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Abstract

In recent years computer technology has advanced to a state whereby large quantities of data
can be processed. This advancement has fuelled a dramatic increase in research into areas of
image processing which were previously impractical, such as automated vision systems for,

both military, and domestic purposes.

Automatic Target Recognition (ATR) systems are one such example of these automated
processes. ATR is the automatic detection, isolation and identification of objects, often derived
from raw video, in a real-world, potentially hostile environment. The ability to rapidly, and
accurately, process each frame of the incoming video stream is paramount to _the success of the

system, in order to output suitable actions against constantly changing situations.

One of the main functions of an ATR system is to identify correctly all the objects detected
in each frame of data. The standard approach to implementing this component is to divide the
identification process into two separate modules; feature extraction and classification. However,
itis often difficult to optimise such a dual system with respect to reducing the probability of mis-
identification. This can lead to reduced performance. One potential solution is a neural network
that accepts image data at the input, and outputs estimated classification. Unfortunately, neural

network models of this type are prone to misuse due to their apparent black box solutions.

In this thesis anew technique, based on existing adaptive wavelet algorithms, is implemented
that offers ease-of-use, adaptability to new environments, and good generalisation in a single
image-in-classification-out model that avoids many of the problems of the neural network
approach. This new model is compared with the standard two stage approach using real-world,

infrared, ATR data.

Various extensions to the model are proposed to incorporate invariance to particular object
deformations, such as size and rotation, which are necessary for reliable ATR performance.
Further work increases the flexibility of the model to further improve generalisation. Other
aspects, such as data analysis and object generatioﬁ accuracy, which are often neglected, are

also considered.
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Chapter 1

Thesis overview

The thesis describes a project to enhance a section of an existing industrial system. A brief,
preliminary, discussion outlines the naivety of this first scheme and proposes a new approach
combining available, and novel, technology to simplify, and to enhance the performance of the
product. To this end, a list of project aims is presented. The approach taken to achieve these
new goals is then explained with reference to each chapter, with a note on why each particular
chapter is important. Finally, the contributions to knowledge, that the thesis accomplishes, is

discussed.

1.1 Thesis background

Automatic Target Recognition (ATR) is the automatic detection, isolation and identification of
hostile objects in a real-world environment. The two main goals of a mainstream ATR system
are, firstly, the detection of all potentially hostile objects in an environment, whilst minimising

the number of false detections, and, secondly, the identification of all detected objects.

A required improvement in both of these ATR performance measures in an existing system,
employed by British Aerospace Systems and Equipment Ltd. (BASE), led to the proposal
of three interesting research topics for the Electrical Engineering department at Edinburgh
University, to be carried out in overlapping phases. The objectives of the project phases,
dictated by BASE, included
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I: Improved rate of correct identification of detected objects, using still, infrared,
images, without greatly decreasing classifier throughput, or increasing module storage

requirements.

IT: Improved detection, and extraction of objects, using feedback, for reducing false

detection rates.

ITI: Improved object classification using both temporal, and three-dimensional object

characteristics.

A fourth phase, using classification to aid object tracking, was also planned and together
this entire project was labelled, by the Edinburgh group, as the OSTRICH project: Object Seg-
mentation and Tracking using a Real-time Infrared Classification Hypothesis. The OSTRICH
system design consists of all the modules required for a fully working ATR system, and was
proposed by the Edinburgh group such that existing BASE components could be used, and that
any new, improved, modules tested in the OSTRICH system, could be easily transferred back

into the BASE system.

This thesis concentrates on Phase I of the OSTRICH project, improving the rate of correct
object identification achieved by the existing BASE classifier. The existing system uses a Multi-
Layer Perceptron (MLP), neural network, classifier designed with object image data segmented
from a database of thermal infrared images. The original proposal for this thesis was to
harmonise work already completed on the recognition system at BASE, with research carried
out in the Integrated Systems Group (ISG) at Edinburgh University on improved classification

through noisy learning in neural network classifiers !.

Unfortunately, as will be explained in detail in later chapters, the original classification
results obtained by BASE were highly optimistic, due to a highly over-parameterised classific-
ation model and inappropriate test image database. The subsequent need for standard image
processing techniques, to generate a set of low-dimensional object characteristics, or features,

invalidated the requirement for research in connection with noisy learning, this area having

IApplied Research project number 82140761,"Noise in Neural Training: Infrared Image
Classification”



Thesis overview 3

been recently investigated [32]. Consequently, a new approach and set of project aims, was
considered. The objective of Phase I though, the BASE aims, remained as set out earlier in this

section.

Before examining the aims of the project it is important to discuss why the particuiar
ATR methodology implemented in this thesis was used in preference to other known systems.
The ATR methodology used in this thesis, as alluded to previously, is based on segmenting
objects from a scene, deriving a set of features and then performing an object classification
based on these features. This is a common approach used in many systems but there are other
approaches, such as model matching, CORT-X filtering and the use of knowledge-bases and
expert systems. [15,96,29,10]. The reasons for choosing the segment-feature-classify approach

is listed below.

1. Each of the approaches have their disadvantages. The approach taken in this thesis could
potentially be confused by decoys, often because of the lack of range data and contextual

- information. In other systems, such as model matching, object occlusion can cause loss
of symbol data, and clutter may produce false symbols and knowledge-based systems
often require basic object detection and shape recognition in order to generate some of

its decisions and, thus again, liable to the same problems as the previous approaches.

2. For these very reasons listed in Point 1 these different approaches are sometimes used in
parallel, and combined as to integrate the positive attributes of each of the approaches,
and minimising the effects of the failures of each individual approach. Therefore, it is
quite acceptable to examine, and improve the performance, of just one of these ATR

methodologies.

3. There are many existing systems that are in use that employ the segment-feature-classify
approach and improvements to the approach are thus immediately beneficial to these

systems.

4. The original BASE system was based on this methodology and continuing with the same

approach allowed a small manageable project to be contained.
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1.2 Project aims

The aims of the project are listed below.
1. To highlight problems with the existing BASE ATR object classification module.

2. To design a replacement classification module for the BASE ATR system. The module
must be able to work on real-world data generated by the detection, and isolation, BASE
ATR stages. Furthermore, the module must not require more storage than the existing

BASE system, nor should its throughput be reduced.

3. To provide improved classification, to be compared, not only with the existing BASE
system performance, but also with the traditional approaches of improving classification
rates. This enhancement is to be done using a single stage classification process, using

image input data, yet maintaining a low number of adaptive classifier model parameters.

4. To design a classifier that is adaptive to new environments and applications. The classifier
should also be easy to generate and have a minimal number of control settings. Traditional

approaches often fail, if performed correctly, in one or more of these characteristics.

5. To analyse the real data provided for the project, and the processes used in generating the

classifier inputs, including determining any assumptions that were made in these steps.

6. To incorporate invariance to size, position, or two-dimensional rotations of the object
image, into the classification model. This ability to continue correctly classifying objects
regardless of particular object deformations is a very important attribute of an ATR

system.

7. To identify potential weakness in the new classification module. This identification must
include analysis of classification failures, and examination of the effects of failure of any
weak assumptions made in the generation of the data. The latter will require the module
to be able to detect non-object, rogue, or inaccurately generated, data from previous ATR

stages.
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1.3 Thesis outline

This thesis is a chronological, and systematic, presentation of the work completed in achieving
the aims set down in Section 1.2. The initial chapters provide background information to the
project, the data used and how it was produced. The thesis then covers the standard methods
for automatically processing the data introduced in the previous chapters. Then, a relatively
new approach for simplifying these methods is reviewed, applied, and extended to improve
both functionality, and performance. This new model, achieving many of the project aims, is
then subjected to more realistic data to fully test its capabilities. A more detailed breakdown

of all the chapters is now provided.

Chapter 2 introduces the various basic techniques involved in pattern recognition and
Automatic Target Recognition (ATR.) Many of these techniques are used in later chapters.
An outline of the OSTRICH project is also provided to clarify the needs and functions of
an improved classification module, as is a description of the raw data that was provided, and
acquired, for the project. The significance of the chapter is that it provides much of the

‘necessary background for understanding why, and how, the project commenced.

The processing of the raw image data, described in the previous chapter, for generating a
set of object databases for classification is described in Chapter 3. This chapter is specific to
the database provided for the OSTRICH project, and covers object segmentation, analysis and
preprocessing. Objects are extracted from their parent images, labelled according to a defined
classification tree, analysed to determine specific object attributes useful for discrimination,
and finally, preprocessed to remove any unwanted characteristics that generate misleading,
or unrepresentative, information. This chapter lists the assumptions that were made when
generating the object data, and is significant as it provides the basis on which satisfactory, and

realistic, solutions can be reached.

Before any new improved classification model can be examined it is necessary to process
the data using techniques currently employed in other systems. The object identification
technique, in use in many classification and ATR systems, currently uses a two stage method of
feature extraction and selection, followed by feature classification [10,13]. This is applied, as

explained in Chapter 4, to the object databases with many popular feature extraction algorithms
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and classification models implemented. This chapter is significant as it provides a set of
benchmark results against which any new ATR classification module can be compared, and
shows where improvements can be made, with reference to specific types of object classification

failures.

Chapter 5 introduces the relatively new, single stage approach, for object classification
that uses adaptive kernel feature extraction combined with a standard linear discrimination
procedure. This is applied to the databases used in Chapter 4. The results are contrasted with
those of the previous chapter. The model is then extended to use a nonlinear discrimination
procedure in an attempt to improve performance further. This chapter is significant as it shows
how to easily generate a classification model that produces good generalisation without the

need for the unwanted complexities of the standard approaches.

The model analysed in Chapter 5 lacks invariance to a required set of object deformations.
This invariance is very important to a real-world ATR system. Thus, Chapter 6 further extends
the work of the previous chapter and attempts two solutions to this invariance problem. One
result is shown to be far superior, and is compared with standard methods for achieving
invariance. This chapter is significant as it extends the knowledge of the new classification

model, as well as satisfying the invariance requirement given in Section 1.2.

Chapter 7 investigates the effect on the standard, and new, classification models when some
of the assumptions concerning the creation of the object database are relaxed. This relaxation
generates far more realistic data than the more idealised data used up to this point. This chapter
examines methods for identifying much of the rogue data that is now passed to the classification
module. This is the preliminary work required for the second phase of the OSTRICH project
that is being completed in parallel with the phase described in this thesis. Also in Chapter
7, the new classification ATR module is put to the ultimate test of flexibility to real-world
environments when it is exposed to a complétely new database. This chapter is significant as

it tests the integration of the new classification model into the ATR environment.

Chapter 8 summarises, and provides the final conclusions to, the thesis.
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1.4 Areas of contribution

Publicised classification results derived from real, infrared, image databases, of the kind used
in this thesis, are scarce. This is often due to the nature of the sponsoring companies products.
Results from databases where there is exceptionally high clutter to object ratios, object vari-
ability, poor image quality, and object obscuration are even less frequently reported. This is
perhaps due to the disappointing classification rates compared with synthetic database results.
This thesis uses such real-world data, and not only applies a relatively new type of classification
algorithm to it, but analyses the practical implications of a non-ideal, classifier-data-generation,

mechanism.

The combined feature extraction and classification model used is not itself novel. However,
as just stated, the application of the model for differentiating between these type of real, and
non-ideal, objects is unknown, at the time of writing, to the author. Furthermore, the combined
model is extended in this thesis, and provides new information, with respect to three important,

and different, aspects.

e The model used is greatly simplified in terms of the feature extraction mechanism,
the form of the mother kernel. Many other authors have adopted a multi-parameter,
wavelet, kernel, without, it seems, testing the possible usage of a much simpler, single,
or dual parameter kernel. This simplification is tested, and analysed, in this thesis

using the real, non-ideal data.

e The linear discrimination algorithm used in the combined model is replaced, and
tested, with a nonlinear classification algorithm, with only an extra layer of processing.
This has been suggested but it has never been applied, or results published, using real-

world data.

e Invariance to size, position, and two-dimensional rotation, is incorporated and tested

in the combined model. Invariance in the new model, as far as is known, has never

been attempted with neither synthetic, nor real-world, data.
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1.5 Review

This chapter has described the project aims and the format of the following thesis. It has

illuminated the areas in which this thesis will uncover fresh results and ideas.



Chapter 2

Automatic target recognition and the
OSTRICH project

Automatic target recognition (ATR) systems are designed to detect, isolate, identify and track
user-defined objects of interest within a potentially hostile environment. This chapter provides
the necessary background for understanding various ATR, and classification, concepts with
particular reference to a specific ATR system. This system is shown to have several fundamental
flaws, each of which this thesis shall address. Alse, a real-world ATR scenario is outlined and
two simple experiments demonstrate that this type of recognition, on real infrared data, is

definitely not as easy as it may sound!

2.1 Recognition

Great White Sharks, contrary to popular belief, have excellent visual acuity. Even so, on
occasion, they attack humans. One theory suggests that sharks mistake the human outline with
that of a seal. In comparison, the retinal ganglion response of the frog [5], performing gross
visual feature extraction, compels the frog to strike at any suspected prey albeit a fly at 10cm or
a plane at 1km. The frog wrongly identifies the prey from a lack of depth information and not
by shape, like the shark. These examples merely illustrate that lack of complete, or misguided,

information can lead to errors in recognition.

These mistakes may seem simplistic but even humans are not immune to errors in visual per-
ception, especially in tasks which tend to habituation or are stressful due to rapidly developing,

or hostile, environments. In these situations humans are slow, unreliable, and vulnerable [131].

9
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These problems are often compounded when the focus of attention undergoes geometrical

distortions, such as scaling, repositioning and often, more importantly, rotation [110].

There became a requirement to develop automated vision systems that were fast, accur-
ate, expendable, and could cope with common geometrical distortions in high risk military
situations, or where accurate, high throughput was required, such as medical imaging for dia-
gnosis [131]. One particular research area that has received a lot of attention, is automatic

target recognition.

2.2 Automatic target recognition (ATR)

The term "automatic target recognition” was coined in the early 1980’s with the development of
the LANTIRN ! system and now represents the specific field of military-based image analysis
and machine vision [102]. Since LANTIRN there have been many ATR related projects
including Honeywell’s PATS project, the SAIRS program, PAIRSTECH, KMBAA, Hughes’
SAHTIRN target recognition system, and the ANVIL program [95,94]. Good introductions
to the historical aspects of ATR, spanning 35 years of research, can be found in articles by
Roth [91], Brown and Swonger [17], Bhanu [10], and two recent special jAournal issues dedicated
to ATR [94,51]. However, to define an ATR system first requires knc;wledge of the expected

ATR environment.

ATR systems typically operate in military environments where there exist many constituent

types of data. In this thesis four components are identified:

e Objects: These are components of specific interest. They are subdivided into particular

categories and influence the action that must be taken by the ATR system.

¢ Clutter: The components that have properties, for example heat radiation, similar to all

classes of objects, yet are irrelevant, and must be rejected by the system with no action

taken.

ILow Altitude Navigation and Targeting Infrared for Night
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e Background: The remaining components of no specific interest on which, again, no

action is invoked.

e Noise: This is the global, disruptive, property of the environment on the other three types

and is dependent on sensor quality, climatic and atmospheric conditions.

The modern ATR system arose as a method for distinguishing and processing these type of
components, and is defined, in this thesis, as a pipelined processor of multi-sensor sequence
data, often including visual and infrared images, to detect, isolate, identify and track objects in
a high risk, military, environment. Within this context, the system has to make decisions, offer

suggestions, or even perform actions, based on two fundamental objectives:

e Primary: To detect all objects, at all times, in a hostile environment whilst main-

taining a low clutter detection rate.

e Secondary: To distinguish between object categories as well as between objects

and clutter.

The most common approach to satisfying these objectives is to subdivide the ATR system
into several distinct, functional modules [10]. Typically these modules, as shown in Figure 21,
include data preprocessing, object detection and segmentation, feature extraction, and finally
classification. This last stage provides outputs to be interpreted, with all other available

information, such that an action can be suggested to an operator.

. Detection and . Feature .
Preprocessing segmentation extraction Classification

Classification
Sensor o | of each object and
data A T T identification of clutter

based on features

Filt(;,red Objects and Set of features

data clutter for both objects
and clutter

Figure 2-1: A common serial ATR system.
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One major drawback of a serial system though is that the output is dependent on the
performance of all preceding modules, even the acquisition of the data. An inappropriate
set of sensors will partially or even completely fail to register an object’s existence making
the problem of detection exceptionally difficult or even impossible. Subsequently, much
consideration has been given in the literature to the object-background separability properties

of sensors in particular environments [91,76,132].

ATR sensors

There are two main types of vision-based ATR sensor; passive and active. Active sensors
transmit electromagnetic energy to illuminate an object surface and receive Doppler shifted
backscatter echoes to generate an image. Synthetic aperture radar (SAR) is a good example
of an active sensor. SAR is a popular ATR sensor due to the relationship between image
magnitude and object range. Unfortunately, active sensors are often susceptible to detection

and countermeasures.

Passive sensors, such as forward looking infrared (FLIR) sensors, generate images based
on the radiation naturally emitted by an object and so are far less detectable. FLIR sensors
typically operate in the 8-12um region of the electromagnetic spectrum, as shown in Figure 2-2,

and react to active thermal signatures. A property common with many man-made objects. This

10 2 10 3 log wavelength (microns)

BGR

Short Wave Infrared (SWIR) Medium Wave Infrared (MWIR)

Long Wave Infrared (LWIR) - Very Long Wave Infrared (VLWIR)

Figure 2-2: A section of the electromagnetic spectrum.

is important in ATR systems as man-made objects are often the components of interest.

There are, of course, considerable drawbacks to FLIR, as given in Figure 2-3, but their
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proven technology still make it popular in modern ATR systems. A description of the history,

construction and operating environments of thermal passive sensors is given by Norton [76].

The choice of ATR sensor is also problem specific. Requirements may be dictated by a
required field of view (FOV), signal-to-noise ratio (SNR), range, atmospheric conditions, day
or night operation, possible countermeasures and many other effects. These are outlined in

Figure 2-3. One, expensive, solution is to combine different types of sensor.

Roth comments that with multi-sensor fusion "The utilisation of multiple sensors to acquire
data for target detection and recognition is a major consideration in significantly improving
ATR performance” [91]. This improved sensor array is not only restricted to image and range
data. Absolute co-ordinate information, external beacons, sensor orientation and climatic

information, such as temperature, may also be beneficial to an ATR system.

Preprocessing

Preprocessing is required to enhance signals before any further operations are performed. Image
enhancement is designed to improve object contrast and reduce noise, as well as to control
image focus, gain and bias. Suitable techniques include median filtering, unsharp masking,

and histogram equalisation [10].

Detection and segmentation

Object detection and segmentation determines the locality of a potential object within a region
of interest (ROI) of an image and extracts it from the background as accurately as possible.
This is the primary objective of an ATR system as stated earlier. An undetected object can not

be classified.
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Feature extraction

A set of features are then derived from the localised sensor data, such that the detected objects
can be classified. These features must be discriminative between and not representative of of an
object. For example, to distinguish between a triangle and a rectangle only requires knowledge
of the number of vertices. Other information, such as size, colour, angles, which would be
required to reconstruct each object are superfluous. Feature extraction reduces the degeneracy
that exists in the sensor data. Furthermore, a small optimal set of features will reduce the
computational load of the actual classification whereas a poor set of features may require a

highly complex and highly parameterised discriminant.

Classification

In this thesis, the term classification will be used with reference to the categorisation of an
unlabelled object based on a set of previously labelled features. In the neural network literature
this is often called supervised classification, and in the statistical literature as discriminant
analysis [98]. Discrimination is the process of dividing the space spanned by the labelled
features into regions such that classification can be performed. The more complex the feature

space the harder the discrimination, often producing degraded classification.

One of the main project aims, as set down in Chapter 1, was to improve the original
classification ATR module. Thus, it is necessary to understand more of the fundamentals of

object classification, before commenting on the original modules performance.

2.3 Object classification

At the centre of a typical ATR system are the feature extraction and classification stages. These
units are required to identify each detected object based on a fixed set of patterns or features that
are derived from each object. This identification is often based on a set of N M-dimensional
feature vectors, d € D = {d,,..,d,,..,dn}, previously labelled with one of C classification
classes, ¢(d) € Q where Q = {wy,..,w,,..,wc} [30,73,56,40,52,28]. Each of these classes

is assumed to have some form of class dependent probability distribution, p(d | wi) and an a
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priori probability of occurrence 2, P(w;). The latter is usually estimated from the occurrence
of a class in the feature database such as V;/N where /V; is the number of occurrences of a
feature vector labelled w; in the database D. If the actual class conditionallprobability density
functions, p(d | wi), can also be sufficiently modelled then the a posteriori probability of any

object, P(w; | d), can be determined from the feature vector using Bayes Theorem which states

d | wi)P(wi)
p(d)

P(w; | d) = o 2.1)
The value of P(w; | d) gives the probability that an object belongs to class w; given a feature
vector, d. The probability of misclassification is minimised by classifying d as of class w;
if P(w; | x) > P(w; | d) V i # j [13,52,30]. However, the form of the class conditional
probability density functions are often unknown. In this case, the task is often reformulated to
estimate C discriminant functions, zx(d), such that z;(d) > z;(d) V d € D for: # j given
that ¢(d) = w;. If z; is set equal to P(w, | x) then the classification decision is based on
a requifement of minimising the probability of misclassifying a new pattern. However, this
1-of-C decision criterion is sometimes not the most appropriate. For example, in ATR there
are situations where there are far more serious consequences of misclassifying an object as a
non-target than as a target. Although this concept, known as Bayes risk [30], is very important
to ATR the simple /-of-C scheme is suffice at this stage of the investigation of adaptive feature

extraction classifiers. More complicated criterions that incorporate risk, for example, can easily

be tested at a later stage.

Various statistical models that have the ability to generate approximations of the z; functions
shall be discussed in the next section. They are divided into two broad categories; parametric
and non-parametric. The next sections shall discuss three types of classifiers from both these

groups. The critical issue in developing all of these models though is generalisation.

Generalisation is a measure of a models ability to classify correctly previously unseen
features [90]. Poor generalisation is sometimes attributed to the discriminant functions having
too much flexibility and learning the labelled data used to generate the model and not learning

the process that generated the data; the underlying probability distributions. Other reasons

ZNotation: In this thesis p() will be used to define a probability density function and P() to define a
probability [13].
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for poor generalisation, and a method for estimating generalisation, is given in the section on

Multi-layer perceptrons.

2.3.1 Linear classifiers

In particular problems, such as when p(d | w;) are normally distributed with identical covariance
matrices, the Bayes decision boundaries are linear. In this case a linear discriminant is required.

These are implemented as single layer networks of the form
Zk(d; 0) = wor + ng, 2.2)

where 0 is a vector containing model parameters, wy, and, wo;. These are sometimes known in

the literature as weights and biases.

The parameter vector estimate, 6, is chosen as to minimise a suitable error criterion, F ().

A commonly used error function is the sum-of-squares error (SSE), and is defined as

N C
SSE®) =Y. {za(dn;0) — tin}? (2.3)
n=1 k=1
where t1,, is the target value for an observation, n, with a /-of-C output encoding scheme where

thn = 1 for k=w, 24)

0 otherwise.

The least squares (LS) estimation method that minimises £(6) is found by either iterative
techniques such as steepest descent or conjugate gradients (see Appendix A), or more directly

using a pseudo-inverse [13].

Linear discriminants are parametric and are a subset of much larger class of functions known
as generalised linear discriminants (GLD’s), which use predefined functional transformations

of input features [28,40,30]. The GLD is defined as

M
21(ds0) = wor + 3 wjrep;(d), 2.5)

=1
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where ¢ is known as the basis function. An example of the GLD is the quadratic classifier
which uses a second order polynomial discrimination boundary. Quadratic boundaries are
Bayes optimal for normally-distributed data when the the covariance matrices differ. An

example of this is given in Figure 2—4.
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Figure 2—4: Optimal quadratic decision boundary for a two class problem.

2.3.2 K-nearest neighbour classifiers

The k-nearest neighbour algorithm examines the nearest k£ labelled samples, according to a
suitable distance metric, for example Euclidean, from an unlabelled point in feature space [24,
52]. If kn, of the k samples are of class m and k,, = maxz{k;} for: = 1, .., C then this point is
classified as belonging to class w,,. Alternatively, this can be considered as measuring k; of the
k samples in a hyperspherical volume of feature space, V/, where either V' or k can be adjusted
to vary the amount of smoothing applied to what is effectively a piecewise linear classifier.
Furthermore, the k-NN estimator of p(d | w;), for class wy,, is defined as k., /N,, V. However,
the k-NN estimator can not be treated as a density function because the integral of the estimator

over the feature space does not sum to unity.

