaging [13] and coarse coding. 

Figure 4-2 shows the distribution of feature values, that were created with the NIST 

database, using 16 8x8 pixel zones. The results appeared to suggest that certain zones would 
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Figure 4-2: NIST: Effects of zoning upon the NIST digit database. For each image in the 
NIST database, the pixels values were added for zone. These summed zoned pixel features 
were then split into the various classes and the mean and standard deviation statistics estimated. 

be better at differentiating between various classes of characters. However, without analysing 

the features quantitatively no comments could be made on what zones might prove the best 

features. The choice of a suitable subset of these features that would classify all the digits 

satisfactorily was a complex task. 
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One further problem with these zoning features was that they are highly susceptible to 

pixel-sized translations across boundaries. For example, vertically shifting a horizontal line of 

8 pixels would generate a 16 pixel swing between vertically neighbouring zone features. One 

solution was to smooth the edges of the zones such that they overlapped. A simple way of 

performing this smoothing was to use a Gaussian kernel, instead of a constant-valued kernel, 

with a suitably chosen width, a, as shown in Equation 4.3 

m(xY)=amexP{_ 	
a2 	

]} 	

(4.3) 
[ (x - X0m) 2  + (y - yom)2) 

where am is a constant. 

Projection histograms 

The use of projection histograms was suggested in 1956 by Glauberman [45] for optical 

character recognition, primarily for binary images, although their use can be extended to grey 

level images. 

The histogram features are derived by summing along parallel sections of an image, typically 

in either the horizontal or vertical direction. This is similar to zoning, except that one side of 

the zone is extended to the opposite edge of the image space. Features extracted in this way 

are very sensitive to rotations. Cumulative histograms, however, do tend to be less sensitive to 

shifts in the dominant peak of the histogram. 

Image moments 

Image moments have been widely used as a source of features for classification. An excellent 

introduction to the use of moments for image analysis is given by Teague [122]. Moments are 

derived by integrating over the space of a weighted version of an input image, where the spatial 

distribution of the weights, g(x, y), is controlled by the moment order, r. For each moment of 

order r there will be S coefficients, Cr,, related to each weighting distribution, or basis function. 

In general, this can be written as 

r cc

Crs =J f(x,y)g rs(x,y)dxdy,s = 1..S. (4.4) 
 -m 
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If the coefficients are used as features then the discrete case is identical to Equation 4.2. The 

difference is in the form of the kernel. With moments the basis functions provide a quantitative 

method of extracting features from an image. In fact, given a sufficiently large number 

of ordered moments all image information will be captured, with the lower order moments 

capturing the more gross artifacts. For example, for geometrical, or regular, moments, of order 

r = p + q, where 

gm(x) y) = xPy, 	 (4.5) 

the first six geometrical moments can be related to physical image properties, as shown in 

Table 4-2. 

m r p q Representation 

1 0 0 0 Total image power 

2 1 0 1 Image centroid in x 

3 1 1 0 Image centroid in y 

4 2 2 0 Size and orientation 

5 2 1 1 Size and orientation 

6 2 2 0 Size and orientation 

Table 4-2: Low order regular moments. 

Often, it is hoped that the basis functions are orthogonal so as to reduce any redundancy 

in the features. Geometrical moments have basis functions that, although complte, are not 

orthogonal according to the Weierstrass approximation theory [122]. Legendre basis functions, 

on the other hand, are orthogonal. The Legendre moment is defined by 

(2p+ 1)(2q+ 	
(4.6) 

4 

where the pthorder  Legendre polynomial is 

Th 
L(x) = 1 d ---(x 2  - 1) 	 (4.7) 

2'p! dx 

and the orthogonality is shown by 

I l  L(x)L1(x) = 
2 

8p ,,. (4.8) 
- 2p+l 
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Both geometrical and Legendre moments were used to generate features for classification as 

part of this project. Another popular set of feature extraction methods that decompose images 

into a series of coefficients are based on unitary transforms, for example the Fourier transform. 

Unitary transforms 

The general orthogonal series expansion of an NxN image f(x, y) is described by the following 

transform pair 
NN 

w(u,v) 	f (x,y)g uv (x,y), 1 < U,V < N 	 (4.9) 
X y 

NN 

f (XI  y) = 	w(u,v)g(x,y),1 <x,y <N 	 (4.10) 

where guv (x, y) represents a set of complete, orthonormal discrete basis functions [58]. The 

transform coefficients can be considered directly as features, as with the image moments, or 

further processing can be performed on the transformed space. Some of the most popular 

transform basis sets are unitary. Returning to Equation 4.1 a unitary transform is one such that 

the inverse of a matrix A is equal to its conjugate transpose, A-' = A*T. The Fourier transform 

is one example of a unitary transform, and Figure 4-3 shows the resulting transformed spaces 

on some digits from the NIST database. Unitary transforms have been used previously for both 

character recognition and ATR [3,128]. 
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Several other types of unitary transforms that also have been used for feature extraction 

include the Cosine, Sine, Haar, Walsh-Hadamard, Slant and pattern transforms [3,58]. Table 4-

3 gives a brief description of each of these transforms with an example of each. 

6 

/ 
7 

3 

Figure 4-3: NIST: Fourier transforms of sample digits. 

With unitary transforms, as with image moments, no information is gained by the trans-

formation. The signal energy may be compressed into a small spectral region in the transformed 

space but there is no assurance that features from this region will be the most important, in 

terms of classification. 
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Transform 	Description, Z,{f(x, y) } 	 Example 

Pattern 	One-to-one mapping of the pixel data 

f (XI  y) 

Fourier 	Asymptotically equivalent to the Karhunen-Loeve transform, 
(DFT) 	the DFT is a symmetric, unitary transform with periodicity. 

a E E f(x, y)[—j27r(ux/N + vy/N)] 

Cosine 	This real and orthogonal transform, not the real part of the 
(DCT) 	DFT, is often used in image compression. 

a>f(x,y)cos[(2x + 1)u7r/2N]cos[(2y  + 1)v7r/2N] 

Sine 	A real, symmetric, and orthogonal transform. The DST is not 
(DST) 	the imaginary part of the DFT. 

a E E f(x, y)sin[(2x + 1)u7r/2N]sin[(2y  + 1)v7r/2N] 

Haar 	A real, orthogonal, transform, with sequence ordered basis 
vectors that provide a domain that is both locally and glob-
ally sensitive. The Haar transform has poor image energy 
compaction. 

Walsh- 	Binary transform, where b2 (z) is the jth  bit in a binary repres- 
Hadamard 	entation of z 

a> f(x, y)(— l)>11.[bi(x)bi(tL)+bs(Y)bi(v)l 

Slant 	Defined by a recursive expression the Slant transform is 
real and orthogonal. It has excellent energy compaction for 
images. 

Table 4-3. Various unitary transforms of a sailboat (a = constant). 
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Wavelet transforms 

Wavelets are becoming an increasingly popular transform for pattern recognition, as well as 

signal representation and compression, with their ability to generate features that are both 

localised spatially or temporally, as well as in frequency. Classifiers based on wavelet features 

have been used successfully for character and speech recognition [111,60,119], breast cancer 

diagnosis [63], and object detection and segmentation in real JR images [125,19,21,20,133, 

121]. 

Wavelets were originally used to analyse the temporal-frequency characteristics of non-

stationary signals and introduced as a solution to the resolution problem of the short-term 

Fourier transform (STFT) [72]. The technique is now used often for examining image spatial-

frequency content. For example, in image analysis, it is inappropriate to use Fourier transform 

features derived from an entire scene in order to determine the classification of a particular 

object, as the frequency characteristics pertaining to that particular object are spatially localised. 

Segmentation, as described in the previous chapter, is a crude method of localising analysis in 

ATR. However, it is sometimes helpful to use features that have the ability to discriminate in 

both frequency and space, within the confines of an object bounding box. 

The continuous wavelet transform of a one-dimensional signal, f(x), is defined as 

1 	r 	(x_xod 
Zxo,a{f(X)} = 
	

J f(x)b 
\ a ) 

(4.11) 

where xo and a are the translation and scale parameters. The function, /', is known as the 

mother wavelet: each wavelet used at each point of the transformed space is a scaled and 

shifted version of this mother wavelet. The choice of the mother wavelet effects the properties 

of the transformation and there have been many proposed, including the eponymous Morlet, 

Daubechies, and Mallat transforms [72]. 

The project concentrated on the Gabor transform which is, in many ways, very similar to 

the wavelet expansions discussed. The Gabor transform has been used by other authors for 

feature extraction [84,26,133,65]. 

The 2-D Gabor transform consists of a Gaussian envelope centered at (x 0 , Yo)  with size 

controlling parameters (a, b), which is modulated by a complex exponential with horizontal 
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and vertical spatial frequencies (no, va). This is a linear transform, and features can be generated 

using Equation 4.2 with the kernel function 

I(x - Xøm)2 	(y - yOm)2l 
gm (x,y; m ) = ex{_ L 	a, 	

+ 	
b 	

} .exp{j2(uo m x + VOmy)}. (4.12) 

where çb is the parameter vector (am , bm , XOm )  Yom )  ttOm , VOm)T.  The transform has a spatial 

frequency of (u 2 + v)'I 2  and a spatial orientation of arctan(vo/no ). The real and imaginary 

parts of one element of the Gabor transform are shown in Figure 4-4. 
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Figure 4-4: Gabor: Imaginary (top) and real (bottom) parts, where q = (0. 5, 0.5, 0, 0, 1, i)T.  

The elliptic generalisation of Gabor's set of elementary one-dimensional functions [42] has 

many interesting properties for feature extraction, and have been noted to resemble closely the 

spatial-domain visual cortical filters that occur in nature [27]. The six-dimensional parameter 

vector 0, given in Equation 4.12, allows for control of filter spatial orientation, frequency, 

spatial coverage and location. This makes the transform highly suited to feature extraction. 

Furthermore, these transforms achieve the best possible joint resolution in the spatial-frequency 
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domains, such that 

(Ax)(Ly)(iu)(iXv) > 1/16r. 	 (4.13) 

Although sharing many wavelet properties, and being very similar to the Monet wavelet, 

the general Gabor transform, is not strictly speaking a wavelet. However, its simplicity, ease-of-

use, and ability to relate filter parameters to physical properties, such as orientated edges, have 

made the Gabor transform, as well as its real and imaginary complex parts, popular tools for 

image analysis. Szu et al provide a comparison between the wavelet and the Gabor transform, 

in terms of compression and recognition [118]. 

Other features 

These sections have only outlined some of the more popular feature extraction methods. They 

were chosen as features for classification in this project for their ease of calculation and 

popularity in the fields of ATR and character recognition. Other feature extraction techniques 

include the Hough, Radon, Wigner and Karhunen-Loeve (KL) transforms. The KL transform 

is very popular as it generates features with the largest eigenvalues, as it is hoped these features 

have the greatest class separability. However, it can be easily demonstrated that the good class 

separability is not always achieved with the KL transform, especially with real, multi-modal 

data. Furthermore, the KL transform requires considerable effort to compute because of the 

requirement to diagonalise, often very large, covariance matrices [3]. 

Other feature extraction techniques are based around texture measures but these often 

require large objects from which to derive texture cocurrency matrices [66]. Features based on 

describing shape by way of graphs or splines are also popular but again often not efficient to 

calculate [30,128]. 

One further subset of features, that has not yet been discussed, has a tolerance for certain 

deformations in the original object. These invariant features are very important in ATR and 

shall be discussed separately in Chapter 6. 
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4.2 Feature analysis 

There were several points that needed to be addressed before the application of any classification 

algorithm to the features. Chapter 3 showed that the distribution of seascape object width and 

height indicated distinct class separability. Unfortunately, much separability was discarded 

when scale normalisation was performed, although aspect ratio remained a potent characteriser. 

What was considered next was how other features separated, in fact did they separate, and if 

they did, were the decision boundaries likely to be linear or, in the other extreme, highly 

nonlinear? Both the 3202 pixel seascape objects, and the 3202 pixel NIST digit data, were 

considered. 

4.2.1 Feature separability 

Figure 4-5 shows the distribution of two zoning features with the three seascape classes. The 

zones relate to the zone numbers in Figure 4-2. As shown in Figure 4-5, there are indications 

of a degree of separability between the sailboat, and the other two classes: the motor boats and 

the buoys. Also, the buoy class formed two clusters, close to the motor class, allowing some 

nonlinear separation. However, the decision boundaries required here were by no means an 

indicator of the type of discrimination required with other, perhaps higher dimensional, feature 

spaces. 

Given a decision boundary of sufficient complexity, a finite set of unique, labelled, data 

points can be separated exactly. However, unless the identically labelled points possess some 

form of cohesion, or collectiveness, no generalisation can occur. Examining the features 

directly, notable groupings, which provided some confidence, could be observed, as seen in 

Figure 4-5. Of course, it would be a considerable task to examine every possible combination of 

two-dimensional features and, more appropriately, impractical to view every multidimensional 

feature space for feature separability. There were two solutions to this problem. The first was 

to limit the complexity of the decision boundary and combine this with a suitable generalisation 

measure based only on classification scores. The second was to derive a measure of separability 

based directly on the features, from which an expectant generalisation could be derived. 
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Figure 4-5: Seascape: Distribution of two zoning features. 

It would have been exceedingly helpful if the value of the Bayes error, the error produced 

by use of a Bayes decision boundary, had been known for each type of feature. However, this 

error was impractical to derive with the real data without explicit knowledge of p(d I wi ), but it 

could have been possible to place a bound on the Bayes error known as the Che rnoff bound [90]. 

A much simpler bound, though, known as the Battacharyya bound [90], is much more widely 

used. These bounds, as well as other measures of conditional probability divergence such as 

Matusita, Patrick-Fisher, Lissack-Fu and Kolmogorov [28],  are dependent on assumptions of 

distribution normality or availability of a mathematical expression for the distribution, or at 

least a reliable estimate of the probability density function (pdf) at all points. Estimating pdfs 

is a notoriously difficult problem. In this project a simple k-NN estimator was used, although 

as previously stated is not a true pdf estimator, so results using the estimate were treated with 

caution. Simpler measures, based on inter- and intra-class separability, that use more practical 

measures, required estimates of the between-class distance, Sb,  and the within-class distance, 

SW , defined in Equation 4.14 and Equation 4.15 respectively, where pi represents the mean 

feature vector for all samples of class wi  and y is the mean vector of all the samples [28]. 

C 

Sb = 	— 	— 	 (4.14) 
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C 	1 Ni 
S. = 	P-- >(dk - ,U1)(dk - 1)T 	 (4.15) 

i=1 Ni k=1 

Table 4-4 outlines six separability measures that were used with both the NIST and real JR 

image data features before the features were classified. Measures J1  are described by Devij ver 

and Kittler [28]. 

Measure 	Equation 	 Notes 

Error 	f [1 - max P(w1 I d)] p(d) dd The Bayes error can be estimated 

from the finite database using an 

estimate of p(d I wi). 

Quadratic 	f >j 	P2(w1 I d) p(d) dd 

entropy, 

J, (D) tr(S+Sb) 

J2 (D) tr(Sb)/tr(S) 

J3 (D) tr(S'Sb) 

J4 (D) ISW +Sb I/ISW I 

Well known measure of informa-

tion, which again requires know-

ledge of p(d I w i ). 

Table 4-4: Various separability measures. 

4.2.2 3D object rotation 

In Chapter 3 the problem of three-dimensional object rotation was discussed. It was suggested 

that the objects at different rotations existed as subclasses in a multi-modal object distribution. 

Figure 4-6 shows the effect a rotating ferry had on two Gabor-based features. Side on, the 

features existed at different positions within the motor boat distribution. Due to the effects 

of the mast and the narrowness of the ferry, features generated from an image of the ferry 

facing away were more akin to features derived from a sailboat without a sail, although in the 

extremes of the sailboat distribution (points C and D.) In fact, due to the mast on the ferry, it 

was exceedingly difficult to discriminate between it and a sailboat. This is one important area 

where the temporal and interpretation stages of an ATR system are so important. 
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Figure 4-6: Seascape: Change in motor boat class Gabor features with rotation. 

4.2.3 Outliers 

Outliers are defined in this thesis as classified objects that do not belong to the class that 

they were assigned, or possibly even any class. They are often described as having their own 

distribution. In ATR outliers are termed clutter. 

The process of identifying outliers with the seascape image data was simple, as shown in 

Chapter 3, where it was hoped that all were removed. In feature space, outliers may be spotted 

as isolated points well away from the main class cluster. Unfortunately, this was not always 

true. Figure 4-7 shows the buoy subclass distributions using two Fourier features. There 

appeared to be several points in the ball class that were possible outliers. Upon inspection, they 

were found to be slightly different from the typical ball buoy. Hence, they were in the tails 

of the distribution, or possibly the distribution was under-sampled with this particular, perhaps 
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uncommon, form of ball buoy. They were not outliers. Furthermore, there was no reason 

why outlier features should reside distinctly away from the distribution. For example, in ATh, 

clutter may have extracted properties very similar to actual objects. 
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Figure 4-7: Seascape: Fourier based features showing separability of buoy subclasses. 

The manual process of corroborating the classification was assumed to have identified all 

possible outliers in the well-segmented database. An automated process for identifyingoutliers, 

such as clutter, is discussed in Chapter 7. 

4.2.4 Multi-modality 

The next issue concerned how the features were spread across the subclasses. This would effect 

the complexity of the discrimination boundary. As stated in Chapter 3 there existed various 

forms of subclasses in the seascape database. It was now appropriate to see how these translated 

to differences in features, if any, as some features may not have displayed any differences due, 

for example, to the grossness of the feature extraction algorithm. In Chapter 3 it was shown 

there exist object differences through design, such as with the buoy class (Figure 4-7), and also 

differences through object state, such as whether a sail was hoisted or in which direction the 

object was travelling. The latter is shown, for two statistical features, in Figure 4-8. 
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Figure 4-8: Seascape: Sailboat subclass sail states. 

It was now appropriate to make this important point. If, instead of choosing sail state as the 

subclass, sailboat type was used, as in Figure 4-9, then no separability was visible. 
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Figure 4-9: Seascape; Sailboat subclass designs. 
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This was easily explained as scaled sailboat types, in the same sail state, looked identical. 

However, the distribution in Figure 4-9 did not appear to be multi-modal. It was realised that 

knowledge that a distribution is comprised, of say a mixture of three Gaussians, could be very 

useful in deciding on a type of classifier. 

It was found that subclasses did exist with some features, resulting in multi-modal class 

distributions. This resulted often in the need for a nonlinear classifier. However, this was 

not always the case, as stated earlier, classification depends on the grossness of the feature 

extraction algorithm. For example, buoys may have had some trait that typified them against 

other objects but were independent of subclass; aspect ratio, perhaps. In fact, there was often a 

balance between choosing features that adequately separated the main classes and features that 

separated the subclasses too much and added unnecessary complexity to the decision boundary. 

4.2.5 Feature confidence 

One interesting side-issue when examining these features was how much confidence, or trust, 

could be placed on the actual value of a feature. That is to say, how robust were particular 

features to perturbations in the original image and, importantly, how confidence in these feature 

were affected by the original size of the image? In the project, each feature was treated with 

equal confidence as there was no time to examine this further. Though, it must be noted that 

this unlikely to be a correct assumption, for example, aspect ratio calculations will be effected 

less by small perturbations in object size when the object is large. 

4.2.6 Normalisation 

In Figures 4-5 through 4-9 the features were, observed having widely varying values spread 

across several orders of magnitude. It was therefore appropriate to normalise features such that 

each new feature, d', had zero mean, unit variance, using 

d'- 
di  - di  

— .s(d) 

'All features will be assumed to be normalised, hence plain d notation shall continue to be used. 
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where, d1  and s(d), are the i' feature mean and variance respectively. 

Normalisation was not necessary for MLP classifiers due to the linear scaling effect of 

the input layer, but it was often useful for improving rates of convergence in the network 

optimisation. Other classifiers though, such as k-NN, were, of course, directly effected by this 

type of feature scaling. 

4.3 Preliminary classification 

The features described in the previous sections all have their own characteristics and all separate 

classes in their own unique way. This section provides the initial classification results achieved 

with the two different databases, using various classifiers, and features. The features were 

chosen on an intuitive basis based on experience. The section starts with a look at how the 

classifiers, that were discussed in Chapter 2, were implemented. 

4.3.1 Classifier experimental setup 

For each of the feature types tested, eight different classifiers were used to generate comparative 

results. These included two generalised linear discriminants (linear and quadratic), one non-

parametric classifier (k-NN), three MLP neural networks, one RBF network and one statistical 

classifier (MARS.) Table 4-5 lists the classifiers used with a small description of the model, 

and estimation method, used to determine the model parameters. These were discussed in more 

depth in Chapter 2. 
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Effi 

Classifier Notes 

Linear A generalised linear discriminant using a sum-of-squares error 

criterion. 

Quadratic Extension of the linear classifier to include feature product 

terms, dd3 	V i > j. 

k-NN Ic is set to 7 which were determined by trial-and-error as 

providing acceptable validation set errors. 
MLpa Trained using early stopping, 1-of-C output encoding, 4 hid- 

den nodes, conjugate gradient optimisation, with a sum-of- 

squares error criterion, 0/1 target values, weights initially set 

to a random value between -0.5 and 0.5 

MLPb As J\4[,pa  but with 8 hidden nodes 
JyffjC As MLpa but with 16 hidden nodes with a weight decay 

parameter, ), to control over-fitting. ,\ was adjusted such as 

to minimise the validation set error. 

RBF Trained using supervised learning, 1-of-C output encoding, 32 

hidden nodes, conjugate gradient optimisation, with a sum- 

of-squares error criterion, 0/1 target values, weights initially 

set to a random value between -0.5 and 0.5 

MARS Friedman's multivariate adaptive regression splines of degree 

5 using logistic regression, with a piecewise cubic model 2  

Table 4-5: Types of classifier implemented. 

The data was randomly split into three sections, a training set, validation set and an 

independent test set, in the ratio 2:1:1 respectively. For example, for the three class sailboat 

database with high quality segmentation this was 809:400:400. The validation set was used 

to determine when model parameters had been suitably estimated, to avoid over-fitting. An 

independent test set was used to determine the actual misclassification rate. Each experiment 

was repeated over 10 different random splits of the data. 

2FORTRAN77 code courtesy of J. H. Friedman 
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The features used at this stage included 

• Object height and width. Statistical features 1 and 2 (see Table 4-1.) 

• Object characteristics. Statistical features 3,4,6,9 and 10 

chosen from experience/intuition. 

• Zoning of the image data. 

• Symmetrical Gaussian's of width u evenly spaced across the image 

space. A smoothed version of zoning. 

• Projection histograms in both x and y directions. 

• Zoning applied to various unitary transforms of the image data. Complex 

transform spaces are divided equally between complex magnitude and phase. 

• Legendre and geometrical moments in increasing moment order. 

• Centred Gabor (x o  = 0, yo = 0) based features at 5 equally spaced 

orientations (starting at 0°) at three different spatial frequencies 
') 

(u5+v2  0 = 1.0,2.25 4.0)witha=b= 1. ,  

• Features based on object grey level distribution. 

Statistical features 12,13,16,17,20,25 and 27. 

4.3.2 Classifier results 

Table 4-6 provides the separability measures, given in Section 4.2.1, that were applied to 

the seascape 3-class database before classification. They are ordered in terms of increasing 

estimated Bayes error, with # representing the number of features. 

The separability measure Ji (d) was unusable for assessing separability, as J, = M. This 

was due to the normalisation of the features to zero mean and unit variance. More specifically, 

J1  can be easily reformulated as 

M C 
= 	P(w)jz, + P(w j )a 1  = M 

j=1 i=1 
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where tj, is the mean of class wi for feature j and aji is the equivalent variance. However, the 

other separability measures appeared promising for assessing class separation, although there 

were several spurious looking results, for example the x-histogram features. The problem here 

was explained by the highly correlated nature of these features, with their immediate histogram 

neighbours. In fact, both x- and y-histogram features had average absolute off-diagonal 

cross-correlations of 0.53 and 0.44 (compare that with a Legendre value of 0.26) and more 

importantly had several cross-correlations greater than 0.9. It was also found that comparing 

feature sets of different feature dimensionality was also inappropriate. 

Index Feature # E[Error] E[] J, J2  J3  

1 Legendre 15 0.109 0.307 15.000 0.417 11.227 19.338 

2 Zoning 16 0.112 0.321 16.000 0.511 8.474 14.381 

3 Gaussian 16 0.114 0.316 16.000 0.512 9.730 17.452 

4 Y histogram 16 0.126 0.356 16.000 0.693 3.796 6.153 

5 Geometrical 15 0.127 0.362 15.000 0.447 10.894 18.753 

6 Gaussian 9 0.142 0.398 9.000 0.610 9.782 15.439 

7 Gabor 15 0.157 0.441 15.000 0.386 3.770 6.373 

8 Characteristics 5 0.182 0.481 5.000 0.278 2.159 3.471 

9 Width/Height 2 0.192 0.507 2.000 0.238 1.109 2.224 

10 X histogram 15 0.197 0.524 16.000 0.969 7.411 8.764 

11 Slant 16 0.267 0.705 16.000 0.035 0.783 1.810 

12 Haar 16 0.318 0.840 16.000 0.117 1.580 2.930 

13 Fourier 16 0.348 0.907 16.000 0.170 1.544 2.727 

14 Grey distn. 7 0.351 0.928 7.000 0.097 0.978 2.083 

15 DCT 16 0.365 0.951 16.000 0.033 0.644 1.707 

16 DST 16 0.379 0.985 16.000 0.020 0.397 1.411 

17 Hadamard 16 0.997 NaN 3  16.000 0.001 NaN NaN 

Table 4-6: Seascape: Separability measures ordered by smallest estimated error. 

3 Could not be calculated 
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The actual classification results achieved are provided in terms of mean percentage correct 

classification in Table 4-7, and continued in Table 4-8. The values in brackets are unit standard 

deviation values, the results in bold represent maximum classification rate for a particular 

classifier, and the underlined results represent maximum classification per feature type. The 

original BASE classifier with 256 inputs, 16 hidden nodes and 3 outputs scored a classification 

rate of 88.0%. 