The k-NN algorithm is purely a nonparametric technique and, consequently, has the usual

disadvantages of a large memory requirement and the time-consuming need to re-examine every
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point in the stored database for each object classification. These two problems make the k-NN
classifier impractical for this ATR system, even though there have been many improvements,
such as pruning techniques, in order to reduce the effects [52]. However, it is an excellent

method for quickly testing a set of potential features.

2.3.3 Multi-layer perceptron classifiers

It is unimportant to dwell on the historical issues of multi-layer perceptrons (MLP;S) and other
types of artificial neural networks as it is suffice to say that an MLP is purely "one of a class
of flexible non-linear regression methods which can be used to classify via regression” [89].
They are a method of parameterising a fairly broad set of non-linear discriminant functions
and are in fact are universal approximators in that given sufficient complexity and data they
can approximate virtually any function [135]. For background information on MLP’s, and
neural networks in general, there exists an extensive literature [13,68,92,8,54,100]. A more
comprehensive viewpoint of neural networks, especially MLP’s, from a statistical perspective

can be found in [98,89,90,22].
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Figure 2-5: Architectural diagram of an MLP.
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Figure 2-5 shows the architecture of the standard MLP. They comprise, typically, of three

layers, known as the input, hidden and output layers, and are defined by the equation
H
Zk(d; 9) = Wok + ijkgo(woj + Wfd) (2.6)
J

where the set of discriminant functions, z,, are characterised by the parameter vector, 6, which
is comprised of all the weights and biases in the network. The hidden layer non-linearity, ¢, is

usually the logistic (sigmoid) function, given in Equation 2.7 and plotted in Figure 2-6.

o(z) = 1/(1+ ), @7

As with the linear classifier, the parameter vector contains the, hopefully small number of,
adjustable weights and biases for the model. When estimating these MLP model parameters it
is important now to consider both the error function but also the amount of flexibility allowable

in the model. There have been many approaches taken to this, data-dependent, problem of

P(act)

Figure 2—-6: The logistic function commonly used as the MLP non-linearity, ¢.

model complexity [13,90]. Too little flexibility causes model bias but too much results in
variance leading to over-fitting of the data and subsequently poor generalisation. An example
of this bias-variance dilemma, known as Occam’s Razor, is to attempt to fit a sampled quadratic

function with a linear model (bias) or a polynomial with degree greater than two (variance.)
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Another example is given in Figure 2-7. The linear fit has not enough flexibility to match the
Bayes optimal boundary, which the highly flexible non-linear attempt has over-fitted, resulting

in a high classification rate for the training data but poor generalisation. Two ways used to

+‘H'+

Feature 2

Class1 ©
Class2 + |7

Feature 1

Figure 2-7: Too little, and too much, flexibility resulting in model bias and variance.

control model complexity in this thesis are varying the number of hidden nodes, H, using early

stopping to halt optimisation [90] and the regularisation technique known as weight decay [64].

To measure generalisation data is randomly split into three separate sets of data; training,
validation, and testing. In this thesis a split ratio of 2:1:1 is used. Model parameters are
estimated using the training data. The validation data is used to determine when to stop the
optimisation process. The method of early stopping halts the optimisation when the validation
set error begins to increase, suggesting over-fitting. Usually though optimisation is performed
twice, optimisation stopping when the minimum validation errdr of the first run is achieved.
Generalisation is the classification rate achieved by the model on the independent test data set.

Experiments are often repeated several times with different random splits of the data.

Weight decay, which is equivalent to ridge regression, as shown in Equation 2.8, adds a
term to the error term, E, such as to penalise large weights in the model and uses a variable,
A, to control the amount of regularisation. This has the effect of constraining the hidden node

inputs to operate in the more linear region of the sigmoid non-linearity thus controlling the
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effective model complexity.
E'(8) = E(9) + % > 62 (2.8)

Earlier the LS estimation method was used for determining parameter estimates for the
linear classifiers. The choice of LS is attractive as the derivatives of F, with respect to the
weights and biases, can be backpropagated from output to input by use of the chain rule. This
can be extended to the matrix of second derivatives, known as the error Hessian, H. Both
the Hessian and the first derivatives can be used in the iterative optimisation techniques used
minimise F for the MLP (see Appendix A). Unfortunately, there are drawbacks to LS. These -
include the fact that LS is not particularly suited to fitting a function with target values of O or
1 and is also not particularly robust to outliers in the data [89]. Most importantly though is
that the goal of classification is to minimise the misclassification rate and not the SSE error.
However', for reasons of simplicity, ease-of-use and that the fact that historically it has been

shown to work well, LS will be used in this thesis.

The MLP is flexible, adaptive, and requires significantly less storage than its k-NN non-
parametric rival. The decision boundaries are continuous and non-linear, though it is difficult
to encapsulate classes in feature space. Finally, its simple, parallel, structure allows for high

classification throughput in an easily implementable format.

2.3.4 Other classifiers

Two other supervised classifiers used in this thesis include radial basis functions (RBF’s) and

multivariate adaptive regression splines (MARS).

Radial basis function neural networks approximate functions using linear combinations of
non-linear basis functions, ¢, centred in feature space [16]. They are identical to the GLD’s
discussed previously in Equation 2.5 with the exception that the nonlinear function, ¢, is

typically a Gaussian basis

—de 112
@;(d) = emp{—Ld———d—gj—J—} ' (2.9)

2

where do; are basis centres in feature space, and o; the width, or coverage, of the basis. These

extra parameters can be included in the model parameter vector. In this thesis a fully supervised
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approach is taken to estimating all the parameters in the model at the same time, as opposed
to the two stage unsupervised approach [13]. This is purely for reasons of simplicity. The

advantage of the RBF network is that they can easily form closed decision boundaries.

The other classifier used in this thesis are the MARS classifiers [37]. Itis a popular statistical

classification model and is defined, like the RBF, with a nonlinear basis, in this case

P;
pi(d) = [T épi(d) (2.10)
p=1

where the degree is the largest value of P; and ¢ are, in this thesis, piecewise cubic splines, as

suggested by Friedman, for smoothing decision boundaries.

The classifiers considered, and implemented, in this thesis are but a few of the possible
models available and were mainly chosen due to their ease-of-use, implementability, and
current popularity in the research literature. Other well known classifiers include correlators,
projection pursuit regression, logistic discriminants, classification trees, piecewise linear, and
many unsupervised techniques. There are also many alternative approaches to estimating
mode] parameters such as MacKay’s application of of Bayesian inference techniques to neural
networks [69,74]. However, there was insufficient time in the project to examine all these types

of classifiers and estimation methods.
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2.4 The OSTRICH ATR system

Figure 2-8 illustrates the ATR model proposed for the Edinburgh OSTRICH (Object Segment-
ation and Tracking using a Real-time Infrared Classification Hypothesis) project. This model
allowed for the use of the existing modules available from BASE and provided scope for future
work. The model is simplistic in comparison to the BASE system but allows for testing of
new modules, which can then be migrated to the BASE model. The modules that have been

constructed to this date, or are currently under development, are shaded in the Figure.

Phase I of the OSTRICH project involved improved feature extraction and classification of
large, infrared, objects and clutter, O7*. This is the work described in this thesis. Phase II seeks
to improve object segmentation using a resegmentation technique involving localised classi-
fication feedback [85,86]. Phase III originally considered temporal classification issues but is

now concentrating on the three-dimensional aspects of objects for classification purposes [23].

24.1 System overview

Each infrared image, I, is enhanced using a separable median filter. This reduces speckle
yet preserves object edges. Segmentation of these images then generates both small, O, and
large objects, O}, as well as positional, X,,, and object range data, D,,. Range is extracted, for
example, from a range image, R,,. The objects of small pixel size, determined by a suitable
threshold, can not be classified by shape and must use high level information, Q,,. This is a
subset of the contextual data, S,,, derived from knowledge bases, K, co-ordinate and climatic

data, C,, and reference points such as horizons and beacons, B,,.

The classification of all the objects and clutter provide both probabilities of correct classi-
fication, F,, and also measures of novelty, /V,,. Phase III will also hopefully determine object

poise, A,.

A parallel process tracks the objects over series of frames using positional data and previous

classification results. Tracking is an important issue in ATR. Significant information can often
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Figure 2-8: System overview at n** time step
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be derived by measuring an object’s position (x,), velocity (X, ), acceleration (X, ), and trajectory.
Reisher provides a summary of object trackers [87]. Information of this type is sometimes

enough to identify an object.

All information is collated by the interpretation module. This could be based on an Al
framework, such as an expert system, and combines the contextual, temporal, positional, and
classification results to form an overall vector of possible actions for each object,‘ Zy,. The
system may decide to dismiss the object classifications as irrational with the other information

dominating.

However, the principal module considered in this thesis, covering Phase I of the project,

was the classification unit, and how classification performance could be improved.

2.4.2 Original classification module

The original BASE neural classifier is a non-linear, three layer structured MLP with various
object images passed directly to the neural network inputs from the segmentation stage. This
implied that no separate feature extraction stage was required as the features were derived
directly from the actual objects. This classifier had a high throughput, was reasonably simple
to implement, and produced excellent classification results with real infrared object data [50,

49,48]. So, why was there a requirement to improve the current module?

2.4.3 Problems with the original module

The neural classifier BASE implemented, though appearing to provide excellent classification

rates, was flawed in several respects:

1. There was no consideration that the discrimination boundary was, perhaps, linear. The

non-linear MLP classifier would overfit the correct solution.

2. The segmentation and detection stages were assumed ideal and were manually adjusted

to generate unrealistically well-segmented data.
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3. The model was underdetermined. The input layer typically consisted of a 16x16 pixel
array, with between 16 and 512 hidden layer units and 5 outputs. With one particular
database a model was used that required a total of 133,636 adaptive model parameters to be
estimated. These parameters were estimated with typically 2000 labelled samples! Even
with the self-correlation that exists within the images, which may partially alleviate the
underdeterminedness, the network was acting as a storage element and not generalising

to the problem.

4. Due to the lack of data the labelled samples were randomly split into only two separate
sets using a uniformly distributed source. The first set was used to derive the model
parameters and the second to validate the model during optimisation. The latter was used
to determine when optimisation was complete but also used to measure classification
performance. The use of no independent test set meant the results were biased. They
were biased even further because the results were only based on one random split of the

data. This indicates poor generalisation.

5. The labelled data was derived from continuous image sequences. This meant that objects
in one frame were highly probable to have a corresponding twin object in the preceding
frames. When splitting the data there was then a high likelihood that objects would be

split across the sets. Once again this produces biased results, again poor generalisation.

6. There was only rudimentary scaling invariance built into the classifier which meant when
objects rotated, or existed any position slightly away from the norm, the classifier failed

. to correctly identify the object.

2.4.4 A solution

The previous section outlined several problems with the original BASE classifier. This thesis
attempts to address these problems by designing a new ATR classifier using both fixed and
adaptive feature extraction techniques to significantly reduce the number of adaptive model
parameters, maintain good classification rates, incorporate invariance, whilst still maintaining

the attractive MLP architecture.
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2.5 Databases available

This section describes the data available for testing the standard algorithms, discussed in this

chapter, and any new classification module proposed. The data includes:

e Simple test data
e NIST digit database

e Forward-looking infrared images

- FLIR seascape imagery
- FLIR land-based imagery

2.5.1 Simple test data

These databases include the Fisher iris data and multivariate Gaussian. The Fisher iris data
contains 150 examples of various features, such as sepal length, of three different varieties of
the iris plant; Iris Setosa, Iris Versicolour and Iris Virginica [34]. This is a classic database used
to test discrimination. Another simple data set with a model for the underlying distribution
is based on the multivariate Gaussian. A method for generating M-dimensional Gaussian

distributed class conditional data, via Equation 2.11, can be found in [83],

1

AL
P( d | wm) = Nm ; (27r)(M/2) I Zm |1/2

exp{~0.5(dom — )" ;! (dom — di)}  (2.11)

where d is the data vector, w,, the required class, N,, the number of examples in the class, dg,,

the data class mean, and finally, X,,, the class covariance matrix.

2.5.2 NIST digit database

The National Institute of Standards and Technology (NIST) database, fI3, is comprised of 3,471
examples of ten handprinted digits from 49 different writers [136]. The samples were collected

from a series of handprinting sample forms by the U.S. Bureau of the Census with geographical
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sampling according to population density within the United States. The forms were scanned at
300 pixels per inch and stored at 8 pixels per byte. Each character on the form was segmented
and spatially normalised to a size of 32x32 pixels. A set of examples from the NIST database

is shown in Figure 2-9.

O/ d3Y
S bi18 %

Figure 2-9: NIST: Examples from the fl3 database.

The NIST database was chosen deliberately as it was very different from the BASE data

and provided a different application on which to test the flexibility of a new classifier.

2.5.3 Forward-looking infrared (FLIR) images

Two sets of real, infrared, image databases were provided by BASE to test the improved
ATR classification module. However, only the primary database was readily available to the
Edinburgh group, and this was the database used for the majority of the experiments. The
second database was used to test the adaptability of the system to new environments. Both

were captured with a military thermal sensor.

The thermal sensor used was a class II Thermal Imaging Common Module (TICM II).
The TICM is a mechanically scanning, infrared camera operating in the 8—12xm region of
the electromagnetic spectrum. Using the camera it was possible to capture 512x512 pixel,
8 bit resolution, image frames consisting of two interlaced field signals. Unfortunately, the
interlacing of these fields was not correctly synchronised with this camera but this was solved

by considering only single field data, which effectively halved the height of the images.

Another problem was that when objects left or entered the FOV the TICM compensated by
altering the thermal window, the linear operating region of the camera, to maintain a constant

signal energy in the image. This causes the apparent heat of objects remaining in the scene to
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change. Conversely, fixing the position of the thermal window led to object saturation at the

extremities.

One particular set of 608 TICM infrared images were extracted from a total of 7 hours
video footage of various coastal locations around Falmouth, S.W. England [114]. The images
include a variety of sea-faring crafts taken from a constant depression angle and at many
different perspectives. The craft were easily detected due to their internal heat sources, and
the hot summer weather. The 608 scenes were chosen to minimise the probability of object

repeatability, and an example of one of the images is shown in Figure 2-10.

ion of interest (ROIY

Figure 2-10: Seascape: Typical infrared database scene.

An example of the required output of the system to be developed is shown in Figure 2—11.
In this example different types of class are labelled with different colours by an automatic
classification system. The sail boats are indicated by the colour green, the motor boats blue

and the buoys red. The system fails in two particular cases and these are denoted by grey

colouring 3.

3This is an actual response from the OSTRICH system.
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Figure 2-11: Seascape: Example of the required classifier response.

2.6 A nontrivial problem

From a human perspective identifying these type of objects contained in the seascape database
is an apparently simple task. There is an abundance of information immediately available
contained in the scene, as well as, in the actual object. Figure 2-12 though demonstrates
how adding different levels of information can significantly ease recognition and reduce the
probability of misclassification. In Figure 2—12(a) there exists no scaling, rotational, positional
or greyscale information. Adding greyscale data and correcting object orientation, as shown in
Figure 2—-12(b), is an improvement as information has been added but the object is still difficult
to identify. This is the type of object data that will be presented to the classifier. However,
Figures 2-12(c) and 2-12(d) demonstrate the benefit of extra contextual information, such as

the surrounding objects, the object range, and previous classifications.
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Figure 2-12: Seascape: Different types of information

32
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As a further demonstration of the nontrivial nature of the problem a set of experiments was
performed on eight people, one of whom was deemed an expert at classifying objects extracted
from the sailboat image database. The other subjects had previous exposure to sample frames
from the data and their own mental images of typical seascape objects. In experiment A
subjects were each shown 100 random selections from the object database, an example is given
in Figure 2-12(b), and asked to classify each object as sailboat, motor boat, buoy or ’anything
else’. In experiment B subjects were shown 100 randomly selected objects situated in their
original frame and again asked to classify the objects. The results are given in Table 2-1 and

sample confusion matrices for experiments A and B are given in Table 2-2.

Subject Experiment A Experiment B Improvement

(%) (%) (%)
Expert 92 98 6
I 87 92 5
II 78 89 11
I 76 83 6
v - 71 93 22
\% 69 77 8
VI 63 92 29
VII 58 89 31

Table 2-1. Seascape: Human subject classification results.

Correct class Correct class
Guess  Sail Motor Buoy Else Guess  Sail Motor Buoy Else
Sail 26 0 0 0 Sail 35 0 3 0
Motor 4 20 2 1 Motor O 21 0 2
Buoy 7 0 5 1 Buoy 0 0 13 0
Else 3 8 3 20 Else 0 8 1 24

(a) Experiment A (71% correct) (b) Experiment B (93% correct)

Table 2-2. Seascape: Confusion matrix for human classifiers.

Table 2—1 shows a marked increase, as expected, in classification performance in experiment

B where the extra contextual information is provided to the subject. Without contextual
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information many of the misclassifications are between buoys and sailboats, and also between
motor boats and clutter. This is an early indication of the problems in discriminating objects
within the seascape database. An important final note is that even experts classify incorrectly
occasionally, and that perhaps a module that will provide an assured 100% accurate classification

rate will not be possible!

2.7 Review

This chapter has outlined various concepts concerning pattern recognition from both a statistical
and also an overall ATR system perspective. The OSTRICH system was introduced as an
example of such a system and several problems, that will be addressed in this thesis, were
addressed. It has also outlined the main problem of identifying infrared objects in the seascape
images and remarked on the simplicity, or not, of object recognition. The next chapter processes
and analyses the seascape image database in an attempt to automatically detect and extract

objects for classification.



Chapter 3

IR object segmentation, analysis and

preprocessing

To design an enhanced object feature extraction and classification stage for a real-world ATR
system required explicit knowledge of the data the system, typically, would encounter. This
included the type of environment, the definition of an object, their attributes and qualities, how
they were normalised, as well as, their detection, and isolation from any background sensor
data. Other issues included any assumptions made in the generation of the objects, and how

accurately these operations were performed.

This prior knowledge is not only helpful, but often essential in guiding a designer to realistic
solutions and conclusions, and often is completely ignored in many recognition systems. The

importance of this type of information is listed below.

e Provides preliminary guidance on the system design. For example, what type of sensor to
incorporate for reliable object detection,or what features may prove successful in 'classifying
the objects, and which will be bound to fail, due to a known preprocessing operation.

e Relates system performance, and output, directly to tangible, possibly physical, object charac-
teristics, and consequently allows feedback into the design. For example, a flower classification
system may fail to discriminate between two similar roses because colour has not been included
as a feature. Also, it allows for the reasoning of individual object classification failures, such
as when attempting to identify a rose with no petals.

¢ Identifies potential problems for later processing stages, for example, one highly populated
class of object may dominate classifier parameter estimation.

e Alerts a designer to check the effects of failures in any of the assumptions made in the

generation of the objects. For example, a particular climatic season may have been assumed.

35
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This chapter details the prior knowledge that was available from the seascape database, and
is divided into three sections; segmentation, analysis, and preprocessing. Figure 3—1 shows

how this relates to the OSTRICH ATR system, outlined in the previous chapter.

Figure 3—1: OSTRICH: Creation of an object database.
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3.1 Object segmentation

Segmentation is the process of detecting, isolating and extracting sections of interest in a
data signal for further analysis. For this to be feasible, these sections must possess some
form of distinguishing localised homogeneity. For example, in an IR-based ATR system, this

homogeneity exists as a strong thermal signature typically emitted by a man-made object.

In any purely object-based automated recognition scheme, the ability to accurately perform
this segmentation process, such as identifying single word units from speech (phonemic isol-
ation) or handwritten characters from a page of written text (field isolation), is fundamental
to the success of any subsequent analysis, for the only indicators of object identification,
given an uninformative background for all objects, are encapsulated within the segmented
boundary. Shustorovich and Thrasher state, in their application of character recognition, that

"....segmentation problems account for approximately 70% of all classification errors.” [112]

So, for the purpose of this thesis, the segmentation system was not completely automated
and the segmentation parameters were adjusted manually, on a frame by frame basis, in order
to produce as many accurately segmented objects as possible. Therefore, a simple gradient
based operator, a Sobel filter, combined with various morphological processes, was sufficient.
But to test the recognition system with more realistic data where the segmentation process is
automated and non-ideal, a secondary object database of poor segmentation quality was also
generated. This secondary database was created in parallel with the accuratély segmented data,
as within each frame it was exceedingly difficult to set the segmentation parameters such that

all objects were correctly extracted.

The following sections outline the Sobel segmentation algorithm, the generation of the
seascape object databases and some specific problems that were encountered with segmenting

objects from this type of image database.
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3.1.1 Sobel-based segmentation

The Sobel-based segmentation module, depicted in Figure 3-2, was designed for IR image
segmentation, and was implemented in the OSTRICH system [114,115]. It consists of four
basic processing units; Sobel intensity discontinuity detection, boundary detection, object

determination and filtering.

Many such segmentation systems rely upon discovering the similarities and discontinuities
that occur within an image, f(z,y), where strong edges denote object boundaries. The Sobel
filter is an image gradient operator and is used for edge detection [46]. It assumes regional
homogeneity around transitions, with the magnitude of the local derivative operator, V f(z,y),

used to detect the édges. This operator is defined as

0f(z.y) 0f(z,9)]" r
Vi(z,y)= : =[H, H,]" . 3.1
The magnitude of V f(z,y), usually is approximated by the sum of the magnitude of two
directionally-dependent local derivative operators, H,, and H,, which are calculated by passing
the pair of 3x3 spatial masks, shown in Figure 3-3, across the image. These masks are known

as Sobel operators, and the resulting transformed image is known as an edge map.

Generating edge maps with the seascape image database produced its own particular prob-
lems, especially when processing objects that were near, or even straddled, strong natural edges
such as an horizon, or shoreline. These edges, erroneously, would be treated as part of the
required object. Careful selection of the segmentation parameters though was not sufficient to
minimise the effect of these edges, so a vertically orientated, low pass filter, shown in Figure 3—
4, was applied to the edge map. This filter reduced the edge strength of very thin horizontal

lines, such that later processes were able to remove the horizons completely.

Once the edge map was generated, it was necessary to detect the strong edges that denoted
object boundaries. A two-step process was applied. First, a grey-value histogram based on the
edge map was created and using a suitable threshold, the top percentage of edge pixels were
set to unity, the rest to zero, generating a binarised version of the edge map. The application
of this method to the seascape data was a crude but effective step, though choosing the correct
threshold value proved to be difficult. To ensure that all objects in an image were detected

and extracted, a reasonably high threshold was set but this subsequently extracted significant
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Figure 3-2: OSTRICH: Sobel segmentatioh module.
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Figure 3-3: Sobel masks for generating H, and H,,.
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Figure 3—4: Horizon filter.

amounts of clutter to process and, more importantly, introduced the possibility of objects in near
proximity merging. Conversely, setting the threshold too low would lead to under-segmentation

or, even worse, undetected objects.

There are many, more standard, approaches for generating binarised edge maps. One
approach includes the local processing of the edge data using both derivative magnitude,
|V f(z,y)|, and directional, V f(z, y), information. The second approach is global and uses
techniques such as the Hough transform or graph-theoretic principles [58]. The OSTRICH
method was already available and there was no time to test these standard, more efficient,

algorithms.

Next, the binarised edge map was operated on using an 8-way directional edge walker.
This morphological process identifies an object as a connected group of unitary pixels in the
binarised edge map. The edge walker makes the assumption that if the central pixel in a 3x3 grid
is unitary then that pixel is part of the same object as any other unitary pixel in the surrounding

8 pixels. Again, this was crude but effective step with the seascape data.

Once detected the interior of each closed boundary binary object was filled. This generated
. an object mask which was subsequently tagged with an identification number. Then, each

tagged object was bounded by the smallest possible rectangular box into which the object
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could fit inside. This structure is termed a bounding box, and is characterised by two image
co-ordinates. The bounding box vector, consisting of all the bounding boxes created in a
particular frame, was then filtered in order to remove exceptionally large and small objects, as
well as, objects with aspect ratios too thin or too wide, under the assumption that these objects
were irrelevant. Finally, the tagged binary objects and the revised bounding box vector, were
combined to extract, from the original frame data, a vector of rectangular, grey scale, object

images, with their associated binary foreground masks.

With the seascape images the segmentation process parameters were chosen to extract
particular types of raw pixel object data, namely sea craft. Typical values for the segmentation
parameters, found by trial and error, are given in Table 3—1. These settings on a typical frame

generated 40 objects, of which approximately 50% were segmented correctly.

Segmentation parameter Value
Edge histogram threshold 4%
Minimum bounding box size 30

Maximum bounding box size 10,000
Minimum aspect ratio 0.125

Maximum aspect ratio 8

Table 3-1: Typical segmentation parameter values.

This data was then hand labelled and the procedure for doing this is detailed in the following

section.

3.1.2 Hand labelling of segmented objects

To design and test classification algorithms it was necessary to possess a set of correctly
labelled objects typical of those to be encountered in the final working environment. For the
seascape image database the objects were labelled according to the tree structure depicted in

Figure 3-5 [114].

Figure 3-5 shows objects divided into 4 main categories or classes: sailboat (class 0),

motor boat(1), buoy(2) and clutter(3). In the seascape image database sailboats were found to
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Figure 3-5: Seascape: Classification tree for the object databases.

dominate and most of the sequences contained modern sailboats, either competing in races or
cruising the shoreline. These modern sailboats varied little in basic design but the ability to hoist
or lower one or more sail could alter their shape significantly. Three sail states were considered
adequate: no sail, full sail (all sails hoisted) and half sail (only main sail.) It was also possible
for the sailboats to change considerably in shape by rotating out of the image plane. Thermally,
long exposure to the sun, as in racing, or use of an inboard motor caused heating and easier
detection. However, the reflective nature of white sail sheets, often a large percentage area of
the object, made heat absorption very difficult and led to sails being hardly distinguishable from
the background; a difficult segmentation task. Compounding this difficulty, a large thermal
gradient existed between the hot hull of the boat and a very cold sea. The warmed wash around
a moving boat led to further difficulties in shape definition. Lastly, it was usual for the cockpit

of the boat, situated at the rear, to be the hottest section of the boat.

The motor boats existed in various shapes and sizes, ranging from simple motor dinghies
to large cruisers and ferries. They were typically very hot, oblong in shape with a vertical

protrusion, a cabin or perhaps a sailor, at the rear. Conceptually, each could be thought of as
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an horizontal L. Easy segmentation was hampered only by long, thin trails of wash generated

by the boat. This was countered by the horizon filter in the segmentation algorithm.

The buoys fell into three distinctive categories: bell, ball and as vertical markers, or
rods. They did not change shape with perspective. Mostly they were small and well defined.
Unfortunately, in basic shape, at low resolution, they were easily confused with certain types
of sailboat. Their distinguishing attribute was a significant thermal gradient down the buoy, the

tip of the buoy being the warmest and the base, being near the water, the coolest.

The final class was the clutter class. Clutter was any object that the segmentation process
extracted which was deemed, by definition of the project, uninteresting. It was often localised
in space, but not necessarily in frequency, and essentially, a form of noise. Examining the
clutter generated by the seascape database it was found that many were short, and wide, for
example, the wash from boats or a section of coastline. One objective of a segmentation module
is to minimise the occurrence of clutter whilst detecting all the objects of interest. Of course,
with the sensor used in this project, it was impossible to reject all clutter because clutter could
easily possess a strong thermal signature, as well as, be suitably sized. In fact, no attempt was
made to improve clutter rejection in the segmentation module as this data would be required to

test classifiers for their clutter rejection capabilities.

Clutter existed in two distinct subclasses; non-transient, and transient. The non-transient
clutter were objects that remained stationary (for example, buildings), decayed over time (for
example, wash) or could be tracked (for example, seagulls). All had some specific recognisable
form. The transient clutter was assumed to be removed by a temporal classification stage, of

no concern in this thesis.

Figure 3—-6 shows the frequency of occurrence of each of the objects drawn from the 4003

objects extracted from the 608 seascape images.
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Figure 3-6: Seascape: Subclass populations of all 4003 segmented objects.

3.1.3 Confirmation of the labelled data

These manual classifications were confirmed by an independent human expert and 161 (4.0%)
objects were found to be manually misclassified by the original labelling. However, this
included 112 objects that were comprised of multiple, connected, objects and originally clas-

sified as clutter. These were re-labelled as badly segmented objects.

Ultimately, only 19 objects were completely discarded due to irreconcilable indecision over
correct classification. There remained 3028 non-clutter objects, and they were assumed to be

all correctly classified. This confirmation process highlighted two important points:

e Care must be taken in creating the original labelling scheme.

e Human classifiers are not infallible.
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3.1.4 Seascape segmentation problems

As previously stated, two separate object databases were created from all the extracted object
data. The first database contained the accurately segmented objects, for classifier experi-
ments, whilst the second database consisted of clutter and poorly-segmented data. The poorly-
segmented objects were created due to the lack of localised segmentation for each object as

global segmentation parameters were not suitable for every object in a frame.

One common type of segmentation failure was non-closure. This was caused by an inap-
propriate choice of segmentation edge histogram threshold and was dominant in the sailboat
class because of the lack of definition between the white, reflective, hull and sails, as mentioned
before, and the background !. The edge map was subsequently not strong enough to denote an
object boundary, and this led to the edge-walker unable to form a closed object. An example

of non-closure is given in Figure 3-7.

Figure 3-7: Seascape: An example of the non-closure segmentation problem.

There were, of course, many other problems associated with this type of segmentation and
image data [10]. These included object overlapping, similar to the problem of connected letters
in character recognition, as well as horizon interference, frame interlacing, object saturation,
wash from boats, and ill-defined boundaries. These problems manifested themselves as either
wrongly sized bounding boxes (external segmentation) or distorted binary masks (internal

segmentation), of which non-closure was an extreme case.

These problems will exist when the segmentation process finally is automated in a real-

world system, even with an improved algorithm. Hence, to test the ability of the system to

In FLIR it is common for parts of objects to be colder than the background [10].
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identify inaccurate segmentation, all the objects in the second database were labelled, not only
with their object class, but also with a measure of segmentation accuracy. Unfortunately, there
was no time to develop a quantitative measure of segmentation accuracy, so a qualitative score,

based on experience was implemented.

The objects were classified by both their internal (IN), and external (EX), segmentation
quality with a score between 0 and 3: good segmentation (0), too large (1), too small (2) and
exceptionally poor segmentation (3). The results for the sailboat, motor and buoy classes are
shown in Table 3-2 with the final matrix representing the total for all three typés of object. The
database of well-segmented objects was determined by the number of objects with both good

internal, and external, segmentation (INO EXO0).

Sail Motor

IN IN
EX 0 1 2 3 Total EX 0 1 2 3 Total
0 738 169 107 486 1500 O 533 45 11 75 664

1 4 15 7 44 110 1 59 10 1 10 80
2 23 28 18 128 197 2 2 0 1 8 11
3 16 4 1 17 38 3 1 1 0 3 5

Total 821 216 133 675 1845 Total 595 56 13 96 760

Buoy All

IN IN
EX 0 1 2 3 Total EX 0 1 2 3 Total
0 338 47 6 7 398 0 1609 261 124 568 2562
1 8 13 0 2 23 1 111 38 8 56 213
2 0 1 0 0 1 2 25 29 19 136 209
3 0 0 0 1 1 3 17 5 1 21 44
Total 346 61 6 10 423 Total 1762 333 152 781 3028

Table 3-2. Seascape: Segmentation quality of all non-clutter objects.

The results showed some interesting statistics specific to the database and segmentation
process: non-closure of sailboats (EXO0 IN3 [26% of sail class]), elongated motor boats due
to wash (EX1 INO), and loss of sail and mast with sailboats (EX2 INO). The last-mentioned
was especially interesting as a sailboat without a mast is effectively a motor boat and would be

misclassified.
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The results also determined the amount of well-segmented data available. If the following
stages of the ATR system were not to use the internal object mask, and only require good external
segmehtation, there would be 2562 well-segmented non-clutter objects available. However,
if the internal mask was needed this would reduce the well-segmented database to only 1609
objects, 53% of the original raw database. The latter case is summarised in Figure 3-8 where
it is shown that sailboats, with their white sails, thin masts, and high probability of straddling
strong natural edges such as horizons, were the hardest class of object to segment, and most

prone to segmentation failure.
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Figure 3-8: Seascape: Review of the 4003 segmented objects.

For completeness, the following section lists some of the other segmentation algorithms that
were available. Many of these processes could have provided improved segmentation quality
but as stated earlier using the Sobel-based approach allowed for the generation of as much
rogue data, as well-segmented data, in order to fully test any new ATR classification system;
under the assumption that any real ATR segmentation module will always produce some rogue

objects.
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3.1.5 Other segmentation techniques

There are many techniques for performing object detection and segmentation. Sobel-based
segmentation, which performs both these actions, works best on images with sharp intensity
transitions and relatively low noise. Zero-crossing operators such as the 2-D Laplacian of a
symmetric Gaussian can offer reliable edge location and tend to perform better where edges

are blurred, or in noisy images. However, these have a much higher computational cost [46].

A good introduction to modern segmentation techniques can be found in a review by Pal
and Pal [4]. These include simple grey-level histogram and thresholding approaches, as well
as spatial filtering, boundary-based approaches, clustering, template matching, motion-based

routines, fuzzy sets, Markov random fields and the use of neural network architectures [59,4].

There have also been many approaches to the specific problem of ATR segmentation
utilising either single frame with range data or more advanced motion-based, multi-sensor,
systems working on sequences of multi-spectral data [10,132,79]. The actual algorithms
range from simple spatial filters, wavelets or texture analysis to more complicated, and often
neural techniques, such as Ruck’s Doppler segmentation; Tong’s range segmentation algorithm
utilising conditional neighbourhood filtering [ 129]; scanning supervised learning segmentation;

and many cortical-based models.

There are also many methods purely for detecting an object. These include the hit-miss
transform (HMT), wavelet transforms (for example, Haar) and hierarchical distortion-invariant

filters [18].
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3.2 Object analysis

There were many ways in which to characterise the seascape objects. Information could be
representational, describing the attributes of a particular class, or subclass, or discriminatorial,
describing the differences that exist between classes, or subclasses within a class. At the
start of the chapter it was stated that in order to design a classification system information
of this type could be very beneficial. This section describes the empirical measures that
were employed to characterise the well-segmented seascape objects. These measures hoped to
highlight the similarities and disparities that exist between objects in the database, noting useful
discriminatorial features, and identifying sources of misleading or over-optimistic information.
Table 3-3 lists the features found useful for describing the well-segmented seascape objects
in this way. The characteristics were divided into five levels, according to the type of object
data from which the features were derived. These levels included bounding box, object outline,

binary mask, grey-level pixel data and abstract level.

Bounding Box Outline Binary Grey Abstract
Width Bending energy % foreground Centre of mass Rotation
Height Compactness Symmetry Temporal

Aspect ratio Elongation Pixel value
Corners Texture
Histogram

Table 3-3. Seascape: Object characteristics divided into five levels.

3.2.1 Bounding box analysis

This basic level of analysis provided information regarding an object’s position, population
and relative size. The position of an object, either relative or absolute, itself can not provide
directly any clues to object identification but can be used in later ATR interpretation stages,
combined with knowledge base data and tracking information, to improve greatly classification

reliability. The number of objects detected in a frame was also irrelevant for individual object
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classification. Though, as with object location, could possibly provide information to the ATR

interpretation stage leading to a different course of action being taken.

The relative size of all the well-segmented object bounding boxes in the seascape database
is given in Figure 3-9. The height versus width plot %, shows distinct divisions existing between
the classes with respect to height, width and aspect ratio. Sailboats tend to be tall and thin,
and range broadly in pixel size, as shown in the object size frequency plot, also in Figure 3-9.
Motor boats are similarly distributed but are, generally, much wider than they are high. Buoys
are smaller in size with aspect ratio’s close to unity. Finally, the clutter, like the motor boats,

tends to be short and wide, but unlike the motor boats are mainly small in total pixel size.

14
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(% of total database)

Sailboat 0
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Figure 3-9: Seascape: Distribution of well-segmented, object sizes.

2The size of the parallelogram is controlled by object size and aspect ratio filter segmentation
parameters.



IR object segmentation, analysis and preprocessing 51

The table in Figure 3-9 provides mean (x), standard deviation (o), and skew (&) pixel values

with respect to width and height, for each of the four classes.

Unfortunately, the size of an object’s bounding box is a function of an object’s range, as
well as, physical size. As range data was unavailable with the seascape data, size information
had to be ignored, or normalised. For example, an unlabelled test object would be classified as
either clutter, or buoy, simply because it was small although it may have been simply a sailboat
in the distance. In a practical ATR system identification of a potential target must occur as
soon as poséible, when the object is in the distance, and not when the object close enough to
constitute a threat. So, object size, without range data, is useless but aspect ratio, which is not

a function of range, was found to be a useful discriminative feature.

3.2.2 Outline analysis

The segmentation process, discussed earlier, generated two binary images: an object boundary,
and an object mask. The boundary defines the shape of the object. A visual inspection of the
database suggested that most object outlines consisted of mainly low-frequency components.
Four descriptors, often used to describe the outline of an object, were applied to the seascape
data. These included bending energy, compactness, elongation, as well as the number of

corners.

Bending energy measures the twistedness of an outline. If the curvature at a point ¢ along
an object’s boundary of length T is defined as | k(t) |°= (d?y/dt*)* + (d*y/dt?)? then the
total bending energy of the object is [ | x(t) |> /T'dt. A similar attribute, v = T2/4x (area),

measures object roundedness, or compactness. Hence, for a circle v = 1 [58].

The results, given in Figure 3-10, show that buoys tend to be simplistic in shape and
approximately circular, whilst the motor boats and sailboats are more complex. Clutter, as was

expected, displays a broad range of convoluted boundaries.
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The number of corners in an object was measured by thresholding the curvature, | £(%) |,

at some suitably large value. This is demonstrated in the top plot of Figure 3—11 where the

sailboat is seen to have three distinctive corners; A, B, and C.

Bending energy

Compactness

0.0

10.0

8.0

6.0

4.0

2.0

0.0

Sailboat Motor Buoy

Sailboat Motor Buoy

Clutter

Figure 3-10: Seascape: Box-plots for bending energy and compactness in each class.

The application of this technique though was found to be unreliable, but generally supported

the view that buoys are typically round to triangular, sailboats definitely triangular and motor

boats rectangular.
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The left-lower plot in Figure 3—11 shows the normalised radial distance from the centre of

mass to various points along the boundary. The ratio p,,q./pmin Was useful as a measure of

object elongation, similar to bounding box aspect ratio.
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Figure 3—11: Seascape: Curvature and (p, ) plot for a sailboat outline.

3.2.3 Binary mask analysis

32

The binary mask covers one object within the associated set of bounding box co-ordinates and

was used to determine the percentage foreground of an object within the limiting rectangle.

Knowledge of the amount of area covered by an object within the confines of its bounding box

was essential in assessing the effect, or risk, of interference from overlapping objects in the

background.
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Table 3—4 provides the mean percentage foreground estimates for each class of well-
segmented object. The large percentage background with the sailboat class was attributed to
the triangular nature of boats with sails, and more particularly to boats with only a mast, for

example as shown in Figure 3-17.

Class Mean Standard
(%) deviation (%)

Sail 55.7 12.3
Motor 694 9.3
Buoy 77.1 8.5
Clutter 52.8 15.8

Table 3-4. Seascape: Mean percentage of bounding box area filled by object.

3.2.4 Grey-level analysis

The grey-level value of each object pixel is dependent on the temperature of the heat source.
Unfortunately, this value is also a function of the overall number of heat sources in the
scene. This is due to the variable thermal window discussed in Chapter 2. However, this
dependency upon the number of objects in each frame was found to be not severe and the small
linear shifts introduced into the grey-level histograms could be compensated for by suitable
normalisation. Figure 3—12 shows foreground, grey-level, histograms for three different well-

segmented objects, given as a percentage of the total number of pixels in each image.

Attributes are often derived from grey-level histograms to distinguish between foreground
and background but, as can be seen, the distribution of data is similar for each of the three
non-clutter classes; broad, multi-modal and often saturated at the maximum grey-level value of
255. To discriminate between the classes, an analysis of the spatial relationships of the grey-
levels was more appropriate. These analyses ranged from localised features such as texture, to
more global attributes such as symmetry and centre of mass. Texture has been shown to be an
excellent feature for determining identity in research areas such as remote sensing [53]. In these
applications the shape of the object is often irrelevant; for example the shape of a field is usually

no indicator of the vegetation. However, in most ATR problems, for distinguishing between



IR object segmentation, analysis and preprocessing 55

0.035
0.030 |-
0.025
0.020
0.015

Frequency (%)

0.010

0.005
Sailboat

0.000 ot Al : . i
0 25 50 75 100 125 150 175 200 225 250
Foreground grey level intensity

0.030 ! T T T T T T T T !

0.025 |-

0.020 |-

0.015 -

0.010 |-

Frequency (%)

Motor boat 0.005 |

0.000

0 25 50 75 100 125 150 175 200 225 250
Foreground grey level intensity

0.035 T T ! ! ! ! T T T T

0.030

T
i

0005 |+
().()2()_....5 ...... ...... ..... ..... ...... ..... ,,,,,, ..... 3
0015 E o

Frequency(%)

0.010

0.005

Buoy

0.000 ‘ .
0 25 50 75 100 125 150 175 200 225 250
Foreground grey level intensity

Figure 3-12: Seascape: Foreground grey-level histogram for a sailboat, motor boat and buoy.
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foreground object classes, general shape and energy distribution is crucial. Consequently, the
distribution of pixel values across the object was an important issue. For example, as previously

stated, the main heat source on a motor boat is the engine at the rear of the craft.

The lowest order image moment is the centre of mass (z,y), or centroid, measure [122].

Figure 3—13 plots the normalised centroid positions, (Z/wzdth, 7/ height), for each class. The

(a) Centroid positions for sailboat class (b) Centroid positions for motor boat class

T

T 1.0

(d) Centroid positions for clutter class

Figure 3-13: Seascape: Class normalised centroid distributions.

sailboats and buoys show little variance in centroid position. For the sailboat data the mean
centroid value was found in the lower regions of the object, due to the hot hull and the tall,
cool, white sails. For the buoy the opposite was true, though less extreme, with more mass in
the upper regions due to the thermal gradient down the buoy, as mentioned earlier. However,
the motor boats and clutter exhibited highly variant centroids. This variance was expected
for the clutter class, but not for the motor boats. It was realised that motor boat centroid
distribution was at least bimodal, in that the centre of mass would depend on the direction of
travel. Travelling left-to-right meant the large mass of the hot engine would move the centroid

towards the left, and vice-versa. Excluding clutter, these observations indicated that centroid
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position was a good indicator of object classification; centroids shifted down for sailboats, left

or right for motor boats and a slight upward shift for buoys.

Another grey-level analysis performed measured object symmetry. Figure 3—14 shows the
distribution of the angles of minimum asymmetry (maximum symmetry) for each non-clutter
class across the seascape database. A line of minimum asymmetry passes through the object
centroid and is orientated such that an asymmetry measure is minimised. The asymmetry
measure used with the seascape data calculated the absolute difference between a point, p,

and its mirror image, p’, through the line of asymmetry, summed over the image. For an
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Figure 3—-14: Seascape: Angles of minimum asymmetry (maximum symmetry.)

8-bit, grey-level, image an asymmetry value of 128 represents complete asymmetry and O exact
symmetry. The mean and standard deviation of the asymmetry values in the upright position
are given in Figure 3-14. In the upright position (90 degrees), the objects were, unsurprisingly,

most symmetric. The mean asymmetric values indicated that, at 90 degrees, the motor boats
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were the least symmetric. This, again, was due to the heat of the engine in the left, or right,

extremities of the image. The buoys exhibited the highest amount of symmetry.

Returning to the actual distribution of minimum asymmetry angles in Figure 3-14 there
exist greater deviations about 90 degrees with both the motor boat, and sailboats. This tilting,
or rotating, was found in both objects when travelling at speed. The power of the engine pushed
the nose of a motor boat up, and the combination of the wind and sharp turning manoeuvres

pushed the sailboats over. An example of this is provided in the 90 degree image in Figure 3—-15.

3.2.5 Abstract level analysis

The final level of analysis considered the object in the original image and, in particular, its
three dimensional properties. Knowledge of out-of-plane object rotations was important as
two dimensional profiles often altered with this property. This was irrelevant for the buoy
class as their appearance did not alter with out-of-plane rotation but boats, however, changed

considerably in shape, especially aspect ratio.

Each of the objects in the seascape database was labelled with one of eight out-of-plane
orientations: 0, 45, 90, 135, 180, 225, 270 and 315 degrees. This was adequate for determining
the distributions of directions of motion. Figure 3—15 shows how the sailboat class is divided
among the different orientations. Similar distributions were found with the motor boats, but
with many more existiﬁg in the 0 and 180 degree bins (79% in total). It appeared that many
object images were taken from a side-on perspective. Also, it was noted that 45, 135, 225, and
315 orientations were often very similar in overall shape to objects oriented at 0, 90, 180 or
270. Finally, objects at 90 and 270 (coming towards or away) were hard to discriminate, and
both 0 and 180 orientated objects, assuming both fore and aft sails were raised, were similar
by symmetry. Hence, only 2, pos.sibly 3, orientational subclasses, in each class, needed to be

considered for the boats.

A final type of analysis that could have been performed was temporal analysis, examining
how objects altered over frames. This information was not available with the seascape data as
contiguous frames of video were not captured. This was due to the lack of time and processing
resources, and to ensure that the seascape database did not contain objects that were practically

identical because they were, for example, images of the same sailboat only captured fractions of



IR object segmentation, analysis and preprocessing 59

270°
(7%)

Figure 3-15: Seascape: Rose diagram showing directional populations of sailboat class.

seconds apart. However, the transient clutter was assumed to be filtered out by such a temporal

analysis in later stages of the ATR system.

3.2.6 Analysis conclusions

Table 3-5 summarises the analysis of the seascape database discussed in the previous sections.
Overall, each class has excellent discriminative properties but there were similarities that could
cause confusion. Furthermore, the intra-class variabilities that exist in each class, for differing

reasons, could increase the complexity of the classification model.
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Class Results

Sailboat e Most common non-clutter class
e Subclasses much alike in terms of design, but sail state considerably effects shape
e Further subclasses due to out-of plane rotation
¢ Triangular, tall and thin
e Mass resides in lower section of image
e Large percentage of image is background
e Difficult to segment

o Tilts 10-15 degrees when travelling at speed, or turning

Motor e Mass centred towards left, or right, extremes, due to hot engine
e Rectangular, short and wide
e Subclasses due to design, and direction of travel
e Least symmetric of all non-clutter classes

e Smaller, faster motor boats tilt up when travelling at speed

Buoy e Least common non-clutter class
e Round, though less so with rod buoy subclass
e Three distinct classes due to design
e High two, and three, dimensional symmetry

e Most likely to be confused with a sailboat

Clutter o Rectangular, short and wide but small in total pixel size
e Two subclasses, but one filtered out in later ATR stages
e No single distinctive shape, or centre of mass
e An often convoluted boundary

e Most likely to cause confusion with the motor class

Table 3-5: Seascape: Analysis conclusions.
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3.3 Object preprocessing

The detailed analysis of the raw object data, described in this chapter, highlighted many of the
intra- and inter-class variations that exist in the seascape database. The inter-class variations
are highly desirable for classification purposes, but the intra-class are highly undesirable. There
were other properties that varied from object to object, such as scale, background influence and
grey-level shifts, the effects of which all required suitable preprocessing, and normalisation,
for reasons described earlier in the chapter. This section describes the actual preprocessing

method.

The grey-level image data for each object was, initially, low-pass filtered to reduce noise
and some of the high frequency artifacts peculiar to individual objects. The foreground of each
object was then histogram equalised. This countered some of the effects of the variable thermal
window. The next step was to scale each object, whilst preserving the aspect ratio, in order to
counter, for example, changes in camera zoom. By rescaling the objects a rudimentary form of
size invariance was achieved and allowed for easier handling of the object data in the feature

extraction and classification stages.

Rescaling was performed by reconstructing the original image and then re-sampling at the
new frequency. Theoretically, this could be performed exactly, if the image was band limited
and a sinc-based kernel interpolator used [58,77]. However, in practice, the problem was to

find a suitable kernel with respect to reconstruction error and computational overhead.

(a) Blocky effect of nearest (b) Smoothing effects of
neighbour resampling B-spline resampling

Figure 3-16: Re-sampling examples
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Parker, Kenyon and Troxel provide an excellent comparison of several common interpol-
ating methods for image re-sampling [77] including nearest neighbour, linear, cubic B-splines
and high resolution cubic splines. Examples are shown, for a seascape object, in Figure 3-16.

They suggest the use of the @ = —0.5 high resolution cubic spline as most appropriate when
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Figure 3-17: Seascape: Grey-level histograms for a typical sailboat.

further mathematical processing of the objects is to be performed. This process was applied
to both the grey and binary object images such that the objects were rescaled to either 16x16
or 32x32 pixel images, with quantisation effects reduced due to histogram equalisation. The
pixel elements then were labelled from O to either 15, or 31, in each direction. However, to aid
processing in later stages, a secondary set of labels, uniformly ranging from -1.0 to 1.0, were

introduced spanning each axis of the image.

As described in the binary analysis section a large proportion, 40%, of the object image is
comprised of background. This was further increased during rescaling because the bounding
box was enlarged to generate a square in order to maintain aspect'ratio. The probability of

background interference, in a cluttered environment, was too great and for this reason the
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background pixel values in the grey-level object image were set to zero. Thus, there was a
heavy dependence on segmentation accuracy. Figure 3—-17 demonstrates the possible influence
of retaining the background pixel values. Note the two dominant, low variance, peaks caused
by the sea, with low mean, and especially the sky, with high mean. An identical object, with
no sky in the background, would have a completely different profile and subsequently generate

possibly very different features.