Classifier 

Feature # Linear Quadratic 7-NN MLPa MLPb MLPC RBF MARS 

Legendre 15 85.75 89.0 92.5 89.25 92.0 90.0 80.5 90.75 

(1.4) (1.1) (0.6) (2.1) (1.0) (1.5) (5.5) (2.2) 

Zoning 16 86.0 90.0 92.5 90.5 92.0 91.0 91.75 92.25 

(0.6) (1.7) (0.6) (1.1) (1.1) (1.0) (1.5) (1.6) 

Gaussian 16 86.0 90.25 92.5 92.0 92.5 92.5 88.0 91.0 

(a = 0.125) (1.5) (1.4) (0.8) (1.2) (1.0) (1.0) (3.7) (2.3) 

Yhistogram 16 80.5 85.25 90 91.25 91.5 92.0 90.0 87.25 

(1.6) (1.6) (0.7) (2.0) (1.6) (1.4) (2.2) (3.6) 

Geometrical 15 86.25 89.0 90.75 90.5 90.75 90.5 89.25 90.25 

(1.7) (1.7) (1.1) (1.3) (1.4) (1.1) (1.5) (4.0) 

Gaussian 9 84.0 88.0 90.25 89.25 91.0 89.75 89.0 90.0 

(a = 0.25) (1.5) (1.4) (0.8) (1.9) (1.1) (1.3) (1.6) (1.0) 

Gabor 15 80.5 89.25 89.75 89.0 90.0 89.75 87.0 88.75 

(1.2) (1.4) (1.6) (1.6) (1.2) (1.5) (2.2) (1.2) 

Characteristics 5 69.5 76.0 85.5 88.0 88.0 87.75 86.0 89.25 

(1.9) (1.9) (1.4) (0.9) (1.6) (2.1) (1.5) (1.5) 

Width/Height 2 69.5 72.0 82.0 81.25 81.5 82.5 82.5 81.5 

(2.1) (1.9) (1.6) (2.3) (2.0) (2.0) (1.5) (1.7) 

Table 4-7: Seascape: Classification results. Each score is the mean percentage classification 

over 10 different samples each consisting of 400 test vectors. The value in parentheses is the 

standard deviation over the 10 tests. The values in bold represent highest mean classification 

for a type of classifier and the values underlined the highest mean classification for a type of 

feature. 
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Classifier 

Feature # Linear Quadratic 7-NN MLP MLPb MLPC REF MARS 

Xhistogram 16 71.75 77.0 86.25 83.75 85.5 85.0 81.5 85.5 

(1.9) (2.1) (2.0) (1.4) (0.9) (2.2) (3.6) (2.4) 

Slant zoning 16 64.25 64.0 74.5 73.5 75.75 75.5 72.5 75.5 

(2.1) (3.2) (1.5) (2.0) (1.9) (1.7) (3.2) (2.5) 

Haar zoning 16 72.0 72.25 74.5 73.5 74.25 73.75 275 76.5 

(2.1) (1.8) (1.3) (1.9) (1.5) (1.4) (2.4) (2.3) 

Fourier zoning 16 64.0 70.0 73.5 74.5 73.0 74.5 72.75 20 

(1.6) (1.3) (2.2) (2.7) (2.9) (2.4) (2.6) (2.8) 

Grey dist. 7 69.25 70.75 72.25 73.5 74.75 74.0 71.75 73.5 

(2.5) (1.4) (2.6) (3.0) (2.9) (2.6) (3.8) (2.9) 

DCT zoning 16 63.5 68.75 74 72.25 73.75 73.0 67.25 74.5 

(2.2) (2.9) (1.3) (1.6) (3.8) (1.7) (5.5) (2.5) 

DST zoning 16 59.0 66.25 70.25 64.75 65.0 65.0 71.25 70.0 

(1.7) (3.7) (1.5) (3.1) (3.7) (2.6) (2.3) (2.4) 

Hadamard zoning 16 20.75 23.25 46.25 46.25 46.25 44.25 46.25 46.0 

(2.2) (2.6) (2.2) (2.2) (2.2) (2.3) (2.2) (2.2) 

Table 4-8: Seascape: Classification results (continued). 

Table 4-9 provides the NIST classification results based on a subset of the seascape features. 

Features that have been derived explicitly for digit and character recognition were not tested, 

as only comparative results were required. Also, some features, such as those derived from the 

grey level distribution, were not suitable for this database and were excluded. 

The zoning features and moments perform particularly well, whilst the binned transforms 

results were poor 4 . The Y histogram data results, with low linear results, coupled with high 

result variance, indicated collinearity in the data. In fact, it was found that each bin in the 

histogram was highly correlated with its neighbour. Subsequently, every other bin was used as 

a feature with significantly better results and half the number of features. 

40ther poor results omitted 
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Classifier 

Feature # Linear Quadratic 7-NN MLP MLPb MLPC RBF MARS 

Gaussian 9 69.0 76.75 83.5 58.75 75.5 78.5 77.5 78.0 

(a = 0.25) (1.0) (1.2) (0.9) (3.8) (2.3) (2.0) (2.3) (2.1) 

Gaussian 16 76.25 89.75 89.5 61.0 81.0 83.0 82.75 81.75 

(a = 0.125) (1.5) (0.8) (1.0) (3.5) (1.3) (1.4) (1.0) (1.5) 

Yhistogram 16 18.0 53.75 57.5 -  - - - - 
(8.9) (4.0) (4.1) - - - - - 

Yhistogram 8 55.25 81.75 78.0 54.25 71.0 75.0 75.5 75.25 

(1.9) (1.3) (1.7) (0.9) (1.8) (0.9) (1.4) (1.1) 

X histogram 16 36.0 53.25 - - - - - - 
(1.5) (1.9) - - - - - - 

Zoning 16 82.75 92.5 90.5 62.5 83.5 86.25 86.25 85.75 

(1.4) (1.0) (1.1) (3.1) (0.9) (1.1) (1.3) (1.4) 

Fourier zoning 16 43.25 4J - - - - - - 
(1.4) (1.1) - - - - - - 

DCT zoning 16 24.75 28.5 - - - - - - 
(2.0) (1.8) - - - - - - 

Legendre 15 80.25 90.0 90.5 59.75 78.5 80.75 80.0 80.5 

(1.6) (1.0) (1.0) (4.7) (1.4) (1.2) (1.0) (1.2) 

Geometrical 15 81.75 81.75 92.75 54.75 84.25 87.0 88.0 87.5 

(1.8) (1.1) (0.8) (4.8) (0.9) (0.9) (1.4) (1.3) 

Gabor 15 60.5 76.5 79.75 45.5 63.0 65.0 65.25 66.0 

(13) (1.1) (1.4) (3.2) (1.3) (1.2) (1.1) (1.6) 

Table 4-9: NIST: Classification results. Each score is the mean percentage classification 

over 10 different samples each consisting of 800 test vectors. The value in parentheses is the 

standard deviation over the 10 tests. The values in bold represent highest mean classification 

for a type of classifier and the values underlined the highest mean classification for a type of 

feature. 
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4.3.3 Comments 

Several conclusions were drawn from these initial experiments: 

• The features chosen all required some form of nonlinear discrimination to achieve 

an acceptable classification rate, of approximately 90% with the best features derived 

from the seascape data. A nonlinear solution was required. 

• For the seascape data the best classification results were 5% better than the original 

BASE system employed, with a network with only 5 inputs equalling the original 

classifier performance. 

• Feature separability measures indicated which of a group of features would provide 

good classification. They do not appear to be good enough to predict accurately which 

particular feature would be superior. 

• In some cases a very simple quadratic classifier sufficed, with only 1-2% classifica-

tion loss. 

• Different classifiers found it easier to discriminate between different types of feature. 

For example, with the seascape data the linear classifier produced its best results with 

the geometrical features. 

• The NIST classifier required far more complexity in the nonlinear classifiers to 

separate the higher number of classes than the seascape data. 

• A greater number of features did not always produce better classification results. 

• Zoning with relatively large kernels worked well in the spatial domain, but poorly 

in the frequency domain. 

• Different features tended to work better with different databases. So for each new 

database the right type of feature had to be found. 

Of the actual features themselves, zoning of the image data generated better results than 

any zoning of the Fourier, DCT, and other unitary transforms. This should have been expected 

as many of these transforms, by their nature, store the majority of their energy in a small 

region of the transformed space. This meant that most of the features contained, typically, 

little information. It may be more appropriate, in these spaces, to select individual points in 

the space; for example, the point representing the overall object mean luminance. However, 
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for a 3202 pixel image there are 1024 possible features and choosing the right subset is very 

difficult. The next section examines methods that were employed for automatically selecting 

the number and type of features for successful classification. 

One final set of experiments that were performed repeated the previous tests but with 16x 16 

pixel objects. It was found that a 1-2% drop in classification was the penalty for reducing the 

image size by 4. No improvement was noticed when 64x64 images were tested. This justified 

using the 3202 pixel size for the objects. 

4.4 Feature Selection 

As seen in the previous section, examination of simple separability measures indicated which 

features would provide good classification rates, and could have avoided the estimation of many 

of the classifier models. Unfortunately, these measures were unable to rank the importance of 

selected subsets of features without actually testing every subset. In this section the problem of 

feature selection is explored further. Two points must be reiterated: features that provided good 

class separability with one database were not necessarily as successful with another database; 

adding more features did not necessarily improve classification. In fact, the problem was now 

to find a minimal-sized set of features that provided an adequate misclassification rate for each 

of the tasks at hand. 

Consider d' to be the vector of all available features, from whatever source. Furthermore, let 

d C d', be the set of M features to used to classify the object. The aim of feature selection then 

is to find the vector d such that d maximises a user classification criterion function, J(.) V d, 

whilst minimising M at the same time. 

4.4.1 Using a priori knowledge 

The most obvious way of choosing a set of features was to use a priori knowledge to guide 

feature selection. For example, knowing that sailboats were thin and tall, whilst motor boats 

were wide and short would indicate height and width as a good feature. This was shown to be 

correct in the previous section. Another example, would be to choose particular elements of a 
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zoning feature set by examining the separation of classes in each zone, such as with the NIST 

data in Figure 4-2. This implied rating features individually, ignoring feature relationships. 

The zone features from the NIST data were ranked according in order of perceived increasing 

discriminatorial power. This formed the ordered feature set 

{Zones : 13, 9, 10, 6, 7, 3, 2, 8, 12, 4, 14, 16, 5, 15, 1, 111. 	(4.16) 

Figure 4-10 shows how the classification rate changed as features were added to the number of 

classifier inputs in forward, and reverse, order. The error bars represent +1 standard deviation. 
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Figure 4-10: NIST: Increasing number of intuitive features. 

Better results were achieved with forward ordered data with the classification rate reaching 

within 1.5% of the maximum value at 8 features. Note that the maximum rate was achieved 

with 11 features, rather than 16. 

4.4.2 Individual feature selection 

In this section, the possibility of individually rating each feature, is discussed. Individual rating 

was attractive for determining which unitary transform features, discussed earlier, would be 
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appropriate. This approach is also known as the 'Method of Best Features" [28]. In this case, 

Wilks' A statistic was used to rate each feature [52]. 

Wilks' A statistic is simply the reciprocal of the separation measure J4 . This can be 

simplified to consider the separation of individual features and was applied to the unitary 

transform data, which previously classified poorly when features were binned. To calculate 

Wilks' A required calculation of transform coefficient (feature) variance. This was simple for 

non-complex data, but for Fourier data, the variance was calculated as 

a(k,l) = E [i v(k,l) - t(k,l) 21 

where v(k, 1) are the transform coefficients [46]. For each complex transform coefficient two 

features were generated. 

Figure 4-11 and Figure 4-12 5  shows a significant improvement in seascape classification 
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Figure 4-11: Seascape: 7-NN results for transform features chosen by Wilks' A. 

using this method with these features, especially the Fourier features providing the best results 

yet of 96.0%. The exception was the pattern space result. The pixel features were derived 

5 Error bars are not shown for clarity purposes. 
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Figure 4-12: Seascape: Linear classifier results for transform features chosen by Wilks' A. 

using selected zoning features whereby the size of each zone was one pixel in area. Compare 

this with the large kernel zoning success and failure with pattern and frequency-based features 

given previously. 
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Figure 4-13: Seascape: Low Wilks' score indicates good, in this case, Fourier features. 
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The features chosen by Wilks' A were predominately low frequency components, as shown 

in Figure 4-13, where the value of the Wilks' A for the Fourier transform is shown for all 

frequencies. 

Figure 4-14 and Figure 4-15 demonstrate similar results with the NIST digit data. In this 

case however, the DST features outperformed what was previously the best features, the Fourier 

features. 
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Figure 4-14: NIST: 7-NN classifier results for transform features chosen by Wilks' A. 

This was an improvement, but what was lost by considering the features individually? In 

some cases, where there was feature correlation, for example, or the existence of subclasses, 

this single feature approach would fail. This latter problem is demonstrated in Figure 4-16 

where the two classes are separable in two dimensions but, when considering each feature 

individually, the opposite is true. 
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Figure 4-15: NIST: Linear classifier results for transform features chosen by Wilks' A. 

The solution would be to apply Wilks' A to the entire feature space. For small dimensional 

data this would work well, but for more much higher dimensional feature spaces this statistic 

became less practical. 
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Figure 4-16: The multi-modality problem with individual feature selection. 
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The next section examines some techniques that were implemented for choosing M features 

from N when the features were not treated separately. 

4.4.3 Subset selection 

The simplest method of determining which subset of M features from a set of N features 

will be optimal for classification is that of subset selection. In this approach an estimate of 

the true classification is determined for each combination of M from N. This will require 

N!/(N - M)!M! estimates. For small N this technique is ideal but as Figure 4-17 shows the 

number of estimates required soon exceeds any level of practicality with any moderately sized 

database. 
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Figure 4-17: Increasing the number of available features. 

This is known as an exhaustive search. There are two other types of search algorithm, 

optimal, and suboptimal [28]. Suboptimal searches, such as individual feature selection with 

Wilks' A, generalised sequential forward (or backward) selection and 'Plus 1 Take away r" often 

lead to suboptimal features. Optimal searches, such as Branch and Bound (BaB), implicitly 

inspect all d out D possible subsets, without requiring an exhaustive search. It uses a top down 

search procedure using a feature set tree, which allows for backtracking to counter problems 
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Time Linear 7-NN 
# Index (seconds) (%) (%) 

2 1438 5 73.75 81.5 
4 25 37 38 39 212 80.75 86.0 
6 3 13 32 37 38 39 4206 81.75 88.75 
8 3 5 13 20 32 37 38 39 28139 83.5 91.25 

Table 4-10. Seascape: Gabor features chosen using branch and bound algorithm. Each 
score is the mean percentage classification over 10 different samples each consisting of 
400 test vectors. 

of combinations of features. Both types of searches require a criterion, such as J4 , to direct the 

search path 

Equation 4.17 shows the set of eight features chosen by the BaB algorithm on the 16 zoning 

features derived from the NIST data. There are many similarities between these eight features 

and the eight intuitive features given in Equation 4.16. In classification tests there were no 

differences in generalisation. 

{BaB: 2,6,7,9,10,13,14, 15} 	 (4.17) 

{Intuition: 2,3,6,7,8,9,10, 13} 

Next a set of 40 Gabor-based features from the seascape data were derived. These rep-

resented a greater spread of orientations, frequencies, and filter centres than previously used. 

The number of features used, feature index, time to perform BaB algorithm  and classification 

results are recorded in Table 4-10. There was an improvement with just 8 features using the 

BaB selected Gabor features. However, the time required to calculate the larger set of features 

soon became impractical. Also, note that the features chosen did not remain constant as the 

number of features were increased. This is a good example of the relationship between features 

and their effect on classification performance. The actual Gabor features, given by their index, 

relate to higher frequency, off-centre, filters. 

One further experiment demonstrated that this method was not infallible. The 32 seascape 

6Timed on a 167MHz Ultrasparc I 
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statistical features, given in Table 4-1, were input to the BaB algorithm. The following 5 

features were selected: Height, Width, Population, Ninth decile, and the Third Moment. This 

produced a classification rate 5.0% less than when the 5 intuitive statistical features were 

chosen. Even when 16 BaB selected features were classified the classification rate was worse. 

Furthermore, the 5 intuitive features were included in this set of 16! More is not always better. 

It has been shown in this subsection that improved classification can be achieved through 

careful feature selection. However, these techniques used had several problems as shown in 

the box below. 

• There was no consideration of the original pattern space. The selection techniques 

only selected the best out of the features provided. 

• The process of feature selection could be laborious, especially as the size of the 

original feature set increased. 

• Selection techniques often make assumptions concerning the underlying distribu-

tions of the features that with real, multimodal, data sets are often false. 

• Estimating the most suitable features is often not performed with respect to the 

classification error criterion, which ultimately dictates classification performance. 

• Feature selection techniques tend to work well only with reasonably sized feature 

spaces to begin with, which may not span the whole range of interesting possible 

features. 

• The feature selection criterion may attempt to give features that would more suited 

to a less powerful classifier, especially a linear classifier. 

Before analysing some of the classification results in more detail two other commonly used 

feature selection techniques shall be discussed. 
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4.4.4 Reconstruction 

A very popular, and misguided, method for determining the number of features with image 

databases is that of signal reconstruction. This approach is common with features based on 

image moments, and unitary transforms, whereby the result of an inverse transform, based 

on truncated series of ordered coefficients, is compared with an original. The difference is 

a measure of the amount of information, recorded within the finite series of coefficients, or 

features. This measure is correct but it is a measure of representational information, and not 

discriminatorial information. This is best described with the aid of an example. Consider 

the task of discriminating between a triangle and square. The discriminatorial information is 

completely encoded in the number of vertices. All other information, such as length of edges, 

edge thickness and colour, for example, are superfluous. 

Figure 4-18 plots 7-NN classification rate against a number of geometrical moment features. 

The features were determined by either increasing moment order (up to order 5, giving 15 

features) or by BaB selection from an original set of 21 features, including all moments, up to 

and including order 6. Only the first 10 results for the latter are shown but it is clear that the 

same classification rate was achieved with far less features using careful feature selection. 
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Figure 4-18: Seascape: 7-NN classifier results for geometrical moment features. 
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4.4.5 Other feature selection techniques 

Saliency is a further technique that has been used in feature selection with neural networks. 

Saliency uses a trained neural network model to determine the contribution of each input feature 

to the final classification score. This has two major disadvantages: the user is restricted in the 

number of features that can be tested in order to constrain the model to a manageable size; and 

the technique requires the repetitive training of the neural network model. 

Another method for detecting the relevant components of the feature vector is the Automatic 

Relevance Detection method of MacKay and Neal [74]. This is a fully Bayesian approach 

successfully employed by Williams and Vivarelli for classifying segmented images [130]. 

4.5 Analysis 

This penultimate section examines why particular features performed better than others for 

certain databases and why particular objects were repeatedly misclassified. A first step was 

to examine the confusion matrices, of which six are shown for the seascape data in Tables 4-

11, 4-12, and 4-13. This shows the near perfect linear separability of the sailboat and motor 

classes with very simple features. This was also seen with all the other features, using the 

image-size normalised object data. This suggested that a nonlinear solution was not required 

to separate these two classes so the significant improvements in classification rate with the 

nonlinear classifiers must have been due to the additional buoy class. 

Correct class 

Guess Sail Motor Buoy Total 

Sail 153 2 	46 201 

Motor 2 119 	4 125 

Buoy 25 2 	47 74 

Total 180 123 	97 400 

Correct class 

Guess Sail Motor Buoy Total 

Sail 90 0 	12 102 

Motor 1 105 	0 106 

Buoy 89 18 	85 192 

Total 180 123 	97 400 

(a) 7-NN classifier (79.75% correct) 	(b) Linear classifier (70.0% correct) 

Table 4-11: Seascape: Confusion matrix for classifiers based on height and width features. 
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In fact, the main confusion, as suspected, was between the sailboat and the buoy classes 7. 

This was first noted in Chapter 2 (see Table 2-2) and also in Chapter 3. The tables demonstrate 

that the better overall classification rates were achieved using features that discriminated better 

between sailboats and buoys, and that, for all the features, a nonlinear discrimination boundary 

was required. 

Correct class 
	

Correct class 

Guess Sail Motor Buoy Total Guess Sail Motor Buoy Total 

Sail 161 1 	5 167 Sail 137 0 	6 143 

Motor 0 120 	4 124 Motor 1 116 	3 120 

Buoy 19 2 	88 109 Buoy 42 7 	88 137 

Total 180 123 	97 400 Total 180 123 	97 400 

(a) 7-NN classifier (92.25% correct) 	(b) Linear classifier (85.25% correct) 

Table 4-12: Seascape: Confusion matrix for classifiers based on 16 Gaussian features. 

Correct class 

Guess Sail Motor Buoy Total 

Sail 170 1 	. 	 .4 175 

Motor 0 119 	0 119 

Buoy 10 3 	93 106 

Total 180 123 	97 400 

Correct class 

Guess Sail Motor Buoy Total 

Sail 137 1 	6 143 

Motor 0 117 	2 119 

Buoy 43 6 	89 138 

Total 180 123 	97 400 

(a) 7-NN classifier (95.5% correct) 	(b) Linear classifier (85.75% correct) 

Table 4-13: Seascape: Confusion matrix for classifiers based on Wilks'-based Fourier features. 

This situation, of differing separability complexity between classes in a multi-class (C > 2) 

problem, is common in many real problems. For example, with the NIST data, as shown in 

Table 4-14 and Table 4-15, there were confusions between 0's and 2's, 7's, and 8's, as well as 

'Off-diagonal confusions greater than 4 are marked in bold 
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between 9's and 4's, 7's and 8's. Using the zone features removed many of these problems but 

did actually increase the confusion between 4's and 9's. 

Correct class 

Guess 	0 	1 	2 	3 	4 	5 	6 	•7 	8 	9 	Total 

0 81 0 9 1 0 5 0 10 6 3 115 

1 2 91 3 0 3 0 4 1 1 1 106 

2 3 0 61 3 2 1 0 4 3 3 80 

3 0 0 0 79 2 1 0 0 3 1 86 

4 0 0 0 0 55 0 0 1 3 2 61 

5 0 0 0 1 0 25 0 0 2 0 28 

6 6 0 3 4 7 4 85 0 1 0 110 

7 0 0 5 1 1 0 0 44 2 3 56 

8 0 0 0 3 0 2 0 3 53 9 70 

9 2 0 6 1 3 0 0 13 7 56 88 

Total 94 91 87 93 73 38 89 76 81 78 800 

Table 4-14: NIST: Confusion matrix for 7-NN classifier, 16 Gabor features (78.75% correct) 

Correct class 

Guess 0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	Total 

0 91 0 1 0 0 0 0 0 1 1 94 

1 1 89 1 1 1 0 1 0 2 0 96 

2 0 0 73 3 0 0 0 0 0 0 76 

3 1 0 8 85 0 1 0 1 2 0 98 

4 0 0 0 0 62 0 0 0 0 0 62 

5 0 0 0 1 1 34 0 0 0 0 36 

6 0 0 2 0 0 0 88 0 0 0 90 

7 0 0 0 1 0 0 0 66 1 2 70 

8 1 2 2 0 0 3 0 0 73 0 81 

9 0 0 0 2 9 0 0 9 2 75 97 

Total 94 91 87 93 73 38 89 76 81 78 800 

Table 4-15: NIST: Confusion matrix for 7-NN classifier, 16 zone features (92.0% correct). 
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Returning to the seascape results it was interesting to examine exactly which buoys or 

sailboats were causing the confusion. It was thought that this would provide information on 

how to better separate them, or at least reason why, they were mistaken. Specifically, were 

there objects that were repeatedly misclassified, independent of classifier or feature used? In 

fact there were a base set of 20 objects that were repeatedly mistaken, and there were many 

others very similar which were frequently misclassified. Figure 4-19 shows the 20 objects 

discussed. Many of these objects are very small, or very thin, or have some other characteristic 

which makes discrimination exceedingly difficult, to the extent that even people find the task 

impossible. Also, note the ferry, in the bottom row, are the same objects from Figure 4-6. 
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Figure 4-19: Seascape: The rogues' gallery - objects that were always misclassified. 

4.6 Review 

This chapter has examined the necessity and implementation of both feature extraction and 

classification. Various standard techniques were applied to both the real JR seascape data 

and the NIST digit database and the resulting features, to varying degrees, were successfully 

classified. For both the seascape, and NIST, databases a nonlinear solution provided a better 

solution in terms of the misclassification rate. For the seascape data, a 96% classification rate 
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was achieved. This outperformed the expert human classifier tested in Chapter 2 who scored 

92%. 

Furthermore, it was shown that applying feature selection techniques improved the choice of 

features to be used for a particular database. However, it was noted that these techniques are not 

infallible, they are not optimised with respect to a final classification error criterion and, often, 

they are compute and time intensive. A solution was to design a combined classification and 

feature extraction model that could be optimised in parallel, did not require a priori knowledge 

of the database or expert knowledge of feature extraction, yet maintained a controllable number 

of model parameters by making use of the correlated nature of the high dimensional pattern 

space. This model is the focus of the next chapter. 



Chapter 5 

Adaptive kernel neural networks 

In the previous chapter various feature extraction methods were applied to both the character 

recognition and infrared seascape problems. The statistic chosen to select a suitable subset 

of features for classification was, as explained, quite naive. There were more complicated 

procedures available but a more attractive solution would be to automatically determine an 

adequate set of features in a combined feature extraction and classification model. Normally 

a neural network model, such as an MLP, would be an ideal solution. Unfortunately, the large 

dimensional input space of the image data usually prohibits this due to the subsequently large 

parameter vector required to be estimated in relation to a finite data set. Adaptive wavelet 

models in the last few years have been used to address this very problem [119,63,118,111,70]. 

This chapter reports on the application of adaptive wavelet technology on the both the seascape 

and NIST databases. This approach had never been used for classifying the type of real infrared 

data encountered in this project. Casasent et al used adaptive wavelets for the detection of 

real infrared objects [21,20], Szu et al used them for phoneme and speaker recognition [119], 

Shustorovich for character recognition [111], Kocur and Rogers for cancer diagnosis [63] and 

most recently Mallet et al applied them to mineralogical spectra data [70].  These authors 

used relatively complicated wavelets to adapt. However, in the project much simpler adaptive 

kernels were first tested before the wavelet models were used. The adaptive model was then 

extended, as suggested but not implemented by Szu et al, to incorporate a standard nonlinear 

layer to further improve generalisation [119]. The chapter begins with a look at kernel feature 

extraction. 

109 



Adaptive kernel neural networks 	 110 

5.1 Kernel feature extraction 

Kernel feature extraction is the linear, sub-spatial transform of a correlated input space, such as 

an image, to a feature vector, d, for the purpose of classification. Each element of the feature 

vector is generated using a kernel, &, which is characterised by its own set of parameters, 

= 101, 02 . ..... q5p}, such that 

di=jj
f(x,y)b(x,y; i)dxdy for i=1,...,M 	(5.1) 

00 

or in the discrete case, using a double summation approximation to the integrals, as 

di  = E T, 
 f(x,y)&(x,y;1). 	 (5.2) 

X=I y1 

The kernel parameters control shape, position, and scale and the larger the value of P, the 

greater the flexibility of each kernel. These parameters subsequently control the classification 

potential of the generated features. 

Kernel feature extraction is very common and many of the techniques discussed in Chapter 

4 can be expressed in terms of kernel feature extraction. This is demonstrated in Table 5-1. 