A review of this section of the OSTRICH system is provided in Figure 3—18 3.

Low pass Filter
Equalise Cast Image

g

Raw grey object images F H
1% 1‘ — )
Ry = || Resample ?
Raw binary masks , I
Hi-res -0.5

P
Threshold

Hi-res -0.5

n
[

Processed object

D

Figure 3-18: OSTRICH: The preprocessing system.

3.4 Review

This chapter has reviewed the process of generating two object databases derived from the
seascape image database described in Chapter 2. The first database contained three classes
of accurately segmented objects, whilst the other consisted of all the other products of this

extraction process.

The chapter has examined how each of the databases were created, how each of the objects
were labelled, processed, assessed for quality, and how the well-segmented data was analysed
and characterised. Features were described that both represented classes of objects, features
that discriminated between classes of objects, and features, such as range data, that would have
significantly aided analysis, had they been available. Furthermore, all assumptions that were

made in creating the data were listed. Some of the key assumptions are listed on the next page:

3The "Cast Image" operator is required by the OSTRICH system and is of no concern here.
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e Object boundaries will always be well defined in the seascape environment.

e Aspect ratio filtering will not remove any objects of interest.

e No object could possibly exist in more than one class. For example, a dinghy with
an outboard motor, and a sail.

e Transient clutter can be removed by later temporal processing.

e After confirmation of the data labelling, all objects are correctly classified in the
database.

e The segmentation module will always generate rogue data, whether clutter or poorly
segmented.

e Out-of-plane rotations of objects can be treated as a small number of subclasses.

e A constant aspect angle is used.

e The analytical tools used were appropriate.

e Object bounding box size was irrelevant without range data, and was required to
normalised.

e No false, artificial, or misrepresentative information has been introduced through
any of the preprocessing stages.

e And finally, object databases are representative of the real-world data to be

encountered in the final operating system. This is actually a very weak assump-

tion due to the lack of variation in the seascape image database, as described in

Chapter 2.

The next chapter uses the analysis of the well-segmented data to generate sets of features,
some of which were introduced in this chapter, for classification. Later chapters will make use

of the other data, and information, created in this chapter.



Chapter 4

Feature extraction and classification

The previous chapter has described how the well-segmented objects were extracted, and norm-
alised, from the database of real, infrared, seascape images. These well-segmented objects were
now to be used as a basis to test new classification algorithms with a confidence that the objects
had known characteristics. In the previous chapter it was shown that some of these character-
istics, or features, made it possible to separate the objects from the background. Unfortunately,
this rudimentary form of classification was unable to perform the finer differentiation required
to determine object class. Thus, different, and often more complicated, features were required

to perform the object classification.

Feature extraction is the process of mapping originally high dimensional image patterns,
generated by a segmentation process, into a much lower, and manageable, dimensional sub-
space. This transformation is intended to remove any redundancy or correlations in the data
and to reduce the number classifier inputs without significantly reducing the class separability
that exists in the original space. A classifier with fewer inputs requires less model parameters
to be estimated, possibly improves generalisation due to a higher parameter to size of database
ratio, reduces weight storage and is faster to train. Now ideally, both the feature extraction
and classification stages should be optimised together but this is often restricted by practical

constraints and the two stages often have to be treated separately [13](page 305.)

The problem with both the seascape, and NIST, data was how to extract reasonably-sized,
independent, sets of features for classification. This chapter discusses the standard feature
extraction and classification techniques that were tested, and the statistical feature selection
techniques that were applied to predict which of the extracted features would provide the
easiest discrimination of classes. Furthermore, this chapter reports on the complications that

were encountered due to treating the feature extraction and classification stages as separate

65
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entities. The chapter also shows that different features were required to provide the best
classification for each database tested. Figure 4-1 shows how the standard systems integrated

into the overall system design. .

Object classificati
and confidence

Figure 4-1: OSTRICH: Feature extraction and classification stages.
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4.1 Feature extraction

The feature extraction stage, highlighted in Figure 4-1, was provided with object data from the
segmentation process. Consequently, features could be derived only from within the boundary
of the object. This excluded data such as geographical or environmental information, allowing
for an unbiased classification based on object shape alone, at one particular instant. This would
provide independent data to the later interpretation stage. The challenge was to determine a

suitable set of shape-based features that would provide good generalisation.

This section explains why feature extraction was necessary, outlining the various feature
extraction techniques that have been used previously for character recognition and ATR. The
techniques examined were from two different sources: statistical, describing features that
were derived from each object through analysis, as in Chapter 3; and linear spatial mappings
whereby features were generated through linear transformations of the image data. Due to time

limitations of the project, only these type of features were considered.

4.1.1 Determinedness

In Chapter 2 the current BASE classifier was described as having approximately 130,000 model
parameters, which were estimated using a finite training database of 2000 samples. Model
estimates were thus under-determined, even with the inherent self-correlation of the ifnages.
A 200 parameter model which would be faster to train, provide improved generalisation, and
require significantly less storage was a far more attractive proposition. This implied a classifier

with about 10 inputs.

This problem of under-determinedness is also known as Bellman’s curse of dimensionality
and is covered in many texvts [13]. Inshort, as the number of inputs increases, the number of data
samples required to define the class boundaries increases exponentially. Thus, classifiers with
fewer inputs are more desirable. Cheng and Titterington comment on the generalisation ability
of Le Cun’s Zip-code image recognition system with a 16x16 pixel input array [22]. This had
9760 independent parameters and was trained with 7291 data samples. A significant increase

in the generalisation ability was achieved when the number of parameters was decreased by
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a factor of four [22]. Feature extraction is a standard method of significantly reducing the

number of inputs, and subsequently parameters.

Having now discussed why feature extraction was required, the two types of feature, derived

from statistical measures and linear sub-spatial mapping, are described further.

4.1.2 Statistical features

Table 41 lists 32 statistical features that have been used previously to classify successfully
various object databases. Features 1 through 12 were introduced in Chapter 3. The other
features are statistical measures used to describe the grey level pixel distribution of the object,
also described in Chapter 3. These pixel-distribution features are reliant on the size of the

pre-normalised object being large enough to produce valid distributional estimates.

4.1.3 Linear spatially-mapped features

Features derived from linear spatial mappings are simple to generate. Each M -dimensional
feature vector, d, is related to the N?x1-dimensional vector representation, f, of an N by N
pixel image f(z,y), by the equation

d=ATfT 4.1

where A is an MxN? matrix and, usually, M << NZ2. Alternatively, this can be given as
N N
A =33 f(=,9) gm(z,9), (4.2)
Ty

where g,.(z,y)Ym = 1,2, .., M are the feature extracting kernels. Kernel selection is directly

related to the quality of the features generated for classification.
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Index, d; Feature Notes

1-3 Height/Width/Aspect ratio Bounding box description

4 Compactness Roundness or circularity

5 Bending energy Object boundary complexity

6 Elongation Stretch factor

7 Number of corners A difficult feature to derive

8 Number of holes Useful for character recognition

9-10 Centre of mass Identifies position of greatest pixel mass

11 Symmetry

12 Texture More appropriate for remote sensing applica-
tions, as well as, segmentation

13 Population Percentage object foreground

14 Arithmetic mean Measure of pixel central tendency

15 Root mean square

16 Median Another measure of central tendency

17 Lower quartile Lower and higher quarters of distribution

18 Upper quartile

19 First decile Lower and higher 10% of distribution

20 Ninth decile

21 Variance Measure of distribution spread

21 Absolute deviation about median S(occupancy* | f(z,y) — dis |)/dr2

23 Coefficient of variance 100.0 * y/var/d;3

24 Quartile coefficient of skewness (di7 — (2 % dis) + dis)/(di7 — dis)

25 Percentile coefficient of skewness  (dj9 — (2 * d1s) + dis)/(d19 — di3)

26 Moment coefficient of skewness dso/ \/Zl};

27 Percentile coefficient of kurtosis 0.5 * (d17 — di6)/(d19 — d3)

28 Moment coefficient of kurtosis ds1/d3,

29-30 Lowest/Highest pixel value Contrast measure

31 374 moment S (occupancy * (f(z,y) — di3)*)/di2

32 4" moment > (occupancy * (f(z,y) — d13)*)/d12

Table 4-1: Statistical features.
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Zoning

One simple example of a linear spatial mapping is known as zoning. Zoning subdivides Nx/V
pixel images into M, non-overlapping, constant-valued, nxn kernels that completély tile the
image, such that Mn? = N? and g,,(z,y) = 1/n? [128]. This technique is also known as pixel

averaging [13] and coarse coding.

Figure 4-2 shows the distribution of feature values, that were created with the NIST

database, using 16 8x8 pixel zones. The results appeared to suggest that certain zones would

34 56 7 89

Zone 10

N N i . N N 1 N . N N N
N()123456789 O 1 2 3 4 5 6 7 8 9 01 2 3 45 6 7 89 01 2 3 4 5 6 7 8 9
Character Character Character Character

Figure 4-2: NIST: Effects of zoning upon the NIST digit database. For each image in the
NIST database, the pixels values were added for zone. These summed zoned pixel features
were then split into the various classes and the mean and standard deviation statistics estimated.

be better at differentiating between various classes of characters. However, without analysing
the features quantitatively no comments could be made on what zones might prove the best
features. The choice of a suitable subset of these features that would classify all the digits

satisfactorily was a complex task.
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One further problem with these zoning features was that they are highly susceptible to
pixel-sized translations across boundaries. For example, vertically shifting a horizontal line of
8 pixels would generate a 16 pixel swing between vertically neighbouring zone features. One
solution was to smooth the edges of the zones such that they overlapped. A simple way of
performing this smoothing was to use a Gaussian kernel, instead of a constant-valued kernel,

with a suitably chosen width, o, as shown in Equation 4.3

P p— {__ [(w — Tom)? +2(y — yom)z)] } @.3)

(o

where «,, 1S a constant.

Projection histograms

The use of projection histograms was suggested in 1956 by Glauberman [45] for optical
character recognition, primarily for binary images, although their use can be extended to grey

level images.

The histogram features are derived by summing along parallel sections of an image, typically
in either the horizontal or vertical direction. This is similar to zoning, except that one side of
‘the zone is extended to the opposite edge of the image space. Features extracted in this way
are very sensitive to rotations. Cumulative histograms, however, do tend to be less sensitive to

shifts in the dominant peak of the histogram.

Image moments

Image moments have been widely used as a source of features for classification. An excellent
introduction to the use of moments for image analysis is given by Teague [122]. Moments are
derived by integrating over the space of a weighted version of an input image, where the spatial
distribution of the weights, g(z,y), is controlled by the moment order, r. For each moment of
order r there will be S coefficients, c,, related to each weighting distribution, or basis function.

In general, this can be written as

Crs = /_0:0 /:o f(z,9)grs(z,y)dzdy, s = 1..5. (4.4)
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If the coefficients are used as features then the discrete case is identical to Equation 4.2. The
difference is in the form of the kernel. With moments the basis functions provide a quantitative
methbd of extracting features from an image. In fact, A given a sufficiently large number
of ordered moments all image information will be captured, with the lower order moments
capturing the more gross artifacts. For example, for geometrical, or regular, moments, of order
r = p+ ¢, where

gm(z,y) = 2Py, 4.5)

the first six geometrical moments can be related to physical image properties, as shown in

Table 4-2.

m r p q Representation

1 0 0 0  Total image power
2 1 0 1 Image centroid in x
3 1 1 0  Image centroid in y
4 2 2 0 Size and orientation
5 2 1 1 Size and orientation
6 2 2 0  Size and orientation

Table 4-2: Low order regular moments.

Often, it is hoped that the basis functions are orthogonal so as to reduce any redundancy
in the features. Geometrical moments have basis functions that, although complete, are not
orthogonal according to the Weierstrass approximation theory [122]. Legendre basis functions,

on the other hand, are orthogonal. The Legendre moment is defined by

2r+1)(2¢+1)

m = 4 Ly(z)Le(y) (4.6)
where the p*"-order Legendre polynomial is
1 d,,

and the orthogonality is shown by

! 2
/ Lel@) Ip(#) = 5" 4.8)
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Both geometrical and Legendre moments were used to generate features for classification as
-part of this project. Another popular set of feature extraction methods that decompose images

into a series of coefficients are based on unitary transforms, for example the Fourier transform.

Unitary transforms

The general orthogonal series expansion of an Nx/NV image f(z,y) is described by the following

transform pair
N N
=35 f(z,9)gu(z,y), ] <u,v <N (4.9)
z y
N N
f(z,y) :ZZwuvguv(w y),l1<z,y<N (4.10)

where g,,(z,y) represents a set of complete, orthonormal discrete basis functions [58]. The
transform coefficients can be considered directly as features, as with the image moments, or
further processing can be performed on the transformed space. Some of the most popular
transform basis sets are unitary. Returning to Equation 4.1 a unitary transform is one such that
the inverse of a matrix A is equal to its conjugate transpose, A~! = A*T. The Fourier transform
is one example of a unitary transform, and Figure 4-3 shows the resulting transformed spaces
on some digits from the NIST database. Unitary transforms have been used previously for both

character recognition and ATR [3,128].
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Several other types of unitary transforms that also have been used for feature extraction
include the Cosine, Sine, Haar, Walsh-Hadamard, Slant and pattern transforms [3,58]. Table 4—

3 gives a brief description of each of these transforms with an example of each.

i

O S
/ b
P4 /
S o1
of 7

Figure 4-3: NIST: Fourier transforms of sample digits.

With unitary transforms, as with image moments, no information is gained by the trans-
formation. The signal energy may be compressed into a small spectral region in the transformed
space but there is no assurance that features from this region will be the most important, in

terms of classification.



Feature extraction and classification

75

Description, Z,, . {f(z,y)}

Transform Example
Pattern One-to-one mapping of the pixel data
f(z,y)
Fourier Asymptotically equivalent to the Karhunen-Loeve transform,
(DFT) the DFT is a symmetric, unitary transform with periodicity.
aZ ¥ f(z,y)[-52r(uz/N + vy/N)]
Cosine This real and orthogonal transform, not the real part of the
(DCT) DFT, is often used in image compression.
ay Y f(z,y)cos[(2z + 1)ur [2N]cos[(2y + 1)vw [2N] '
Sine A real, symmetric, and orthogonal transform. The DST is not
(DST) the imaginary part of the DFT.
aY Y f(z,y)sin[(2z + 1)ur /2N]sin[(2y + 1)vr /2N]
Haar A real, orthogonal, transform, with sequence ordered basis
vectors that provide a domain that is both locally and glob-
ally sensitive. The Haar transform has poor image energy
compaction.
Walsh- Binary transform, where b;(z) is the ! bit in a binary repres-
Hadamard entation of z
oYY f(z,y)(— l)z;[bi(z)bi(“)'!'bi (¥)bi(v)]
Slant Defined by a recursive expression the Slant transform is

real and orthogonal. It has excellent energy compaction for
images.

Table 4-3. Various unitary transforms of a sailboat (@ = constant).
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Wavelet transforms

Wavelets are becoming an increasingly popular transform for pattern recognition, as well as
signal representation and compression, with their ability to generate features that are both
localised spatially or temporally, as well as in frequency. Classifiers based on wavelet features
have been used successfully for character and speech recognition [111,60,119], breast cancer
diagnosis [63], and object detection and segmentation in real IR images [125,19,21,20,133,
121].

Wavelets were originally used to analyse the temporal-frequency characteristics of non-
stationary signals and introduced as a solution to the resolution problem of the short-term
Fourier transform (STFT) [72]. The technique is now used often for examining image spatial-
frequency content. For example, in image analysis, it is inappropriate to use Fourier transform
features derived from an entire scene in order to determine the classification of a particular
object, as the frequency characteristics pertaining to that particular object are spatially localised.
Segmentation, as described in the previous chapter, is a crude method of localising analysis in
ATR. However, it is sometimes helpful to use features that have the ability to discriminate in

both frequency and space, within the confines of an object bounding box.

The continuous wavelet transform of a one-dimensional signal, f(z), is defined as

Zs0al (@)} = {11;—' [ e (F=20) de (4.1

where z( and a are the translation and scale parameters. The function, %, is known as the
mother wavelet: each wavelet used at each point of the transformed space is a scaled and
shifted version of this mother wavelet. The choice of the mother wavelet effects the properties
of the transformation and there have been many proposed, including the eponymous Morlet,

Daubechies, and Mallat transforms [72].

The project concentrated on the Gabor transform which is, in many ways, very similar to
the wavelet expansions discussed. The Gabor transform has been used by other authors for

feature extraction [84,26,133,65].

The 2-D Gabor transform consists of a Gaussian envelope centered at (zo, o) with size

controlling parameters (a, b), which is modulated by a complex exponential with horizontal
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and vertical spatial frequencies (uo, vo). Thisis alinear transform, and features can be generated

using Equation 4.2 with the kernel function

(z — zom) n (¥ — Yom) J}.emp {727 (uom® + vomy)}. (4.12)

2 2
A bm

9o (2,41 b) = exp{_ l

where ¢,, is the parameter vector (am, bm, Tom, Yom, Uom, v()m)T. The transform has a spatial
frequency of (u3 + v2)!/? and a spatial orientation of arctan(vo/uo). The real and imaginary

parts of one element of the Gabor transform are shown in Figure 4-4.
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Figure 4-4: Gabor: Imaginary (top) and real (bottom) parts, where ¢ = (0.5,0.5,0,0, 1, 1)7.

The elliptic generalisation of Gabor’s set of elementary one-dimensional functions [42] has
many interesting properties for feature extraction, and have been noted to resemble closely the
spatial-domain visual cortical filters that occur in nature [27]. The six-dimensional parameter
vector ¢, given in Equation 4.12, allows for control of filter spatial orientation, frequency,
spatial coverage and location. This makes the transform highly suited to feature extraction.

Furthermore, these transforms achieve the best possible joint resolution in the spatial-frequency
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domains, such that
(Az)(Ay)(Au)(Av) > 1/1672. (4.13)

Although sharing many wavelet properties, and being very similar to the Morlet wavelet,
the general Gabor transform, is not strictly speaking a wavelet. However, its simplicity, ease-of-
use, and ability to relate filter parameters to physical properties, such as orientated edges, have
made the Gabor transform, as well as its real and imaginary complex parts, popular tools for
image analysis. Szu et al provide a comparison between the wavelet and the Gabor transform,

in terms of compression and recognition [118].

Other features

These sections have only outlined some of the more popular feature extraction methods. They
were chosen as features for classification in this project for their ease of calculation and
popularity in the fields of ATR and character recognition. Other feature extraction techniques
include the Hough, Radon, Wigner and Karhunen-Loeve (KL) transforms. The KL transform
is very popular as it generates features with the largest eigenvalues, as it is hoped these features
have the greateét class separability. However, it can be easily demonstrated that the good class
separability is not always achieved with the KL transform, especially with real, multi-modal
data. Furthermore, the KL transform requires considerable effort to compute because of the

requirement to diagonalise, often very large, covariance matrices [3].

Other feature extraction techniques are based around texture measures but these often
require large objects from which to derive texture cocurrency matrices [66]. Features based on
describing shape by way of graphs or splines are also popular but again often not efficient to

calculate [30,128].

One further subset of features, that has not yet been discussed, has a tolerance for certain
deformations in the original object. These invariant features are very important in ATR and

shall be discussed separately in Chapter 6.



Feature extraction and classification 79

4.2 Feature analysis

There were several points that needed to be addressed before the application of any classification
algorithm to the features. Chapter 3 showed that the distribution of seascape object width and
height indicated distinct class separability. Unfortunately, much separability was discarded
when scale normalisation was performed, although aspect ratio remained a potent characteriser.
What was considered next was how other features separated, in fact did they separate, and if
they did, were the decision boundaries likely to be linear or, in the other extreme, highly
nonlinear? Both the 32x32 pixel seascape objects, and the 32x32 pixel NIST digit data, were

considered.

4.2.1 Feature separability

Figure 4-5 shows the distribution of two zoning features with the three seascape classes. The
zones relate to the zone numbers in Figure 4-2. As shown in Figure 4-5, there are indications
of a degree of separability between the sailboat, and the other two classes: the motor boats and
the buoys. Also, the buoy class formed two clusters, close to the motor class, allowing some
nonlinear separation. However, the decision boundaries required here were by no means an
indicator of the type of discrimination required with other, perhaps higher dimensional, feature

spaces.

Given a decision boundary of sufficient complexity, a finite set of unique, labelled, data
points can be separated exactly. However, unless the identically labelled points possess some
form of cohesion, or collectiveness, no generalisation can occur. Examining the features
directly, notable groupings, which provided some confidence, could be observed, as seen in
Figure 4-5. Of course, it would be a considerable task to examine every possible combination of
two-dimensional features and, more appropriately, impractical to view every multidimensional
feature space for feature separability. There were two solutions to this problem. The first was
to limit the complexity of the decision boundary and combine this with a suitable generalisation
measure based only on classification scores. The second was to derive a measure of separability

based directly on the features, from which an expectant generalisation could be derived.
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Figure 4-5: Seascape: Distribution of two zoning features.

It would have been exceedingly helpful if the value of the Bayes error, the error produced
by use of a Bayes decision boundary, had been known for each type of feature. However, this
error was impractical to derive with the real data without explicit knowledge of p(d | w;), but it
could have been possible to place a bound on the Bayes error known as the Chernoff bound [90].
A much simpler bound, though, known as the Battacharyya bound [90], is much more widely
used. These bounds, as well as other measures of conditional probability divergence such as
Matusita, Patrick-Fisher, Lissack-Fu and Kolmogorov [28], are dependent on assumptions of
distribution normality or availability of a mathematical expression for the distribution, or at
least a reliable estimate of the probability density function (pdf) at all points. Estimating pdfs
is a notoriously difficult problem. In this project a simple k-NN estimator was used, although
as previously stated is not a true pdf estimator, so results using the estimate were treated with
caution. Simpler measures, based on inter- and intra-class separability, that use more practical
measures, required estimates of the between-class distance, S;, and the within-class distance,
Sw, defined in Equation 4.14 and Equation 4.15 respectively, where p; represents the mean

feature vector for all samples of class w; and p is the mean vector of all the samples [28].

C
Sp = Pi(pi — p)(mi — )" 4.14)
=1 .
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Table 4-4 outlines six separability measures that were used with both the NIST and real IR
image data features before the features were classified. Measures .J;_4 are described by Devijver

and Kittler [28].

Measure Equation Notes

Error J[1—maz P(w;|d)] p(d) dd The Bayes error can be estimated
from the finite database using an
estimate of p(d | w;).

Quadratic [ ¥, P?(w; | d) p(d) dd Well known measure of informa-

entropy, ¢ tion, which again requires know-

ledge of p(d | w;).

Ji(D) tr(Sw + Sb)
J2(D) tr(Sy)/tr(Sw)
J3(D) tr(S5'Sh)

Jo(D) | Sw+ S|/ ] Swl

Table 4—4: Various separability measures.

4.2.2 3D object rotation

In Chapter 3 the problem of three-dimensional object rotation was discussed. It was suggested
that the objects at different rotations existed as subclasses in a multi-modal object distribution.
Figure 4-6 shows the effect a rotating ferry had on two Gabor-based features. Side on, the
features existed at different positions within the motor boat distribution. Due to the effects
of the mast and the narrowness of the ferry, features generated from an image of the ferry
facing away were more akin to features derived from a sailboat without a sail, although in the
extremes of the sailboat distribution (points C and D.) In fact, due to the mast on the ferry, it
was exceedingly difficult to discriminate between it and a sailboat. This is one important area

where the temporal and interpretation stages of an ATR system are so important. -
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Figure 4-6: Seascape: Change in motor boat class Gabor features with rotation.

4.2.3 Outliers

Outliers are defined in this thesis as classified objects that do not belong to the class that
they were assigned, or possibly even any class. They are often described as having their own

distribution. In ATR otitliers are termed clutter.

The process of identifying outliers with the seascape image data was simple, as shown in
Chapter 3, where it was hoped that all were removed. In feature space, outliers may be spotted
as isolated points well away from the main class cluster. Unfortunately, this was not always
true. Figure 4-7 shows the buoy subclass distributions using two Fourier features. There
appeared to be several points in the ball class that were possible outliers. Upon inspection, they
were found to be slightly different from the typical ball buoy. Hence, they were in the tails
of the distribution, or possibly the distribution was under-sampled with this particular, perhaps
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uncommon, form of ball buoy. They were not outliers. Furthermore, there was no reason
why outlier features should reside distinctly away from the distribution. For example, in ATR,

clutter may have extracted properties very similar to actual objects.
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Figure 4-7: Seascape: Fourier based features showing separability of buoy subclasses.

The manual process of corroborating the classification was assumed to have identified all
possible outliers in the well-segmented database. An automated process for identifying.outliers,

such as clutter, is discussed in Chapter 7.

4.2.4 Multi-modality

The next issue concerned how the features were spread across the subclasses. This would effect
the complexity of the discrimination boundary. As stated in Chapter 3 there existed various
forms of subclasses in the seascape database. It was now appropriate to see how these translated
to differences in features, if any, as some features may not have displayed any differences due,
for example, to the grossness of the feature extraction algorithm. In Chapter 3 it was shown
there exist object differences through design, such as With the buoy class (Figure 4-7), and also
differences through object state, such as whether a sail was hoisted or in which direction the

object was travelling. The latter is shown, for two statistical features, in Figure 4-8.
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Figure 4-8: Seascape: Sailboat subclass sail states.

It was now appropriate to make this important point. If, instead of choosing sail state as the

subclass, sailboat type was used, as in Figure 4-9, then no separability was visible.
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Figure 4-9: Seascape: Sailboat subclass designs.
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This was easily explained as scaled sailboat types, in the same sail state, looked identical.
However, the distribution in Figure 4-9 did not appear to be multi-modal. It was realised that
knowledge that a distribution is comprised, of say a mixture of three Gaussians, could be very

useful in deciding on a type of classifier.

It was found that subclasses did exist with some features, resulting in multi-modal class
distributions. This resulted often in the need for a nonlinear classifier. However, this was
not always the case, as stated earlier, classification depends on the grossness of the feature
extraction algorithm. For example, buoys may have had some trait that typified them against
other objects but were independent of subclass; aspect ratio, perhaps. In fact, there was often a
balance between choosing features that adequately separated the main classes and features that

separated the subclasses too much and added unnecessary complexity to the decision boundary.

4.2.5 Feature confidence

One interesting side-issue when examining these features was how much confidence, or trust,
could be placed on the actual value of a feature. That is to say, how robust were particular
features to perturbations in the original image and, importantly, how confidence in these feature
were affected by the original size of the image? In the project, each feature was treated with
equal confidence as there was no time to examine this further. Though, it must be noted that
this unlikely to be a correct assumption, for example, aspect ratio calculationé will be effected

less by small perturbations in object size when the object is large.

4.2.6 Normalisation

In Figures 4-5 through 4-9 the features were observed having widely varying values spread
across several orders of magnitude. It was therefore appropriate to normalise features such that

each new feature, d’, ! had zero mean, unit variance, using

I All features will be assumed to be normalised, hence plain d notation shall continue to be used.
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where, d; and s(d;), are the 7** feature mean and variance respectively.

Normalisation was not necessary for MLP classifiers due to the linear scaling effect of
the input layer, but it was often useful for improving rates of convergence in the network
optimisation. Other classifiers though, such as k-NN, were, of course, directly effected by this

type of feature scaling.

4.3 Preliminary classification

The features described in the previous sections all have their own characteristics and all separate
classes in their own unique way. This section provides the initial classification results achieved
with the two different databases, using various classifiers, and features. The features were
chosen on an intuitive basis based on experience. The section starts with a look at how the

classifiers, that were discussed in Chapter 2, were implemented.

4.3.1 Classifier experimental setup

For each of the feature types tested, eight different classifiers were used to generate comparative
results. These included two generalised linear discriminants (linear and quadratic), on€ non-
parametric classifier (k-NN), three MLP neural networks, one RBF network and one statistical
classifier (MARS.) Table 4-5 lists the classifiers used with a small description of the model,
and estimation method, used to determine the model parameters. These were discussed in more

depth in Chapter 2.
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Classifier

Notes

Linear

Quadratic

k-NN

MLP*

MLP®
MLP°

MARS

The data was randomly split into three sections, a training set, validation set and an
independent test set, in the ratio 2:1:1 respectively. For example, for the three class sailboat
database with high quality segmentation this was 809:400:400. The validation set was used
to determine when model parameters had been suitably estimated, to avoid over-fitting. An

independent test set was used to determine the actual misclassification rate. Each experiment

A generalised linear discriminant using a sum-of-squares error
criterion.

Extension of the linear classifier to include feature product
terms, d;d; V 12> j.

k is set to 7 which were determined by trial-and-error as
providing acceptable validation set errors.

Trained using early stopping, 1-of-C output encoding, 4 hid-
den nodes, conjugate gradient optimisation, with a sum-of-
squares error criterion, 0/1 target values, weights initially set
to a random value between -0.5 and 0.5

As MLP?® but with 8 hidden nodes

As MLP® but with 16 hidden nodes with a weight decay
parameter, A, to control over-fitting. A was adjusted such as
to minimise the validation set error.

Trained using supervised learning, 1-of-C output encoding, 32
hidden nodes, conjugate gradient optimisation, with a sum-
of-squares error criterion, 0/1 target values, weights initially
set to a random value between -0.5 and 0.5

Friedman’s multivariate adaptive regression splines of degree

5 using logistic regression, with a piecewise cubic model 2.

Table 4-5: Types of classifier implemented.

was repeated over 10 different random splits of the data.

2FORTRAN77 code courtesy of J. H. Friedman

87
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The features used at this stage included

e Object height and width. Statistical features 1 and 2 (see Table 4-1.)

e Object characteristics. Statistical features 3,4,6,9 and 10
chosen from experience/intuition.

e Zoning of the image data.

e Symmetrical Gaussian’s of width o evenly spaced across the image
space. A smoothed version of zoning.

e Projection histograms in both x and y directions.

e Zoning applied to various unitary transforms of the image data. Complex
transform spaces are divided equally between complex magnitude and phase.

e Legendre and geometrical moments in increasing moment order.

e Centred Gabor (z¢ = 0, yo = 0) based features at 5 equally spaced
orientations (starting at 0°) at three different spatial frequencies
(ud + v} = 1.0, 2.25,4.0) witha =b=1.

e Features based on object grey level distribution.

Statistical features 12,13,16,17,20,25 and 27.

4.3.2 Classifier results

Table 4-6 provides the separability measures, given in Section 4.2.1, that were applied to
the seascape 3-class database before classification. They are ordered in terms of increasing

estimated Bayes error, with # representing the number of features.

The separability measure J;(d) was unusable for assessing separability, as J; = M. This
was due to the normalisation of the features to zero mean and unit variance. More specifically,

J1 can be easily reformulated as

P(wi)#gz'i + P(wi)ajzi =M

M
j 1

=3

C
j=li=
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where 1 ;; is the mean of class w; for feature j and o;; is the equivalent variance. However, the
other separability measures appeared promising for assessing class separation, although there
were several spurious looking results, for example the z-histogram features. The problem here
was explained by the highly correlated nature of these features, with their immediate histogram
neighbours. In fact, both z— and y—histogram features had average absolute off—diagdnal
cross-correlations of 0.53 and 0.44 (compare that with a Legendre value of 0.26) and more

importantly had several cross-correlations greater than 0.9. It was also found that comparing

feature sets of different feature dimensionality was also inappropriate.

Index Feature # E[Error] E[§] J1 Ja J3 Ja

1 Legendre 15 0.109 0.307 15.000 0417 11.227 19.338
2 Zoning 16 0.112 0.321 16.000 0.511 8.474 .14.381
3 Gaussian 16 0.114 0.316 16000 0.512 9.730 17.452
4 Y histogram 16 0.126 0.356 16.000 0.693 3.796 6.153
5 Geometrical 15 0.127 0.362 15.000 0.447 10.894 18.753
6 Gaussian 9 0.142 0.398 9.000 0.610 9.782 15.439
7 Gabor 15 0.157 0.441 15000 0386 3.770 6.373
8 Characteristics 0.182 0481 5.000 0278 2.159 3471
9 Width/Height 2 0.192 0.507 2.000 0.238 1.109 2.224
10 X histogram 15 0.197 0.524 16.000 0969 7411 8.764
11 Slant 16 0.267 0.705 16.000 0.035 0.783 1.810
12 Haar 16 0.318 0.840 16.000 0.117 1.580 2.930
13 Fourier 16 0.348 0.907 16.000 0.170 1.544 2.727
14 Grey distn. 7 0.351 0.928 7.000 0.097 0978 2.083
15 DCT 16 0.365 0951 16.000 0.033 0.644 1.707
16 DST 16 0.379 0.985 16.000 0.020 0.397 1411
17  Hadamard 16 0.997 NaN3 16.000 0.001 NaN NaN

Table 4-6: Seascape: Separability measures ordered by smallest estimated error.

3Could not be calculated
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The actual classification results achieved are provided in terms of mean percentage correct

classification in Table 47, and continued in Table 4-8. The values in brackets are unit standard

deviation values, the results in bold represent maximum classification rate for a particular

classifier, and the underlined results represent maximum classification per feature type. The

original BASE classifier with 256 inputs, 16 hidden nodes and 3 outputs scored a classification

rate of 88.0%.
Classifier
Feature # Linear Quadratic 7-NN MLP* MLP® MLP° RBF MARS
Legendre 15 8575 89.0 92.5 8925 920 90.0 805 90.75
(1.4) (1.1) 06) 21 .0 (5 G5 (22
Zoning 16 86.0 90.0 925 905 92.0 91.0 9175 92.25
. (0.6) (1.7) 06) (.1 (@1.1) (1.0 (@15 (.6
Gaussian 16 86.0 90.25 92.5 92.0 92.5 92.5 88.0 91.0
(o = 0.125) (1.5) (1.4) 08 12 aq0$ qQ0 G717 @23
Y histogram 16 805 85.25 920 9125 915 920 900 87.25
(1.6) (1.6) 07y @0 ((16) (4 22 (@36
Geometrical 15 86.25 89.0 90.75 905 90.75 905 89.25 90.25
(1.7) (1.7) (1.1y (13) (14 (1.1 (15 @0
Gaussian 9 84.0 88.0 90.25 8925 91.0 89.75 890 90.0
(o = 0.25) (1.5) (1.4) 08 19 (1 @3y a6 (1.0
Gabor 15 805 89.25 89.75 8.0 900 89.75 870 88.75
(1.2) (1.4) (1.6) 1.6y (12) @15 22 @12
Characteristics 5 69.5 76.0 85.5 88.0 88.0 87.75 860 89.25
(1.9 (1.9) 14) (@©9 16 @@1) (A5 (1.5
Width/Height 2 69.5 72.0 82.0 8125 815 82.5 825 81.5
2.1 (1.9) 16 (@23) @20 @O @35 an

Table 4-7: Seascape: Classification results. Each score is the mean percentage classification

over 10 different samples each consisting of 400 test vectors. The value in parentheses is the

standard deviation over the 10 tests. The values in bold represent highest mean classification

for a type of classifier and the values underlined the highest mean classification for a type of

feature.
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Classifier

Feature # Linear Quadratic 7-NN MLP* MLP® MLP° RBF MARS
X histogram 16 71.75 77.0 86.25 8375 855 85.0 815 85.5
19 (2.1 20 14 09 22 @6) 24
Slant zoning 16 64.25 64.0 745 735 75795 155 725 75.5
(2.1) (3.2) 1s5) @0 (19 1.7 B2 (25
Haar zoning 16 720 72.25 745 735 7425 7375 1715 765
(2.1) (1.8) (1.3) (19 (15 (14 @4 (23)
Fourier zoning 16 640 70.0 73,5 745 73.0 745 7275 160
(1.6) (1.3) 22 @27 29 @24 @26) (23
Grey dist. 7 6925 70.75 7225 735 7475 740 7175 735
(2.5) (1.4) 26) BO 29 (26) 38 (29
DCT zoning 16 63.5 68.75 74.5 7225 7375 73.0 6725 745
(2.2) (2.9) (1.3) (1.6) @38 (I.7) (5.5 (25
DST zoning 16 59.0 66.25 70.25 6475 650 650 7125 70.0
(1.7) (3.7) 15 @D @7 26) 23 4
Hadamard zoning 16 20.75 23.25 46.25 46.25 46.25 4425 4625 46.0
(2.2) (2.6) 22 (22 22 23 22 @2

Table 4-8: Seascape: Classification results (continued).

Table 4-9 provides the NIST classification results based on a subset of the seascape features.

Features that have been derived explicitly for digit and character recognition were not tested,

as only comparative results were required. Also, some features, such as those derived from the

grey level distribution, were not suitable for this database and were excluded.

The zoning features and moments perform particularly well, whilst the binned transforms

results were poor *. The Y histogram data results, with low linear results, coupled with high

result variance, indicated collinearity in the data. In fact, it was found that each bin in the

histogram was highly correlated with its neighbour. Subsequently, every other bin was used as

a feature with significantly better results and half the number of features.

4Other poor results omitted
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Classifier
Feature # Linear Quadratic 7-NN MLP* MLP* MLP° RBF MARS
Gaussian 9 69.0 76.75 835 5875 755 785 775 78.0
(o =0.25) (1.0) (1.2) 09 @8 23 RO @3 @0n
Gaussian 16 76.25 89.75 89.5 61.0 81.0 83.0 8275 8175
(o = 0.125) (1.5) (0.8) (1.0 @35 @13 (4 Q.0 1.5
Y histogram 16 180 53.75 57.5 - - - - -
(8.9) (4.0) 4.1) - - - - -
Y histogram 8 5525 81.75 78.0 5425 71.0 750 755 75.25
(1.9 (1.3) 1.7y (©9 (1.8) (09 14 (1.1
X histogram 16 36.0 53.25 - - - - - -
(1.5) (1.9) - - - - - -
Zoning 16 82.75 92.5 90.5 625 83.5 86.25 86.25 85.75
(14 (1.0 1.1y @1n ©09 an a3 a4
Fourier zoning 16 43.25 45.0 - - - - - -
(1.4) (1.1) - - - - - -
DCT zoning 16 2475 28.5 - - - - - -
2.0) (1.8) - - - - - -
Legendre 15 80.25 90.0 90.5 59.75 785 80.75 80.0 80.5
(1.6) (1.0) 100 @7 Q4 12y (1.0 Q.2
Geometrical 15 81.75 81.75 92.75 5475 8425 87.0 88.0 87.5
(1.8) (1.1) (0.8) (4.8) | 09 (©09 (4 (13
Gabor 15 605 76.5 79.75 455 63.0 650 6525 66.0
(1.7 (1.1) 14 @2 (@1A3) ((12) ((1.1) (16

Table 4-9: NIST: Classification results. Each score is the mean percentage classification

over 10 different samples each consisting of 800 test vectors. The value in parentheses is the

standard deviation over the 10 tests. The values in bold represent highest mean classification

for a type of classifier and the values underlined the highest mean classification for a type of

feature.
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4.3.3 Comments

Several conclusions were drawn from these initial experiments:

e The features chosen all required some form of nonlinear discrimination to achieve
an acceptable classification rate, of approximately 90% with the best features derived
from the seascape data. A nonlinear solution was required.

e For the seascape data the best classification results were 5% better than the original
BASE system employed, with a network with only S inputs equalling the original
classifier performance.

e Feature separability measures indicated which of a group of features would provide
good classification. They do not appear to be good enough to predict accurately which
particular feature would be superior.

¢ In some cases a very simple quadratic classifier sufficed, with only 1-2% classifica-
tion loss.

¢ Different classifiers found it easier to discriminate between different types of feature.
For example, with the seascape data the linear classifier produced its Best results with
the geometrical features.

e The NIST classifier required far more complexity in the nonlinear classifiers to
separate the higher number of classes than the seascape data.

e A greater number of features did not always produce better classification results.

e Zoning with relatively large kernels worked well in the spatial domain, but poorly
in the frequency domain.

e Different features tended to work better with different databases. So for each new

database the right type of feature had to be found.

Of the actual features themselves, zoning of the image data generated better results than
any zoning of the Fourier, DCT, and other unitary transforms. This should have been expected
as many of these transforms, by their nature, store the majority of their energy in a small
region of the transformed space. This meant that most of the features contained, typically,
little information. It may be more appropriate, in these spaces, to select individual points in

the space; for example, the point representing the overall object mean luminance. However,
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for a 32x32 pixel image there are 1024 possible features and choosing the right subset is very
difficult. The next section examines methods that were employed for automatically selecting

the number and type of features for successful classification.

One final set of experiments that were performed repeated the previous tests but with 16x16
pixel objects. It was found that a 1-2% drop in classification was the penalty for reducing the
image size by 4. No improvement was noticed when 64x64 images were tested. This justified

using the 32x32 pixel size for the objects.

4.4 Feature Selection

As seen in the previous section, examination of simple separability measures indicated which
features would provide good classification rates, and could have avoided the estimation of many
of the classifier models. Unfortunately, these measures were unable to rank the importance of
selected subsets of features without actually testing every subset. In this section the problem of
feature selection is explored further. Two points must be reiterated: features that provided good
class separability with one database were not necessarily as successful with another database;
adding more features did not necessarily improve classification. In fact, the problem was now
to find a minimal-sized set of features that provided an adequate misclassification rate for each

of the tasks at hand.

Consider d’ to be the vector of all available features, from whatever source. Furthermore, let
d C d’, be the set of M features to used to classify the object. The aim of feature selection then
is to find the vector d such that d maximises a user classification criterion function, J(.) V d,

whilst minimising M at the same time.

4.4.1 Using a priori knowledge

The most obvious way of choosing a set of features was to use a priori knowledge to guide
feature selection. For example, knowing that sailboats were thin and tall, whilst motor boats
were wide and short would indicate height and width as a good feature. This was shown to be

correct in the previous section. Another example, would be to choose particular elements of a
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zoning feature set by examining the separation of classes in each zone, such as with the NIST

data in Figure 4-2. This implied rating features individually, ignoring feature relationships.

The zone features from the NIST data were ranked according in order of perceived increasing

discriminatorial power. This formed the ordered feature set
{Zones : 13,9,10,6,7,3,2,8,12,4,14,16,5,15,1, 11}. (4.16)

Figure 4-10 shows how the classification rate changed as features were added to the number of

classifier inputs in forward, and reverse, order. The error bars represent +1 standard deviation.
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Figure 4-10: NIST: Increasing number of intuitive features.

Better results were achieved with forward ordered data with the classification rate reaching
within 1.5% of the maximum value at 8 features. Note that the maximum rate was achieved

with 11 features, rather than 16.

4.4.2 Individual feature selection

In this section, the possibility of individually rating each feature, is discussed. Individual rating

was attractive for determining which unitary transform features, discussed earlier, would be
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appropriate. This approach is also known as the "Method of Best Features" [28]. In this case,

Wilks’ A statistic was used to rate each feature [52].

Wilks” A statistic is simply the reciprocal of the separation lﬂeasure Js. This can be
simplified to consider the separation of individual features and was applied to the unitary
transform data, which previously classified poorly when features were binned. To calculate
Wilks’ A required calculation of transform coefficient (feature) variance. This was simple for

non-complex data, but for Fourier data, the variance was calculated as
o2(k, 1) = B[ v(k,1) — (k1) [

where v(k, ) are the transform coefficients [46]. For each complex transform coefficient two

features were generated.

Figure 4-11 and Figure 4—12 3 shows a significant improvement in seascape classification
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Figure 4-11: Seascape: 7-NN results for transform features chosen by Wilks’” A.

using this method with these features, especially the Fourier features providing the best results

yet of 96.0%. The exception was the pattern space result. The pixel features were derived

SError bars are not shown for clarity purposes.
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Figure 4-12: Seascape: Linear classifier results for transform features chosen by Wilks’ A. |

using selected zoning features whereby the size of each zone was one pixel in area. Compare
this with the large kernel zoning success and failure with pattern and frequency-based features

given previously.

Wilks’ score

1.0

0.9

0.8 =

0.7 \\\\\\\\\__L s

6 OO

82 B ‘;ﬁﬁﬂiﬁﬁﬁﬁﬁﬂiiaﬁﬁsﬁgkl' ST L
0.4

0.3

0 . . B AR ERTEEI R
4 SR .: ..........

F(X) ........................

s 8 12 16 20 24 28
E(y)

Figure 4-13: Seascape: Low Wilks’ score indicates good, in this case, Fourier features.
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The features chosen by Wilks’ A were predominately low frequency components, as shown

in Figure 4-13, where the value of the Wilks’ A for the Fourier transform is shown for all

frequencies.

Figure 4-14 and Figure 4-15 demonstrate similar results with the NIST digit data. In this

case however, the DST features outperformed what was previously the best features, the Fourier

features.
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Figure 4-14: NIST: 7-NN classifier results for transform features chosen by Wilks’ A.

This was an improvement, but what was lost by considering the features individually? In
some cases, where there was feature correlation, for example, or the existence of subclasses,
this single feature approach would fail. This latter problem is demonstrated in Figure 4—16
where the two classes are separable in two dimensions but, when considering each feature

individually, the opposite is true.
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Figure 4-15: NIST: Linear classifier results for transform features chosen by Wilks’ A.

The solution would be to apply Wilks’ A to the entire feature space. For small dimensional
data this would work well, but for more much higher dimensional feature spaces this statistic

became less practical.

Feature 2

Feature 1

Figure 4-16: The multi-modality problem with individual feature selection.
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The next section examines some techniques that were implemented for choosing M features

from N when the features were not treated separately.

4.4.3 Subset selection

The simplest method of determining which subset of M features from a set of N features
will be optimal for classification is that of subset selection. In this approach an estimate of
the true classification is determined for each combination of M from N. This will require
N!/(N — M)!M! estimates. For small N this technique is ideal but as Figure 4-17 shows the
number of estimates required soon exceeds any level of practicality with any moderately sized

database.
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Figure 4-17: Increasing the number of available features.

This is known as an exhaustive search. There are two other types of search algorithm,
optimal, and suboptimal [28]. Suboptimal searches, such as individual feature selection with
Wilks’ A, generalised sequential forward (or backward) selection and "Plus [ Take away r" often
lead to suboptimal features. Optimal searches, such as Branch and Bound (BaB), implicitly
inspect all d out D possible subsets, without requiring an exhaustive search. It uses a top down

search procedure using a feature set tree, which allows for backtracking to counter problems
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Time Linear 7-NN
# Index (seconds) (%) (%)
2 14 38 5 73.75 81.5
4 2537 38 39 212 80.75 86.0
6 31332373839 4206 81.75 88.75
8 35132032373839 28139 83.5 91.25

Table 4-10. Seascape: Gabor features chosen using branch and bound algorithm. Each
score is the mean percentage classification over 10 different samples each consisting of
400 test vectors.

of combinations of features. Both types of searches require a criterion, such as Jy, to direct the

search path.

Equation 4.17 shows the set of eight features chosen by the BaB algorithm on the 16 zoning
features derived from the NIST data. There are many similarities between these eight features
and the eight intuitive features given in Equation 4.16. In classification tests there were no

differences in generalisation.
{BaB: 2,6,7,9,10,13,14,15} (4.17)

{Intuition: 2,3,6,7,8,9,10,13}

Next a set of 40 Gabor-based features from the seascape data were derived. These rep-
resented a greater spread of orientations, frequencies, and filter centres than previously used.
The number of features used, feature index, time to perform BaB algorithm ® and classification
results are recorded in Table 4—10. There was an improvement with just 8 features using the
BaB selected Gabor features. However, the time required to calculate the larger set of features
soon became impractical. Also, note that the features chosen did not remain constant as the
number of features were increased. This is a good example of the relationship between features
and their effect on classification performance. The actual Gabor features, given by their index,

relate to higher frequency, off-centre, filters.

One further experiment demonstrated that this method was not infallible. The 32 seascape

5Timed on a 167MHz Ultrasparc I
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statistical features, given in Table 4-1, were input to the BaB algorithm. The following 5
features were selected: Height, Width, Population, Ninth decile, and the Third Moment. This
produced a classification rate 5.0% less than when the 5 intuitive statistical features were
chosen. Even when 16 BaB selected features were classified the classification rate was worse.

Furthermore, the 5 intuitive features were included in this set of 16! More is not always better.

It has been shown in this subsection that improved classification can be achieved through
careful feature selection. However, these techniques used had several problems as shown in

the box below.

e There was no consideration of the original pattern space. The selection techniques
only selected the best out of the features provided.

o The process of feature selection could be laborious, especially as the size of the
original feature set increased.

e Selection techniques often make assumptions concerning the underlying distribu-
tions of the features that with real, multimodal, data sets are often false.

e Estimating the most suitable features is often not performed with respect to the
classification error criterion, which ultimately dictates classification performance.

e Feature selection techniques tend to work well only with reasonably sized feature
spaces to begin with, which may not span the whole range of interesting possible
features.

e The feature selection criterion may attempt to give features that would more suited

to a less powerful classifier, especially a linear classifier.

i

Before analysing some of the classification results in more detail two other commonly used

feature selection techniques shall be discussed.
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4.4.4 Reconstruction

A very popular, and misguided, method for determining the number of features with image
databases is that of signal reconstruction. This approach is common with features based on
image moments, and unitary transforms, whereby the result of an inverse transform, based
on truncated series of ordered coefficients, is compared with an original. The difference is
a measure of the amount of information, recorded within the finite series of coefficients, or
features. This measure is correct but it is a measure of representational information, and not
discriminatorial information. This is best described with the aid of an example. Consider
the task of discriminating between a triangle and square. The discriminatorial information is
completely encoded in the number of vertices. All other information, such as length of edges,

edge thickness and colour, for example, are superfluous.