Of course, there are many other types of feature extraction algorithms but many of these 

procedures can not, like kernel feature extraction, be so easily combined with a standard MLP 

model. Due to the linearity of the kernel transform, and the linear first layer of the MLP model, 

the kernel feature extraction and MLP model can be expressed as a single entity relating image 

input directly to the required classification output. This is described in Equation 5.3 

N 	/ 	M 

zk(f;4) = Wok+>Wjk 	 (5.3) 
j=1 	 i=1 	x y 

where N represents the number of hidden units with the p nonlinearity, and V represents the 

full classification model parameter vector and is comprised of the weights and biases, Wjk, and 

the P-dimensional kernel parameter vectors, 4's . 

I The Cartesian coordinates x, y will be used in conjunction with the x, y digital indices with hopefully 
little confusion. 
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Feature extraction 	Kernel, 	Notes 

method 	 b(x ) y) 

Defined over the region: 

Zoning 	 1 	 x1x<x2 

Yi Y <Y2 

Projection Defined over the region: 

histogram 1 	 x < x 2 Vyor 

(in xory) y<y2Vx 

Geometric xPyq 	 Moment of order, p + q. 

moments 

A complex kernel. Features 

Fourier 	 used include the magnitude 

or 	complex pairings. 

The parameters u and v, 

Cosine 	c(u)a(v)co.s[(2x + 1)u]. as with the Fourier transform, 

transform 	 cos [(2y + 1 )v] 	control spatial frequency and 

orientation of the kernel. 

Table 5-1: Examples of feature extraction kernels 

This ability to combine the feature extraction and classification, that were treated as separate 

processes in Chapter 4, is very important as it implies that the combined model may be optimised 

directly against the object image data. This direct optimisation means that the features should 

be optimal, with respect to the output classification error criterion, for each new database. 
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5.2 Adaptive kernel feature extraction 

In Chapter 4 the zoning technique was applied to images using a set of non-overlapping, 

uniform, square, identical kernels that covered the entire input space. Each kernel had a 

discontinuity at the boundary and this made the features highly sensitive to small distortions, 

or shifts, by the object around these areas. This would be especially noticeable with binary 

images. Furthermore, the uniformity of the kernel assumed equal importance to all image pixels 

within the region covered by the kernel. The square shape of this region was also arbitrary 

and the necessity to cover the entire image was inefficient. To solve this latter issue Chapter 4 

demonstrated a simple, but laborious, method of determining a subset of features best suited 

for a specific problem. However, a better solution was to have a fixed number of kernels, or 

even better, a linear superposition of kernels, that could in some way adapt their positions and 

shape according to an overall classification error criterion for each specific problem. This had 

already been addressed with adaptive wavelet theory [120]. 

5.2.1 Adaptive wavelets 

The "super-wavelet" concept was introduced by Szu et al. as a combination of adaptive wavelet 

feature extraction and linear class discrimination and was applied successfully to problems of 

signal representation and classification [119]. Many of the problems of feature selection were 

circumvented by this concept of a 'super-wavelet" due to the direct adaptation of the feature 

extraction, whilst maintaining a controllable numbers of adjustable parameters. 

The "super-wavelet" is a linear weighted sum of M adaptive wavelets which are shifted 

and dilated versions of a mother wavelet, . To classify a two-dimensional signal, such as an 

image f(x,y), a linear discriminant of the form 

M 

zk(f; II') = WOk + E Wjk 	f(x )  y)/(x, y; j) 	 (5.4) 
j=I 	S y 

can be implemented where zk represents one of C classifier outputs and the full classification 

parameter vector, V, is comprised of the weights and biases, Wjk,  and the P-dimensional 
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kernel parameter vectors, q.  Hence, in the model there are T = PM + C(M + 1) adaptive 

parameters. This is simply a linear version of Equation 5.3 and as such the adaptive wavelets 

can simply be considered as a subset of the adaptive kernel models proposed in this thesis. 

Figure 5-1 shows a diagrammatic representation of Equation 5.4. 

> Kernel 
> Weight 

Feature 	 Bias 

H 

CA  
Zk 

H 

H 

0 

VV 111LU 

summer 

LIizj 
Figure 5-1: Architectural representation of a linear adaptive wavelet (kernel) classifier with 
one kernel, 0, highlighted in bold. Input images are multiplied by a kernel and summed to 
generate features in the first layer. The second layer acts as a simple linear discriminant. 

5.2.2 Error derivatives 

To estimate the parameter vector, oV, that minimised a classification error criterion, such as 

sum-of-squares, using traditional line-searching techniques required calculation of the model 

error derivatives. 

The estimate of the parameter vector, '' for the models given in Equation 5.4 and Equa- 

tion 5.3, were derived by optimisation with respect to an output classification error criterion, E. 
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A conjugate gradient directed line searching technique was used to determine the estimate (see 

Appendix A), as it was used in Chapter 4 to estimate traditional MLP classifier parameters. As 

with the MLP, the conjugate gradient method required knowledge of the error derivatives, for 

example 3E1ö0, for the linear network of Equation 5.4. This section shows how both the 

first order error derivatives and the second order, Hessian, matrix of error derivatives for the 

linear network were derived. This was easily extended to the nonlinear model, using standard 

backpropagation procedures which can be found in Bishop, page 140 [13]. 

The linear model was first simplified to 

M 
zk = Wok +Wjkzj where zj 

j=1 	 x y 

and the error for each pattern in the training set was given as E such that E = T, E2 . 

Immediately the output layer error derivatives could be described as 

OE aE 
ôWjk 	ôZk 

and the output bias could simply be treated as a weight but with z3o = 1. The kernel parameter 

error derivatives were given by 

	

aE - 	zji aE - 3z 3E 

aOiP 	j' aOiP 6)z?
- 	

- a; az 

and by expanding 9E,,1,9zj 
= ôz 	OE 

- .W 
ç 

These were the simple first order derivatives which could used in the gradient based minim-

isation algorithms. The Hessian matrix, H, was useful for determining the conditioning of the 

optimisation. The condition number of an Hessian is the ratio of the largest Hessian eigenvalue, 

'mas, to the smallest, )'min.  A large number would indicate ill-conditioning in the optimisation 

process and consequently large numbers of training iterations. 

For the output layer weights 

a (2kk 

aZk

öWj'k'öWjk  5WjIkl 	 3WJk - 
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ôZk a2E - öZk 8Zk' a2E 
aWk aW3 IklaZk - öWjk Wf/F azk azk  

This was rewritten as 
a2E. 

OW'k'OWk 

where 6kk'  is the Kronecker delta symbol. 

= ZZjlSkkl. 
Zk 

A similar process was applied to the kernel parameters and also the combination of both 

weight and kernel parameters, such that 

a2 -I-f  'ri 	- 	a2z 	aE 	(9zj  a1 	 a2E 
: W3kW3'k 

- 	 Wjk.ä_ + 	
a 1 

	

k 	 azk 

and also 
E,, 	 I 	-'--in a2  ' 	a1 ' 	a2  ' 	aE 	j

+ 	.b_u 

	

au'p'aWjk - aWjkau'p' = au'p' 1ZWjk. az 	aZk 

The Hessian matrix was thus determined as 

02E 	aE 
aWulklaWuk aIIaWk 

	

H= ----------------. 	 (5.5) 
a2E 	a2E 

aWuFkIau 

In the the initial experiments on the seascape and NIST data a simple sum-of-squares error 

criterion, ESSE,  was used where ESE = 0.5 k(tk - zk) 2  and tk is the target value for the 

nth pattern. This simplified calculation of the Hessian as for the SSE a2E/a = 1. The 

Hessian was derived as it could be potentially used for many purposes including second order 

nonlinear optimisation, identifying least significant parameters in a classification model, and 

for determining regularisation parameters. For further details see Bishop, page 150 [ 1 3]. 

Using these error derivative calculations kernels could be estimated that minimised ESSE .  

But, as stated by Daugman [26] these resulting feature extractors, , were required to be neither 

orthogonal (<(x, y; j);  çb(x, y; k)> $ 0 for all j 54 k) nor complete in order to satisfy 

optimality according to E and the main consideration was the form of 5. 
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5.2.3 Constraints on the form of 

Some examples of potential adaptive kernels, 0 , have been introduced, such as the adaptive 

wavelets. However, no constraints have yet been placed on the form of the kernel. The 

following restrictions were placed on the kernels to be used in the project. These will be valid 

for other projects. 

• Flexibility over the image space parameterised by a finite parameter set, 4'. 

• There must be no element of ç E 4' such that b' = 

• 0 must be differentiable with respect to 4' 

• f J < oo over the image space. 

5.2.4 Kernel selection 

Many authors have used the real, imaginary, or complex Gabor transform as a suitable kernel 

and have successfully applied it to many problems including image representation [26],  object 

detection [21,20] and character recognition [111]. The Gabor transform is given by 

'(x, y; x o , yo,  a, b, u )  v) = exp{—[(x - xo) 2 a 2  + (y - y o) 2 b2]} 

exp{-27ri[u(x - x 0) + v(y - yo)]} 	 (5.6) 

and is comprised of a Gaussian, centred at (x 0 , 
yo) 

 and with scaling values (a, b), modulated 

with a complex exponential with spatial frequency (u2  + v2 ) 1 /2  and orientation arctan(v/u). 

An example of the real part of a typical kernel is given in Figure 5-2 as this is often used in 

object recognition whilst the imaginary part used for segmentation or boundary detection. 

For this project other, simpler, kernels were implemented, as well as the Gabor kernel. 

These kernels appeared not have been tested in the literature. The reason for examining the 

simpler kernels was that even though the Gabor transform has many attractive properties it can 

be approximated by a linear summation of these much simpler kernels. These kernels can also 
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Figure 5-2: Example of the real part of Gabor transform. 

approximate a wide range of other functions, as well as Gabor, by simple parameter adjustment. 

This approach of using many simple kernels instead of a few complex kernels has been widely 

used in kernel-based density estimation [103]. 

The problem of selecting the relevant features for a specific problem switched to one of 

choosing from a set all possible kernels, 1Q, the type of kernel, b E IF, the number of kernels, 

and which kernel parameters to adapt in the model. Furthermore, the form of each individual 

kernel may influence classification, i.e. using y; j) instead of 0 (x, y; j). With the 

exception of the last issue due to time limitations, these issues were investigated, and applied 

to, the NIST and seascape databases. 
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5.3 Adaptive kernel experiments 

In the following sections various adaptive kernel neural networks, of the type given in Equa-

tion 5.4 and Equation 5.3, were applied to both the NIST and seascape databases. Various 

different kernels, and kernel parameters, were tested, and problems discussed. 

5.3.1 Linear classification 

The first section concentrates on the combined feature extraction with a linear discriminant 

model. This type of classifier, as stated previously, has been popular with many researchers 

and results have been published for adaptive wavelet kernels. The first kernel to be tested was 

a simple Gaussian of variable width. 

Fixed position kernel adaptation 

In Chapter 4 sixteen fixed position Gaussian kernels, with a suitably fixed width, a, were used as 

kernels. Results for the seascape data were impressive with high classification rates achieved: 

86.0% using a linear classifier. The single value of width chosen though was quite arbitrary. 

A better idea was for each kernel to have an individual a, reflecting property changes across 

the image, and for those widths to be determined automatically. This was available with the 

adaptive networks that have been described in this chapter. 

Experiments were performed using different numbers of Gaussian kernels, fixed in a regular 

square format across the image space, with either one or two width parameters per kernel, the 

latter controlling width in both the x and y direction. Widths were initialised randomly per 

kefnel using a uniform distribution, of unit variance, about a mean value of 2.5. The results, 

averaged over 10 experiments, for different numbers of kernels are given in Tables 5-2 
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Number of Fixed P=I  T P=2  T 

kernels, M features (a = b) (a, b) 

4 67.25 (l.4) 68.5 (l.0) 19 69.0 (1.4) 23 

9 84.5 (l.8) 87.75 (l.1) 39 88.75(l.2) 48 

16 86.0 (1.5) 88.5(l.5) 67 90.0 (1.7) 83 

25 85.5 (l.2) 88.5(l.8) 103 89.5 (l.3) 128 

Table 5-2: Seascape: Adapting Gaussian variance parameters. Each score is the mean 

percentage classification over 10 different samples each consisting of 400 test vectors. The 

value in parentheses is the standard deviation over the 10 tests. The value T represents the total 

number of parameters in the model. 

and 5-3. The total number of parameters, T, in each model are also given. The usual MLP 

training conditions were applied such as data splitting, and early stopping. 

Number of Fixed P = 1 T P=2  T 

kernels, M features (a = b) (a, b) 

4 49.0 (1.0) 63.25 (l.4) 54 61.0 (3.7) 58 

9 68.25(l.3) 74.5 (2.4) 109 75.75 (2.8) 118 

16 76.25(l.5) 83.5 (l.8) 186 79.0 (2.0) 202 

25 83.25(l.2) 87.5 (l.1) 285 85.25 (4.8) 310 

Table 5-3: NIST: Adapting Gaussian variance parameters. Each score is the mean percentage 

classification over 10 different samples each consisting of 800 test vectors. The value in 

parentheses is the standard deviation over the 10 tests. The value T represents the total number 

of parameters in the model. 

With both the seascape and NIST databases improvements in classification using the adapt-

ive variance kernels were recorded. Naturally, as the number of kernels increased the difference 

between the fixed and the adaptive kernels was less marked. Adding the second variance para-

meter had little, even some detrimental, effect when using fixed position kernels. This suggested 
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that the extra kernel parameter was increasing the dimensionality of the error surface yet was 

unable to reduce the global minimum of the surface. Bidirectional adaptability of the fixed 

position kernels did little to aid classification for both databases. 

The condition number of the error Hessian is a measure of how ill-conditioned is the model, 

and is determined by calculating the absolute value of the ratio of the maximum to minimum 

eigenvalue of the error Hessian, H. It is well known that MLP's are poorly conditioned [93], 

and a quick test was required to check that these new adaptive models were no worse. A 

condition number of approximately e 7  is not uncommon with MILP's and this appeared to be 

the same for the adaptive networks. 

Figure 5-3 and Figure 5-4 display, as a set of images, the resulting super-kernels (the 

weighted sum of all kernels) for each class in both the seascape and NIST databases. One 

Sailboat 	 Motor boat 	 Buoy• 

Figure 5-3: Seascape: M = 16 adaptive Gaussian variance resulting super-kernels. Bright 
areas represent image locations where the effect on the final classification of an object is biased 
towards the class of the super-kernel (positive effect), grey areas are where objects do not effect 
the class decision (nil effect) and black where the effect an object, at that location, is against 
the super-kernel class decision (negative effect). 

variance per kernel was used. The regular kernel position pattern can be easily seen with bright 

spots representing large kernel magnitude. The classification outputs are derived by correlating 

each input image with each super-kernel. The largest correlation is the predicted class. Thus 

from examining the super-kernels it was possible to determine how each type of object was 

being classified. 
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With the seascape data sailboats were identified by the tops of their masts (in either vertical 

or slanting mode), and the hull. The motor boats were identified simply by their thin horizontal 

nature, especially at the left and right extremities. The buoys were recognised using central 

image data. 

The NIST results showed that some of the resulting super-kernels were working like a stand-

ard correlator, especially for the digits zero to three. The others digits were more complicated. 

The digit eight was only represented in the left half of the super-kernel. If a whole eight were 

used, as in a standard correlator, significant response would have occurred by a number three 

class object. By using only the left half region, the 3-8 confusion was significantly reduced. 

This feature was automatically generated by the adaptive model. 

Sevens were predominantly characterised by a strong horizontal line at the top of the image, 

whilst sixes and nines where identified by strong energy responses in the bottom left, and top 

right regions respectively. 

Figure 5-4: NIST: M = 25 adaptive Gaussian variance resulting super-kernels. Note the 
images likeness, or partial likeness, to individual digits. 
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Adaptive kernel positioning 

The previous section demonstrated that the adaptive model did work. The kernel parameters 

chosen though were not particularly effective. A more productive approach was to allow the 

kernels flexibility to move, and concentrate on regions of image space rich in discriminatorial 

information. This was done by adapting the kernel centres, (x 0 , yo). 

One of the first problems encountered with this approach was that the model would not 

appear to optimise, only adapting such that one class was always predicted. The problem 

was the kernel centre derivatives were dominant initially, and with random output weights, the 

kernels moved out of the image producing a null feature vector, d = 0. This was solved by 

allowing the output weights to adapt on their own first for a few iterations before allowing 

combined kernel and output weight adaptation. 

This proved successful, and the results are shown in Tables 5-4 and 5-5 for both seascape 

and NIST databases. 

Number of 

kernels, M 

Classification 

% 

T 

3 86.25(l.3) 18 

6 89.5 (l.1) 33 

9 90.75 (l.0) 48 

12 91.25(1.2) 63 

15 91.25 (l.1) 78 

Table 5-4: Seascape: Adapting Gaussian kernel positions. Each score is the mean percentage 

classification over 10 different samples each consisting of 400 test vectors. The value in 

parentheses is the standard deviation over the 10 tests. The value T represents the total number 

of parameters in the model. 



Adaptive kernel neural networks 
	

123 

Number of 

kernels, M 

Classification 

% 

T 

3 54.0 (4.3) 46 

6 71.75 (2.4) 82 

9 78.0(2.1) 118 

12 80.75(l.8) 154 

15 83.75 (2.0) 190 

18 86.0 (2.6) 226 

21 86.75 (l.9) 262 

24 87.0 (2.4) 298 

Table 5-5: NIST: Adapting Gaussian kernel positions. Each score is the mean percentage 

classification over 10 different samples each consisting of 800 test vectors. The value in 

parentheses is the standard deviation over the 10 tests. The value T represents the total number 

of parameters in the model. 

The seascape results were very promising. Even with only three 2-parameter kernels the 

classification rate equals the 25 kernel solution in the previous section. Adding more kernels 

with this database though appeared to have little effect, with an increase of less than 1% between 

6 and 15 kernels. However, with the NIST database, with many more classes to separate, the 

number of kernels required increased. In fact, the 25 fixed centre, single parameter, kernel 

performed better than any of the adaptive position models for the NIST data. It was thought 

that the size of the adaptive centres were too large, and combined with the large number of 

kernels required to suitably solve the problem, allowed for little flexibility of movement. 

Once these experiments were completed an analysis of the final resting positions of the 

kernels was performed. Figure 5-5 shows the final positions of the kernel centroids using 

different number of kernels, and different splits of the seascape database. Figure 5-6 displays 

the results of a similar set of experiments, but where different starting positions were chosen. 

The results from these experiments were interesting. For 3 kernels Figure 5-5 shows 

three distinct positions generated by different splits of the object database. Using identical 

data but different starting positions for the three kernels, as in Figure 5-6, results again 
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Figure 5-5: Seascape: Final centre positions of (x 0 , yo)  parameter vector from the adaptive 
kernel positioning experiment. Identical kernel starting positions but different splits of the 
object database. Key: A, 0, K, +, x represent the results from different splits of the data. 
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in three distinct positions, but two of the three being at different locations. It was found 

that when repeating with more starting positions the 3 kernels always finished in one of 5 

locations. However, as the number of kernels increased the distinctiveness of these final 
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Figure 5-6: Seascape: As with the previous Figure but a different starting position. Again, 
different splits of the object database were used. Key: A, 0, O, +, x represent the results from 
different splits of the data. 
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positions rapidly decreased. Different splits of the data found very different final resting 

locations. The corresponding classification results in Table 5-4 show that after 6 kernels 
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no appreciative increase in classification was achieved. It is suggested that there is a strong 

similarity here between under- and over-fitting in nonlinear models with too few kernels (lack 

of flexibility) relating to under-fitting and too many kernels (not generalising and fitting to 

individual data splits) relating to over-fitting. It might be expected then, after reviewing the 

NIST results, that with the NIST database that there would be greater distinctiveness with larger 

numbers of kernels. This was indeed true, and the final positions with the 9 kernel NIST model 

are given in Figure 5-7. 
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Figure 5-7: NIST: Final centroid positions for 9 kernel model. Key: A, 0, K, +, x represent 
the results from different splits of the data. 

Returning to the 6 kernel model in Figure 5-5 it appeared that the 5 positions discovered 

by the 3 kernel experiments were not all covered by the 6 available kernels. In fact, it appeared 

that there were two kernels residing at the same location. This produced very similar features 

and subsequently redundancy. From examining the trajectory plots it was found that improper 

initialisations of the kernel centres often were to blame. Kernels in close proximity were not 

diverging during optimisation, although extensive, further optimisation showed the kernels 

eventually diverging. This suggested that the error derivatives for the kernel positions were 

similar, and due to the shape of the error surface, were having difficulty separating. 
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Regularised kernel positioning 

A solution to the divergence problem, given above, was to choose sensible starting positions for 

the kernels. This worked well for small numbers of kernels but as they increased in multitude 

the probability of trajectories converging appeared to increase. This is shown in Figure 5-8 

where 6 of a total of 15 kernels are shown. The kernels have diverged, and in one case appears 

to have been deflected back into the path of another kernel from which it had been previously 

diverging. 
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Figure 5-8: Seascape: Kernel centre trajectories problem. 

Another solution was attempted which combined sensible kernel initialisation with a regu-

larising penalty term in the error function, such as 

2\ 	M M 

	

c2(XO,YO,XOk,YOk) 	 (5.7) 
- / j=1 k=j+1 

where 

Q(x0 )  YOj, XOk, YOk) 	exp(—((xoj - XOk) + (yoj - yok)2)/o) 

and o, is the penalty variance which determines the proximity in which other kernels may reside 

without the error being penalised significantly. The A term controlled how much importance 
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was placed on the penalty term. Examining the error derivatives showed that for each particular 

centre parameter, the penalty added a term which was a weighted sum of the distances between 

that particular centre and every other, in either the x or y directions. The weights being 

proportional to n . For example, 

5E' 8E 	4A 	M 

axon  = 	+ M(M - 1)a2 	
(X0j

)
Y0j,X0 m ,Y0n)(X0j - x 0 ) 	 (5.8) 

p j=1 

In practice, the two parameters, A and o, were combined into a single A' = Ae 11  para-

meter which was set as to prevent convergence, but not discourage extreme kernel divergence. 

Figure 5-9 shows the penalty term being put to effect. 
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Figure 5-9: Examples with and without penalty influence. 
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This was an acceptable practical solution, although there was now another parameter 

controlling the performance of the classifier. The final centre positions using the penalty are 

shown in Figure 5-10. Note the 5 positions are now shown, and even the 9 kernel results with 

apparently 4 extra distinct final resting positions. Both the 6 and 9 kernel models with the added 

penalty term gave 1.5% increases in performance. The other models remained unchanged. 
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Figure 5-10: Seascape: Final centre positions of (x 0 , yo,  \') parameter vector using regularised 
kernel positioning. The same initial starting conditions were used but with different splits of 
the object database. Key: A, 0, K, +, x represent the results from different splits of the data. 

Another method for preventing feature collinearity was to ensure that each kernel had a 

unique shape, such that, even if they were locally identical, the features produced would be 

dissimilar. Thus, the next type of kernel tested included four parameters, the two Gaussian 

widths, as well as the two centres, for each kernel. 

Adapting shape and location 
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Tables 5-6 and 5-7 provide the classification results when various numbers of 4 parameter 

Gaussian kernels were used. With 6 kernels the test set classification rates for the seascape data 
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far exceeds many of the nonlinear classifier results using fixed features, given in Chapter 4. 

However, only about a 1% increase in classification has been achieved by doubling the number 

of parameters per kernel. 

Number of 

kernels, M 

Classification 

% 

T 

3 89.0 (1.2) 24 

6 91.0(1.3) 45 

9 91.5(l.0) 66 

12 91.75(l.4) 87 

15 92.25(l.1) 108 

Table 5-6: Seascape: Adapting Gaussian kernel positions and widths. Each score is the mean 

percentage classification over 10 different samples each consisting of 400 test vectors. The 

value in parentheses is the standard deviation over the 10 tests. The value T represents the total 

number of parameters in the model. 

The super-kernels for a 9 kernel model are shown in Figure 5-11 for the seascape data. 

The sailboats again were identified by the existence of the top of the mast, the motor boats 

by the horizontal ends, and the buoys by strong central thermal activity. More complex, or 

Sailboat 	 Motor boat 	 Buoy 

Figure 5-11: Seascape: M = 9 adaptive Gaussian variance and centres resulting super-kernels. 
Bright spot at top of sailboat kernel will heavily support the case for a sailboat classification 
if strong object image energy located at this point e.g. a mast. Conversely, this energy will 
strongly hint against the motor, and more especially, the buoy class. 

subtle, feature extraction was also occurring as equivalent results were not achieved when fixed 
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features, generated using these simple rules, were classified. Also noticeable, in comparison 

with Figure 5-3, is the amount of grey areas representing regions that have little or no effect 

on the classification decision. 

The results from the NIST data showed a slightly different trend. Adapting a larger P. 

low M kernel resulted in degraded performance than with the smaller P versions. This was 

contrary to the seascape results. Though as M increased, the benefit of the extra parameters 

was noticed, though less as M increased still further. 

Number of Classification T 

kernels, M % 

3 49.75 (l.3) 52 

6 68.0 (2.4) 94 

9 79.5 (3.0) 136 

12 83.25 (2.3) 178 

15 82.5 (2.9) 220 

Table 5-7: NIST: Adapting Gaussian kernel positions and widths. Each score is the mean 

percentage classification over 10 different samples each consisting of 800 test vectors. The 

value in parentheses is the standard deviation over the 10 tests. The value T represents the total 

number of parameters in the model. 

The super-kernels for a 15 kernel model are shown in Figure 5-12 for the NIST data. As 

with the previous fixed centre images definite shapes corresponding to the generalised class 

shape components required for classification are evident. However, ten fewer kernels were 

used and each kernel adapted its own position to generate these components. 

The confusion matrices for a 6 kernel, 2 and 4 adaptive parameter linear model, using 

seascape data, are given in Table 5-8. Sailboat and buoy confusion was still the main source 

of error, but was reduced using the extra parameters. 

From both NIST, and seascape, data experiments it was found that these 4 parameter models 

took longer to optimise, in terms of number of iterations. It was found that the error derivatives 

due to the position parameters (x 0 , 
yo) 

 were much greater, in magnitude, than the equivalent 

derivatives for the scale parameters (a, b). Thus, kernels tended to find positions suited for the 

initial scale conditions, and then slowly adapt the scale parameters. This made the performance 
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Figure 5-12: NIST: M = 15 adaptive Gaussian variance and centres resulting super-kernels. 

dependent on the initial scale parameters if only small training times were used. This is 

highlighted in Figure 5-13 for a 3 kernel model. 

As the number of kernels increased the time for the kernel positions to settle, and con-

sequently the time for completion of optimisation, increased. This is shown in Figure 5-14 

for 12 kernels. It was interesting to note that after 1000 iterations some variance parameters 

were still changing at a rapid rate, though any improvement to classification ended after 400 

iterations. One possibility was that there were too many kernels, and the associated features 

were redundant. Alternatively, the kernels were stopping in a regions where features were not 

so sensitive to changes in scale. 

Correct class 
Guess Sail Motor Buoy Total 
Sail 216 1 35 252 
Motor 0 164 3 167 
Buoy 7 5 69 81 
Total 223 170 107 500 

(a) P=2 (89.8% correct) 

Correct class 
Guess Sail Motor Buoy Total 
Sail 203 4 21 228 
Motor 1 172 1 174 
Buoy 12 4 82 98 
Total 216 180 104 500 

(b) P=4 (91.5% correct) 

Table 5-8. Seascape: Confusion matrices for 6 kernel linear classifiers. 



50 

50 

6.0 

5.5 

5.0 

4.5 

4.0 

D 3.5 

ell 3.0 

2.5 

2.0 

CD ic 

— 

0.2 

0.1 

0.0 

:0  

-0.8 
C 

Variance parameter a 
6.0 

5.5 

5.0 

4.5 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 
100 	150 	200 	250 

Iterations 

Positional variable xO 

-0.6 
100 	150 	200 	250 	C 

Iterations 

Variance parameter b 

50 	100 	150 	200 	250 
Iterations 

Positional variable yO 

50 	100 	150 	200 	250 
Iterations 

I 



CD 

CD 

6.5 

6.0 

5.5 

5.0 

. 4.5 

4.0 

3.5 

3.0 

7.5 

800 	10(X) 200 	 400 	 600 	 800 
Iterations 

Positional variable xO 
- 	 I 

200 	400 	 600 
Iterations 

Positional variable yO 

800 	1000 200 	400 	600 	800 
Iterations 

200 	400 	 600 
Iterations 

7.0 

6.5 

r 6.0 

cI 5.5 

5.0 

4.5 

4.0 

Variance parameter a Variance parameter b 

1 .5 
1000 	0 

1.0 

0.8 

0.6 

0.4 

0.2 

o 0.0 

-0.2 

-0.4 

-0.6 

-0.8 

1000 	0 

CD 

CD 

1.0 

0.8 

0.6 

0.4 
0 

0.2 
0 

00 

0' 

-0.4 

-0.6 

-0.8 

-1.0 
0 



Adaptive kernel neural networks 
	

135 

An adaptive wavelet 

In the previous section increasing the number of parameters per kernel, only slightly increased 

performance for large M, but reasonable improvements were made for small M. This suggested 

that as M increased less flexibility in each kernel was required to achieve equivalently complex 

feature extractors. This seemed sensible, and a method for increasing P for small M, would 

be worth investigating. Allowing selective orientation of the Gaussian kernels would be one 

way of further increasing P for the Gaussian kernels. 

Orientation encoding could be achieved by rotating 0 by 0 degrees via a simple affine 

transformation. The 5-dimensional parameter set would include (x 0 , 
yo, 

 a, b, 0). It was though 

an opportune moment to return to the Gabor transform, a frequency modulated Gaussian. 

Although not strictly speaking a wavelet this kernel allowed for both orientation, and spatial 

frequency selection, as well as access to the usual 4 Gaussian parameters through a kernel 

parameter vector of (x 0 , y, a )  b, u, v). It was also the most popular kernel used in the adaptive 

wavelet literature. 

Experiments were applied to both the seascape and NIST data, adapting 2 or 4 of the Gabor 

parameters at a time but only comparative, at best, results were achieved. Finally, all six 

parameters were optimised together. The results are given in Tables 5-9 and 5-10. 

Number of Classification T 

kernels, M 	% 

3 90.5 (l.3) 30 

6 91.25 (0.9) 57 

9 91.5(l.4) 84 

12 92.0(1.6) 111 

15 92.25 (l.2) 138 

Table 5-9: Seascape: Adapting all 6 Gabor kernel parameters. Each score is the mean 

percentage classification over 10 different samples each consisting of 400 test vectors. The 

value in parentheses is the standard deviation over the 10 tests. The value T represents the total 

number of parameters in the model. 
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Number of Classification T 

kernels, M 	% 

3 62.0 (5.8) 58 

6 74.25 (2.7) 106 

9 82.5 (2.2) 154 

12 83.5 (2.6) 202 

15 85.75 (2.1) 250 

Table 5-10: NIST: Adapting all 6 Gabor kernel parameters. Each score is the mean percentage 

classification over 10 different samples each consisting of 800 test vectors. The value in 

parentheses is the standard deviation over the 10 tests. The value T represents the total number 

of parameters in the model. 

The seascape data, where only a few kernels were known to be required, soon lost the 

advantage of a more flexible kernel. The NIST data, where many more kernels were required, 

used the extra flexibility to much more effect for the lower values of M. 

For completeness, the super-kernels for two 6-parameter models are shown in Figure 5-15 

and Figure 5-16. 

Sailboat 	 Motor boat 	 Buoy 

Figure 5-15: Seascape: M = 9 adaptive 6 parameter Gabor resulting super-kernels. 
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5 	 6 	 7 	 8 	 9 

Figure 5-16: NIST: M = 15 adaptive 6 parameter Gabor resulting super-kernels. 

Linear conclusions 

Figures 5-17 and Figure 5-18 summarise the results from this section for both seascape and 

NIST data. 
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Figure 5-17: Seascape: Adaptive linear results. 

The seascape data shows that for low M, a greater P yielded higher performance. As M 
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increased the effect of P was greatly reduced. It was noticed that only a small number of 

kernels, ranging from 5 to 9, were required for classification. 

The NIST results, at the higher M, showed a similar reduced effect of P with even the 

fixed centre, adaptive scale, networks showing good generalisation at M = 15, providing 

classification rates within a 1 or 2% of the more complicated P = 2,4 and 6 kernel models. 

At the lower M < 10 the additional parameters appear to be detrimental to classification 

performance. This was due to the fact that many kernels, of any P, were required to separate 

the 10 NIST classes. 
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Figure 5-18: NIST: Adaptive linear results. 

This suggested that it is possibly better to use a larger number of M simple kernels, as 

opposed to a small number of highly complex kernels, where both contain a similar number 

of adaptive model parameters. A conclusion also reached by researchers into kernel-based 

techniques for density estimation [103]. 
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5.3.2 Nonlinear classification 

The linear classification results in the previous section have shown that considerable improve-

ments in performance were achieved compared to the linear results using fixed features 

described in Chapter 4. In some cases the adaptive linear model provided better perform-

ance than some of the nonlinear classifiers. 

The adaptive networks were attempting to generate feature space in which objects are 

linearly separable. However, it was possible that no linear mapping of the image space, 

for either database, would have resulted in features that were completely linearly separable. 

Consequently, a method of nonlinearly separating an optimised feature space was required. 

This was performed, as stated earlier in the chapter, by extending the adaptive linear model to 

include a standard nonlinear layer, between the adaptive linear feature extraction and output 

layers. This was shown in Equation 5.3. 

The extension to using the nonlinear layer was easy. The error derivatives were backpropag-

ated through the nonlinear layer to the feature extraction kernels. The only slight problem was 

ensuring that the initial features generated were not so large that they saturated the outputs of 

the nonlinear sigmoidal units. This was achieved by careful initialisation of the the kernels and 

their associated weights. 

The results for a model with a P = 4 (x0 , y, a, b) Gaussian kernel using varying numbers 

of kernels, M, and nonlinear units, N, are given in Table 5-11. The values are percentage 

mean classification rates derived from 10 tests with the standard deviation, as usual, given in 

brackets. Table 5-12 gives the total number of parameters in each model. 

Number of 	 Number of hidden units, N 

kernels,M 2 4 6 8 10 

3 94.0 (1.7) 94.25 (1.6) 94.5 (2.7) 95.5 (1.4) 94.75 (2.0) 

6 	95.75 (l.7) 	96.5 (2.0) 96.0 (1.7) 96.0 (2.3) 	- 

9 	96.75 (2.5) 96.75 (2.2) 96.5 (1.5) 	- 	- 

12 	96.5(1.5) 	97.0(1.8) 	- 	- 	- 

Table 5-11: Seascape: M = 4 nonlinear adaptive kernel model classification results. Each 

score is the mean percentage classification over 10 different samples each consisting of 400 

test vectors. The value in parentheses is the standard deviation over the 10 tests. 
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Number of Number of hidden units, N 

kernels,M 2 4 6 	8 	10 

3 29 43 57 	71 	85 

6 47 67 87 	107 	- 

9 65 91 117 	- 	 - 

12 83 115 - 	 - 	 - 

Table 5-12: Seascape: M = 4 nonlinear adaptive kernel model parameter count. 

Table 5-11 shows that for each M little, or no, improvement was made as the number of 

nonlinear hidden units was increased. This indicated that only a small amount of nonlinearity 

was required to separate the classes. However, increasing the number of adaptive kernels, 

for a small N, did produce improvements in classification performance. This suggested that 

the adaptive kernels were, in this case, flexible enough to perform the majority of the work 

of separating the classes such that only a relatively nonlinear discriminant was required. In 

other situations it is possible that the features with greatest separability will require a highly 

complex decision boundary. This will be indicated by a large discrepancy between the adaptive 

linear and adaptive nonlinear results with the respective features generated having very different 

distributions. 

Table 5-12 shows that a model with only 67 parameters has equalled the performance 

of a 16 Fourier features MLP model with 8 hidden nodes (163 parameters) that scored 96% 

and significantly outperformed the MLP model trained with the seascape image data (4163 

parameters) that scored 88.0%. 

5.4 Review 

Figure 5-19 shows how the classification results varied for both the linear and nonlinear adaptive 

models. A clear separation is noted between the two types of. adaptive model indicating that 

the use of a nonlinear model was justified. Furthermore, for less than 80 parameters excellent 

classification results can be achieved for this database that far exceed many of the complicated 

feature extraction results, as well as, the highly parameterised 256 input MLP model. 
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Figure 5-19: Seascape: Classification against number of adaptive model parameters. 

The use of a combined feature extraction and classification model based on adaptive kernels 

has been shown to be very effective in classifying images of objects derived from a real infrared 

seascape database. It was also shown to work well on a character recognition problem. 

The adaptive model itself requires no more storage than the original ATR module, in fact 

it has exactly the same structure. It offers ease-of-use in that no separate feature extraction 

and selection techniques have to be applied, as well as excellent generalisation properties. 

Furthermore, only a few model properties need to be adjusted to achieve good generalisation: 

the number of kernels, type of kernel, and for the nonlinear model the number of hidden 

units. The main disadvantage is that the features generated are constrained to those that can be 

approximated by a linear weighted summation of a fixed type of kernel. 



Chapter 6 

Invariance with adaptive kernel networks 

The previous chapters have examined the process of feature extraction and classification, and 

especially how the two processes were effectively combined. The next step in the project was to 

incorporate various forms of invariance into this adaptive feature extraction and classification 

model. Invariance is defined here as the ability of a classifier output to remain constant 

regardless of certain transformations of the object, and is a fundamental requirement of a real 

ATR system. This chapter examines two methods that were used to introduce invariance into 

the adaptive model of the previous chapter. 

The chapter begins with a strict definition of the term invariance, which is followed by 'a 

review of various invariant techniques, and their application to the real JR seascape problem. 

Finally, the chapter reports on the successes and failures that were achieved when invariance 

was incorporated into the adaptive model. 

6.1 Invariance 

In developing classification systems there are often constraints on the form of the mapping that 

links a classifiers input to its output. This prior knowledge can significantly aid generalisation. 

One such constraint could be that the classifier outputs remain unaffected by various 

transformations of the input data. This is known as invariance. More formally, consider the 

group ,c of transformations 1  acting on each of the images contained in the set F. For example, 

'Not to be confused with the feature extraction transforms of Chapter 4. 

142 
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this group may consist of all possible translations, rotations, and scalings of an image. Then, 

for each image classification to remain invariant, the equation 

c(kf) = c(f) V k E i,f E F 

must be true [137]. This requires constraints to be built into the design of the classifier. 

Specifically it is desired that 

z(kf) = z(f) V k E ic,f E F. 

Subsequently, if the probability of a transform acting on an image is zero, P(k) = 0, there can 

be no improvement in generalisation. During the project it was assumed that all transforms, 

k ic, were equally probable, even if not represented by a transformed image in the database. 

In ATR many types of useful invariances can be incorporated into the classification stage 

to improve recognition performance. These can be as simple as compensating for the time 

of day or image contrast, but they can be as complex as invariance against object occlusion. 

This project considered the geometrical distortions of translation, scaling, and rotation. These, 

and other distortions such as skew, can be represented by the simple affine transformation 

f(x )  y) i-* f(x', y') by 

XI = gi 92 X 95  1 I 
+ 

93 94 y g 

where gi  are constants [33]. Figure 6-1 shows the effect of the three transformations on a 

simple structure. 

Each of the three invariance were required for a specific reason. Translation invariance was 

needed as an object may appear at any point in the FOV. An object could also be at any distance 

from the sensor, and as no range data was available to compensate for this, the objects had to 

be classified irrespective of size. Finally, and probably most important was rotation invariance. 

Rotation invariance was required to counter the equally probable effects of both rotation of 

the sensor and the object in the AIR environment. This may seem irrelevant to the seascape 

problem, in which the object images and sensor were both aligned and good classification results 

were achieved. This was demonstrated in Chapters 4 and 5. However, if the sensor was rotated 

then the classification rate was severely effected with these previous types of feature extraction 
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and classifier. For example, the linear, 2-parameter (xe, yo), adaptive, Gaussian model with 

12 kernels achieved a classification rate, on the seascape data, of 91.25% but when the sensor 

was artificially rotated to random orientations this dropped to 56.25%. Of course, if the sensor 

orientation had been known the use of suitable normalisation, or a steerable filter set, could 

have often, but not always, solved this problem [36]. However, there was also the converse 

problem of object, as opposed to sensor, rotation which could not be so easily countered. 
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Figure 6-1: Translation, rotation, and scaling. 

This project examined the feasibility of incorporating invariance into the adaptive feature 

extraction classifier model. Consequently, it was sensible to initially consider only simple 

in-plane rotations. The seascape database was not indicative of this type of object rotation but 

was the only non-military database available during this project. In the actual system planar 

rotations of the object will be prevalent and with the seascape data this was mimicked by 

artificial sensor rotation. The out-of-plane rotations, as discussed in Chapter 3, were treated as 

subclasses. Adaptive feature extraction for out-of-plane rotations is beyond the scope of this 

thesis. 

A further point when considering invariant classification concerns discriminability. For 

discrimination to be possible then it is required that if 3k e ic such that kf 1  = kf2  then 

c(f i ) c(f2 ) must hold. For example, if the rotation transform of 1800  exists in ic then it 

is impossible to discriminate between equally scaled and positioned 6's and 9's in a digit 

recognition system. In the seascape database, rotated versions of basic seascape shapes often 

looked reasonably similar. Hence, even here discriminability was a difficult problem. 
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Before examining the methods of invariant classification that were used to tackle these 

problems it is necessary to discuss a more appropriate image representation. 

6.2 Polar image representation 

In the human visual system the benefits of using polar and log-polar sampling in the retina have 

been discussed by several authors [127]. One main advantage is that high resolution is gained 

in central part of the field of view. 

However, for automatic RI classification, it is simply computationally sensible to work with 

polar images, f(p, 0) 2  where p represents radial distance from, normally, the centre of mass 

and 0 is the anti-clockwise angular direction. This is because a pure rotation of a Cartesian 

image f(x, y) translates to a unidimensional linear shift in the 0 direction of the polar domain, 

i.e. f(p, 0 + 0'). 

Equation 6.1 demonstrates how to convert Cartesian images defined over a region R into a 

new domain. 

f ff (XI y)dxdy = J I f IX(U I v), y(u, v)] I J I dudv 	(6.1) 
R 

J is the Jacobian, ô(x, y)/3(u, v). Hence to convert to polar coordinates let x = pcos0 and 

y = psinO and apply equation 6.1 such that 

 0F f(x, y) dx dy = f j f(p, 0) p  dp dO. 	 (6.2) 

A simple example is provided in Figure 6-2 which can be compared with the original image 

in Figure 3-16. 

2 Until stated continuous images will be considered, though the extension to digital images is trivial. 
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Figure 6-2: Polar plots. 

6.3 Review of current invariant techniques 

A review of invariant pattern recognition, discusses two approaches to invariant classifica-

tion [137]. The first method uses invariant feature extraction followed by feature classification 

with, for example, a neural network. The other approach combines the two stages into a 

single parameterised model, usually in the context a neural network. This second idea is 

intuitively very appealing as classification is achieved directly against a classification error 

criteria. Unfortunately many of the neural-based solutions are either large and cumbersome, 

overparameterised, or even do not include some of the required invariances [41,44,78,99,137]. 

The review also raises several issues concerning invariant classification [137]. These include 

tolerance, discriminability as discussed before, model complexity, speed of operation, ease and 

speed of optimisation, generalisation ability, flexibility to new problems, and transformation 

retrieval. All of these are standard classification issues, except for the first and last. Tolerance 

considers the need for complete invariance or whether an approximation is acceptable and 
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transformation retrieval, for example, attempts to estimate object pose, distance from the norm, 

using the transformed pattern space. 

In the project three methods were considered, as proposed by Barnard and Casasent [6]. 

These were namely: 

Invariance by training or regularisation 

. Invariance by structure 

. Invariance through feature extraction or preprocessing 

6.4 Invariance through training 

This is a simple but brute force method of encoding classification invariance. The model is 

optimised using a database containing all possible transformed patterns, i.e. kf V k e ,, f E F. 

This method has several problems. The first is that F has to be very large resulting in an intensive 

optimisation process. Then the network is not assured to be invariant and can not extrapolate 

outside the patterns it has been shown. The model uses no prior knowledge of the invariance 

required. 

A solution was proposed by Simard et al [113] in which a regularisation technique can 

be used to penalise the lack of invariance in an neural network model. The method is based 

around the trajectory, or manifold for more than one class of invariance, that is created when a 

pattern is transformed by the continuous members of the subgroup of a particular invariance. 

An artificial example is demonstrated in Figure 6-3, for a 3 dimensional pattern space with a 

single type of required invariance (e.g. rotation) parameterised by -y. The drawback is that an 

approximation, using finite differences, of the tangent vectors is required. Casasent has used a 

similar approach using linear piecewise approximations of feature space trajectories combined 

with a simple distance metric for invariant object detection in real JR images. 

This approach of invariance through training was used in the project to achieve invariance 

to three-dimensional rotations of the seascape objects. 
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Figure 6-3: Trajectory of a transformed pattern, k(y)f where k(0) = 1. 

6.5 Invariance through structure 

These are mainly the neural network techniques discussed earlier that produce large, cumber-

some networks that are based on the principle of weight sharing. This is the constraining of 

specific weights to have equal values and hence encoding invariance through the structure of 

the model. Rumelhart et al used this approach for the T-C problem [92]. 

Examples of neural networks for invariant pattern recognition that employ weight sharing 

include the neocognitron, higher order neural networks, symmetric networks and time-delay 

neural networks [41,44,43,78,99]. 

The neocognitron [41] is a self-organising hierarchical multi-layer structure, as shown in 

Figure 6-4, that has invariance to shape distortion and partial translation invariance, and in one 

adaptation rotation invariance [126]. However, the hundreds of thousands of connections make 

it an unpractical in many ATR solutions . 

Higher order neural networks of order 3 can be used for translation, scale and rotation 

invariant classification. They use the idea of weight sharing amongst similar triangles in the 

input image. Unfortunately again they tend to produce combinatorially (0((N 2)3)) large 

3 The exception is the SAHTIRN project that uses a neocognitron classifier [25]. 
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numbers of weights, for an NxN image. A non-ideal solution is to use coarse coding of the 

input image [44,43,78]. 

The third main group of structural classifiers are the symmetric networks, of which Sawai's. 

axially symmetric neural network [99] and Fukumi's first order network coin recogniser [38] 

are examples. 

Receptive 
field 

: 

Output Input 	 Complex 	classification image 	
layer 	 layer layer 	 - 

Complex 	Simple 

	

layer 	layer 

Simple 
layer 

Figure 6-4: The neocognitron. 

Both higher-order, and the neocognitron, were examined as possible classifiers for the 

project but were found to be cumbersome, difficult to optimise, and required considerably more 

storage for the model parameters than the existing classifier. 

6.6 Invariance through feature extraction 

The third method for invariant classification involves generating a set of features, d, from 

the images that are invariant under the transform group K i.e. kd = d Vk C ic. This is the 

most popular method of all three and two specific approaches were considered for the project: 

preprocessing of the images such that any feature generated from the resulting image were 

invariant; use of an feature generating kernel, , as in Chapter 5, that produced features that 
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were naturally invariant to the three required transformations. Each of the three transforms 

shall now be discussed individually. 

6.6.1 Translation 

There are two simple methods for tackling translation invariance. The first calculates the centre 

of mass (xo, y) of a Cartesian image, f(x, y), and shifts the origin of the coordinate system to 

that point i.e. f(x - x0, y - yo). This is a preprocessing method, and the method of choice for 

the project. 

The second, kernel, method uses a complex kernel of the form 0(x, y) = exp[j(ux + vy)] 

such that any arbitrary shift (x', y')  in the image only produces a linear phase shift in the resulting 

complex feature. Hence, an invariant feature can be produced by only using magnitude data. 

An excellent example of this is the Fourier transform [47]. The Fourier transform, .F of an 

image f(x, y) is given by 

co poo 

y)} = J J f(x, y)e 2 dxdy 	 (6.3) 

and for a shifted version of the same image 

J{f(x - 	y - y')} 	F,{f(x, y)}e_32x'+. 	 (6.4) 

Thus the feature, I .F,{f(x, y)} , is invariant to translations. However, this assumes that the 

majority of discriminatory information is contained in the magnitude [129]. 

6.6.2 Scale 

In a similar dual manner the problem of scale invariance was approached. However, the 

tendency was to perform preprocessing initially. Chapter 3 described how the seascape objects 

were resampled to a standard size. The main reason for this was to allow the direct application 

of the object to classification or feature extraction systems. However, it also introduced basic 

scaling invariance. Another method was to normalise the image such that the average radius, 

from the centre of mass, of the object was identical for each object. Similarly, the distance 
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from the centre to the extremity of the object could be scaled to unity. This last method was 

found to be less robust and easily effected by poor segmentation. 

Another very popular, and biologically plausible approach, was the use of the log-polar 

transform. This has already been used in ATR systems [15]. Section 6.2 showed how to convert 

a Cartesian image, f(x, y), into the polar domain, f(p, 0). Scale invariance becomes possible 

if in the polar transform the identity p = e' is used to generate a new image, f'(r, 0) = f(er, 0). 

Scaling the original image by a factor 13 then produces a linear shift in the log-polar image of 

lri,8 i.e. f'(r + in 13 , 0). Shifts such as these can be easily countered by either of the translation 

invariant techniques discussed in the previous section. This was found to be a very successful 

with the seascape data. 

Low order image moments have also been successfully applied to the problem of scale 

invariance and will be explained in the following section, in conjunction with their rotation 

invariance properties. 

6.6.3 Rotation 

For a classification system to be rotation invariant (RI) the condition 

z(f(p, 0)) = z(f(p, 0 + 0')) V 0' 

must hold true. There have been many approaches taken to RI classification [6,137,101,39, 

104,129]; some preprocessing based and others complex kernel based. 

Preprocessing 

Some of the preprocessing methods for RI feature extraction are intuitive, such as using 

eigenvector analysis to rotate the image such that the directions of maximum variance align 

(unfortunately there are two directions of maximum variance), and some are more complicated, 

like Fourier descriptors [80] which analyse the spectrum of boundary contours of an object, 

as seen in Chapter 3. One simple method, named 0 normalisation was used in the project, 

calculates the mean of a polar, or log-polar, image in the 0 direction. This was very appealing 

as the log-polar image could be easily combined, for little extra computation, with the scale 
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invariant generating process of using the lnp directional image mean, as in the previous section. 

However, unlike the lnp mean the 0 mean could not be calculated so easily as the polar images 

were periodic in the 0 direction. This was solved using the circular mean [71]. 

A polar image, f(p, 0), has a circular mean, Oo  = ['(f), given by 

cos 0 
= 

C(0) 
 R(0) 

or, alternatively, by 

sin Oo - 8(0) 
- R(0) 

where 
I 21r I 2ir 

C(0) = fj cosO f(p, 0) d0pdp, S(0) 
ff 

 sinG f(p, 0) d0pdp, 	(6.5) 

and 

R(0) = J C(0) + S2 (0). 

Invariance is achieved by shifting f(p, 0) by 00 generating a RI image, f(p, 0 + 0). 

Proof: Consider an image f(p, 0) and a rotated version of the same image shifted by 0' in 

the 0 direction, f(p, 0 + 0'). Let 

O a = F(f(p, 0)) and 0 = F(f(p, 0 + 0')), 

and then for circular mean normalisation to be rotation invariant the following condition must 

hold: 

f(p,0+0)=f(p,0+0'+0), or 0 	0 

So, for the rotated image f(p, 0 + 0') 

I 	2ir 

C2 (0) = I 
JO YO   

cos0f(p, 0 + 0') d0d 
 



Invariance with adaptive kernel networks 	 153 

and by letting 0 = 0 + 0' it can be seen that 

1 ir+O' 	 2 

C2(0) 	
2 

= [fj I Cos (E) - 0')f(p, 0) dOpdP] 

1 2ir+O' 	 1 27r+0' 	 2 

= 	0' 
10 19 1 	

os Of (p, 0) d0pdp + sin O'ff sin Of (p, 0) dOPdP] 

2ir+8' 	 2 	
Rol 

2ir+8' 	 2 

	

= cos20' 
JO Y81

cos  Of (p, 0) dOPdP] + sin2 0' 	 sin Of (p, 0) dOPdP] 

1 2ir+O' 	 2ii-+O' 
+ 2 cos ' sin o' [ff cos Of (p, 0) d®PdP] 

JOY01
s in Of (p, 0) dOPdP] 

Similarly, 

2ir-4-O' 	 2 

S2 (0) = cos20' 
I JO Y01 
 sin Of(p, 0) dOPdP]+ sin2 0' I I 	cos Of(p, 0) d0pdp

[1 2ir+O'

JoJo'L  

1 	1 2ir+O' 	 I 1 	

YO, 
2ir+O' 

- 2 cos 0' sin 0' II 	cos Of (p, 0) d0pdp 	/ 	sin Of(p, 0) d0d] 
L Jo Jo' 	 L JO 

Now R2 (0) = C2(0) + S2 (0) such that 

I 2ir+O' 	 2 	1 2ir+O' 	 2 

R2(0) 
= [ if cos Of (p, 0) dOPdP] + [if sin Of (p, 0) dOPdP] 

= [ 

 

I72os Of (p, 0) d0pdp 
]2 

+ [ I72 in Of (p, 0) d0pdp 
]2 = 

R2 (0) 	(6.6) 

So R(0) is invariant to changes in image rotation but what about C(0)? 