Figure 4-18 plots 7-NN classification rate against a number of geometrical moment features.
The features were determined by either increasing moment order (up to order 5, giving 15
features) or by BaB selection from an original set of 21 features, including all moments, up to
and including order 6. Only the first 10 results for the latter are shown but it is clear that the

same classification rate was achieved with far less features using careful feature selection.

ST T T T T T
90
85
80

75

Classification (%)

70

r BaB chosen features

65 [ e R Moment ordered features ---- |1
* ? i . : : ;
60 i I i i 1 L i
0 2 4 6 8 10 12 14 16
Number of features

Figure 4-18: Seascape: 7-NN classifier results for geometrical moment features.
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4.4.5 Other feature selection techniques

Saliency is a further technique that has been used in feature selection with neural networks.
Saliency uses a trained neural network model to determine the contribution of each input feature
to the final classification score. This has two major disadvantages: the user is restricted in the
number of features that can be tested in order to constrain the model to a manageable size; and

the technique requires the repetitive training of the neural network model.

Another method for detecting the relevant components of the feature vector is the Automatic
Relevance Detection method of MacKay and Neal [74]. This is a fully Bayesian approach

successfully employed by Williams and Vivarelli for classifying segmented images [130].

4.5 Analysis

This penultimate section examines why particular features performed better than others for
certain databases and why particular objects were repeatedly misclassified. A first step was
to examine the confusion matrices, of which six are shown for the seascape data in Tables 4—
11, 4-12, and 4-13. This shows the near perfect linear separability of the sailboat and motor
classes with very simple features. This was also seen with all the other features, using the
image-size normalised object data. This suggested that a nonlinear solution was not required
to separate these two classes so the significant improvements in classification rate with the

nonlinear classifiers must have been due to the additional buoy class.

Correct class Correct class
Guess  Sail Motor Buoy Total Guess Sail Motor Buoy Total
Sail 153 2 46 201 Sail 90 0 12 102
Motor 2 119 4 125 Motor 1 105 O 106
Buoy 25 2 47 74 Buoy 89 18 85 192
Total 180 123 97 400 Total 180 123 97 400
(a) 7-NN classifier (79.75% correct) (b) Linear classifier (70.0% correct)

Table 4-11: Seascape: Confusion matrix for classifiers based on height and width features.
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In fact, the main confusion, as suspected, was between the sailboat and the buoy classes 7.
This was first noted in Chapter 2 (see Table 2-2) and also in Chapter 3. The tables demonstrate
that the better overall classification rates were achieved using features that discriminated better

between sailboats and buoys, and that, for all the features, a nonlinear discrimination boundary

was required.

Correct class ' Correct class
Guess Sail Motor Buoy Total Guess  Sail Motor Buoy Total
Sail 161 1 5 167 Sail 137 0 6 143
Motor O 120 4 124 Motor 1 116 3 120
Buoy 19 2 88 109 Buoy 42 7 88 137
Total 180 123 97 400 Total 180 123 97 400
(a) 7-NN classifier (92.25% correct) (b) Linear classifier (85.25% correct)

Table 4-12: Seascape: Confusion matrix for classifiers based on 16 Gaussian features.

Correct class Correct class
Guess  Saill Motor Buoy Total Guess  Sail Motor Buoy Total
Sail 170 1 . .4 175 Sail 137 1 6 143
Motor O 119 0 119 Motor O 117 2 119
Buoy 10 3 93 106 Buoy 43 6 89 138
Total 180 123 97 400 Total 180 123 97 400
(a) 7-NN classifier (95.5% correct) (b) Linear classifier (85.75% correct)

Table 4-13: Seascape: Confusion matrix for classifiers based on Wilks’-based Fourier features.

This situation, of differing separability complexity between classes in a multi-class (C' > 2)
problem, is common in many real problems. For example, with the NIST data, as shown in

Table 4—14 and Table 4-15, there were confusions between 0’s and 2’s, 7’5, and 8’s, as well as

70Off-diagonal confusions greater than 4 are marked in bold
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between 9’s and 4’s, 7’s and 8’s. Using the zone features removed many of these problems but

did actually increase the confusion between 4’s and 9’s.

Correct class

Guess O 2 3 4 5 6 -7 8 9 Total
0 81 0 1 0 5 0 10 6 3 115
1 2 91 0 3 0 4 1 1 1 106
2 3 0 61 3 2 1 0 4 3 3 80
3 0 0 0 79 2 1 0 0 3 1 86
4 0 0 0 0 55 0 0 1 3 2 61
5 0 0 0 1 25 0 0 2 0 28
6 6 0 3 4 85 0 1 0 110
7 0 0 5 1 1 44 2 3 56
8 0 0O 0 3 0 3 53 9 70
9 2 0 6 1 13 7 56 88
Total 94 91 87 93 73 38 89 76 81 78 800

Table 4-14: NIST: Confusion matrix for 7-NN classifier, 16 Gabor features (78.75% correct).

Correct class

Guess O 1 2 3 4 5 6 7 8 9 Total
0 91 0 1 0 0 0 0 0 1 1 94
| 89 1 1 1 0 1 0 2 0 96
2 -0 0 73 3 0 0 0 0 0 0 76
3 1 0 8 85 0 1 0] 1 2 0 98
4 0 0 0 0 62 0 0 0 0 0 62
5 0 0 0 1 1 34 0 0 0 0 36
6 0 0 2 0 0 88 0 0 0 90
7 0 0 0 1 0 66 1 2 70
8 1 2 2 0 73 0 81
9 0 0 0 9 0 2 75 97
Total 94 91 87 93 73 38 89 76 81 78 800

Table 4-15: NIST: Confusion matrix for 7-NN classifier, 16 zone features (92.0% correct).
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Returning to the seascape results it was interesting to examine exactly which buoys or
sailboats were causing the confusion. It was thought that this would provide information on
how to better separate them, or at least reason why, they were mistaken. Specifically, were
there objects that were repeatedly misclassified, independent of classifier or feature used? In
fact there were a base set of 20 objects that were repeatedly mistaken, and there were many
others very similar which were frequently misclassified. Figure 4-19 shows the 20 objects
discussed. Many of these objects are very small, or very thin, or have some other characteristic

which makes discrimination exceedingly difficult, to the extent that even people find the task

impossible. Also, note the ferry, in the bottom row, are the same objects from Figure 4—6.

Figure 4-19: Seascape: The rogues’ gallery - objects that were always misclassified.

4.6 Review

This chapter has examined the necessity and implementation of both feature extraction and
classification. Various standard techniques were applied to both the real IR seascape data
and the NIST digit database and the resulting features, to varying degrees, were successfully
classified. For both the seascape, and NIST, databases a nonlinear solution provided a better

solution in terms of the misclassification rate. For the seascape data, a 96% classification rate
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was achieved. This outperformed the expert human classifier tested in Chapter 2 who scored
92%.

Furthermore, it was shown that applying feature selection techniques improved the choice of
features to be used for a particulaf database. However, it was noted that these techniques are not
infallible, they are not optimised with respect to a final classification error criterion and, often,
they are compute and time intensive. A solution was to design a combined classification and
feature extraction model that could be optimised in parallel, did not require a priori knowledge
of the database or expert knowledge of feature extraction, yet maintained a controllable number
of model parameters by making use of the correlated nature of the high dimensional pattern

space. This model is the focus of the next chapter.



Chapter 5

Adaptive kernel neural networks

In the previous chapter various feature extraction methods were applied to both the character
recognition and infrared seascape problems. The statistic chosen to select a suitable subset
of features for classification was, as explained, quite naive. There were more complicated
procedures available but a more attractive solution would be to automatically determine an
adequate set of features in a combined feature extraction and classification model. Normally
a neural network model, such as an MLP, would be an ideal solution. Unfortunately, the large _
dimensional input space of the image data usually prohibits this due to the subsequently large
parameter vector required to be estimated in relation to a finite data set. Adaptive wavelet
models in the last few years have been used to address this very problem [119,63,118,111,70].
This chapter reports on the application of adaptive wavelet technology on the both the seascape
and NIST databases. This approach had never been used for classifying the type of real infrared
data encountered in this project. Casasent et al used adaptive wavelets for the detection of
real infrared objects [21,20], Szu et al used them for phoneme and speaker recognition [119],
Shustorovich for character recognition [111], Kocur and Rogers for cancer diagnosis [63] and
most recently Mallet et al applied them to mineralogical spectra data [70]. These authors
used relatively complicated wavelets to adapt. However, in the project much simpler adaptive
kernels were first tested before the wavelet models were used. The adaptive model was then
extended, as suggested but not implemented by Szu et al, to incorporate a standard nonlinear
layer to further improve generalisation [119]. The chapter begins with a look at kernel feature

extraction.

109
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5.1 Kernel feature extraction

Kernel feature extraction is the linear, sub-spatial transform of a correlated input space, such as
an image, to a feature vector, d, for the purpose of classification. Each element of the feature

vector is generated using a kernel, 1, which is characterised by its own set of parameters,

® = {¢, #2,...., 9P}, such that
di:/"o /°° F(z,y) bz, y; @) dedy for i = 1,.., M (5.1)

or in the discrete case, using a double summation approximation to the integrals, as !

d; = z Zf(:z:,y) Y(z,y; ®;). 5.2)

z=1 y=1
The kernel parameters control shape, position, and scale and the larger the value of P, the
greater the flexibility of each kernel. These parameters subsequently control the classification

potential of the generated features.

Kernel feature extraction is very common and many of the techniques discussed in Chapter

4 can be expressed in terms of kernel feature extraction. This is demonstrated in Table 5-1.

Of course, there are many other types of feature extraction algorithms but many of these
procedures can not, like kernel feature extraction, be so easily combined with a standard MLP
model. Due to the linearity of the kernel transform, and the linear first layer of the MLP model,
the kernel feature extraction and MLP model can be expressed as a single entity relating image

input directly to the required classification output. This is described in Equation 5.3
N M
2e(f;®') = wor + D_wik (’wOj + > wij Yy flz,y)e(z,y; ‘I’i)) (5.3)
j=1 i=1 r oy

where N represents the number of hidden units with the ¢ nonlinearity, and ®’ represents the
full classification model parameter vector and is comprised of the weights and biases, w;, and

the P-dimensional kernel parameter vectors, ®;.

I'The Cartesian coordinates z, y will be used in conjunction with the z, y digital indices with hopefully
little confusion.
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Feature extraction Kernel, Notes
method P(z,y)
Defined over the region:
Zoning 1 1<z <z
<y <y
Projection Defined over the region:
histogram 1 x < zyVyor
(in z or y) y<iyp Ve
Geometric xPy? Moment of order, p + gq.
moments

- A complex kernel. Features
Fourier e~ i(uztvy) used include the magnitude

or /< complex pairings.

The parameters u and v,
Cosine a(u)a(v)cos[(2z + 1)u]. as with the Fourier transform,
transform cos[(2y + 1)v] control spatial frequency and

orientation of the kernel.

Table 5-1: Examples of feature extraction kernels

This ability to combine the feature extraction and classification, that were treated as separate
_processes in Chapter 4, is very important as it implies that the combined model may be optimised
directly against the object image data. This direct optimisation means that the features should

be optimal, with respect to the output classification error criterion, for each new database.
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5.2 Adaptive kernel feature extraction

In Chapter 4 the zoning technique was applied to images using a set of non-overlapping,
uniform, square, identical kernels that covered the entire input space. Each kernel had a
discontinuity at the boundary and this made the features highly sensitive to small distortions,
or shifts, by the object around these areas. This would be especially noticeable with binary
images. Furthermore, the uniformity of the kernel assumed equal importance to all image pixels
within the region covered by the kernel. The square shape of this region was also arbitrary
and the necessity to cover the entire image was inefficient. To solve this latter issue Chapter 4
demonstrated a simple, but laborious, method of determining a subset of features best suited
for a specific problem. However, a better solution was to have a fixed number of kernels, or
even better, a linear superposition of kernels, that could in some way adapt their positions and
shape according to an overall classification error criterion for each specific problem. This had

already been addressed with adaptive wavelet theory [120].

5.2.1 Adaptive wavelets

The "super-wavelet" concept was introduced by Szu et al. as a combination of adaptive wavelet
feature extraction and linear class discrimination and was applied successfully to problems of
signal representation and classification [119]. Many of the problems of feature selection were
circumvented by this concept of a "super-wavelet" due to the direct adaptation of the feature

extraction, whilst maintaining a controllable numbers of adjustable parameters.

The "super-wavelet" is a linear weighted sum of M adaptive wavelets which are shifted
and dilated versions of a mother wavelet, 1. To classify a two-dimensional signal, such as an

image f(z,y), a linear discriminant of the form

M
2(f; @) = wor + Y _wix »_ > f(z,y)¢(z,y; ;) (54)
j=1 z y

can be implemented where z; represents one of C classifier outputs and the full classification

parameter vector, ®’, is comprised of the weights and biases, w;, and the P-dimensional
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kernel parameter vectors, ¢;. Hence, in the model there are T' = PM + C(M + 1) adaptive
parameters. This is simply a linear version of Equation 5.3 and as such the adaptive wavelets
can simply be considered as a subset of the adaptive kernel models proposed in this thesis.

Figure 5-1 shows a diagrammatic representation of Equation 5.4.

——= Kemel
—> Weight
Feature —— Bias

generation layer

Linear
output layer

INPUT IMAGE, f(x,y)
OUTPUT

Weighted
summer

_>2_ZJ

Figure 5-1: Architectural représentation of a linear adaptive wavelet (kernel) classifier with
one kernel, %, highlighted in bold. Input images are multiplied by a kernel and summed to
generate features in the first layer. The second layer acts as a simple linear discriminant.

5.2.2 Error derivatives

To estimate the parameter vector, ®’, that minimised a classification error criterion, such as

sum-of-squares, using traditional line-searching techniques required calculation of the model

error derivatives.

The estimate of the parameter vector, & for the models given in Equation 5.4 and Equa-

tion 5.3, were derived by optimisation with respect to an output classification error criterion, E.
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A conjugate gradient directed line searching technique was used to determine the estimate (see
Appendix A), as it was used in Chapter 4 to estimate traditional MLP classifier parameters. As
with the MLP, the conjugate gradient method required knowledge of the error derivatives, for
example 0FE/0¢;,, for the linear network of Equation 5.4. This section shows how both the
first order error derivatives and the second order, Hessian, matrix of error derivatives for the
linear network were derived. This was easily extended to the nonlinear model, using standard
backpropagation procedures which can be found in Bishop, page 140 [13].
The linear model was first simplified to
M
zr = wor + Y _wjkz; where z; =Y > f(z,y)¢(z,y; ®;)
z vy

7=1

.and the error for each pattern in the training set was given as F, such that £ = 3, E,.

Immediately the output layer error derivatives could be described as

OE, OF,

Bwjk - ”5;;:

23
and the output bias could simply be treated as a weight but with z;—o = 1. The kernel parameter
error derivatives were given by

6En N aZjl 8En N 6Zj 8En
O¢ip 57 0dip 0zjr 085y Oz

and by expanding 0F, /0z;

0b;p  Odip o 021

Wik

These were the simple first order derivatives which could used in the gradient based minim-
isation algorithms. The Hessian matrix, H, was useful for determining the conditioning of the
optimisation. The condition number of an Hessian is the ratio of the largest Hessian eigenvalue,
Amaz» to the smallest, A,.;,. A large number would indicate ill-conditioning in the optimisation

process and consequently large numbers of training iterations.

For the output layer weights

L, 9 (8En 921 ) B

8wj:k18wjk - Bwj/kf 6zk '8wjk
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azk azEn _ 8zk 6zk, 02En

8w,~k'8wj:k:8zk a’wjk.awjrkr '(’3zk,8zk

This was rewritten as
O*E,, 5 0*E,
A = 2% 0kt
0w,-:k:6wjk 9 6z,§

where 8y is the Kronecker delta symbol.

A similar process was applied to the kernel parameters and also the combination of both

weight and kernel parameters, such that

O°E, azj Ozjr BZE
w WiLW 4
a¢j’p’8¢jp 89753 p’a¢1p Z ]k 8925”, 845] p! Z W07 k
and also
0*E, 0%’FE, 0zj 9*E, + oF, 5
- —1 AR ot —— —_— 0
0b;p 0wy Ow;kOpim Oy | 2 022 | Oz
The Hessian matrix was thus determined as
OE, | O°E,
Ow;jip Ow;y, | 5¢J »OW;ik
H= : ) (5.5)
O*E, i O°E,
awj’k'a‘lsjp , a¢j’p'a¢jp

In the the initial experiments on the seascape and NIST data a simple sum-of-squares error
criterion, E55F, was used where ESSF = 0.5 %, (tx — 2;)* and ¢, is the target value for the
nth pattern. This simplified calculation of the Hessian as for the SSE 9*F,,/9z = 1. The
Hessian was derived as it could be potentially used for many purposes including second order
nonlinear optimisation, identifying least significant parameters in a classification model, and

for determining regularisation parameters. For further details see Bishop, page 150 [13].

Using these error derivative calculations kernels could be estimated that minimised £55E,
But, as stated by Daugman [26] these resulting feature extractors, 1, were required to be neither
orthogonal (< (z, y; ®; 3)5 P(z,y; ®x)> # 0 for all j # k) nor complete in order to satisfy

optimality according to E and the main consideration was the form of 1.
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5.2.3 Constraints on the form of v

Some examples of potential adaptive kernels, ¢, have been introduced, such as the adaptive
wavelets. However, no constraints have yet been placed on the form of the kernel. The
following restrictions were placed on the kernels to be used in the project. These will be valid

for other projects.

e Flexibility over the image space parameterised by a finite parameter set, P.
e There must be no element of ¢ € ® such that o)’ = ¢p.

¢ ) must be differentiable with respect to ®

e [ < oo over the image space.

5.2.4 Kernel selection

Many authors have used the real, imaginary, or complex Gabor transform as a suitable kernel
and have successfully applied it to many problems including image representation [26], object

detection [21,20] and character recognition [111]. The Gabor transform is given by
’Q/)(CC, Y, %o, Yo, a, b7 u, ’U) = GSEp{—[(.’E - wo)za’z + (y - yO)ZbZ]}
exp{—27i[u(z — zo) + v(y — o)} | (5.6)

and is comprised of a Gaussian, centred at (o, yo) and with scaling values (a, b), modulated

1/2 and orientation arctan(v/u).

with a complex exponential with spatial frequency (u? + v?)
An example of the real part of a typical kernel is given in Figure 5-2 as this is often used in

object recognition whilst the imaginary part used for segmentation or boundary detection.

For this project other, simpler, kernels were implemented, as well as the Gabor kernel.
These kernels appeared not have been tested in the literature. The reason for examining the
simpler kernels was that even though the Gabor transform has many attractive properties it can

be approximated by a linear summation of these much simpler kernels. These kernels can also
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1.0

Figure 5-2: Example of the real part of Gabor transform.

approximate a wide range of other functions, as well as Gabor, by simple parameter adjustment.
This approach of using many simple kernels instead of a few complex kernels has been widely

used in kernel-based density estimation [103].

The problem of selecting the relevant features for a specific problem switched to one of
choosing from a set all possible kernels, ¥, the type of kernel, 1> € ¥, the number of kernels,
and which kernel parameters to adapt in the model. Furthermore, the form of each individual
kernel may influence classification, i.e. using ¥;(z,y; ®;) instead of ¥ (z,y; ®;). With the
exception of the last issue due to time limitations, these issues were investigated, and applied

to, the NIST and seascape databases.
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5.3 Adaptive kernel experiments

In the following sections various adaptive kernel neural networks, of the type given in Equa-
tion 5.4 and Equation 5.3, were applied to both the NIST and seascape databases. Various

different kernels, and kernel parameters, were tested, and problems discussed.

5.3.1 Linear classification

The first section concentrates on the combined feature extraction with a linear discriminant
model. This type of classifier, as stated previously, has been popular with many researchers
and results have been published for adaptive wavelet kernels. The first kernel to be tested was

a simple Gaussian of variable width.

Fixed position kernel adaptation

In Chapter 4 sixteen fixed position Gaussian kernels, with a suitably fixed width, a, wére used as
kernels. Results for the seascape data were impressive with high classification rates achieved:
86.0% using a linear classifier. The single value of width chosen though was quite arbitrary.
A better idea was for each kernel to have an individual a, reflecting property changes across
the image, and for those widths to be determined automatically. This was available with the

adaptive networks that have been described in this chapter.

Experiments were performed using different numbers of Gaussian kernels, fixed in a regular
square format across the image space, with either one or two width parameters per kernel, the
latter controlling width in both the z and y direction. Widths were initialised randomly per
kernel using a uniform distribution, of unit variance, about a mean value of 2.5. The results,

averaged over 10 experiments, for different numbers of kernels are given in Tables 5-2
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Number of Fixed P=1 T P=2 T
kernels, M  features (a=0) (a,b)
4 67.25(14) 685(1.0) 19 690(14) 23
9 84.5(1.8) 87.75(1.1) 39 88.75(1.2) 48
16 86.0(1.5) 88.5(1.5) 67 90.0(1.7) | 83
25 855(1.2) 88.5(1.8) 103 89.5(1.3) 128

Table 5-2: Seascape: Adapting Gaussian variance parameters. Each score is the mean
percentage classification over 10 different samples each consisting of 400 test vectors. The

value in parentheses is the standard deviation over the 10 tests. The value T represents the total

number of parameters in the model.

and 5-3. The total number of parameters, T', in each model are also given. The usual MLP

training conditions were applied such as data splitting, and early stopping.

Number of Fixed P=1 T P=2 T
kernels, M  features (a =b) (a, b)
4 49.0(1.0) 6325(14) 54 61.0@3.7) 58
9 68.25(1.3) 745(24) 109 75752.8) 118
16 76.25(1.5) 83.5(1.8) 186 79.0(2.0) 202
25 83.25(1.2) 87.5(1.1) 285 8525(4.8) 310

Table 5-3: NIST: Adapting Gaussian variance parameters. Each score is the mean percentage
classification over 10 different samples each consisting of 800 test vectors. The value in

parentheses is the standard deviation over the 10 tests. The value T represents the total number

of parameters in the model.

With both the seascape and NIST databases improvements in classification using the adapt-
ive variance kernels were recorded. Naturally, as the number of kernels increased the difference
between the fixed and the adaptive kernels was less marked. Adding the second variance para-

meter had little, even some detrimental, effect when using fixed position kernels. This suggested
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that the extra kernel parameter was increasing the dimensionality of the error surface yet was
unable to reduce the global minimum of the surface. Bidirectional adaptability of the fixed

position kernels did little to aid classification for both databases.

The condition number of the error Hessian is a measure of how ill-conditioned is the model,
and is determined by calculating the absolute value of the ratio of the maximum to minimum
eigenvalue of the error Hessian, H. It is well known that MLP’s are poorly conditioned [93],
and a quick test was required to check that these new adaptive models were no worse. A
condition number of approximately €’ is not uncommon with MLP’s and this appeared to be

the same for the adaptive networks.

Figure 5-3 and Figure 54 display, as a set of images, the resulting super-kernels (the

weighted sum of all kernels) for each class in both the seascape and NIST databases. One

Sailboat Motor boat Buoy-

Figure 5-3: Seascape: M = 16 adaptive Gaussian variance resulting super-kernels. Bright
areas represent image locations where the effect on the final classification of an object is biased
towards the class of the super-kernel (positive effect), grey areas are where objects do not effect
the class decision (nil effect) and black where the effect an object, at that location, is against
the super-kernel class decision (negative effect).

variance per kernel was used. The regular kernel position pattern can be easily seen with bright
spots representing large kernel magnitude. The classification outputs are derived by correlating
each input image with each super-kernel. The largest correlation is the predicted class. Thus
from examining the super-kernels it was possible to determine how each type of object was

being classified.
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With the seascape data sailboats were identified by the tops of their masts (in either vertical
or slanting mode), and the hull. The motor boats were identified simply by their thin horizontal
nature, especially at the left and right extremities. The buoys were recognised using central

image data.

The NIST results showed that some of the resulting super-kernels were working like a stand-
ard correlator, especially for the digits zero to three. The others digits were more complicated.
The digit eight was only represented in the left half of the super-kernel. If a whole eight were
used, as in a standard correlator, significant response would have occurred by a number three
class object. By using only the left half region, the 3-8 confusion was significantly reduced.

This feature was automatically generated by the adaptive model.

Sevens were predominantly characterised by a strong horizontal line at the top of the image,
whilst sixes and nines where identified by strong energy responses in the bottom left, and top

right regions respectively.

Figure 5—4: NIST: M = 25 adaptive Gaussian variance resulting super-kernels. Note the
images likeness, or partial likeness, to individual digits.
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Adaptive kernel positioning

The previous section demonstrated that the adaptive model did work. The kernel parameters
chosen though were not particularly effective. A more productive approach was to allow the
kernels flexibility to move, and concentrate on regions of image space rich in discriminatorial

information. This was done by adapting the kernel centres, (xo, ¥o)-

One of the first problems encountered with this approach was that the model would not
appear to optimise, only adapting such that one class was always predicted. The problem
was the kernel centre derivatives were dominant initially, and with random output weights, the
kernels moved out of the image producing a null feature vector, d = 0. This was solved by
allowing the output weights to adapt on their own first for a few iterations before allowing

combined kernel and output weight adaptation.

This proved successful, and the results are shown in Tables 5—4 and 5-5 for both seascape

and NIST databases.

Number of Classification T

kernels, M %
3 86.25(13) 18
6 89.5(1.1) 33
9 90.75(1.0) 48
12 91.25(1.2) 63
15 91.25(1.1) 78

Table 5—4: Seascape: Adapting Gaussian kernel positions. Each score is the mean percentage
classification over 10 different samples each consisting of 400 test vectors. The value in
parentheses is the standard deviation over the 10 tests. The value T represents the total number

of parameters in the model.
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Number of Classification T

kernels, M %
3 54.0 (4.3) 46
6 71.75 (2.4) 82
9 78.0 (2.1) 118
12 80.75(1.8) 154
15 83.75(2.0) 190
18 86.0 (2.6) 226
21 86.75(1.9) 262
24 87.0(2.4) 298

Table 5-5: NIST: Adapting Gaussian kernel positions. Each score is the mean percentage
classification over 10 different samples each consisting of 800 test vectors. The value in
parentheses is the standard deviation over the 10 tests. The value T represents the total number

of parameters in the model.

The seascape results were very promising. Even with only three 2-parameter kernels the
classification rate equals the 25 kernel solution in the previous section. Adding more kernels
with this database though appeared to have little effect, with an increase of less than 1% between
6 and 15 kernels. However, with the NIST database, with many more classes to separate, the
number of kernels required increased. In fact, the 25 fixed centre, single parameter, kernel
performed better than ény of the adaptive position models for the NIST data. It was thought
that the size of the adaptive centres were too large, and combined with the large number of

kernels required to suitably solve the problem, allowed for little flexibility of movement.

Once these experiments were completed an analysis of the final resting positions of the
kernels was performed. Figure 5-5 shows the final positions of the kernel centroids using
different number of kernels, and different splits of the seascape database. Figure 5-6 displays

the results of a similar set of experiments, but where different starting positions were chosen.

The results from these experiments were interesting. For 3 kernels Figure 5-5 shows
three distinct positions generated by different splits of the object database. Using identical

data but different starting positions for the three kernels, as in Figure 5-6, results again
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Figure 5-5: Seascape: Final centre positions of (o, yo) parameter vector from the adaptive
kernel positioning experiment. Identical kernel starting positions but different splits of the
object database. Key: A, 0, <, +, x represent the results from different splits of the data.
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in three distinct positions, but two of the three being at different locations. It was found
that when repeating with more starting positions the 3 kernels always finished in one of 5

locations. However, as the number of kernels increased the distinctiveness of these final

3 kernels 6 kernels
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Figure 5-6: Seascape: As with the previous Figure but a different starting position. Again,
different splits of the object database were used. Key: A, 0, O, +, x represent the results from
different splits of the data.

positions rapidly decreased. Different splits of the data found very different final resting

locations. The corresponding classification results in Table 5—4 show that after 6 kernels
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no appreciative increase in classification was achieved. It is suggested that there is a strong
similarity here between under- and over-fitting in nonlinear models with too few kernels (lack
of flexibility) relating to under-fitting and too many kernels (not generalising and fitting to
individual data splits) relating to over-fitting. It might be expected then, after reviewing the
NIST results, that with the NIST database that there would be greater distinctiveness with larger
numbers of kernels. This was indeed true, and the final positions with the 9 kernel NIST model

are given in Figure 5-7.

Figure 5-7: NIST: Final centroid positions for 9 kernel model. Key: A, 0, <, +, x represent
the results from different splits of the data.

Returning to the 6 kernel model in Figure 5-5 it appeared that the 5 positions discovered
by the 3 kernel experiments were not all covered by the 6 available kernels. In fact, it appeared
that there were two kernels residing at the same location. This produced very similar features
and subsequently redundancy. From examining the trajectory plots it was found that improper
initialisations of the kernel centres often were to blame. Kernels in close proximity were not
diverging during optimisation, although extensive, further optimisation showed the kernels
eventually diverging. This suggested that the error derivatives for the kernel positions were

similar, and due to the shape of the error surface, were having difficulty separating.
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Regularised kernel positioning

A solution to the divergence problem, given above, was to choose sensible starting positions for
the kernels. This worked well for small numbers of kernels but as they increased in multitude
the probability of trajectories converging appeared to increase. This is shown in Figure 5-8
where 6 of a total of 15 kernels are shown. The kernels have diverged, and in one case appears
to have been deflected back into the path of another kernel from which it had been previously

diverging.
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Figure 5-8: Seascape: Kernel centre trajectories problem.

Another solution was attempted which combined sensible kernel initialisation with a regu-

larising penalty term in the error function, such as

2\ M %
E'=E+——rnr—r Q(z0;, Yoj, Tok, Yok (5.7)
WO~ 1) 25, 2, 20 oin ok v
where

Q(zo;, Yos, Tok, Yor) = exp(—((zo; — zok)> + (Yoj — Yor)*)/07)

and o, is the penalty variance which determines the proximity in which other kernels may reside

without the error being penalised significantly. The A term controlled how much importance
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was placed on the penalty term. Examining the error derivatives showed that for each particular
centre parameter, the penalty added a term which was a weighted sum of the distances between
that particular centre and every other, in either the z or y directions. The weights being

proportional to €. For example,

OE _ O 4) i
Boe. -~ Dz, + MM — 1)o2 ;Q(%ﬁyw,iﬂomym)(ww — Ton) (5.8)

In practice, the two parameters, A and o,, were combined into a single X' = Aellos para-
meter which was set as to prevent convergence, but not discourage extreme kernel divergence.

Figure 5-9 shows the penalty term being put to effect.
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Figure 5-9: Examples with and without penalty influence.



Adaptive kernel neural networks 129

This was an acceptable practical solution, although there was now another parameter
controlling the performance of the classifier. The final centre positions using the penalty are
shown in Figure 5-10. Note the 5 positions are now shown, and even the 9 kernel results with
apparently 4 extra distinct final resting positions. Both the 6 and 9 kernel models with the added

penalty term gave 1.5% increases in performance. The other models remained unchanged.
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Figure 5-10: Seascape: Final centre positions of (zo, yo, A") parameter vector using regularised
kernel positioning. The same initial starting conditions were used but with different splits of
the object database. Key: A, 0, O, 4+, x represent the results from different splits of the data.

Another method for preventing feature collinearity was to ensure that each kernel had a
unique shape, such that, even if they were locally identical, the features produced would be
dissimilar. Thus, the next type of kernel tested included four parameters, the two Gaussian

widths, as well as the two centres, for each kernel.

Adapting shape and location

Tables 5-6 and 5-7 provide the classification results when various numbers of 4 parameter

Gaussian kernels were used. With 6 kernels the test set classification rates for the seascape data
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far exceeds many of the nonlinear classifier results using fixed features, given in Chapter 4.

However, only about a 1% increase in classification has been achieved by doubling the number

of parameters per kernel.

Number of Classification T

kernels, M %
3 89.0 (1.2) 24
6 91.0(1.3) 45
9 91.5(1.0) 66
12 91.75 (1.4) 87
15 92.25(1.1) 108

Table 5-6: Seascape: Adapting Gaussian kernel positions and widths. Each score is the mean
percentage classification over 10 different samples each consisting of 400 test vectors. The
- value in parentheses is the standard deviation over the 10 tests. The value T represents the total

number of parameters in the model.

The super-kernels for a 9 kernel model are shown in Figure 5-11 for the seascape data.
The sailboats again were identified by the existence of the top of the mast, the motor boats

by the horizontal ends, and the buoys by strong central thermal activity. More complex, or |

Sailboat Motor boat Buoy

Figure 5-11: Seascape: M = 9 adaptive Gaussian variance and centres resulting super-kernels.
Bright spot at top of sailboat kernel will heavily support the case for a sailboat classification
if strong object image energy located at this point e.g. a mast. Conversely, this energy will
strongly hint against the motor, and more especially, the buoy class.

subtle, feature extraction was also occurring as equivalent results were not achieved when fixed
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features, generated using these simple rules, were classified. Also noticeable, in comparison
with Figure 5-3, is the amount of grey areas representing regions that have little or no effect

on the classification decision.

The results from the NIST data showed a slightly different trend. Adapting a larger P,
low M kernel resulted in degraded performance than with the smaller P versions. This was
contrary to the seascape results. Though as M increased, the benefit of the extra parameters

was noticed, though less as M increased still further.

Number of Classification T

kernels, M %0
3 49.75(13) 52
6 68.0(24) 94
9 795(3.0) 136
12 8325(23) 178
15 82.5(2.9) 220

Table 5-7: NIST: Adapting Gaussian kernel positions and widths. Each score is the mean
percentage classification over 10 different samples each consisting of 800 test vectors. The
value in parentheses is the standard deviation over the 10 tests. The value T represents the total

number of parameters in the model.

The super-kernels for a 15 kernel model are shown in Figure 5-12 for the NIST data. As
with the previous fixed centre images definite shapes corresponding to the generalised class
shape components required for classification are evident. However, ten fewer kernels were

used and each kernel adapted its own position to generate these components.

The confusion matrices for a 6 kernel, 2 and 4 adaptive parameter linear model, using
seascape data, are given in Table 5-8. Sailboat and buoy confusion was still the main source

of error, but was reduced using the extra parameters.

From both NIST, and seascape, data experiments it was found that these 4 parameter models
took longer to optimise, in terms of number of iterations. It was found that the error derivatives
due to the position parameters (zg, yo) were‘much greater, in magnitude, than the equivalént
derivatives for the scale parameters (a, b). Thus, kernels tended to find positions suited for the

initial scale conditions, and then slowly adapt the scale parameters. This made the performance
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Figure 5-12: NIST: M = 15 adaptive Gaussian variance and centres resulting super-kernels.

dependent on the initial scale parameters if only small training times were used. This is

highlighted in Figure 5-13 for a 3 kernel model.

As the number of kernels increased the time for the kernel positions to settle, and con-
sequently the time for completion of optimisation, increased. This is shown in Figure 5-14
for 12 kernels. It was interesting to note that after 1000 iterations some variance parameters
were still changing at a rapid rate, though any improvement to classification ended after 400
iterations. One possibility was that there were too many kernels, and the associated features
were redundant. Alternatively, the kernels were stopping in a regions where features were not

so sensitive to changes in scale.

Correct class Correct class
Guess  Sail Motor Buoy Total Guess  Sail Motor Buoy Total
Sail 216 1 35 252 Sail 203 4 21 228
Motor O 164 3 167 Motor 1 172 1 174
Buoy 7 5 69 81 Buoy 12 4 82 98
Total 223 170 107 500 Total 216 180 104 500
(a) P=2 (89.8% correct) (b) P=4 (91.5% correct)

Table 5-8. Seascape: Confusion matrices for 6 kernel linear classifiers.
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An adaptive wavelet

In the previous section increasing the number of parameters per kernel, only slightly increased
performance for large M, but reasonable improvements were made for small M. This suggested
that as M increased less flexibility in each kernel was required to achieve equivalently complex
feature extractors. This seemed sensible, and a method for increasing P for small M, would
- be worth investigating. Allowing selective orientation of the Gaussian kernels would be one

way of further increasing P for the Gaussian kernels.

Orientation encoding could be achieved by rotating ) by 6 degrees via a simple affine
transformation. The 5-dimensional parameter set would include (zo, o, @, b, ). It was though
an opportune moment to return to the Gabor transform, a frequency modulated Gaussian.
Although not strictly speaking a wavelet this kernel allowed for both orientation, and spatial
frequency selection, as well as access to the usual 4 Gaussian parameters through a kernel
parameter vector of (o, Yo, @, b, u, v). It was also the most popular kernel used in the adaptive

wavelet literature.

Experiments were applied to both the seascape and NIST data, adapting 2 or 4 of the Gabor
parameters at a time but only comparative, at best, results were achieved. Finally, all six

parameters were optimised together. The results are given in Tables 5-9 and 5-10.

Number of Classification T

kernels, M %
3 90.5 (1.3) 30
6 91.25(0.9) 57
9 91.5(1.4) 84
12 92.0 (1.6) 111
15 92.25(1.2) 138

Table 5-9: Seascape: Adapting all 6 Gabor kernel parameters. Each score is the mean
percentage classification over 10 different samples each consisting of 400 test vectors. The
value in parentheses is the standard deviation over the 10 tests. The value T represents the total

number of parameters in the model.
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Number of Classification T

kernels, M %0
3 62.0 (5.8) 58
6 7425 (2.7) 106
9 82.5(2.2) 154
12 83.5 (2.6) 202
15 85.75(2.1) 250

Table 5-10: NIST: Adapting all 6 Gabor kernel parameters. Each score is the mean percentage
classification over 10 different samples each consisting of 800 test vectors. The value in
parentheses is the standard deviation over the 10 tests. The value T represents the total number

of parameters in the model.

The seascape data, where only a few kernels were known to be required, soon lost the
advantage of a more flexible kernel. The NIST data, where many more kernels were required,

used the extra flexibility to much more effect for the lower values of M.

For completeness, the super-kernels for two 6-parameter models are shown in Figure 5-15

and Figure 5-16.

Sailboat Motor boat Buoy

Figure 5-15: Seascape: M = 9 adaptive 6 parameter Gabor resulting super-kernels.
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. Figure 5-16: NIST: M = 15 adaptive 6 parameter Gabor resulting super-kernels.

Linear conclusions

Figures 5-17 and Figure 5-18 summarise the results from this section for both seascape and
NIST data.

95 ! ! ! ! !

Classification (%)

1 scale parameter —*

2 centre positions

2 scale/2 centres =

6 Gabor parameters <

65 i i 1 | I
2 4 6 8 10 12 14 16

Figure 5-17: Seascape: Adaptive linear results.

The seascape data shows that for low M, a greater P yielded higher performance. As M
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increased the effect of P was greatly reduced. It was noticed that only a small number of

kernels, ranging from 5 to 9, were required for classification.

The NIST results, at the higher M, showed a similar reduced effect of P with even the
fixed centre, adaptive scale, networks showing good generalisation at M = 15, providing
classification rates within a 1 or 2% of the more complicated P = 2,4 and 6 kernel models.
At the lower M < 10 the additional parameters appear to be detrimental to classification

performance. This was due to the fact that many kernels, of any P, were required to separate
the 10 NIST classes.
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Figure 5-18: NIST: Adaptive linear results.

This suggested that it is possibly better to use a larger number of M simple kernels, as
opposed to a small number of highly complex kernels, where both contain a similar number
of adaptive model parameters. A conclusion also reached by researchers into kernel-based

techniques for density estimation [103].
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5.3.2 Nonlinear classification

The linear classification results in the previous section have shown that considerable improve-
ments in performance were achieved compared to the linear results using fixed features
described in Chapter 4. In some cases the adaptive linear model provided better perform-

ance than some of the nonlinear classifiers.

The adaptive networks were attempting to generate feature space in which objects are
linearly separable. However, it was possible that no linear mapping of the image space,
for either database, would have resulted in features that were completely linearly separable.
Consequently, a method of nonlinearly separating an optimised feature space was required.
This was performed, as stated earlier in the chapter, by extending the adaptive linear model to
include a standard nonlinear layer, between the adaptive linear feature extraction and output

layers. This was shown in Equation 5.3.

The extension to using the nonlinear layer was easy. The error derivatives were backpropag-
ated through the nonlinear layer to the feature extraction kernels. The only slight problem was
ensuring that the initial features generated were not so large that they saturated the outputs of
the nonlinear sigmoidal units. This was achieved by careful initialisation of the the kernels and

their associated weights.

The results for a model with a P = 4 (zy, yo, a, b) Gaussian kernel using varying numbers
of kernels, M, and nonlinear units, /V, are given in Table 5-11. The values are percentage
mean classification rates derived from 10 tests with the standard deviation, as usual, given in

brackets. Table 5-12 gives the total number of parameters in each model.

Number of Number of hidden units, N
kernels, M 2 4 6 8 10
3 94.0 (1.7) 94.25(1.6) 94.5(2.7) 955(1.4) 94.75(2.0)
6 95.75(1.7) 96.5(2.0) 96.0(1.7) 96.0(2.3) -
9 96.75 (2.5) 96.75(2.2) 96.5(1.5) - -
12 96.5(1.5) 97.0(1.8) - - -

Table 5-11: Seascape: M = 4 nonlinear adaptive kernel model classification results. Each
score is the mean percentage classification over 10 different samples each consisting of 400

test vectors. The value in parentheses is the standard deviation over the 10 tests.



Adaptive kernel neural networks 140

Number of Number of hidden units, N
kernels, M 2 4 6 8 10

3 29 43 57 71 85
6 47 67 87 107 -
9 65 91 117 - -
12 83 115 - - -

Table 5-12: Seascape: M = 4 nonlinear adaptive kernel model parameter count.

Table 5-11 shows that for each M little, or no, improvement was made as the number of
nonlinear hidden units was increased. This indicated that only a small amount of nonlinearity
was required to separate the classes. However, increasing the number of adaptive kernels,
for a small NV, did produce improvements in classification performance. This suggested that
the adaptive kernels were, in this case, flexible enough to perform the majority of the work
of separating the classes such that only a relatively nonlinear discriminant was required. In
other situations it is possible that the features with greatest separability will require a highly
complex decision boundary. This will be indicated by a 1arge discrepancy between the adaptive
linear and adaptive nonlinear results with the respective features generated having very different

distributions.

Table 5-12 shows that a model with only 67 parameters has equalled the performance
of a 16 Fourier features MLP model with 8 hidden nodes (163 parameters) that scored 96%
and significantly outperformed the MLP model trained with the seascape image data (4163

parameters) that scored 88.0%.

5.4 Review

Figure 5-19 shows how the classification results varied for both the linear and nonlinear adaptive
models. A clear separation is noted between the two types of.adaptive model indicating that
the use of a nonlinear model was justified. Furthermore, for less than 80 parameters excellent
classification results can be achieved for this database that far exceed many of the complicated

feature extraction results, as well as, the highly parameterised 256 input MLP model.
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Figure 5-19: Seascape: Classification against number of adaptive model parameters.

The use of a combined feature extraction and classification model based on adaptive kernels
has been shown to be very effective in classifying images of objects derived from a real infrared
seascape database. It was also shown to work well on a character recognition problem.
The adaptive model itself requires no more storage than the original ATR module, in fact
it has exactly the same structure. It offers ease-of-use in that no separate feature extraction
and selection techniques have to be applied, as well as excellent generalisation properties.
Furthermore, only a few model properties need to be adjusted to achieve good generalisation:
the number of kernels, type of kernel, and for the nonlinear model the number of hidden
units. The main disadvantage is that the features generated are constrained to those that can be

approximated by a linear weighted summation of a fixed type of kernel.



Chapter 6

Invariance with adaptive kernel networks

The previous chapters have examined the process of feature extraction and classification, and
especially how the two processes were effectively combined. The next step in the project was to
incorporate various forms of invariance into this adaptive feature extraction and classification
model. Invariance is defined here as the ability of a classifier output to remain constant
regardless of certain transformations of the object, and is a fundamental requirement of a real
ATR system. This chapter examines two methods that were used to introduce invariance into

the adaptive model of the previous chapter.

The chapter begins with a strict definition of the term invariance, which is followed by ‘a
review of various invariant techniques, and their application to the real IR seascape problem.
Finally, the chapter reports on the successes and failures that were achieved when invariance:

was incorporated into the adaptive model.

6.1 Invariance

In developing classification systems there are often constraints on the form of the mapping that

links a classifiers input to its output. This prior knowledge can significantly aid generalisation.

One such constraint could be that the classifier outputs remain unaffected by various
transformations of the input data. This is known as invariance. More formally, consider the

group « of transformations ! acting on each of the images contained in the set F'. For example,

Not to be confused with the feature extraction transforms of Chapter 4.

142
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this group may consist of all possible translations, rotations, and scalings of an image. Then,

for each image classification to remain invariant, the equation
ckf)y=c(f)yVker,feF

must be true [137]. This requires constraints to be built into the design of the classifier.

Specifically it is desired that
2(kfy=2(f) Vkexr,feF.

Subsequently, if the probability of a transform acting on an image is zero, P(k) = 0, there can
be no improvement in generalisation. During the project it was assumed that all transforms,

k € &, were equally probable, even if not represented by a transformed image in the database.

In ATR many types of useful invariances can be incorporated into the classification stage
to improve recognition performance. These can be as simple as compensating for the time
of day or image contrast, but they can be as complex as invariance against object occlusion.
This project considered the geometrical distortions of translation, scaling, and rotation. These,
and other distortions such as skew, can be represented by the simple affine transformation
f(z,y) — f(z',y') by

z g1 g2 T gs
= +
y g3 94 y 9o
where ¢; are constants [33]. Figure 6-1 shows the effect of the three transformations on a

simple structure.

Each of the three invariance were required for a specific reason. Translation invariance was
needed as an object may appear at any point in the FOV. An object could also be at any distance
from the sensor, and as no range data was available to compensate for this, the objects had to

be classified irrespective of size. Finally, and probably most important was rotation invariance.

Rotation invariance was required to counter the equally probable effects of both rotation of
the sensor and the object in the ATR environment. This may seem irrelevant to the seascape
problem, in which the object images and sensor were both aligned and good classification results
were achieved. This was demonstrated in Chapters 4 and 5. However, if the sensor was rotated

then the classification rate was severely effected with these previous types of feature extraction
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and classifier. For example, the linear, 2-parameter (zy, yo), adaptive, Gaussian model with
12 kernels achieved a classification rate, on the seascape data, of 91.25% but when the sensor
was artificially rotated to random orientations this dropped to 56.25%. Of course, if the sensor
orientation had been known the use of suitable normalisation, or a steerable filter set, could
have often, but not always, solved this problem [36]. However, there was also the converse

problem of object, as opposed to sensor, rotation which could not be so easily countered.
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Figure 6-1: Translation, rotation, and scaling.

This project examined the feasibility of incorporating invariance into the adaptive feature
extraction classifier model. Consequently, it was sensible to initially consider only simple
in-plane rotations. The seascape database was not indicative of this type of object rotation but
was the only non-military database available during this project. In the actual system planar
rotations of the object will be prevalent and with the seascape data this was mimicked by
artificial sensor rotation. The out-of-plane rotations, as discussed in Chapter 3, were treated as
subclasses. Adai)tive feature extraction for out-of-plane rotations is beyond the scope of this

thesis.

A further point when considering invariant classification concerns discriminability. For
discrimination to be possible then it is required that if 3k € « such that kf; = kf, then
c(f1) # ¢(f2) must hold. For example, if the rotation transform of 180° exists in « then it
is impossible to discriminate between equally scaled and positioned 6’s and 9’s in a digit
recognition system. In the seascape database, rotated versions of basic seascape shapes often

looked reasonably similar. Hence, even here discriminability was a difficult problem.
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Before examining the methods of invariant classification that were used to tackle these

problems it is necessary to discuss a more appropriate image representation.

6.2 Polar image representation

In the human visual system the benefits of using polar and log-polar sampling in the retina have
been discussed by several authors [127]. One main advantage is that high resolution is gained

in central part of the field of view.

However, for automatic Rl classification, it is simply computationally sensible to work with
polar images, f(p,0) 2, where p represents radial distance from, normally, the centre of mass
and @ is the anti-clockwise angular direction. This is because a pure rotation of a Cartesian

image f(z,y) translates to a unidimensional linear shift in the ¢ direction of the polar domain,

ie. f(p,0+0").

Equation 6.1 demonstrates how to convert Cartesian images defined over a region R into a

new domain.

/R/f(x,y)dxdy = /R*/f[x(u,v),y(u.,v)] | J | dudv 6.1)

J is the Jacobian, d(z,y)/0(u,v). Hence to convert to polar coordinates let z = pcosf and

y = psind and apply equation 6.1 such that

/oo /wf(fﬂ,y)dwdy = /Ooo/ozwf(p,O)pdde. (6.2)

—00 JOO

A simple example is provided in Figure 62 which can be compared with the original image

in Figure 3-16.

2Until stated continuous images will be considered, though the extension to digital images is trivial.
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Figure 6-2: Polar plots.