I 2ir+O' 
C(0) = I I 

o o f 

cocos(E) -  0')f (p, 0) d0pdp 
J J 

2ir 	 I 2-r
= cos 0' 

1010
cos  Of (p, 0) d0pdp + sin 0' 

fj 
 sin Of (p, 0) d0pdp 

Combining this with R(0) from equation 6.6 and letting 0 = 0 it can be seen that 

COS o - C(0) - 
cos 0' cos 0 + sin 0' sin 0 = cos(0 - 0') 

R(0) 
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such that 
jb_a 	LV 

v o —Jo  

and therefore circular mean normalised images are rotationally invariant. 

Complex kernel feature extraction 

Another method of generating a set of RI features was to use a kernel such that all points in the 

kernel equidistant from the centre had the same value. This approach was taken by Fukumi in 

his shared weight, neural network, coin recognition system [38]. Unfortunately at a particular 

distance, p', from the centre of the image, f(p',  0) can have any arbitrary arrangement provided 

that the sum over all 0 remained constant. The features can be expressed as 

d 
 = JO

2ir  

f f(p, 0) b 1 (p, 0) d0pdp 	 (6.7) 
0 

where Oi (p, 0) = g(p), a radial function or polynomial. 

This simplistic approach can be extended to take into account variations of the image in the 

0 direction by using complex kernels. In their paper concerning Zernike circular polynomials 

Bhatia and Wolf [I I] demonstrated that for a kernel to provide RI about the centre of mass of 

an object it must be of the form g(p)exp(jn-iO) where m represents circular harmonic order 

and, as stated before, g(p) is a radial polynomial. Examples of radial polynomials are provided 

in Figure 6-5. 



Invariance with adaptive kernel networks 
	

155 
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Figure 6-5: Examples of two different classes of radial polynomials, g(p). 

These complex kernels can be used to generate RI features, d2 , as in Equation 6.8 where * 

denotes the complex conjugate and J . complex magnitude. 

d  = jf
I 2ir 

f(p, O)b(p, 0) d0pdp (6.8) 

0 
1 

0 
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The ability of this transform to achieve RI is easily demonstrated. Each RI feature, d, is 

determined by the equation 

a  
	j

I 2i 	
*( p, O) dOpdp 	

I  27r 
_3m 8  dOpdp

d= f 
 f( p, O) 	 f(p,O)g(p)e

f  j  

To prove the features are RI the effect of rotating the image by 0' is compared with the new 

feature, d", given by 

= 	1
I 2ir 

010 
f(p,0 + 0')g ( p ) e_-" d0pdp 

and by letting 0 = 0 + 0' and knowing that I  exp(jmO') I = 1 

1 2ir 
d 	e3mo jf f(p, 0) g ( p) e_imo d0pdp = d .  

The choice of g(p) and m, which determine the shape of the kernel, are crucial for an 

acceptable classification rate and four types of kernel derived from Fourier-Mellin (FM), 

orthogonal Fourier-Mellin (OFM), Zernike (ZE) and pseudo-Zernike (PZ) moments have been 

found to work well [109,124,107,106,105,61,62,108,67]. Fourier-Mellin moments, Mi rn , use 

the kernel Oi(p, 0) = pexp(jrn0) where in this thesis i is integer valued. Sheng and Shen [109] 

derived OFM moments by orthogonalisation of the sequence 1, p, p2..... , pfl• This generated 

a set of orthogonal g(p) such that 0) = exp(jrri0) f3jThp8. Two other sets of 

moments were discovered by a similar orthogonalisation of the sequences Iml ,  ImI+2 , , InI 

and p i-1 , p ImI+l ,  .., pI' 1 . These are the ZE and PZ moments respectively [11]. The real and 

imaginary parts of one ZE kernel is given in Figure 6-6. In the same way as the OFM, the ZE 

and PZ kernels can be expressed as linear combinations of weighted natural powers of p but 

with Pins  = 0 for s < in. More generally, 

flfl 	

fo  di  =  	
2ir 

f(p, 0 pe_imo d0pdp 
	

3insMsm 

I  
(6.9)Io   s=0 	I 

whereby suitable choice of An,  can generate any of the required moments. 

Teh and Chin [124] tested various image moments for information redundancy, noise 

sensitivity and image reconstruction capability. Of the moments examined Zernike had the 
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best overall performance. However, the position of the ZE g(p) zeros, than say those of OFM, 

might not be so suitable for certain types of RI classification [109]. 
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1> 
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Figure 6-6: The real and imaginary kernels of one Zernike kernel. 

An excellent introduction to moment-based features is given by Teague, and others [122, 

1,124,62,91. Moments have been successfully applied to applications such as ship, plane, and 

character recognition, as well as being incorporated into many ATR solutions [117,31,61]. 

Other techniques 

There are other techniques for RI classification which shall be mentioned for completeness. Hu 

introduced a set of algebraic moments based on nonlinear combinations of normalised regular 

moments [57]. These translation, rotation, and scale invariant features were based on Cayley-

Sylvester's theory of algebraic invariants and corrected by Reiss [88].  All these moment-based 

techniques are a generalisation of a basic theory of moments which are a general class of 

invariants. 
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The Fourier transform can also provide RI classification. This can be seen by noting that a 

rotation in the image plane results in a similar rotation of the Fourier plane. The polar Fourier 

transform is given as 

00  

T,t{f(p, O)} = f j f(p, 0)e_22T008(e_t)d0pdp 	 (6.10) 

and a linear shift in 0 by 0' radians results in an equivalent linear shift in t such that then 

.Tr,t{f(p, 0 - 0')} = r-i-o'{f(p, 0)). Rotation invariance is achieved by binning the Fourier 

plane into radial bins. Conversely, binning into wedges provides scale invariance. This is 

known as the wedge-ring feature extractor. 

Other various methods for RI include features based on the grey level histogram of the 

objects, as in Chapter 3, and using simple descriptive measures as features. Also fractional 

central moments [55] and constraint-based approaches [6] which transform images along feature 

trajectories until a set of constraints, C2 , is satisfied such that C(.) = OVi which is known as 

the constraint surface. A simple example is the up-righting of alphanumeric characters to the 

horizontal. 

The final, and a special case, form of RI classification are the RI matched filters such as 

circular harmonic filters. These use the decomposition of images into a series orthogonal basis 

images. An image f(p, 0) may be written as the angular Fourier series 

00  f(p,0) = E fm (p)exp(jm0) 
M=_00 

(6.11) 

The angular-Fourier series coefficients fm(p) are called the angular harmonics and are given 

by 
2 

fm  (p) = 1/2w jf(p, 0)exp(—jm0)d0 	 (6.12) 

and the energy associated with each angular harmonic is 

Em  = 2R100 
 I fm(P) pdp. 	 (6.13) 

In this way a filter set can be constructed to perform RI classification. It is without the scope 

of this thesis to consider these filters any further. 
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6.7 Digital approximation 

In the previous sections invariance has been discussed with respect to a continuous image. It 

must be noted that these features are strictly only invariant when computing for a continuous 

image. Consequently, there were effects introduced when replacing the continuous integrals 

by the digital approximation of summations in the digital ATR system. These were due to 

sampling, digitising, and quantising of the original scene. Teh and Chin investigated the effects 

of digital approximations of moment invariants [123]. There was no time in the project to 

examine the effects on the seascape data. 

6.8 Classification of fixed RI features 

In Section 6.3 three approaches to invariant classification were discussed. Of these three 

invariance through feature extraction or preprocessing were described as the most popular. 

This section provides results for the rotation invariant classification performed on the seascape 

database. As described previously, this database did not naturally contain objects with in-plane 

rotation. The rotation was introduced by artificial sensor rotation. 

The first two experiments were designed to demonstrate how classification rates of some of 

the non-RI features discussed in Chapter 4 would be effected by small deviations away from 

the upright (tolerance) and how they would alter with objects of random rotations. 

Figure 6-7 shows how a set of fixed Gabor features coped when small, random sensor 

rotations were introduced on the seascape object database. For zero-degree added rotation the 

Gabor features were identical to that reported in Chapter 4. RI-features, typically, performed 

worse, in this situation as non-RI features have additional information. However, as sensor 

rotation was increased the misclassification rate of the non-RI features increased sharply. At a 

mere 200  the classification rate dropped by 10%. This meant a system based on the assumption 

of upright objects must perform the alignment of the objects accurately. 

The next set of results, given in Table 6-1, showed how three different features ( Gabor 
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Figure 6-7: Seascape: Effect on non-RI feature classification by small sensor rotations. 

chosen by BaB, Fourier chosen by Wilks' score, and zoning ) coped with a seascape database 

in which all objects were randomly rotated between 00  and 3600.  They were classified using a 

linear and 7-NN classifier. 

Unrotated (%) 	Rotated (%) Difference (%) 

Feature 	# 	Linear 	7-NN 	Linear 	7-NN Linear 	7-NN 

Gabor 	8 	83.5 	91.25 	43.5 	47.0 40.0 	44.25 

Fourier 	16 	86.25 	96.0 	46.75 	49.75 39.5 	46.25 

Zone 	16 	86.0 	92.5 	41.0 	42.25 44.75 	50.0 

Table 6-1: 	Seascape: Non-RI features with a rotated database. Each score is the mean 

percentage classification over 10 different samples each consisting of 400 test vectors. The 

value in parentheses is the standard deviation over the 10 tests. 

As can be in Table 6-1 there was a considerable reduction in the classification rate. This 

was unacceptable. The classification rate must remain unchanged by simple rotations of the 
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object. Several RI techniques, that were discussed earlier in this chapter, were applied to the 

same rotated object database. These RI features included the popular moment-based features 

chosen by the BaB algorithm, and standard features applied to 0-normalised images 4 . As 

can be seen in Table 6-2 significant improvements were achieved. Table 6-3 shows the new 

classification confusion matrices. 

Feature # Linear (%) 7-NN (%) 

Moments: 

Hu 7 64.5(2.0) 73.25(1.9) 

Fourier-Mellin (FM) 15 76.0 (1.7) 81.0 (2.1) 

Orthogonal FM (OFM) 15 75.0 (1.8) 82.75 (2.0) 

Pseudo-Zernike 15 75.0 (1.6) 83.5(l.8) 

Complex 15 74.5(l.4) 78.25(l.9) 

0-normalised: 

Gabor 15 66.5 (2.6) 72.0 (2.3) 

Gaussian 16 63.0 (2.0) 73.25 (2.1) 

Geometrical 15 63.75 (2.7) 74.25 (2.4) 

Table 6-2: Seascape: RI features with a rotated database. Each score is the mean percentage 

classification over 10 different samples each consisting of 400 test vectors. The value in 

parentheses is the standard deviation over the 10 tests. 

As with the results provided in Chapter 4, Table 6-2 provided a benchmark with which 

to compare any new adaptive results. Certain types of moment performed effectively, and 

only a drop of approximately 5% in classification was recorded over the non-RI features. 

The 0-normalised features performed poorly now though, indicating in the new images, the 

positions the shapes of the feature extracting kernels were incorrect. Table 6-3 shows that 

when the RI features were considered the source of confusion also altered; the problem was 

now distinguishing sailboats and motor boats. 

'Fourier features were not calculated due to the non-square nature of the new images. 
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Correct class Correct class 

Guess Sail Motor Buoy Total Guess Sail Motor Buoy Total 

Sail 166 19 	5 190 Sail 131 11 	5 147 

Motor 7 97 	12 110 Motor 30 90 	23 143 

Buoy 7 13 	80 100 Buoy 19 22 	69 110 

Total 180 123 	97 400 Total 180 123 	97 400 

(a) Pseudo-Zernike (84.25% correct) 	(b) Gaussian (72.5% correct) 

Table 6-3: Seascape: 7-NN classifier confusion matrices. 

It was found that at certain angles a rotated motor boat had many similarities with a sailboat. 

This is demonstrated in Figure 6-8. 

Figure 6-8: Seascape: The motor boat, on the left, has been rotated by 80 counterclockwise. 

6.9 Adaptive invariant techniques 

The previous section has shown how the RI moment-based classifiers were successful in 

discriminating between the seascape objects. Thus, it seemed sensible to attempt to include the 

moment kernels into a combined feature extraction and classification model. In this way the 

moment parameters could be adapted to provide improved classification. 
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6.9.1 Adaptive complex kernel feature extraction 

Previously, it was stated that the choice of the moment radial polynomial, g(p), and circular 

harmonic order, m, control the classification rate, as they control the shape of the moment 

kernels, and consequently the RI features. Thus, many different types of kernel have been 

proposed including Fourier-Mellin, orthogonal Fourier-Mellin, Zernike and pseudo-Zernike 

moments which have been found to work well [109,124]. However, these have not always been 

devised for image recognition systems. A method where g(p), at least, for a particular problem 

could be identified automatically would be very beneficial. 
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Figure 6-9: The adaptive complex kernel classifier model. 

In order to combine the feature extraction into an overall classification model the values 

from Equation 6.9, were incorporated as classification parameters to be optimised [116]. 

This would allow for the automatic selection of a suitable set of g(p) 's for a particular object 

recognition task. The RI kernel feature extraction can be visualised, as in Figure 6-9, as an 

extra preprocessing layer in a 2 layer MLP model, with the first layer containing complex 

magnitude nonlinearities, and weights as 13. As stated earlier, by fixing the weights, all 

the types of moment discussed could be generated by the model. But, by adapting the weights 

using the classification error improved classification was hoped to be achieved. 
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There were several problems associated with this technique. First, imagine the simple 

problem of optimising, with respect to a sum-of-squares error criterion, the network z = w 

PM I where w is the output weight and /3 and M, the Fourier-Mellin moments, are as in 

Equation 6.9. The error surface for this problem, using FM features derived from two distinct 

classes of simple rotated images is shown in Figure 6-10. The solution requires a positive output 

weight. However, if the network is optimised, starting with a negative output weight, the shape 

of the error surface in the negative region can cause line searching optimisation techniques to 

fail. Also, with a positive output weight the network can be expressed as z = w/3M I and 

hence there is ill-conditioning. 
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Figure 6-10: Mean squared error (MSE) surface for a simple problem. 

Fortunately, a non-derivative based optimisation method, known as simplex (see Appendix 

A), was able to provide a working alternative and results for the seascape data were able to be 

recorded. At this point a second problem was noted. As seen in Figure 6-9 there could be 

no interaction between features and FM inputs of different m for RI to be maintained. This 

introduced an unwanted complexity, and also required consideration of n and rn, as well as the 

requirement for significant numbers of inputs. 

The first test with the seascape database used FM inputs with fixed m = 2, 8 sigmoid 

units, but varying number of generated RI features. The test was run for 10,000 epochs. The 

/3 weights were either fixed to generate particular types of moments or were adaptable. Ten 

FM (m = 2) complex features were used as inputs. The classification results are given in 

Figure 6-11. The classification rate peaked at 73.5% using 6 kernels and 10 FM complex 
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inputs. Could less FM inputs be used? In a further experiment the number of RI kernels was 

fixed and the number of complex inputs was varied. The results are given in Figure 6-12. A 

classification rate of 76.5% was achieved with only 7 inputs; over-fitting was occurring with 

10 inputs. 
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Figure 6-11: Seascape: Increasing the number of feature kernels. 

Adapted 

	

I  

0 

Cd 74 
C) 

72 

71 	
5 	6 	7 	8 	9 	10 

Number of FM complex features 
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However, there were several outstanding questions. How would these new features cope 

with additive image noise, how easy could the FMM features of different m be incorporated 

into the model, and what polynomials were being generated in the adapted model? The first 

and third questions are answered in Figures 6-13 and 6-14. 
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Figure 6-13: Seascape: Noise results for the adaptive model. 
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Figure 6-14: Seascape: Final radial polynomials (m = 2) for the adaptive model. 
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As can be seen the classifier coped as well as the other moment-based features. The 

surprising result were the radial polynomials. These were order 6 polynomials (7 FM complex 

inputs ) extracted from an optimised 6 RI feature kernel network. The extremities were very 

important for discrimination. The confusion matrices indicated that the sailboats had separated 

from the other two classes successfully. The motor boats and the buoys were the source of 

confusion in this case. 

These results have shown that improved RI classification was achieved using the adaptive 

technique. However, only one particular circular harmonic order was examined. What would 

happen when FIvIM features, with different m, were used? The next experiment used the 

identical model as before but with m = 4 inputs included. This network was significantly 

harder to optimise. The resulting m = 4 polynomials were very different, as shown in 

Figure 6-15. This figure showed that significant alterations had occurred during optimisation 

and that more emphasis had been placed by the polynomials around the object centre. At the 

higher frequency the centre was more attractive as a source of class discrimination. 

Generating a model that would include even more m, and thus become useful, would have 

required large numbers of inputs and connections. The error surface was also known to be 

complicated, and even the simplex method on occasion failed. Thus, other results have not 

been included in this thesis. A more simplistic adaptive RI feature classifier was sought for the 

project. 

6.9.2 RI through 0 normalisation 

Another approach was to transform the image such that RI was naturally incorporated into the 

new image: O -normal isation. As has been seen, this process normalises for object rotations 

using a linear shift in the 0 direction equal to the circular mean, , determined by solving 

cos = C(0)/R(0) or sin # = S(0)/R(0) where R(0) = (C2 (0) + S2 (0)) 1 /2  and 

1 27r 	 I 27r 

C(0) = f j CO3 Of (p, 0) d0pdp and S(0) = jf sin Of (p, 0) d0pdp. 	(6.14) 

The new image, f(p, 0 + ), is then invariant to the initial rotation of the image. This 

approach allowed for the direct application of the standard adaptive feature extraction techniques 

discussed in Chapter 5. This was a major advantage. 
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Figure 6-15: Seascape: 6 radial polynomials (m = 4) after 0 and 10,000 iterations. 

The 0 normalisation process was applied to the seascape objects which had been mapped 

to a 20x72 polar coordinate system. The data was then split, as described in previous chapters, 

into three individual sets and two sets of experiments were performed. The first used a linear 

adaptive network, and the second an extra nonlinear layer, as in Chapter 5. 
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6.9.3 Linear adaptive kernel 

The initial adaptive experiment adapted two positional kernel parameters (x 0 , Yo)  of a simple 

Gaussian kernel, with a = 2.50 and b = 1.25. The positional parameters, which were found to be 

some useful in the Cartesian experiments of Chapter 5, were optimised as before. The next test 

allowed all four parameters of the Gaussian parameters (a, b, X, yo) to be adapted in the hope of 

improving classification. Finally, using the real part of the Gabor kernel, six parameters were 

used. In each test the number of kernels, N, was varied and the optimisation process applied 

for 1000 iterations. Results are given in Figure 6-16 where each point represents the mean 

value, over 10 different random splits of the data, with a standard deviation of approximately 

0.5. The results indicated that for large values of N, with the seascape data, simple Gaussian 

kernels, with four adaptive parameters, were sufficient to perform the classification task. The 

final classification rate of 78.0% was 2.0% greater than the FM linear classifier results given in 

Table 6-2. 
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Figure 6-16: Seascape: Adaptive RI linear classification results. 

One of the most noted attribute of moment-based features is their insensitivity to image 

noise. Pseudo-Zernike moments have been found to be less affected by noise than, for example, 

Fourier-Mellin or Zernike [124]. Figure 6-17 shows how the various adaptive linear models 
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were affected by additive Gaussian noise in comparison with the PZ moments. These models 

were more sensitive to noise than their moment-based counterparts. 
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Figure 6-17: Seascape: Effect of noise adaptive RI linear model performance. 

Figure 6-18 shows how the effective kernel linear classifier (i.e. the weighted sum of 

kernels) for the sailboat class changed during optimisation. The classifier had more, smaller, 

kernels around the centre (p = 0) and used fewer, broader kernels towards the extremities of the 

image. These areas included the tops of the sailboat masts only. The motor boats and buoys, 

with more symmetric pixel distributions, had consequently more energy near the extremities. 

This tied in exactly with the results that were discovered with the adaptive complex kernel 

classifier. There was no kernel influence in the mid region. 

6.9.4 Nonlinear adaptive kernel 

As in Chapter 5 the next step was to include the usual MLP sigmoid layer of processing 

elements to provide nonlinear classification of the RI images. The discussion of this network 

was covered in the previous chapter, so it suffices to simply provide results for this new RI 

image database. The only difference is the image sampling. 
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Using the RI image database used in the last section several nonlinear networks were 

optimised and tested. The classification performances for networks of varying flexibility is 

recorded in Table 6-4. The 4-parameter (x 0 , 
yo, 

 a, b) Gaussian kernel, that worked well in the 

non-RI case, was also used here and a limit on the number of parameters was set to 180 ( similar 

to a standard 8 hidden node MLP with 15, for example, moment features.) 

Number of hidden units 

Kernels 	2 	4 	6 	8 	10 	12 

3 	73.25 76.0 	76.5 77.25 78.0 77.75 

6 	74.5 	80.5 	80.5 	80.5 78.75 	- 

10 	76.75 82.25 83.25 85.5 	- 	- 

15 	79.0 	82.5 	82.75 	- 	- 	- 

15 fixed PZ moment features: 

70.25 75.5 	80.5 	81.75 	- 	- 

Table 6-4: Seascape: RI features with a rotated database. Each score is the mean percentage 

classification over 10 different samples each consisting of 400 test vectors. The value in 

parentheses is the standard deviation over the 10 tests. 

This table shows that with similar numbers of parameters the adaptive technique matched, 

and surpassed, the performance of the classification achieved with the best fixed RI features. 

The maximum classification rate achieved was 85.5% using 10 kernels and 8 hidden nonlinear 

hidden units. Figure 6-19 shows how this was achieved in terms of the final centroid and shape 

of the feature extracting kernels. The ellipses denote equal kernel values, and the grey lines 

denote the kernel trajectories during optimisation. Again, the kernels tended towards the centre 

of the image (small p) and concentrated less on the extremities. 
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Figure 6-19: Seascape: Tracking of kernel centroids during optimisation and final shape. 

6.10 Review 

This chapter has reviewed invariant object recognition. This is a subject of great importance in 

real ATR systems. One particular type of invariance, planar rotation, was discussed in detail 

and two methods for incorporating rotation invariance into the adaptive feature extraction 

classification, described in the last chapter, were outlined. The first, based on adaptive complex 

kernels similar to moment features, were shown to be effective but very difficult to optimise. A 

second method, based on preprocessing the images such that RI was already incorporated into 

the data, proved much easier to use as it was a simple extension of the previous adaptive work. 

Results were given for both methods using the real JR seascape database containing ideally 

segmented objects. It was now time to examine the effects when objects were generated by a 

non-ideal segmentation process and how that would effect classification performance. 



Chapter 7 

Integration into the ATR environment 

In the previous chapters several adaptive feature extraction and classification models were 

reported as attractive solutions to the invariant classification of real, well-segmented, JR objects. 

These models required small numbers of model parameters to be estimated, yet still allowed 

for model estimation with respect to the original image data. However, these results were 

based on one particular ATR environment using a system that was assumed to generate ideally 

segmented objects. The next step in the project was to examine the effects on the adaptive 

classifiers when these assumptions were no longer valid, what could be done to minimise 

performance degradation, and finally, what would happen when other ATR situations were 

considered. Three particular issues had to addressed: 

• The effect on classification due to rogue data produced by a non-ideal segmentation 

algorithm. This included 

The influence of clutter, everything else that the segmentation module wrongly 

assumed was a target. 

Phenomenological effects due to object occlusion as a result of a cluttered scene. 

The effect of segmentation failure on classification. 

• The identification and differentiation of, and between, clutter and poorly-segmented 

objects. 

• The adaptability of the system to a new environment. 

Of course, there were other potential hazards but, within the scope of the project, object 

clutter, occlusion, and poor segmentation quality were found to affect most severely classi-

fication performance. This chapter considers each of these problems in turn, and how each 

174 
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affected generalisation. The chapter begins by reporting the effect of object occlusion had on 

the seascape object classifications and follows with a discussion of the techniques that were 

employed to differentiate between the clutter and the poorly-segmented objects. 

In the requirements, set down in Chapter 1, it was stated that the classification system should 

be easily adaptable to a new environment, and target type, by an unskilled or automated, 

operator The classifiers discussed, in theory, should be able to perform this task, and this 

chapter finishes by reporting on the results of the adaptive models with a completely new, real, 

infrared database. 

Before discussing the application of the new models to the BASE data a few important 

points need to be highlighted. These models will be used in many different situations, and this 

was the reason for a requirement that the system should be readily adaptable. It is suggested 

that the problems with BASE data are common with many other real-world situations in that: 

• The vast majority of real-world environments will have artifacts with similar prop-

erties to those the system is interested in classifying. In this way clutter generation is 

inevitable. 

• At the time of writing, and for the foreseeable future, perfect automated object 

detection and segmentation processes do not exist. This means that object extraction 

will fail at some point. 

• There will be processes at work, such as occlusion, which will affect object repres-

entation. 

The problems with the BASE data is simply a subset of a more generic problem of object 

generation. The difference being that each new application will have a different distribution 

and probability of occurrence for the rogue data. 
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7.1 The effects of rogue data 

Throughout this thesis various assumptions have been considered concerning the validity of 

the results of a new ATR classification module. For example, the work in Chapters 4, 5, 

and 6 assumed that the objects provided were of ideal segmentation quality. The results in 

Chapter 3 showed that this was not being achieved with the original segmentation algorithm 

and even though there is no agreement in the literature over what constitutes an ideal object 

segmentation 1,  changes in segmentation quality would be highly likely to affect classification 

performance. With a more advanced segmentation algorithm the likelihood of a more predict-

able object extraction would be greater, though not guaranteed. For example, in the seascape 

database the clutter had properties similar to the objects of interest. Consequently, the effects 

of clutter and poor object segmentation on classification had to be considered. The current 

segmentation algorithm was thus useful as it provided large numbers, of what were termed, 

rogue data to test the effects of segmentation failure in the extreme. 

7.1.1 Clutter 

Clutter was introduced in Chapter 3 as the artifacts extracted by the segmentation process that 

were, in fact, of no interest. They were non-objects. They were extracted because they had 

similar properties to all the other types of objects, for example, they radiated heat. So unless one 

particular property was available to distinguish the objects, clutter would always be produced. 

The classifiers that had been designed at this stage had no knowledge of clutter, and no 

rejection method. The clutter was classified according to the position in feature space in 

which they occurred, and the decision boundaries created using the object data. Using two 

different types of feature the 956 cases of seascape clutter were classified, using both a linear 

and 7-NN classifier developed on 3-category, non-RI (Chapters 4 and 5) and RI (Chapter 6), 

well-segmented data. The results are given in Table 7-1. 

1 ldeal segmentation in this thesis has been assumed to be that of skilled hand segmentation by a 
human, though other segmentations may have led to easier classification, for example, by not segmenting 
sails, only masts. 
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Classified as 

Feature # RI. Sail Motor Buoy Total 

Linear: 

Gaussian 16 No 85 637 234 956 

Zernike 15 Yes 295 485 176 956 

7-NN: 

Gaussian 16 No 137 704 115 956 

Zernike 15 Yes 587 284 85 956 

Table 7-1: Seascape: Clutter classification using a 3-category linear and 7-NN classifier. 

In the non-RI case the clutter was being classified as motor boats. Clutter did, in fact, tend 

to be thin and horizontal, such as the wash from boats and sections of coastline. However, in 

the RI situation this horizontal information was lost and clutter was classified either as sailboats 

or motor boats, dependent on the type of feature. This inability to reject data would lead to a 

high false alarm rate on particular classes of object. This was not satisfactory, especially if the 

class was to be of particular importance. 

7.1.2 Occlusion 

Another potential source of danger with the seascape data occurred because of the highly 

cluttered environment where objects, and objects and clutter, such as rocks or thick smoke, 

would overlap in the two-dimensional image representation. In the previous chapters the 

adaptive models were tested for their ability to classify in the presence of noise. This is 

a standard test applied to image-based classification problems but not necessarily, given the 

quality of modern day sensors, a very realistic problem. Occlusion though was a serious 

problem with the seascape data as it caused segmentation failure; either entities were combined 

into single objects, or only sections of an object were extracted. Occlusion was thus labelled 

as a special case of segmentation failure. The difference with the ordinary single object 

segmentation failure was that no amount of corrective segmentation could, without complex 

extrapolation, derive the true object segmentation. 
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7.1.3 Segmentation failure 

In Chapter 3 individual object segmentation failure during the creation of the seascape database 

was discussed. Different seventies of failure were introduced and catalogued. It was now 

appropriate to see how classification degraded with segmentation quality. Thus, a classifier 

was trained using purely well-segmented data and tested separately using: 

• 1609 objects with good internal, and external quality (EXO INO). 

• 385 object internals that were slightly either too large or small (EXO IN 1-2). 

568 objects with complete internal segmentation failure (EXO 1N3) 

• 466 objects with external segmentation failure, regardless of internal failure (EX 1-3). 

The results for various types of features using a 7-NN classifier are given in Figure 7-1. 

For small inaccuracies in the segmentation (EXO IN 1-2) there was, for all classes, a slight 

degradation in performance, ranging between 1 and 20%. The motor boat and buoy classes 

typically suffering the worst. However, when the internal segmentation failed completely (EXO 

1N3) large differences occurred, dependent on feature type and class. With every feature the 

buoy class suffered very badly. In Chapter 3 it was noted that the main differences between 

the buoys and the sailboats was the grey level distribution. They tended to have very similar 

outlines. Thus, when the buoy internal segmentation failed, all that was left was the outline, 

and the object was classified as a sailboat. This was confirmed on examination of the confusion 

matrices. The motor boats, in the RI cases, also suffered for similar reasons. In the non-RI cases 

the motor boats exhibited different behaviour for different features. In the non-RI case with 

Gaussian features, classification was performed using the fact that there were object sections to 

the extreme right and left (the bow and stern) but little in the top and bottom thirds. Gaussian 

features, and subsequently, classification were thus unaffected for this class if significant central 

portions were missing. With Fourier features losing large amounts of data caused significant 

changes in the frequency content of the image due to the thin, high frequency, skeletal structure 

of the (EXO 1N3) objects. This caused large changes in features. 

The sailboat classification results were the most interesting. There appeared no degradation 

in classification with segmentation failure. In fact, in some cases there was an improvement 
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in classification. The features were found to have changed drastically in value with change in 

segmentation quality. However, these new features had not transgressed any decision boundary, 

unlike the other two classes, and were in fact further away from the decision boundary, and 

subsequently much less likely to be misclassified. This is demonstrated in Figure 7-2 using 

two Gaussian features and a linear decision boundary created using the well-segmented data. 

Figure 7-2: Seascape: Badly segmented Gaussian feature distribution. 

The overall classification remained relatively high due to the fact that the majority of 

poorly-segmented objects were sailboats. 

It was also found that if the poorly-segmented objects had been included in the original 

database used in Chapters 4-6 they would have introduced, not only degraded performance in 

the test data, but also significantly affected the decision boundaries created. Remember that 

these poorly-segmented objects, away from the other well-segmented data points, would have 

generated large sum-of-squares errors, and would have dominated the final decision boundaries. 

This is demonstrated in Table 7-2 where two 8 hidden node MLP's were trained using either 

well-segmented data, or a mixture of both well and poorly-segmented object features. The 

resulting networks were both tested using similar types of databases, but derived from different 

objects. The entries in the tables are the resulting classification performances in the four 
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different cases, with the usual one standard deviation error in brackets. Sixteen fixed Gaussian 

features were used. 

The results for the networks optimised with well-segmented data, and tested with well-

segmented data, were taken from Chapter 4. When these networks were tested with the 

mixture of both well and poorly-segmented objects the classification performance dropped off 

significantly. This was due to the existence of the motor boats, and buoys, across the decision 

boundaries, as shown earlier in Figure 7-2. 

Training set 

Test set 	Well-segmented only Mixture of both 

Well-segmented only 	92.75% (1.0) 	91.5%(0.9) 

Mixture of both 	86.25% (1.2) 	89.75% (1.0) 

Table 7-2: Seascape: Effect of segmentation quality on MLP training and classification. Each 

score is the mean percentage classification over 10 different samples each consisting - of 400 

test vectors. The value in parentheses is the standard deviation over the 10 tests. 

When optimised with all the non-clutter objects, the network performance using well-segmented 

test data was slightly degraded due to the warping of the decision boundaries by the rogue data 

points. However, in this case the drop in classification was far less noticeable with the mixed 

data test set as the boundary formed had adjusted for the rogue data, especially the sailboats. 

So optimising the classifiers with all the non-clutter data reduced the effect of bad segmentation 

but there was still no way of identifying the rogue points. 
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7.2 The identification of rogue data 

Of course, the first question is why there is a need to identify rogue data? In the previous section 

is was seen that by including poorly-segmented data in the training set performance degradation 

could be reduced. However, if a test object could be identified as being poorly-segmented, 

action could be taken by, for example, re-segmenting the object with different, possibly more 

suitable, segmentation parameters and classifying again. Furthermore, if the rogue data was 

clutter, and did not belong any object class then a mistake would always occur. So, was there 

any way of examining the outputs of the classification stage to identify both these types of 

rogue data? 

7.2.1 Classifier outputs and a posteriori probabilities 

As discussed in Chapter 2 most classification tasks operate by allocating an unknown feature 

vector to one of C pre-defined classes, w, such that the a posteriori probability, P(wi I x), 

is maximum. Clutter is not a pre-defined class, it has a separate distribution, and thus 

rriaxP(w I x) is nonsensical. Rogue data, in terms of poorly-segmented objects, however, 

is dependent on the class definition. If the class is defined as including only well-segmented 

examples then this rogue data, also has a separate distribution. Again maxP(w x) is irrelev-

ant. If rogue data is included within the class it will be reflected in the as either another mode, 

or extended tail, in the class distribution. 

Figure 7-3 demonstrates the effect a poorly-segmented object had on the output of a 

classifier designed using a mixture of both well- and poorly-segmented data. The object 

existed in the tail of the sailboat distribution. This time P(w1 I x) predicted the object class 

correctly, but with a magnitude greater than that of the well-segmented data. However, as seen 

in Figure 7-2 this will not always be the case and P(w2  I x) could have easily been lower for 

the poorly-segmented cases of class w. So P(wi I x) could not be used to identify this type 

of rogue data. The rogue data had to be considered as separate from pre-defined, non-clutter, 

well-segmented object classes. 
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Figure 7-3: Seascape: Poorly-segmented object classification. 

Two methods were examined as possibilities for identifying rogue data. The first included 

the rogue data as an extra class providing C + 1 class discrimination. This is the usual method 

for categorising clutter and has been employed by BASE [49].  The second method assigned a 

measure of how alike a pattern was to anything in the C-class training set, with highly novel 

patterns being labelled as possible rogue data. 

7.2.2 C +I classification 

This approach of using an extra class in the discrimination procedure assumed that the rogue 

data had a distribution that was adequately represented by the sampled data. If this assumption 

was correct then classification could be applied, as before, with good generalisation capabilities. 

Initially, each of the two types of rogue data were examined separately. Clutter was first 

considered to have a broad distribution that covered the entire feature space. However, this 

was found to be correct as the clutter features were products, of not just the segmentation, but 

also the feature extraction process. If clutter were localised, as was suggested for the seascape 

data by examination of various feature spaces, then treating clutter as an extra class was an 

appropriate proposition. 
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• Using both features from Chapter 4 and the adaptive feature extraction networks from 

Chapters 5 and 6 a four class classification table for the seascape data was created. There were 

956 samples in the clutter class. The results are given in Table 7-3. The adaptive model results 

are given for both the linear and nonlinear approaches. For the linear adaptive model nine 4 

parameter (x0, yo,  a, b) Gaussian kernels were used. For the nonlinear model only six of these 

kernels were used, combined with four nonlinear nodes. 

Feature 	# Linear 7-NN MLP 

Fixed non-RI features: 

Gaussian 	16 73.25 (1.6) 81.25 (2.4) 84.5 (l.2) 

Legendre 	15 72.5 (2.5) 81.5 (2.5) 81.0 (1.6) 

Fourier 	16 76.5 (2.2) 85.75 (l.7) 84.0 (1.2) 

Fixed RI features: 

OFM 	15 60.0 (2.9) 70.5(l.5) 73.5 (2.1) 

Pseudo-Zernike 	15 64.0 (1.9) 75.25(l.5) 74.25 (2.2) 

Adaptive non-RI model: 

76.5 (l.4) 84.75 (l.5) 

Adaptive RI model: 

67.25 (l.5) 74.25(l.0) 

Table 7-3: Seascape: Clutter classification using a 4-categories of data. Each score is the 

mean percentage classification over 10 different samples each consisting of 400 test vectors. 

The value in parentheses is the standard deviation over the 10 tests. 

The additional clutter class produced an approximately 10% decrease in classification per-

formance when using the same fixed features as before. The fixed Fourier features, again, 

provided for superior classification whilst the adaptive networks, as can be seen, have com-

pensated for the new class, scoring as high and higher, than the best fixed feature results. 

The confusion matrices for incidents of the non-RI and RI adaptive linear classifications are 

provided in Table 7-4. In the non-RI case, as previously suspected, the main confusions were 

between the clutter and the motor boats, as well as, the usual buoy-sailboat confusion. With 
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the RI adaptive model, again as suspected, the confusions were much more spread out across 

the classes with objects being confused for clutter equally across all the non-clutter classes. 

Correct class 
	

Correct class 

Guess 	Sail Motor Buoy Clutter 
	

Guess 	Sail Motor Buoy Clutter 

Sail 104 1 26 10 Sail 96 3 11 20 

Motor 0 79 3 19 Motor 5 65 3 25 

Buoy 2 2 28 9 Buoy 16 28 43 22 

Clutter 3 14 0 100 Clutter 2 0 0 71 

(a) non-RI adaptive model (77.75% correct) 	(b) RI adaptive model (66.25% correct) 

Table 7-4: Seascape: Confusion matrices for the linear adaptive networks with a clutter class. 

So, overall, the addition of the clutter class produced a reduction in the classification 

performance, and this was due to the similarities that existed between the clutter and certain 

object features. But what about the rogue data generated by poor object segmentation? There 

were 1419 examples of poorly-segmented objects in the seascape database. How would these 

classify? The results using this data as a fourth class, instead of the clutter, are given in 

Table 7-5. 
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Feature 	# Linear 7-NN MLP 

Fixed non-RI features: 

Gaussian 	16 62.0 (1.3) 74.5 (l.4) 75.0 (0.9) 

Legendre 	15 59.75 (l.7) 75.0 (1.7) 75.0 (1.2) 

Fourier 	16 63.75 (0.8) 77.0 (0.7) 77.75(l.1) 

Fixed RI features: 

OFM 	15 58.5 (1.2) 71.75 (0.9) 71.75 (l.2) 

Pseudo-Zernike 	15 59.5 (l.0) 73.75 (l.1) 74.0 (1.5) 

Adaptive non-RI model: 

64.0 (1.3) 78.25 (l.5) 

Adaptive RI model: 

60.0(1.1) 75.0(1.3) 

Table 7-5: Seascape: All badly segmented data classified using 4-categories. Each score is the 

mean percentage classification over 10 different samples each consisting of 400 test vectors. 

The value in parentheses is the standard deviation over the 10 tests. 

The results indicated that there was significant overlap between the object classes and the 

poorly-segmented rogue data. This was expected as this rogue data also included objects which 

were only slightly mis-segmented, (EXO IN 1-2) for example. For the re-segmentation project 

that was run in parallel with this project it was useful to examine whether the objects with gross 

segmentation defects could be identified. 

When the extremely poorly-segmented objects were used class separation was improved. 

This is shown in Table 7-6 where 568 (EXO 1N3) data samples form the fourth class. None of 

the adaptive models were applied to this data due to project time restrictions. 
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Feature # Linear 7-NN MLP 

Fixed non-RI features: 

Gaussian 16 78.25 (1.8) 85.0 (1.5) 85.0 (1.3) 

Legendre 15 77.0(1.4) 85.5(1.4) 85.5(1.2) 

Fourier 16 79.25(l.5) 89.0 (0.8) 88.0 (1.5) 

Fixed RI features: 

OFM 15 70.25(l.5) 81.5 (l.2) 82.0 (1.0) 

Pseudo-Zernike 15 74.75 (l.6) 84.0 (1.1) 84.0 (0.9) 

Table 7-6: Seascape: (EXO 1N3) badly segmented data classified using 4-categories. Each 

score is the mean percentage classification over 10 different samples each consisting of 400 

test vectors. The value in parentheses is the standard deviation over the 10 tests. 

The classification rate improved significantly which indicated that it was possible to identify 

this type of rogue data. Table 7-7 provides confusion matrices for two of the fixed feature 

classifications using a 7-NN classifier. It was unsurprising to find that the sailboats were the 

main source of confusion and they were most prone to drastic segmentation failure with their 

skeletal representations leaving little left to provide useful classification information. 

Correct class 

Sail 	Motor Buoy (EX3 

INO) 

103 	15 	4 6 

9 	88 	7 6 

9 	3 	61 1 

9 	0 	0 79 

Correct class 

Guess Sail Motor Buoy (EX3 Guess 

INO)  

Sail 111 1 	0 12 Sail 

Motor 0 105 	1 4 Motor 

Buoy 11 0 	71 5 Buoy 

(EX3 8 0 	0 71 (EX3 

INO) INO) 

(a) Fourier features (89.5% correct) 	(b) Zernike features (82.75% correct) 

Table 7-7: Seascape: Confusion matrices for the fixed feature 7-NN classifiers with an (EX3 

INO) class. 
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The C + 1 class algorithm was shown to be successful in identifying both clutter, and very 

badly segmented object, rogue data points. The method allowed ease-of-use of the adaptive 

feature extraction techniques described in the previous chapters. However, the method made 

an assumption concerning the distribution of the fourth rogue class. The next method provided 

a solution in the situation where that assumption was not valid. 

7.2.3 Novelty classification 

In the previous section the rogue data was identified by treating this data as another object in 

the classification system. This was made possible by the assumption that the detection and 

segmentation process will generate rogue data drawn from a fixed distribution. Thus, given 

enough examples of the rogue data from the object generating process, which are representative 

of the fixed rogue data distribution, classification, and subsequently rogue data identification, 

can be performed. With the seascape data this was shown to be a successful approach and 

allowed the adaptive feature extraction models to be incorporated. 

The second rogue data identification method, described in this section, can be used when the 

rogue data distribution is unknown, severely undersampled or not constant. In these conditions, 

which would occur when an automated, adaptive, segmentation process was considered, the 

C + 1 performance would be severely degraded. 

This secondary approach makes use of the fact that the the ideally segmented, non-clutter, 

object feature distributions will, by definition, remain constant if the environment and segment-

ation algorithms are changed. Identification of the rogue data can be performed by rejecting 

data that falls out of the region of the object feature distributions by some pre-set threshold. 

This secondary method would require a measure of the degree of novelty of a test pattern, 

how much the feature was away from the norm. Figure 7-3 indicated that the inverse of the 

unconditional probability estimate, (non - roguex), was a prime candidate. Indeed, j3(x) 

had been used in other fields as a measure of novelty where low values of (x) indicated high 

novelty [14]. 

Bishop suggests classifying objects as novel if the estimated unconditional probability of 

a given feature falls below a given threshold value [14]. The threshold value that separates 
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the non-novel from the novel, rogue, data class may be determined using the Bayes rule. The 

probability density p(roguex) is assumed to be uniform 2  over volume the feature space that 

could be possibly be covered. Practically, this volume is quite arbitrary and the threshold has 

to be determined by experimentation. For the project, it was not necessary to be very accurate 

with the threshold, provided it erred on the side of identifying more novel data than expected, 

as this data was to be passed to a secondary assessment module. An inaccurately positioned 

threshold would mean simply more work for this stage. The question remained how to estimate 

p(non - roguex). 

There exist several methods for estimating probability densities including kernel density 

estimators such as the Parzen window approach, k-NN and Gaussian mixture models [103, 

134]. Each of these methods require a set of smoothing parameters. The estimates for one 

particular seascape Fourier feature, on the right in Figure 7-4, were derived using a Gaussian 

kernel estimator with various Gaussian widths, h, of 0.01, 0.25, and 1.0. Visually with 

Figure 7-4: Examples of two type of density estimator. 

h = 0.25 the multi-modal structure of the distribution could be seen but without the unwanted 

sharp peaks. Unfortunately, determining smoothing parameters, even using advanced cross 

validation techniques, in multi-dimensions is notoriously difficult [97]. The k-NN estimator 

was a more intuitive technique requiring adjustment of a single parameter, k. It was also 

• 2mough this is a very unsafe assumption as the rogue data is the result of a deterministic segmentation 
process. 
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simple to implement, had been encountered already with classification, and so was used in the 

project for the novelty tests. The estimator was determined as described in Chapter 2. As 

stated in Chapter 2 the k-NN estimator is not strictly speaking a true density estimator but was 

effective enough for the purpose of the project. The effect of different k is shown on the left in 

Figure 7-4. 

In practice, this form of thresholded (x) classification using k-NN density estimation 

equates to thresholding on an Euclidean distance in feature space. In fact, this type of novelty 

classification is very similar to the C + 1 algorithm, described in the previous section, but 

only if the rogue data has a wide, uniform, distribution, is fully representative for determining 

classification boundaries and these boundaries suitably flexible. 

The k-NN based novelty algorithm was applied to the the seascape data. Figures 7-5 

and 7-6 show the distribution of clutter, and poorly-segmented object, novelty ((x)) values 

for this database, and for different types of feature 1 . Both sets of Figures demonstrate the 

classification rates possible with the novelty classifier (only (EXO 1N3) data used in the latter.) 

This was done by using the standard Bayes rule, coupled with the class conditional, k-NN 

probability density estimates, for the three defined seascape classes. If p(x) fell below a set 

threshold for a particular test example, then the object was classified as the fourth, novel, 

class. The Figures show the effect on classification by varying this threshold. It must be noted 

that these classifications were only valid for the particular clutter prior probability implied by 

the population of the test set. In reality this probability would include temporal fluctuations, 

caused by environment or system dynamics, such as a change in segmentation parameters. 

Consequently, choosing a threshold that minimised misclassification according to these plots 

was only correct in this particular case. If the probability of clutter increased then the novelty 

threshold would need to be increased. 

Each of the feature sets demonstrated the ability to successfully separate out the clutter. 

The maximum classification performance was also similar to the C + 1 rate. The results based 

on the poorly-segmented data were more interesting. 

Figure 7-6 shows that objects with only slight segmentation failure were difficult to identify. 

The features were not preserving the artifacts that identified these faults. This was not sur-

prising as the features were not designed for this function. The surprising result was the poor 

3 The novelty distributions were not weighted by their prior probabilities 
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Figure 7-7: Seascape: Novelty distribution of Fourier features of 3 classes. 

performance of the Fourier features, and the excellent results using the Zernike data. This 

was not at all expected from the C + 1 classifications. The rogue Fourier data was separable, 

so why were the points not suitably classified? The problem was that the data available for 

test was not uniformly distributed, and was, as has already seen, localised. The distribution 

was close to the large non-rogue sailboat data which gave them relatively large novelty values. 

The motor boat Fourier feature distribution, on the other hand, were both weighted by a small 

prior probability and of high variance. These contributed to produce small novelty values, even 

smaller than the rogue data. This is demonstrated in Figure 7-7 where the main mass of the 

small non-rogue data is coming from the motor boats. Further verification was provided by the 

confusion matrices for varying thresholds in Tables 7-8 and 7-9. Only the (EXO 1N3) rogue 

data points were used. The failures were transferred, as the threshold increases, from rogue 

data classified as sailboats directly to motor boats as rogue data. 
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Correct class 
Guess Sail Motor Buoy Novel 
Sail 710 4 	6 454 
Motor 1 513 	3 32 
Buoy 23 7 	329 49 
Novel 4 9 	0 33 
Total 738 533 	338 568 

(a) log io(riovelty) = — 12 (72.75% correct) 

Correct class 
Guess Sail Motor Buoy Novel 
Sail 704 4 	6 438 
Motor 1 479 	3 18 
Buoy 23 7 	329 44 
Novel 10 43 	0 68 
Total 	738 533 338 568 

(b) log io (novelty) = — 11(72.5% correct) 

Table 7-8. Seascape: Confusion matrices for novelty classifier using Fourier features. 

Correct class 
Guess Sail Motor Buoy Novel 
Sail 697 4 	5 406 
Motor 1 420 	2 7 
Buoy 23 7 	328 37 
Novel 17 102 	3 118 
Total 738 533 	338 568 

Correct class 
Guess Sail Motor Buoy Novel 
Sail 683 3 	5 364 
Motor 0 289 	1 2 
Buoy 23 6 	324 29 
Novel 32 235 	8 173 
Total 738 533 	338 568 

(a) logio(novelty) = — 10(71.75% correct) 	(b) log io(novelty) = — 9(67.5% correct) 

Table 7-9. Seascape: Confusion matrices for novelty classifier using Fourier features. 

The Zernike features, conversely, mapped the (EXO 1N3) data such that their novelty values 

were significantly less than any of the non-rogue data values. This could not be predicted, and 

this problem was caused by multi-modal p(x) distributions and could not be addressed within 

the time scope of this thesis. 

7.2.4 Identification conclusions 

The novelty classifier, though required when the rogue data distributions were unknown, had 

several disadvantages. 
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• The novelty classifier required an estimate of a multidimensional probability density 

function. 

• Most approaches, including k-NN, are fundamentally non-parametric in that they 

require storage of many training samples. 

• The classifier was not suited for integration of the adaptive networks discussed in 

this thesis, unlike the C + 1 classifier. 

• Required setting a threshold through experimentation. As the system will adapt 

this will need to adapt with it, although as previously stated using a large threshold 

only means extra processing by a secondary, possible re-segmentation, module. The 

extra processing may effect response time which will be disadvantageous in an hostile 

environment. 

• It was difficult to choose a suitable set of features that not only differentiated the 

main classes, but also successfully identified rogue data. This is nonsensical if the 

rogue data is truly novel. 

7.3 The separation of rogue data 

The previous section demonstrated that it was possible separate out, quite effectively, the 

rogue data. It was also possible to identify between the two types of rogue data: clutter, and 

poorly-segmented objects; although the misclassification rate was approximately 30%. This 

identification was useful as clutter could simply be ditched, and the segmentation failures sent 

on for further processing, such as re-segmentation. However, the choice of feature was critical, 

and unfortunately as has been stated can often not be predicted in advance, as rogue data by 

definition may only appear at run-time. 
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7.4 Database adaptability 

In the thesis it was stated that one of the objectives of the work was to design a plug-and-play 

classification module. For each new application into which the classifier is to be used the 

module should be ready to run after a simple set-up procedure. This entails exposing the 

system to a labelled, well-segmented, database indicative of the objects that the system will 

encounter. 

With the exception of the NIST database, only one real-world database was used to test the 

adaptive feature extraction and classification models. A second database was available from 

BASE 4  for the testing of the system. This database had never been tested before. If the adaptive 

networks could learn to classify these very different objects as successfully as the seascape data 

it would further support the flexible, and generic, nature of these type of classifiers, which is 

one of their strongest attributes. 

This new car database was chosen, in particular, for various reasons. It was another real 

infrared database I but with different characteristics. The objects were much similar than in the 

seascape database and, thus, potentially harder to discriminate. However, the segmentation was 

easier as the cars were very hot in relation to their surroundings. The surroundings generated 

their own problems, yet again different to the seascape data and this included swaying trees, 

the number of car occupants, the direction of the car, as well as differing weather conditions 

and times of day. The seascape data was all taken under constant weather conditions. The next 

sections further describes the nature of the car database. 

7.4.1 Database description 

The database contained four classes of vehicle: a Range rover, a Rover car, Ford Fiesta and a 

Maestro. These were captured, as with the seascape, using a thermal infrared sensor with one 

vehicle per frame at a constant viewing angle. The resulting images were 51 2x5 12, 8 bit per 

pixel, frames of data. The vehicles themselves were captured at a distance of approximately 50 

4Courtesy of Andy Connelly, University of Edinburgh. 
5 A different sensor would have been more appropriate but was not available at the time. 
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metres and typically were 64x64 pixels in size. The vehicles were then segmented out of the 

frames and normalised to 3202 pixel images, exactly as with the seascape data. Table 7-10 

provides the distribution of the classes. 

Class 	Population 

Range Rover 496 

Rover car 689 

Ford Fiesta 695 

Maestro 883 

Total 	 2763 

Table 7-10: Car: Class distributions. 

7.4.2 Database results 

The object database was split into training, testing and validation sets. Fixed features were 

derived and classified for reference. Both linear and nonlinear adaptive feature extraction 

models were then applied to the data. The mean classification percentages, over 10 tests, for 

the fixed features are given in Tables 7-11. Standard deviations are given in brackets. 

Feature Linear 	7-NN 

Legendre 78.0(1.7) 92.4(1.2) 

Fourier 	79.2 (1.5) 95.4 (0.6) 

Table 7-11: Car: Results for the infrared vehicle data using fixed features. Each score is the 

mean percentage classification over 10 different samples each consisting of 500 test vectors. 

The value in parentheses is the standard deviation over the 10 tests. 

Results for the adaptive models are given in Table 7-12. Four parameter (x o , yo,  a, b) 

Gaussian kernels were used due to their success with the seascape data. Table 7-13 provides 

the confusion matrix from one linear, and one nonlinear, adaptive classification test. 
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Type Kernels Hidden units 	Classification 

Linear 9 - 	 73.6(l.0) 

Linear 12 - 	79.6(l.3) 

Nonlinear 9 12 	96.2(l.4) 

Nonlinear 12 8 	95.8(l.1) 

Table 7-12: Car: Results for the infrared vehicle data using adaptive features. Each score is 

the mean percentage classification over 10 different samples each consisting of 500 test vectors. 

The value in parentheses is the standard deviation over the 10 tests. 

Correct class 

Guess Land Rover Fiesta Maestro 

Land 80 6 3 1 

Rover 8 63 0 10 

Fiesta 8 19 107 5 

Maestro 5 31 10 144 

(a) Linear (78.8% correct) 

Correct class 

Guess Land Rover Fiesta Maestro 

Land 98 9 	0 0 

Rover 3 106 	3 1 

Fiesta 0 4 	117 1 

Maestro 0 0 	0 158 

(b) Nonlinear (95.8% correct) 

Table 7-13: Car: Confusion matrices for the linear and nonlinear adaptive classifiers. 

Figure 7-8 shows how the validation set classification rate, the validation set error and the 

training set error changed during optimisation. This demonstrates that the optimisation path 

through the error surface was smooth. 

7.4.3 Database conclusions 

The adaptive models performed well on this completely new database, scoring classification 

rates in excess of the fixed feature results. Admittedly only two fixed features were tested but 

this does not distract from the point that excellent generalisation was achieved with adaptive 

models without any extensive investigation into other features. An object database was created, 

analysed for properties such as segmentation quality, and applied to four configurations of the 

adaptive models. No other work was required. 
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7.5 Review 

This chapter has examined the effects on classification performance due to the non-ideal nature 

of the object generating process. The problems with the BASE data was suggested to be 

symptomatic of the more generic nature of object generation. The BASE data being simply 

one example of the distribution of rogue data. As such, two methods were proposed in order to 

identify these type of objects based on assumptions on the nature of the rogue data distribution. 

The C + 1 algorithm was found to be far more appropriate if the object generating process were 

to remain constant and if this fixed rogue data distribution could be adequately sampled. If 

this assumption is correct then the rogue data can be treated identically to the object data. The 

success of the classification being dependent only on the overlap of class conditional feature 

distributions. The C + 1 algorithm had another very important benefit in that it was able to 

use the adaptive models introduced in the thesis to provide, again, improved classification over 

many of the standard approaches. 

The second approach using novelty detection was found to be superior in situations where 

the object generating process was known to fluctuate or where the rogue data distributions were 

heavily undersampled during model optimisation. In these cases the C + 1 algorithm will be 

dependent on where the rogue data distributions shift or appear. The novelty approach could 

not, however, directly incorporate the adaptive feature extraction methods. 

In order to demonstrate the adaptability of the algorithms discussed in the thesis, the adaptive 

classification models were applied to a completely new real-world database. With this new 

database classification rates comparable and better than the standard approaches were achieved. 



Chapter 8 

Conclusions 

This final chapter summarises the work which has been carried out, reviews the extent to which 

the aims, set down in Chapter 1, have been achieved, and indicates where future work could 

most productively be focussed. 

8.1 Summary of work completed 

Chapters 3 through 7 were a chronological, and systematic, record of the work completed 

during this project. These chapters represent the solutions to the aims that were outlined in 

Chapter 1. The work was modularised such that each chapter centred on a particular set of 

aims. Chapter 3 analysed the generation of two real, non-ideal, databases derived from a set 

of infrared images. Chapter 4 looked at applying standard feature extraction and classification 

techniques to the accurately-generated data of Chapter 3, and discussed the complexities of 

such methods. Chapter 5 introduced the successful application of a relatively new classification 

model to the real data, simplified the model and then extended it to improve performance even 

more. Comparisons were made in this chapter with the results of the standard approaches. 

Incorporation of invariance in the new model was described in Chapter 6, and this invariance 

was also tested with the real data. Chapter 7 examined the effects of a non-ideal preprocessing 

system, something that Chapter 3 highlighted, and demonstrated both the effect and remedy 

with respect to the new classification model. This tested the improved classification module 

with even more realistic data. A final test in the chapter was to apply the new techniques to a 

completely new database to show that the system was easily adaptable to a new environment. 

The next section explains how far the original aims were achieved. - 
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8.2 Analysis of completed aims 

To highlight problems with the existing BASE ATR object classification system. 

In Chapter 2 the problems with the existing BASE ATR classification module were 

discussed. There was little consideration of the data being classified including object 

characteristics, prepreprocessing or generation. No thought was given to the required 

solution, to the scale or type of the classification model used, and inappropriate model 

parameter estimation procedures were applied. These issues were addressed at various 

points in this thesis. 

To design a replacement classification module for the BASE ATR system. 

The combined feature extraction and classification model described in this thesis, in its 

nonlinear form, is structurally equivalent to the original BASE MLP classifier; an image 

input layer, followed by a nonlinear hidden layer, plus a linear output layer. In fact, the 

only difference is the number of hidden units, and the values of the model parameters. No 

further storage was thus required, and throughput has not changed, with the exception of 

some preprocessing that is not currently performed in the BASE system. Furthermore, the 

number of adaptive parameters has considerably decreased from the order of thousands 

to about one hundred. 

The ATR module generated, consisting of the combined feature extraction and classific-

ation model, has been tested in the OSTRICH ATR system, and is readily available to 

BASE. The module has been tested on two real-world ATR databases captured using an 

infrared sensor. No testing has been performed with any other type of sensor due to time 

restrictions. 

To provide improved classification. 

Chapters 5 and 6 have shown that the new combined models can provide increased, or at 

least, equivalent classification performance than the standard approaches. In fact, some of 

the linear new model results outperformed the nonlinear classification of certain standard 
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features. This implies good classification results without the need for any nonlinear 

calculations. 

In the cases where the classification results were equivalent, for example with the nonlin-

ear discrimination of the selected Fourier features on the seascape data, the differentiation 

between the two approaches was the amount of time taken to achieve the same result. 

4. To design a classifier that is adaptive to new environments and applications. 

The ability of the new adaptive models to learn new environments and applications is 

one of the most important successes of the thesis. In this thesis the adaptive models were 

applied to three different databases; two real-world infrared applications with different 

environmental factors and clutter sources, and a completely unsimilar database of hand-

written characters. In each case the classification results were equivalent, if not better, 

than any of the laborious approaches using the traditional two-stage and separate feature 

extract and classify approach. 

In each of the problems once the data had been generated it was a matter of optimising 

the model with the new data using a suitable number of kernels, and hidden units. There 

was no need for complicated feature extraction, or selection, procedures, as the features 

best suited for classification are automatically generated. Of course, the features with 

these new models will be confined to those generated by the linear, spatial mappings of 

the image object data, where the transformation can only exist in the set of all possible 

manifestations of the finite sum of kernels. 

As stated in Chapter 1 these new adaptive models inherit the disadvantages of all segment-

feature-classify approaches. The most important is that the classification can only be 

made with reference to the image data presented, with all important range, temporal and 

contextual information removed at this point. Also, as stated in the last paragraph the 

features generated are restricted to those generated by the linear kernel mapping. Both 

combined means that the susceptibility of these models to decoys is high. However, there 

are two points that need to be expressed at this point. Firstly, decoys could potentially 

be included in the estimation of adaptive models meaning the decoys would have to be 

detailed to fool the classifier. Secondly, and more importantly, and as stated in Chapters 

1 and 2, these systems tend to be used in conjunction with tracking systems, knowledge 
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bases, and model matching systems, all with access to multiple sensors. The purpose 

of the adaptive models is to classify an object based solely, and as best it can without 

bias from other sources of information, on the object data shape. It is the job of later 

interpretation stages to examine the evidence from all parts of the system to make a final 

reasoned judgement based on the generated results. 

A final note on the adaptive nature of the combined model is that the structure of 

the model is identical to many neural classifiers already implemented in many ATR 

systems, including BASE. The only difference being the estimation of the model and, 

potentially, the number of processing nodes. This implies that the adaptive models 

could be incorporated immediately into already installed classification systems by simply 

updating the model weights and biases. 

Estimation of the model parameters was performed directly against the object image 

data, and so no complicated feature extraction or selection techniques were required. A 

conjugate gradient line-searching technique allowed for faster optimisation of the model, 

with fewer control values required to be set. The only other control values needed 

to be set were the number and type of feature extracting kernel, although the many-

simple-kernel approach seemed to work well in all cases, and for the nonlinear version 

of the model, the number of hidden units. The model validation procedure, however, 

remains the most difficult operation, and care must be taken in determining when to stop 

optimisation. However, this is a general model estimation problem. A last point is that 

these adaptive models, with the higher dimensional inputs, have more computations to 

perform, compared with, for example, a 20 input standard MLP and thus it can take 

longer to generate an optimised model. 

5. To analyse the real data provided for the project. 

There are several reasons for performing analysis on real, or synthetic, data before any 

classification procedures are applied. These were described at the beginning of Chapter 

3. In Chapter 3, the real, seascape, data that was provided for the project was analysed. 

In particular, the method of generating and preprocessing the data, and any assumptions 

used in these processes. The object characteristics were also considered. This provided 

very useful information for determining features for discriminating between the classes 

of object, as well as, for reasoning classification successes and failures. 
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To incorporate invariance to size, position, or two-dimensional rotations of the object 

image, into the classification model. 

The incorporation of invariance was discussed in Chapter 6. Two alternative methods, 

both that used a single feature extraction and classification model, were proposed. One 

model was found to have problems in parameter estimation. A solution was found to 

this problem but it was felt that the approach was still inappropriate. A better proposal 

was to use a preprocessing step that introduced the required invariance into the data, 

as opposed to the model itself, and allowed the application of the previously successful 

techniques when no invariance had been available. Adding the invariance led to reduced 

classification performance with the real data. This was expected as orientation was a 

very important feature in classifying the real, seascape, database. 

To identify potential weakness in the new classification module and the identification of 

rogue data. 

Throughout the testing of both the standard and the new model classification, tests on 

both the NIST and seascape databases confusion matrices were provided that showed 

where the main sources of misclassification were occurring. For the seascape databases, 

as was noted in the preliminary analysis of the data in Chapter 3, the main confusions 

existed between the sailboats and buoys, and between the motor boats and clutter. The 

clutter was one type of rogue data generated by the non-ideal segmentation module. 

This inability of the new classification models to handle this rogue data was a potential 

weakness. Chapter 7 examined how this weakness could be overcome., 

In Chapter 7 two approaches to the detection of rogue data was discussed. If the 

distribution of the rogue data was constant and well sampled then a simple C + 1 

classification method could used in conjunction with the adaptive feature extraction and 

classification models to generate results potentially dependent only on the amount of 

distribution overlap between all the object and rogue data classes. This is a powerful 

method for rogue data detection, and could even potentially incorporate Bayes risk 

methods for reducing the effects of rejecting object data as rogue data, or vice-versa. 

One potential weakness of the new classifiers is that if the assumption of the rogue 

data does not hold, if, for example, the segmentation process is adaptive. The C + 1 



Conclusions 
	

206 

algorithm could potentially fail disastrously with rogue data, as although the data may 

still be dissimilar to object data, it will be classified as objects due to the location in 

feature space. A novelty approach was discussed for countering this shift in the rogue 

data distributions but unlike the C + 1 approach it could not incorporate the benefits of 

the adaptive feature extraction classifiers. 

A further potential weakness of the new model, as already discussed, is that it is not 

100% guaranteed to find the best feature set for classification. These may be caused 

by local minima in the optimisation process of the model, not reaching the global error 

minima, but is more likely to be caused by the nature of the feature extraction mechanism. 

The linear mapping of the object data used to generate the features may not be able to 

approximate the best mapping of the data due to the form of the kernel. Furthermore, 

the best feature extraction may not be even expressible as a linear mapping of the image 

data. 

8.3 Scope for future work 

There are many avenues of research that were not attempted or published here, due to either 

lack of relevance to the thesis or time to complete. Some are listed on the following page, in 

no particular order. 
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• The effect of preprocessing on the classification results. Could this step be simplified, 

without adversely affecting classification performance? 

• Identification of subclasses in the seascape database. This was not attempted due to 

the lack of examples in many of the classes. 

• Examining how classification of an object changes with the new model as it is tracked 

and rotates out of the image plane. 

• What is the minimum size of object that can be extracted, and confidently classified. 

• Producing a posteriori classification results. This was performed but there was no 

time to report results. 

• For the combined model, only a few types of kernels were tried, and all based on 

a Gaussian mother kernel. In multivariate kernel density estimation it is known that 

Gaussian kernels are not the most efficient [103]. It would interesting to examine 

other types of kernels. 

• More research is required on the apparent over- and under-fitting that occurred with 

the new model in Chapter 5, as well as, initialising the models before optimisation. 

• Examining the effect of using a risk-based classification criterion. 

• The application of Bayesian inference techniques which have recently become popu-

lar for determining neural network models has also been neglected in this thesis. This 

could incorporate investigation into using better validation techniques for estimating 

generalisation, such as bootstrapping. 

8.4 Final comment 

Although not guaranteed to find the best features for classifying, and the fact they take longer 

to optimise than a standard MLP, the combined feature extraction and classification model, 

together with the invariance introduced by preprocessing the data, offers is a very suitable 

model for an ATR classification module. The model offers ease-of-use, easy adaptability to 

new environments, and typically good generalisation. 
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Appendix A 

Optimisation techniques 

There are many approaches to the nonlinear optimisation of adaptive parameters against some 

error criterion and there exists an extensive literature on the subject [2,7,12]. There exists no 

optimal optimisation technique and the technique chosen is often dependent on the problem at 

hand. 

Most neural networks optimisation techniques are iterative in nature and make use of zero, 

first and second order derivatives to determine the position of the local error minimum. Three 

popular techniques are described in this appendix, of which the last two are the only optimisation 

techniques used in this thesis. The other optimisation algorithms are generally based on the 

availability of the error Hessian such as quasi-newton and Levenberg-Marquardt method. The 

methods used in this thesis are deemed adequate for the task involved. 

A.1 Simple descent methods 

Early neural network models, such as the multi-layer perceptron, used a basic optimisation 

technique known as gradient descent. This involves back-propagating errors from the model 

output to the input and then taking fixed steps in the direction of the local negative error surface 

gradient i.e. 

w(tH- 1) = w(t) - jVE w(t) 

where w is the parameter vector and ii is the optimisation rate parameter. 

This type of optimisation is extremely inefficient for error function minimisation due to the 

excessive number of function evaluations. It is also prone to oscillation along error surface 

valley's and consequently large numbers of iterations, even when the error surface is quadratic. 

A momentum term, which effectively acts like a smoother, can dampen these oscillations and 

improve convergence to the minimum. However, the value of the optimisation rate parameter 

and the amount of momentum is very important for fast convergence and is very much problem 
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dependent. Optimising a neural network with gradient descent with momentum is related to 

conjugate gradient minimisation (see Section A.3) with optimal values for optimisation rate 

and momentum set by the conjugate gradient algorithm. 

There exist several enhanced gradient descent, such as bold driver technique or quick-

prop, but these were not used as there exist many better optimisation techniques with better 

mathematical foundation. 

Steepest descent is worth mentioning though as it uses line searching much like conjugate 

gradient. Instead of using a optimisation rate parameter the new parameter vector is located at 

the minimum in the direction of the local negative error surface gradient. The new direction 

of search then proceeds in the direction of the gradient at the new parameter vector. However, 

this also suffers from the same oscillation problem described before as shown in Figure A—i. 

Optimisation trajectory 

Figure A—i: Steepest descent: Problems of oscillation. 

A.2 The Simplex Method 

The downhill simplex method in multi-dimensions was proposed by Nelder and Mead [75,82] 

for function minimisation. This is a simpler algorithm than the conjugate gradient method in 

that no function derivatives need to calculated, only pure function evaluations. However, it is 

not very efficient-in the number of iterations required to reach a solution. But it is a way of 

providing a working solution without complex derivative calculations which may not even be 

available. Simplex is based on neither first or second derivatives. No assumptions are made 

about the surface except it is continuous and has a unique minimum in the area of the search. 

It performs well when the curvature of the error surface changes rapidly, when compared to 

other methods, but it may perform worse in the neighbourhood of the minimum. There are few 

multiplications and no divisions to be performed. 
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Figure A-2: Simplex: Possible steps in two dimensions. 

A simplex is a geometrical figure consisting of N + 1 vertices, F0 , F1, ..., PN, and all their 

interconnecting line segments, where N is the dimension of the space. It is assumed that the 

simplex is of a finite volume, it is non-degenerate. Each point, P2  has an associated function 

value, y. The P is the centroid of all the vertex positions not including the vertex with the 

highest function value. Equation A. 1 represents a reflection as shown in Figure A-2a where c 

is known as the reflection coefficient. Reflection occurs if the newly reflected point lies between 

the highest and lowest point in the simplex and also when an expansion fails. Equation A.2 

represents an expansion as shown in Figure A-2a where 'y is known as the expansion coefficient. 

An expansion will fail if, after a successful reflection, the simplex can not be extended any 

further in that direction without increasing the function value. Equation A.3 represents a 

contraction as shown in Figure A-2a where 0 is known as the contraction coefficient. A 

contraction will occur when the reflected point is higher than the current highest vertex. If 

the contraction fails the simplex is reduced in size towards the current minima as shown in 

Figure A-2d. The coefficients are set to be be 1,2, and 1/2 respectively [75]. 

	

p4 =(1+c)P—oPh 	 (A.1) 

	

= P + (1 - 'y)P 	 (A.2) 

P.-=  /3Ph + (1 - /3)P 	 (A.3) 
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Simplex adapts to the local error surface, elongating down long inclined planes, changing 

directions, and contracting in the neighbourhood of a minimum. Initial size and orientation of 

the simplex will have an effect on the speed of convergence. 

The stopping criteria compares the 'standard error' of the heights of the simplex vertices 

with a preset value. The success of the criteria depends on the simplex not becoming too small 

in relation to the curvature of the surface until final minima reached. 

A.3 Conjugate gradient optimisation 

The concept of conjugate gradient optimisation has been around for about 30 years. Recently 

it has become one of the most popular, derivative-based, optimisation techniques for neural 

network optimisation, replacing the now outmoded gradient descent method [35,81,12]. 

The practical concept is similar to steepest descent with the exception that the new search 

direction is not necessarily orthogonal but conjugate to the previous search direction. In plain 

terms this means that the gradient vector along the new direction has a zero (to lowest order) 

component in a direction parallel to the previous search direction, as shown in Figure A-3. In 

this way the new direction does not interfere with previous minimisations. 

w 

gTs = o So  

Figure A-3: Conjugate gradient optimisation. 

When the error surface is quadratic and positive definite the Hessian can be used to determine 

the step sizes along the conjugate gradient directions. However, with a highly nonlinear error 

surface whereby local Hessians are not necessarily positive definite and also possibly compute 

intensive to generate, it is more usual to use a line minimisation to find the correct step size. 
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There are solutions to help include the Hessian such as scaled conjugate gradient but will 

not be considered in this thesis. The conjugate directions are generated through the Polak-

Ribiere algorithm and the initial direction set equal to the local negative error surface gradient. 

The conjugate gradients are reinitialised every N steps, where N is the number of adaptive 

parameters. 

In this thesis a golden search technique was used along with a simple bracketing algorithm 

as the line minimiser. However, it was found that many of the experiments that a considerable 

speed up could be achieved by replacing the golden search technique with Brent's algorithm 

which applies parabolic interpolation. 
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M. Smart. "Rotation invariant JR object recognition using adaptive kernel subspace pro-

jections with a neural network" 

Rotation invariant JR object recognition 
using adaptive kernel subspace projections with 

a neural network 

Michael H. W. Smart 

Dept. of Electrical Engineering, 

King's Buildings, University Of Edinburgh, Scotland. 
mhws@ee.ed.ac.uk  

Abstract. This paper examines two techniques for rotation invariant, 

adaptive feature extraction and classification of infra red images using 
a feedforward neural network model. Both approaches use a set of ad-

aptive kernels, or wavelets, to generate rotation invariant features for 
classification and allow for direct minimisation of a classification error 

criterion against the input images whilst maintaining a low dimensional 

parameter space. Each feature extraction parameter is estimated using 
errors hackpropagated from the classification stage. 

The first of the two methods uses complex kernels with adaptive radial 

polynomials. When combined with a magnitude nonlinearity in the first 

layer of the model they provide rotation invariant features for classifica-

tion. However, there are several problems with this model which make it 

impractical. A second method provides a much simpler solution and uses 
the preprocessing technique of 9 normalisation with a standard adaptive 

feature extraction and classification model. Both of these methods have 

been tested on the difficult problem of discriminating between objects 

derived from a set of real infra red images. Results and discussion are 
provided in this paper. 

1 INTRODUCTION 

There are many problems associated with the automatic recognition of objects 

derived from real infra red (IR) images. One of these problems is to maintain 

a constant misclassification rate regardless of either sensor or object rotation 

and many feature extraction based solutions have been proposed [10]. However, 

these methods often require extensive search techniques to determine a suitable 

subset of features for every new task. A more sensible approach is to optimise a 

combined feature extraction and classification network against an overall classi-

fication error criterion. Unfortunately due to the high dimensionality of the image 

space these networks tend to produce large numbers of adjustable parameters 

and with a finite data set this may lead to problems of underdetermitiedness. 

They may also lack the desired invariance. 

This paper examines two techniques for rotation invariant, adaptive feature 

extraction and classification lining a feedforward neural network model whilst 

maintaining a relatively low dimensional parameter space. This is applied to a 
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specific problem of I  object recognition in winch sensor rotation invariance and 
the ability of the system to easily adapt to new environments is essential. 

One of the image databases used to test the model consists of 608 frames of 
seascape scenes, that were taken at a constant depression angle, from various 
coastal locations in South West England and contain 3 broad classes of large, 
man-made objects; namely sailboat, motor boat and buoy. These objects are 
detected and extracted using a Sobel based segmentation algorithm and spatially 
normalised to a size of 3202 pixels, whilst maintaining object aspect ratio. This 
generated a database of 1609 objects, of which 738 were sailboats, 533 motor 
boats and 338 buoys. 

Fig. 1. Example froin the seascape image database. 

2 ADAPTIVE FEATURE EXTRACTION 

The "super-wavelet" concept was introduced by Szn ci al. as a combination of 
adaptive wavelet feature extraction and linear class discrimination [8] and has 
been applied successfully to problems of signal representation and classification. 
Many of the problems of feature selection were circumvented by this concept of 
a "super-wavelet" due to the direct adaptation of the feature extraction, whilst 
maintaining a controllable numbers of adjustable parameters. 

The "super-wavelet" is a linear weighted sum of N adaptive wavelets, or 
kernels, which are shifted and dilated versions of a mother kernel, TP. To classify 
a two-dimensional signal, such as an image f(z, p) a linear discriminant of the 
form 

(1) 
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can be implemented where z5 represents one of C classifier outputs and the full 
classification parameter vector, rJt,  is comprised of the weights and biases, wp, 
and the M-dimensional kernel parameter vectors, ç.. Hence, in the model there 

are MN + C(N + 1) adaptive parameters. 
This combination of adaptive feature extraction followed by classification can 

been visualised, as with the macro-Gabor filter, as a two layer neural network 
with a linear hidden layer [?]. The initial layer of adaptive kernels provides a 
linear transformation of the image to a lower dimensional feature space and the 
output layer forms a linear discriminant. Hence, to avoid ill-conditioning during 
optimisation there can be no linear relationship between the kernel parameters' 
and TP. This network can then be easily extended to a nonlinear classifier, such 
as a MultiLayer Perceptron (MLP), in the form 

~k (f; 	 _.k  + 

F_ 

 "jk  'P 

(-, + F~ Wij 	AX, Y) Oj (X, Y; ~j 	(2) 

where H represents the number of hidden units with the çs nonlinearity. 
Nonlinear optimisation of45 is performed using a conjugate gradient directed 

line searching technique to minimise an output classification error criterion, E. 
The error derivative, for the linear network of Equation 1, can be 
easily derived over all the training patterns, i, to be 

As stated by Daugman [3] the resulting feature extractors, j,  are required to 
be neither orthogonal (<'1(x, y, x a , yo ); 'k(x, y, z u , ys)> 54 0 for all j 54 Ic) nor 
complete in order to satisfy optimality according to If and the main consideration 
is the form of b. 

Marty authors use the Gabor wavelet as a suitable kernel and have suc-
cessfully applied it to many problems including image representation [3], object 
detection [?] and character recognition [6]. The Gabor wavelet is given by 

y; a0, yo , a, b , n o , v11) = ezp{—ur[( — zo) 2 a2  + (y — 

.ezp{-27rj[no(z — z 0 ) + v0(y — yo)]} 	 (3) 

and an example of the real part of a typical kernel is given in Figure 2. The 
Gabor kernel is a Gaussian, centred at (x0, 60)  and with scaling values (a, b) 
modulated with a complex exponential with spatial frequency (n[ l + v)1/2 and 
orientation ardan(va/nu). 
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Fig. 2. Example of the real part of Gabor wavelet 

3 ROTATION INVARIANCE (RE) 

Flotation invariant classification is achieved if the a posteriori class dependent 
probability estimates of an object remain unaffected by image rotation. If the 
image is centred using central moments and scaled to be of unit radius it can be 
expressed in a polar coordinate system, f(p,O), where p denotes radial direction 
and 0 angular direction. A rotation can then be expressed as a simple linear 
shift in the 0 direction by a constant ci, i.e. f(p,  0  + ci). This paper concentrates 
purely on these simple in-plane rotations of an image. 

Barnard and Casasent [l] identify three different neural based approaches 
to RI classification. Invariance through training or regularisation: The 
classification model is based on a training set that sufficiently covers the span 
of rotated images. Although simple, this method requires a significantly large 
database. Invariance through structure: The second approach is to encode 
RI properties within the model. A good example of this approach are high-order 
neural networks which can be made translation, rotation and scale invariant at 
order 3, by suitable choice of network parameters. however, these networks are 
sometimes impractical due to their size. Invariance through preprocessing: 
This is the most popular method and two particular approaches are considered in 
this paper; complex kernel feature extraction and 0 normalisation. Both methods 
allow for adaptive feature extraction. 

3.1 LU through complex kernel feature extraction 

In their paper concerning Zernike circular polynomials Bhatia and Wolf [2J demon-
strate that for a kernel to provide B,l about the centre of mass of an object it 
must be of the form g(p)erp(jm0) where in represents circular harmonic order 
and y(p) a radial polynomial. 

Many authors use these complex kernels to generate RI features, d, as in 
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Equation 4 where * denotes the complex conjugate and I . I complex magnitude. 

pi p2n 
d= 	JJ

f(p,O)i,b(p,O)dOpdp 	 (4) 
U U 

The ability of this transform to achieve RI is demonstrated in Appendix A.!. 

The choice of g(p)  and m are obviously crucial for a minimising E and four 

types of kernel derived from Fourier-Mellin (FM), orthogonal Fourier-Mellin 

(OFM), Zernike (ZE) and pseudo-Zernike (PZ) moments have been found to 

work well [5, 9]. Fourier-Mellin moments use the kernel 'j(p, 0) = pexp(jmO) 
where in this paper a is integer valued. Sheng and Shen [5] derived OEM mo-

ments by orthogonalisation of the sequence 1, p p2 . ..... pfl  This generates a set 

of orthogonal g(p) such that 0) = exp(jm0) Two other sets _ 11
of moments were discovered by a similiar orthogonalisation of the sequences 
pirni pimi+S 

p I ' i  and i"I , i"*H ,.., i"I .  These are the ZE and PZ moments 

respectively [2]. In the same way as the OEM, the ZE and PZ kernels can he ex-

pressed as linear combinations of weighted natural powers of p but with j9 = 0 

for a < m. More generally, 

di 	 f( p, 0)pi e 'iaft d0pdp= 	 (5) 

whereby suitable choice of Pi., can generate any of the required moments. 

'Feb and Chin [9) tested various image moments for information redundancy, 

noise sensitivity and image reconstruction capability. Of the momenta examined 

Zernike had the best overall performance. however, the position of the ZE y(p) 

zeros, than say those of OFM, might not be so suitable for scale and RI classific-

ation [5]. Furthermore the number of feature moments used is often determined 

by a normalised reconstruction error and not directly by a classification error 

criterion. Smart et al [7] therefore attempts to combine feature extraction into 

an overall classification model by including /3  as a classification parameter. 

This is an iterative method to automatically determine a suitable set of g(p)'s 

for a particular object recognition task. It can be constructed as in Equation 5 

with complex magnitude nonlinearities in a single preprocessing layer before, for 

example, an MLP classifer. 

However, there are several problems associated with this technique. Imagine 

the simple problem of optimising, with respect to a least squares error criterion, 

the network z = in I f3M I where w is the Output weight and 0 and M are as in 

Equation 5. The error surface for a problem using complex FM features derived 

from two distinct sets of rotated images is shown in Figure 3. The solution re-

quires a positive output weight and the error surface in the negative region can 

cause line searching optimisation techniques to fail if the network is improperly 

initialised. Also, with a positive output weight the network can be expressed as 

z =1 in/3M  I and hence there is ill-conditioning. A non-derivative based optim-

isation method, such as simplex, provides a working alternative and reasonable 

results can be achieved [7]. However, there are other factors that make the ap-

proach unattractive. These include the requirement of non-interference between 
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Fig. 3. Mean squared error (MSE) surface for a simple problem. 

features using different rn and a large number of parameters to a achieve satis-
factory classification rate. 

3.2 LU through 8 normalisation 

A better approach is to transform the image such that RI is naturally incor-
porated into the new image. This allows for direct application of the standard 
adaptive feature extraction techniques discussed in Section 2 and can be achieved 
through 0 normalisation. This process normalises for rotations in an image by a 
linear shift in the 0 direction equal to the circular mean, 0 (4) which is determined 
using cos 0 = C(0)/R(0) or sin 0 = S(0)/R(0) where R(0) = (C2 (0) + S2 (0))1/2 

and 

,i 2s 	 r' r2e 
C(0) = / / cos Of(p, 0) dOpdp and S(0) = / / sin Of(p, 0) d0pdp. (6) 

JuJu 	 JoJo 

The new image, f(p,  0 +U), is then invariant to the initial rotation of the Image 
and this is proved in Appendix A.2. Also, by using a log-polar transform instead, 
scale invariance can also be achieved. 

4 RESULTS 

The 0 normalisation process is applied to the set of images, described in Sec-
tion I, which are mapped to a 2002 polar coordinate system. The data is then 
randomly split into two sets, one for training consisting of 1000 patterns and one 
for testing of 500 patterns. This process is repeated 10 times for each experiment. 

The first of these experiments is to test the standard RI feature extraction 
methods of moments discussed in Section 3. For each moment type a set of 
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features is classified using a least squares linear discriminant and the number 
within each set is determined by increasing moment order. The results are shown 
in Figure 4(a). 

(s) Civaiflcslios results 	 (5) Noire urnuitivily rrtsll 

Fig. 4. Adaptive RI classification results. 

This provides a benchmark for the adaptive feature extraction classifier given 
in Equation 1. The first adaptive experiment adapts the two positional kernel 
parameters (z 5 , y5 ) only, with u=v=0, a=2.50 and b= 1.25. This is a simple 
Gaussian kernel. The following test optimises the four parameters of the Gaus-
sian (us, b, e0, ya), and in the final experiment using the real part of the Gabor 
wavelel, as the kernel, all six kernel parameters are used. In each test the number 
of kernels, N, is varied and the optimisation process applied for 1000 iterations. 
Results are given in Figure 4(a) where each point represents the mean value, 
over 10 different random splits of the data, with a standard deviation of approx-
imately 0.5%. The results indicate that for large values of N simple Gaussian 
kernels, with four adaptive parameters, will suffice. 

One of the aspects of moment based features is their sensitivity to image 
noise and the pseudo-Zernike moments have been found to be less affected by 
noise than, for example, Fourier-Mellin or Zernike [9]. Figure 4(b) shows how the 
various adaptive models are affected by additive Gaussian noise in comparison 
with the PZ moments. It is clear that these models are more sensitive to noise 
than their moment based counterparts. 

Figure 5 shows how the effective kernel linear classifier (i.e. the weighted sum 
of kernels) for the sailboat class changes during optimisation. The classifier has 
more kernels around the centre (p = 0) and trues fewer, broader kernels towards 
the extremities of the image. These areas include the tops of sails and the bows 
of motor boats. 
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(a) 0 imaii,,na. 43.0% 	 (5) 500 i,oaiioaa. 70.8% 	 (c) ii i0)aiiom, 74.0% 

Fig. 5. Combined filter weights for sailboat class. 

5 CONCLUSIONS 

This paper has discussed two methods for rotation invariant adaptive feature 
extraction. The first method, using complex kernels, is difficult to optimise but 
a much simpler second approach of 0 normalisation allows for the direct ap-
plication of standard adaptive techniques. These allow for optimisation of both 
feature extraction and classification while maintaining a low dimensional para-
meter vector. 

Time results on the seascape database show a significant improvement over 
the current fixed RI features, especially with a low number of features. However, 
they may appear disappointing with respect to an overall classification rate. 
This is because the data poses a difficult RI recognition problem with rotated 
boats often resembling motor boats or buoys. There also exists large within-class 
variations so there is a high probability of multimodal class distributions and the 
requirement of the nonlinear claseifer as in Equation 2. Preliminary results are 
promising with 86.2% classification using the four parameter per kernel model 
with 6 nonlinear hidden units. 
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A PROOF OF RI 

A.l RI through complex kernel feature extraction 

161 is accomplished using features generated from the complex kernels, (p 0) = 

g(p)ezp(jmO) and each Hi feature, d,, is determined by the equation 

d1  = jjf(P,0)(P0) d0pdp = jJf(P0)o(o)c"o9 d0pdp 

To prove the features are RI the effect of rotating the image by, —a, is compared 
with the new feature, d2 , given by 

d2 = jjf(p0 + o)g(p)c"t  d0pdp 

arid by letting 0' = 0 + a and knowing that I ex.p(jmcr)  I = 
I lv 

d2 = esmejJ f(p,0')g(p)c"° °  dO'pdp = d1 . 

A.2 RI through 0 normalisation 

Assume the circular mean expressed in Equation 6 for an image f(p, 0) is given 

by °1  and for a rotated version of the same image, f(p,O + a), by 02. Then for 

H.1 02 must equal 01 - a. For the rotated image 

C2(0) = 

 

[ 1 1 
2,10 + a) d0pdp 

and by letting 0' = 0 + em it can be seen that 

C2(0') = [fj 	cos(0' - (i)f(p, 0') d0'pdp] 
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I s+ 	 1 2e+e 	 2 

= [ cosnff 

 

Cos 9'f(p,O') dO'pdp + sin aff , :::'"°' d9'pd.O] 	

2 

= cOso 
11
f 	

cos O'f(p, 0') dO'pdp} + sin 2 
 o [ff 	

sin O'f(p, 0') dO'pdp] 

1 2e+ 	 1 2e+ 
+ 2 Cos o sin  

[ff 	
coo O'f(p, 0') d0'pdp] [fj 

	
sin o'jp, 0') dO'pdP] 

Similarly, 

82(0') = cos2a [jj 
	

sin O'f(p, 0') dO'pdp] 
2+ 

 sin 2  (0 [f72°os O'f(p,  0' ) dO'pdp 

1 2e+ 	 I 2e+e 
- 2 Cos cs sin  

[jj 	
cos O'f(p, 0') dO'pdp] [If. 

	
sin O'f(p, 0') dO'pdp 

Now R2 (0') = C 2(0') + R 2 (0') such that 

= [ [ff 

	

] 	

]+[ 
I IZ21 

 s 

 

	

dR2 (0')= 

	

O'f(p, 0') dOpdp 	 'f(, ') ' 

	

   

+[f
l 

 	
]coso'1p,o' dO'pdp 	 sin 	dOlpdP (JU 	 f 

(7) 
So R(0) is invariant to changes in image rotation but what about C(0)? 

G(0') 
= ff 	

cos(0' - n)f(p,O') dO'pdp 

	

= 	

il 

COS (U J 72 cos O'f(p, 0') dO'pdp + sin of 
72esin 

 O'f(p 0') d0'pdp 
0 	 0 II 

Combining this with R(0') from equation 7 and letting 0' = 0 it can be seen that 

- 	C(0') 	 - 
	s in 

	- 	- 
c0s02= 	coSo c050j + sIn IS sIn01 =cos(Oi—n) 

and hence 
02 = 0 - 

This article was jirocnsed using the IITEX macro package with LLNCS style 
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ABSTRACT 

In this paper we introduce a technique for incorporating adaptive, rotationally invariant (RI), feature ex-
traction into the initial layer parameters of a multilayer perceptron (MLP) for classifying real infra-red (IR) 
imagery. Feature extraction parameters are not usually estimated directly due to their high dimensionality but it 
is possible to reduce the dimensionality by constraining these parameters to a feature subspace where the para-
meters are restricted to a continuous RI generating functional form (e.g. a circularly symmetric radial polynomial 
transform.) The lower dimensional function parameters and the classification parameters can then be estimated 
simultaneously to minimise an overall classification error criterion. This can be considered as an extension of 
previous work by other authors where non-RI alter parameters, such as Gabor filter directional selectivity, were 
successfully tuned for feature extraction. 

Keywords: rotational invariance, multilayer perceptron, misclassification rate, infra-red imagery 

1. INTRODUCTION 

An important aspect of automatic target recognition (ATR) is the location and identification of possible 
targets in a scene, irrespective of sensor position or rotation. In this paper we investigate the possibility of 
adaptively tuning rotation invariant (RI) feature generating kernels in order to minimise an overall classification 
error criterion. These RI generating kernels are based on circular Fourier and radial Melhin transforms described 
in a polar coordinate system: 

i1 f2 
/ 	f(p,O)pexp(—jm9)dUpdO,s > O,rn = O,d1,±2. ..... +oo 	 (1) 

Jo 

where f(p, U) is an object image defined over the unit circle (0 < p < 1), en is the circular harmonic order and a 
the transform order .5,14 
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Figure 1 shows a typical ATH. system on which we shall concentrate on the feature extraction and classification 
functional units. Feature extraction is a form of linear or non-linear mapping that attempts to retain discriminat-
orial information whilst projecting data into a lower dimensional feature space. This both reduces computational 
complexity and generally allows more accurate parameter estimates with a limited set of observations The 
feature extraction mapping can not usually be directly estimated with respect to an overall classification error 
criterion. This is often (hue to the high dimensionality of the object images producing the possibility that the num-
ber of independent parameters in the model significantly exceeding the limited number of training observations. 
Although several authors have suggested using techniques such as weight decay, cascade correlation or shared 
weights as a solution to this problem' ,' , ' a more general solution is to utilise a fixed set of feature extractors such 
as Karhuneri-Loève, Hadamard, Barr, Fourier, Gabor, and singular value decomposition (SVD). 15  

Image Sensors 

Noise Filtering 

Image Normalisation 

Scene B.gie.otation 

I II 
Feature ixtreotion 

I--  L classification 

I I 	Interpretation - 	 Action 

KnoOledge 

Figure 1: Typical ATR system. 

1.1. Rotational invariance 

Rotational invariance requires that features, and consequently object classifications, generated by a spatial 
mapping remain unaffected under pure rotations of the input image.' To achieve rotationally invariant pat-
tern recognition Barnard and Casasent 3  identified three basic approaches, with respect to neural network based 

systems: 

• Development of a classification model based on a training set that contains a sufficient number of examples 
of rotated images. Although simple, this method requires a significantly large database. 

• The next approach is to hard-wire RI properties within the model. A good example of this approach are 
high-order neural networks (HONN), 

(2) 

which can be made translation, rotation and scale invariant at order 3, by suitable choice of the parameters, 
A .11 



Publications 
	

235 

• The final method, and possibly most popular, is the generation of RI features through pre-processing. We 

shall consider one form of pre-processing whereby each feature, z, is generated through a fixed complex 

function, or kernel, W1(p, 0). The required invariance properties, such as insensitivity to sensor rotation or 

tilt, are incorporated into this initial pre-processing. 

2. FOURIER-MELLIN AND ZERNIKE MOMENTS 

In their paper concerning Zernike circular polynomials Bl,atia and Well' demonstrated that there exist an 

infinite number of complete sets of polynomials which are orthogonal for the interior of the unit circle. They also 

showed that for a polynomial, or kernel, W(pcosO,psinO) to be invariant in form about the origin it must be of 

the form g(p)ezp(jrno) where in is the circular harmonic order and g(p) a radial polynomial. 

Many authors have proceeded to utilise these kernels in order to generate sets of rotationally invariant features, 

c, from centered and scaled polar images f(p, 0), as shown in equation 3 where * denotes the complex conjugate 

and I I complex magnitude. 

r 1 

Jo 

j2. 

o 
I / / 	f(p, 0)W (p 0)d0pdC 1 	 (3) 

The rotationally invariant property of this transform can easily be demonstrated by replacing f(p, 0) by f(p, O+u) 
where 0 represents it sensor rotation away from the horizontal, and factoring out the term I exp(jm)  1= I. 

The choice of the radial polynomial and circular harmonic order are obviously fundamental to the misclassi-

fication rate. We shall concentrate on four types of kernel derived from Fourier-Mellin (FM), orthogonal Fourier-

Mellin (OFM), Zernike (ZE) and pseudo-Zernike (PZ) moments 15,17  The kernel used to generate Fourier-Mellin 

moments is given by W,(p,0) = pezp(jrusO). a is usually complex valued (s = jw) but we shall consider only 

integer values for s. Fourier-Melhin moments with integer valued s are often called rotational moments. Sheng 

and Shen' 5  derived a new set of moments for invariant pattern recognition called orthogonal Fourier-Mellin mo-

ments by the Gram-Schimdt orthogonalisation of the sequence 1,  P, p2 . ..... p".  This generates a set of orthogonal 

radial polynomials such that W1 (p, 0) = exp(jrnO) Two other sets of moments, derived from the 

work of Frits Zerniike on optical aberrations and diffraction, were discovered by the orthogonahisation of the 

sequences p 1 " 1  plml+2 Pint and plml , plml+ 1 p 1 " 1 . These are called Zernike and pseudo-Zernike moments 

respectively .4  Thus in the same way as the OFM the Zernike kernels can be expressed as a linear combination of 

weighted natural powers of p but with cn 1 , = 0 for a < in. More generally we can write 

= I 	j j f(p, O)p' es:p(—jrniO)dOpdO I 	 (4) 

whereby suitable choice of 	we can generate any of the required moments. It is worth noting that both the 

Zernike , pseudo-Zeruike and orthogonal Fourier-Mellin are derived from the more general Jacobi polynomials. 

Examples of the radial polynomials are provided in Figure 2. 

In a study of image moments Teh and Chin' 7  tested various types of moments including Zernike, pseudo-

Zernike and Fourier-Mellin for information redundancy, noise sensitivity and image reconistruction, capability. Of 

all these moments Zernike moments had the best overall performance. However, it has been suggested that due 

to the positioning of ZM radial polynomial zeros more towards the unit circle than say those of OFM polynomials 

ZM might not be so suitable for scale and rotation invariant classification.' 5  Furthermore the choice of the number 

of moments used to perform the necessary feature extraction is often guided by a normalised reconstruction error 

and not by an overall classification error criterion. In this paper we examine the possibility of including the 

feature extraction into an overall classification model by kernel adaptation by including er,,, as a classification, 

paranneter. 
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OFM polynomials up to order 5 	 5th order PZ polynomials 

0  . ..... ......... 	 ........ 	 .... .. 	 0 	

~O 
06 	 08 

Figure 2: Examples of radial polynomials 

3. CLASSIFICATION AND KERNEL ADAPTATION 

Allocation of an arbitrary unclassified feature vector, x, to a member of a predefined set, "6  (k = 1..N), or 

class, is often achieved by comparison of the class a posterzor8 probabilities, P(wsIx).'° However, the form of the 
class conditional probability density functions are often unknown. Thus we are left a task of nonparametrically 
estimating c discriminant functions, y(), such that y 1 (x) > yj (X) for i 0 j given z is of class w i. Although 

nominally a parametric model the multilayer perceptron' 2  (MLP) , given in equation 5, provides a flexible method 
for parameterising a fairly general non-linear set of these discriminant functions. In fact MLP's are universal 
approsirnators in that given sufficient complexity and data they can approximate virtually any function.' 9  

Yk() = (05 + 	w1kb(C8 	 (5) 

The approximating function is controlled by it vector of parameters, , comprising of a set of weights, w, and 

biases , a, and the hidden layer activation function, 0, is usually the logistic function 

(z) = l/(l+e). 	 (6) 

In this paper we form a least squares estimate, j9, of the true model parameter vector, f3, using a conjugate gradient, 

iterative, local optimisation technique.' Model complexity can he controlled through varying the number of hidden 
nodes, H, as well as through various standard regularisation techniques. 

The feature vector, z, will be generated via equation 4 and can be considered as an initial pre-processing layer 
to the MLP model. The kernel parameters, a i , as described in the previous section, can be fixed such as to 

implement a specific image moment b u t we were interested to see whether kernel parameters could be included 
into the extended MLP model smich that the classification error nninimisation was performed over a new parameter 
vector, 0'. 
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4. EXPERIMENTS 

In order to test the adaptive kernel algorithm a series of simple artificial image object databases were created. 

The images were of the form f(p, 0) = 01 (p)cos(20 + ) + a 2 (p) + ij(p, 0) where q(p, 0) represents a additive, zero 

mean, white noise process. Various fixed kernel feature extraction methods were then tested against the adapted 

kernel method (in = 2). Some results, using both an MLP and a K-nearest neighbour'° (K=7) classifier, from 

one such test are recorded in Table 1. 

Kernel MLP (%) KNN (%) 

(Standard error) I  (Standard error) 

PZ 20.9(l.48) 20.2 (1.46) 

OFM 22.2(l.52) 23.2 (1.55) 

FM 23.6(l.75) 23.9(l.81) 

Adapted 19.6 (1.32) N/A 

Table 1: Classification error rates for an artificial problem 

Although the results are promising and demonstrate that kernel adaptability is feasible there does appear to 

he a problem with either local minima or the learning mechanism which occasionally causes the formation of 

inappropriate kernels, although the reasoning behind this phenomenon has yet to be confirmed. 

The adaptive kernel algorithm was then tested on real, 8 hit greyscale, (8-12jnn) infra-red (III.) seascape im-

agery. A typical 512x512 pixel IR seascape scene, with zero sensor rotation, is shown in Figure 3 with classification 

results from a Zernike feature extractor combined with a MLP classifier. 

Figure 3: 111 seascape scene with 0 = 0 
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The image sequences contain seascape objects, including sailboat, motor boat, buoy, and clutter. Objects are 

identified and segmented utilising a standard Sobel edge detector, thresliolder and edgewalker in order to generate 

a database of 4000 objects. Once collated these were made translation and scale invariant by using low order 

image moments. 16  Three binary examples of the seascape classes are shown in Figure 4. The database was then 

divided into 3 separate training, validation and testing sets. 

	

Sailboat (Class 0) 	Motor boat (Class I) 	 Buoy (Class 2) 

Figure 4: Typical binary objects with 0 = 0 

These objects contain a considerable amount of directional discriminatorial information provided that the 

sensor remains horizontal, 0 = 0. In this circumstance a non-It! feature extractor such as a Gabor filter' will 

classify better than, for example, a RI Zernike based system. however, as clearly demonstrated in Figure 5, only 

it relatively small tilt in the images that generate the test set object database (system trained with 0 = 0) is 

required to incur a notable increase in the misclassification rate. As sensor rotation is expected in the project the 

use of an RI feature extractor is justified. 

60  

nRiThrfe::s 

30 

RI Zernike features 

to 

-40 	30 	.20 	-10 	5 	10 	20 	30 	40 

Sensor tilt (degrees) 

Figure 5: Effect of sensor tilt 

Initially fixed RI kernels were used to generate features for the MLP classifier and estimates of fl were formed 

for each type of kernel. Experiments were repeated to measure the statistical significance of any increases in 
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classification performance. Some results are provided in Table 2 including complex moments 17  (CM) and a RI 

correlation filter 13 (CHF). 

Kernel I  Features I 	 KNN (%) 

(Standard error) 

MLP (%) I  (Standard error) 

FM 20 25.5 (1.2) 24.4 (1.5) 

OFM 20 22.6 (1.3) 22.1 (1.3) 

PZ 18 21.2 (1.6) 19.8 (1.2) 

ZM 18 22.9 (1.3) 21.9(l.4) 

CM 15 26.0 (1.5) 25.3 (1.1) 

CIIF 20 21.3 (1.6) 20.1 (1.3) 

Table 2: Classification results using fixed RI kernels. 

A set of parameter estimates of ' were then formed to investigate whether any improvement in classification 

performance could be achieved with the new model. The adaptive kernel algorithm produced a misclassification 

rate of 19.2% (1.1). The kernel adaptation method has improved over certain types of moments but has provided 

only comparable performance with the pseudo-Zernike and correlation based classifiers. 

5. CONCLFSIONS 

In this paper we have attempted to demonstrate time possibility of RI kernel adaptability based around Fourier-

Mellin moments using a MLP. We have shown that it can be successfully applied to a real IR problem although 

in the seascape database there was no significant decrease in the misclassification rate when compared to the best 

fixed RI kernel. however, it does provide a method of automatically generating RI kernels that are related to 

an overall classification error criterion. Further work will investigate the problem of local minima and the use of 

regularisation terms in the optimisation algorithm to reduce kernel correlation. 

6. ACKNOWLEDGEMENTS 

This work is being jointly funded by British Aerospace Systems and Equipment Ltd., Plymouth, England 

(Applied Research project number 82140761) and the Engineering and Physical Sciences Research Council. 

7. REFERENCES 

[11 P. R. Adl)y and M. A. H. Dempster. "Introduction to Optimization Methods". Chapman and Hall, 1978 

H. H. Arsenault, Y.-H Hsu, and K. Clmalasinska-Macukow. "Rotation-invariant pattern recognition". Optical 

Engineering, 23:705, 1984. 

E. Barnard and B. Casasemmt. "Invariance and neural nets". IEEE Transactions on Neural Networks, 2(5):498-

508, 1991. 

A. B. Blmatia and E. Wolf. "On time circle polynomials of Zernike and related orthogonal sets". Proceedings 

of the Cambridge Philosophical Society, 50:40-48, 1954. 



Publications 
	 240 

D. Casasent and D. Psaltis. "Position, rotation and scale invariant optical correlation". Applied Optics, 
15:1795-1799, 1976. 

Y. Le Curt, J. S. Denker, and S. Solla. "Optimal brain damage". Iii D. S. Touretzky, editor, Advances in Neural 
Information Processing Systems 2, pages 598-605, Sari Mateo, CA, 1990. Morgan Kaufmann publishers. 

J. G. Daugniaii. "Complete Discrete 2-D Gabor Transforms by Neural Networks for Image Analysis and 
Compression". IEEE Transactions on Acoustics, Speech and Signal Processing, 36(7):1169-1179, 1988. 

S. H. Fahlmaii and C. Lebiere. "The cascade-correlation learning architecture". Iii D. S. Touretzky, ed-
it,or, Advances in Neural Information Processing Systems 2, pages 524-532, Sari Mateo, CA, 1990. Morgan 
Kaufmann publishers. 

A. Krogh and J. Hertz. "A simple weight decay can improve general isationi". In J. H. Moody, S. J. Hanson, 
and R. P. Lippmann, editors, Advances in Neural Information Processing Systems 4, pages 950-957, San 
Mateo, CA, 1992. Morgan Kaufmann publishers. 

G. J. McLachlan. "Discriminant Analysis and Statistical Pattern Recognition". Wiley and Sons, 1992. 

S. J. Perantonis and P. J. G. Lisboa. "Translation, Rotation, and Scale Invariant Pattern Recognition by 
Higher-Order Neural Networks and Moment Classifiers". IEEE Transactions on Neural Networks, 3(2):241-
251, March 1992. 

B. D. Ripley. 'Pattern Recognition and Neural Networks". Cambridge University Press, 1996. 

G. F. Schils and B. W. Sweeney. "Rotationally invariant correlation filtering". Journal of the Optical Society 
of America (A), 2(9):1411-1418, September 1985. 

Y. Shenig. "Fourier-Mellini spatial filters for invariant pattern recognition". Optical Engineering, 28(5):494-
500, 1989. 

Y. Sheng and L. Shen. "Orthogonal Fourier-Mehlin moments for invariant pattern recognition". Journal of 

the Optical Society of America (A), 11(6):1748-1757, 1994. 

M. R. Teague. "Image analysis via the general theory of moments". Journal of the Optical Society of America, 
70(8):920-930, 1980. 

C. Tehi and R. T. Chin. "On Image Analysis by the Method of Moments". IEEE Transactions on Pattern 
Analysis and Machine Intelligence, PAMI-10(4):496-513, July 1988. 

C. W. Therrien. "Decision. Estimation and Classification". Wiley and Sons, 1989. 

H. White. 'Artificial Neural Networks: Approximation and Learning Theory". Blackwell, 1992. 