6.3 Review of current invariant techniques

A review of invariant pattern recognition, discusses two approaches to invariant classifica-
tion [137]. The first method uses invariant feature extraction followed by feature classification
with, for example, a neural network. The other approach combines the two stages into a
single parameterised model, usually in the context a neural network. This second idea is
intuitively very appealing as classification is achieved directly against a classification error
criteria. Unfortunately many of the neural-based solutions are either large and cumbersome,

overparameterised, or even do not include some of the required invariances [41,44,78,99,137].

The review also raises several issues concerning invariant classification [137]. These include
tolerance, discriminability as discussed before, model complexity, speed of operation, ease and
speed of optimisation, generalisation ability, flexibility to new problems, and transformation
retrieval. All of these are standard classification issues, except for the first and last. Tolerance

considers the need for complete invariance or whether an approximation is acceptable and
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transformation retrieval, for example, attempts to estimate object pose, distance from the norm,

using the transformed pattern space.

In the project three methods were considered, as proposed by Barnard and Casasent [6].

These were namely:

e Invariance by training or regularisation

e Invariance by structure

e Invariance through feature extraction or preprocessing

6.4 Invariance through training

This is a simple but brute force method of encoding classification invariance. The model is
optimised using a database containing all possible transformed patterns, i.e. kfVk € k, f € F.
This method has several problems. The firstis that F" has to be very large resulting in an intensive
optimisation process. Then the network is not assured to be invariant and can not extrapolate
outside the patterns it has been shown. The model uses no prior knowledge of the invariance

required.

A solution was proposed by Simard et al [113] in which a regularisation technique can
be used to penalise the lack of invariance in an neural network model. The method is based
around the trajectory, or manifold for more than one class of invariance, that is created when a
pattern is transformed by the continuous members of the subgroup of a particular invariance.
An artificial example is demonstrated in Figure 6-3, for a 3 dimensional pattern space with a
single type of required invariance (e.g. rotation) parameterised by . The drawback is that an
approximation, using finite differences, of the tangent vectors is required. Casasent has used a
similar approach using linear piecewise approximations of feature space trajectories combined

with a simple distance metric for invariant object detection in real IR images.

This approach of invariance through training was used in the project to achieve invariance

to three-dimensional rotations of the seascape objects.
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Trajectory

Figure 6-3: Trajectory of a transformed pattern, k() f where £(0) = 1.

6.5 Invariance through structure

These are mainly the neural network techniques discussed earlier that produce large, cumber-
some networks that are based on the principle of weight sharing. This is the constraining of
specific weights to have equal values and hence encoding invariance through the structure of

the model. Rumelhart et al used this approach for the T-C problem [92].

Examples of neural networks for invariant pattern recognition that employ weight sharing
include the neocognitron, higher order neural networks, symmetric networks and time-delay

neural networks [41,44,43,78,99].

The neocognitron [41] is a self-organising hierarchical multi-layer structure, as shown in
Figure 6-4, that has invariance to shape distortion and partial translation invariance, and in one
adaptation rotation invariance [126]. However, the hundreds of thousands of connections make

it an unpractical in many ATR solutions 3.

Higher order neural networks of order 3 can be used for translation, scale and rotation
invariant classification. They use the idea of weight sharing amongst similar triangles in the

input image. Unfortunately again they tend to produce combinatorially (O((N?)%)) large

3The exception is the SAHTIRN project that uses a neocognitron classifier [25].
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numbers of weights, for an Nx/V image. A non-ideal solution is to use coarse coding of the

input image [44,43,78].

The third main group of structural classifiers are the symmetric networks, of which Sawai’s.
axially symmetric neural network [99] and Fukumi’s first order network coin recogniser [38]

are examples.

Receptive
field

Output
Complex classification
layer layer

Complex Simple
layer layer

Simple
layer

Figure 6—4: The neocognitron.

Both higher-order, and the neocognitron, were examined as possible classifiers for the
project but were found to be cumbersome, difficult to optimise, and required considerably more

storage for the model parameters than the existing classifier.

6.6 Invariance through feature extraction

The third method for invariant classification involves generating a set of features, d, from
the images that are invariant under the transform group « i.e. kd = d Vk € . This is the
most popular method of all three and two specific approaches were considered for the project:
preprocessing of the images such that any feature generated from the resulting image were

invariant; use of an feature generating kernel, ¢, as in Chapter 5, that produced features that
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were naturally invariant to the three required transformations. Each of the three transforms

shall now be discussed individually.

6.6.1 Translation

There are two simple methods for tackling translation invariance. The first calculates the centre
of mass (o, yo) of a Cartesian image, f(z,y), and shifts the origin of the coordinate system to
that pointi.e. f(z — zo,y — yo). This is a preprocessing method, and the method of choice for

the project.

The second, kernel, method uses a complex kernel of the form ¢(z,y) = exp[j(uz + vy)]
such that any arbitrary shift (z’, y’) in the image only produces a linear phase shift in the resulting
complex feature. Hence, an invariant feature can be produced by only using magnitude data.
An excellent example of this is the Fourier transform [47]. The Fourier transform, F of an

image f(z,y) is given by
Fulf@ut= [ [T f@ye =+ dzdy (63)

and for a shifted version of the same image
Fooll(@ =2y =4} = Fup{f(w,y)}e72n0= 0, (6:4)

Thus the feature, | ., ,{f(z,y)} |, is invariant to translations. However, this assumes that the

majority of discriminatory information is contained in the magnitude [129].

6.6.2 Scale

In a similar dual manner the problem of scale invariance was approached. However, the
tendency was to perform preprocessing initially. Chapter 3 described how the seascape objects
were resampled to a standard size. The main reason for this was to allow the direct application
of the object to classification or feature extraction systems. However, it also introduced basic
scaling invariance. Another method was to normalise the image such that the average radius,

from the centre of mass, of the object was identical for each object. Similarly, the distance
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from the centre to the extremity of the object could be scaled to unity. This last method was

found to be less robust and easily effected by poor segmentation.

Another very popular, and biologically plausible approach, was the use of the log-polar
transform. This has already been used in ATR systems [15]. Section 6.2 showed how to convert
a Cartesian image, f(z,y), into the polar domain, f(p, ). Scale invariance becomes possible
if in the polar transform the identity p = e is used to generate a new image, f'(r,0) = f(e”, ).
Scaling the original image by a factor § then produces a linear shift in the log-polar image of
InBie. f'(r+ InpB,0). Shifts such as these can be easily countered by either of the translation
invariant techniques discussed in the previous section. This was found to be a very successful

with the seascape data.

Low order image moments have also been successfully applied to the problem of scale
invariance and will be explained in the following section, in conjunction with their rotation

invariance properties.

6.6.3 Rotation
For a classification system to be rotation invariant (RI) the condition

z(f(p,0)) = 2(f(p, 0+ 8)) VO

must hold true. There have been many approaches taken to RI classification [6,137,101,39,

104,129]; some preprocessing based and others complex kernel based.

Preprocessing

Some of the preprocessing methods for RI feature extraction are intuitive, such as using
eigenvector analysis to rotate the image such that the directions of maximum variance align
(unfortunately there are two directions of maximum variance), and some are more complicated,
like Fourier descriptors [80] which analyse -the spectrum of boundary contours of an object,
as seen in Chapter 3. One simple method, named 6 normalisation was used in the project,
calculates the mean of a polar, or log-polar, image in the 8 direction. This was very appealing

as the log-polar image could be easily combined, for little extra computation, with the scale
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invariant generating process of using the Inp directional image mean, as in the previous section.
However, unlike the [np mean the § mean could not be calculated so easily as the polar images

were periodic in the § direction. This was solved using the circular mean [71].

A polar image, f(p, 6), has a circular mean, 8y = I'(f), given by

C(6
cos Oy = E(H_)
or, alternatively, by
: S(6
sin by = %0;
where
= ['["cost f(p,0) dbpd 5(9)—/'/2”z'n9f( 8) ddpd (6.5)
—/O]OCOSf(p,) pdp, =) P, pdp, :
and

0) =/ C2(0) + SX(0).

Invariance is achieved by shifting f(p, #) by 6, generating a RI image, f(p, 8 + o).

Proof: Consider an image f(p, 6) and a rotated version of the same image shifted by 8’ in

the @ direction, f(p,6 + 6'). Let
03 = T(f(p,0)) and 6 = T(f(p, 0 +9),

and then for circular mean normalisation to be rotation invariant the following condition must
hold:
f(p,0+03) = f(p, 0+ 6 +6), or 05=03—0.

So, for the rotated image f(p, 8 + ¢’)

[// cosOf(p,0 +0') dOpdp 2
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and by letting © = 6 + ' it can be seen that

2
C*(@) = [// cos(® — 8" f(p, )d@pdp]
2r 6’ 246’ 2
= [cos@ // ¢os Of(p,®) dOpdp + sin 0'// sin Of(p,©) d@pdp]
20 [ [ 05 07(p, ©) dopdp | i ©f (5, ©) dOpdp |
= cos /0/9 cos ©f(p,0) d®pdp | + sin’6 // sin Of(p, ©) d®pdp

2w 46’ 27 +6'
+ 2cos b’ sznal[// cos Of(p, © d@pdpJ [// stn ©f(p, )d@pdp]

Similarly,

26! 246’ 2
2
5%(@) = cos? [//0 sin ©f(p, ©) d@pdp} + sin? [// cos Of(p,0) d@pdp}

— 2cos @ sin @ [//2”0005 Of(p,0) d@pdp] [//ZHQISM Of(p,0) d@pdp]

Now R%(®) = C%(®©) + S%(©) such that

[//ZWH;OS Of(p,0) d@PdPJ [//%-‘-ez‘szn Of(p,®) dOpdp ]2

2
[// cos Of p,@) d@pdp] [// sin Of(p, ©) d@pdp] = R*(6) (6.6)
So R(#) is invariant to changes in image rotation but what about C(6)?

//2W+0Ic03® 0 f(p,O) dOpdp

—0030// cos Of(p, )d@pdp+szn0// sin Of(p,©) dOpdp

Combining this with R(©) from equation 6.6 and letting ® = @ it can be seen that

cos 0 = = —= = cos 0’ cos 05 + sin @' sin 0% = cos(0¢ — 6')



Invariance with adaptive kernel networks 154

such that
98 =05 — o

and therefore circular mean normalised images are rotationally invariant.

Complex kernel feature extraction

Another method of generating a set of RI features was to use a kernel such that all points in the
kernel equidistant from the centre had the same value. This approach was taken by Fukumi in
his shared weight, neural network, coin recognition system [38]. Unfortunately at a particular
distance, p’, from the centre of the image, f(p’, #) can have any arbitrary arrangement provided

that the sum over all § remained constant. The features can be expressed as

1 p2m
di = /0 /0 f(p,0) ¥i(p,0) dbpdp (6.7)

where ¢;(p, 8) = g(p), a radial function or polynomial.

This simplistic approach can be extended to take into account variations of the image in the
0 direction by using complex kernels. In their paper concerning Zernike circular polynomials
Bhatia and Wolf [11} demonstrated that for a kernel to provide RI about the centre of mass of
an object it must be of the form g(p)exp(ymé) where m represents circular harmonic order
and, as stated before, ¢(p) is a radial polynomial. Examples of radial polynomials are provided

in Figure 6-5.
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Figure 6-5: Examples of two different classes of radial polynomials, g(p).
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These complex kernels can be used to generate RI features, d;, as in Equation 6.8 where *

denotes the complex conjugate and | . | complex magnitude.

1 p27
d; = /0/0 f(p,0);(p,0) dbpdp

(6.8)
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The ability of this transform to achieve RI is easily demonstrated. Each RI feature, d°, is

determined by the equation

F(p,0)¢*(p,0) dbpdp f(p,0)g(p)e™™ dbpdp
o= | [ =\ [ I

To prove the features are RI the effect of rotating the image by ¢’ is compared with the new

feature, d°, given by

‘//fp,aw )-J‘medopdp‘

and by letting © = 6 + 6’ and knowing that | ezp(jm¥8') | =

jmé’ 1ram —jm® d d a
e /0/0 f(p.©)g(p)e ©p p’ = d"

The choice of g(p) and m, which determine the shape of the kernel, are crucial for an
acceptable classification rate and four types of kernel derived from Fourier-Mellin (FM),
orthogonal Fourier-Mellin (OFM), Zernike (ZE) and pseudo-Zernike (PZ) moments have been
found to work well [109,124,107,106,105,61,62,108,67]. Fourier-Mellin moments, M,,,, use
the kernel 1;(p, 0) = p‘exp(jmb) where in this thesis ¢ is integer valued. Sheng and Shen [109]
derived OFM moments by orthogonalisation of the sequence 1, p, p?, ..., p". This generated
a set of orthogonal g(p) such that ¥;,(p,0) = exp(jmb) X", Binsp®. Two other sets of
moments were discovered by a similar orthogonalisation of the sequences pI™! pI™I+2 _ plnl
and pl™l, plmI+1  pl*l. These are the ZE and PZ moments respectively [11]. The real and
imaginary parts of one ZE kernel is given in Figure 6-6. In the same way as the OFM, the ZE
and PZ kernels can be expressed as linear combinations of weighted natural powers of p but
with 8;,; = 0 for s < m. More generally,

(6.9)

ins sm

eI dBpdp ‘

whereby suitable choice of §;,; can generate any of the required moments.

Teh and Chin [124] tested various image moments for information redundancy, noise

sensitivity and image reconstruction capability. Of the moments examined Zernike had the
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best overall performance. However, the position of the ZE g(p) zeros, than say those of OFM,

might not be so suitable for certain types of RI classification [109].

1.0

Figure 6—6: The real and imaginary kernels of one Zernike kernel.

An excellent introduction to moment-based features is given by Teague, and others [122,
1,124,62,9]. Moments have been successfully applied to applications such as ship, plane, and

character recognition, as well as being incorporated into many ATR solutions [117,31,61].

Other techniques

There are other techniques for RI classification which shall be mentioned for completeness. Hu
introduced a set of algebraic moments based on nonlinear combinations of normalised regular
moments [57]. These translation, rotation, and scale invariant features were based on Cayley-
Sylvester’s theory of algebraic invariants and corrected by Reiss [88]. All these moment-based
techniques are a generalisation of a basic theory of moments which are a general class of

invariants. ,
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The Fourier transform can also provide RI classification. This can be seen by noting that a
rotation in the image plane results in a similar rotation of the Fourier plane. The polar Fourier

transform is given as

oo 27 .
Fdf 0,00y = [ [ (o, 0)e 0= dgpdp (6.10)

and a linear shift in § by ' radians results in an equivalent linear shift in ¢ such that then
Feilf(p,0 — 6)} = Frire{f(p,0)}. Rotation invariance is achieved by binning the Fourier
plane into radial bins. Conversely, binning into wedges provides scale invariance. This is

known as the wedge-ring feature extractor.

Other various methods for RI include features based on the grey level histogram of the
objects, as in Chapter 3, and using simple descriptive measures as features. Also fractional
central moments [55] and constraint-based approaches [6] which transform images along feature
trajectories until a set of constraints, Cj, is satisfied such that C;(.) = 0Vz which is known as
the constraint surface. A simple example is the up-righting of alphanumeric characters to the

horizontal.

The final, and a special case, form of RI classification are the RI matched filters such as
circular harmonic filters. These use the decomposition of images into a series orthogonal basis

images. An image f(p, §) may be written as the angular Fourier series

Fo.0)= S ful(p)esp(jmo) 6.11)

m=—0o

The angular-Fourier series coefficients f,,(p) are called the angular harmonics and are given
by
2m
fm(p) = 1/27 A f(p,0)exp(—jm8)do (6.12)

and the energy associated with each angular harmonic is
E, = 27r/0 | fm(p) |2 pdp. (6.13)

In this way a filter set can be constructed to perform RI classification. It is without the scope

of this thesis to consider these filters any further.
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6.7 Digital approximation

In the previous sections invariance has been discussed with respect to a continuous image. It
must be noted that these features are strictly only invariant when computing for a continuous
image. Consequently, there were effects introduced when replacing the continuous integrals
by the digital approximation of summations in the digital ATR system. These were due to
sampling, digitising, and quantising of the original scene. Teh and Chin investigated the effects
of digital approximations of moment invariants [123]. There was no time in the project to

examine the effects on the seascape data.

6.8 Classification of fixed RI features

In Section 6.3 three approaches to invariant classification were discussed. Of these three
invariance through feature extraction or preprocessing were described as the most popular.
This section provides results for the rotation invariant classification performed on the seascape
database. As described previously, this database did not naturally contain objects with in-plane

rotation. The rotation was introduced by artificial sensor rotation.

The first two experiments were designed to demonstrate how classification rates of some of
the non-RI features discussed in Chapter 4 would be effected by small deviations away from

the upright (tolerance) and how they would alter with objects of random rotations.

Figure 67 shows how a set of fixed Gabor features coped when small, random sensor
rotations were introduced on the seascape object database. For zero-degree added rotation the
Gabor features were identical to that reported in Chapter 4. RI-features, typically, performed
worse, in this situation as non-RI features have additional information. However, as sensor
rotation was increased the misclassification rate of the non-RI features increased sharply. At a
mere 20° the classification rate dropped by 10%. This meant a system based on the assumption

of upright objects must perform the alignment of the objects accurately.

The next set of results, given in Table 6-1, showed how three different features ( Gabor
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Figure 6-7: Seascape: Effect on non-RI feature classification by small sensor rotations.

chosen by BaB, Fourier chosen by Wilks’ score, and zoning ) coped with a seascape database

in which all objects were randomly rotated between 0° and 360°. They were classified using a

linear and 7-NN classifier.

Unrotated (%) Rotated (%) Difference (%)
Feature # Linear 7-NN Linear 7-NN Linear 7-NN
Gabor 8 83.5 91.25 43.5 47.0 40.0 44.25
Fourier 16 86.25 96.0 46.75 49.75 39.5 46.25
Zone 16 86.0 92.5 41.0 42.25 4475 50.0

Table 6-1: Seascape: Non-RI features with a rotated database. Each score is the mean

percentage classification over 10 different samples each consisting of 400 test vectors. The

value in parentheses is the standard deviation over the 10 tests.

As can be in Table 6-1 there was a considerable reduction in the classification rate. This

was unacceptable. The classification rate must remain unchanged by simple rotations of the
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object. Several RI techniques, that were discussed earlier in this chapter, were applied to the
same rotated object database. These RI features included the popular moment-based features
chosen by the BaB algorithm, and standard features applied to #-normalised images *. As
can be seen in Table 62 significant improvements were achieved. Table 6-3 shows the new

classification confusion matrices.

Feature # Linear (%) 7-NN (%)
Moments:
Hu 7 64520 73.25(1.9)

Fourier-Mellin (FM) 15 76.0(1.7) 81.0(2.1)
Orthogonal FM (OFM) 15 75.0(1.8) 82.75(2.0)

Pseudo-Zernike 15 75.0(1.6) 83.5(1.8)
Complex 15 745(1.4) 78.25(1.9)
0-normalised:

Gabor 15 66.52.6) 72.0(2.3)
Gaussian 16 63.0(20) 73.25(2.1)
Geometrical 15 63.75(2.7) 7425Q24)

Table 6-2: Seascape: RI features with a rotated database. Each score is the mean percentage
classification over 10 different samples each consisting of 400 test vectors. The value in

parentheses is the standard deviation over the 10 tests.

As with the results provided in Chapter 4, Table 6-2 provided a benchmark with which
to compare any new adaptive results. Certain types of moment performed effectively, and
only a drop of approximately 5% in classification was recorded over the non-RI features.
The §-normalised features performed poorly now though, indicating in the new images, the
positions the shapes of the feature extracting kernels were incorrect. Table 6-3 shows that
when the RI features were considered the source of confusion also altered; the problem was

now distinguishing sailboats and motor boats.

“4Fourier features were not calculated due to the non-square nature of the new images.
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Correct class Correct class
Guess Sail Motor Buoy Total Guess  Sail Motor Buoy Total
Sail 166 19 5 190 Sail 131 11 5 147
Motor 7 97 12 110 Motor 30 90 23 143
Buoy 7 13 80 100 Buoy 19 22 69 110
Total 180 123 97 400 Total 180 123 97 400
(a) Pseudo-Zernike (84.25% correct) (b) Gaussian (72.5% correct)

Table 6-3: Seascape: 7-NN classifier confusion matrices.

It was found that at certain angles a rotated motor boat had many similarities with a sailboat.

This is demonstrated in Figure 6-8.

Figure 6-8: Seascape: The motor boat, on the left, has been rotated by 80 counterclockwise.

6.9 Adaptive invariant techniques

The previous section has shown how the RI moment-based classifiers were successful in
discriminating between the seascape objects. Thus, it seemed sensible to attempt to include the
moment kernels into a combined feature extraction and classification model. In this way the

moment parameters could be adapted to provide improved classification.
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6.9.1 Adaptive complex kernel feature extraction

Previously, it was stated that the choice of the moment radial polynomial, g(p), and circular
harmonic order, m, control the classification rate, as they control the shape of the moment
kernels, and consequently the RI features. Thus, many different types of kernel have been
proposed including Fourier-Mellin, orthogonal Fourier-Mellin, Zernike and pseudo-Zernike
moments which have been found to work well [109,124]. However, these have not always been
devised for image recognition systems. A method where g(p), at least, for a particular problem

could be identified automatically would be very beneficial.
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Figure 6-9: The adaptive complex kernel classifier model.

In order to combine the feature extraction into an overall classification model the values
Bins, from Equation 6.9, were incorporated as classification parameters to be optimised [116].
This would allow for the automatic selection of a suitable set of g(p)’s for a particular object
recognition task. The RI kernel feature extraction can be visualised, as in Figure 6-9, as an
extra preprocessing layer in a 2 layer MLP model, with the first layer containing complex
magnitude nonlinearities, and weights as f3;,;. As stated earlier, by fixing the f;,, weights, all
the types of moment discussed could be generated by the model. But, by adapting the weights

using the classification error improved classification was hoped to be achieved.
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There were several problems associated with this technique. First, imagine the simple
problem of optimising, with respect to a sum-of-squares error criterion, the network z = w |
BM | where w is the output weight and # and M, the Fourier-Mellin moments, are as in
Equation 6.9. The error surface for this problem, using FM features derived from two distinct
classes of simple rotated images is shown in Figure 6-10. The solution requires a positive output
weight. However, if the network is optimised, starting with a negative output weight, the shape
of the error surface in the negative region can cause line searching optimisation techniques to
fail. Also, with a positive output weight the network can be expressed as z =| wfM | and

hence there is ill-conditioning.

Log(MSE)

Im{M}

0.01

4 3 Hidden weight

Figure 6-10: Mean squared error (MSE) surface for a simple problem.

Fortunately, a non-derivative based optimisation method, known as simplex (see Appendix
A), was able to provide a working alternative and results for the seascape data were able to be
recorded. At this point a second problem was noted. As seen in Figure 6-9 there could be
no interaction between features and FM inputs of different m for RI to be maintained. This
introduced an unwanted complexity, and also required consideration of n and m, as well as the

requirement for significant numbers of inputs.

The first test with the seascape database used FM inputs with fixed m = 2, 8 sigmoid
units; but varying number of generated RI features. The test was run for 10,000 epochs. The
3 weights were either fixed to generate particular types of moments or were adaptable. Ten
FM (m = 2) complex features were used as inputs. The classification results are given in

Figure 6-11. The classification rate peaked at 73.5% using 6 kernels and 10 FM complex
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inputs. Could less FM inputs be used? In a further experiment the number of RI kernels was
fixed and the number of complex inputs was varied. The results are given in Figure 6-12. A

classification rate of 76.5% was achieved with only 7 inputs; over-fitting was occurring with

10 inputs.
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Figure 6-11: Seascape: Increasing the number of feature kernels.

77

76

75

74

Classification (%)

73

72

71

. I ! T ) ! T

Adapted < —

3 4 5 6 7 8 9 10
Number of FM complex features

Figure 6-12: Seascape: Increasing the number of complex FMM inputs.
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However, there were several outstanding questions. How would these new features cope
with additive image noise, how easy could the FMM features of different m be incorporated
into the model, and what polynomials were being generated in the adapted model? The first

and third questions are answered in Figures 613 and 6-14.
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Figure 6-13: Seascape: Noise results for the adaptive model.

Adapted radial polynomial, g( P )

Figure 6-14: Seascape: Final radial polynomials (m = 2) for the adaptive model.
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As can be seen the classifier coped as well as the other moment-based features. The
surprising result were the radial polynomials. These were order 6 polynomials ( 7 FM complex
inputs ) extracted from an optimised 6 RI feature kernel network. The extremities were very
important for discrimination. The confusion matrices indicated that the sailboats had separated
from the other two classes successfully. The motor boats and the buoys were the source of -

confusion in this case.

These results have shown that improved RI classification was achieved using the adaptive
technique. However, only one particular circular harmonic order was examined. What would
happen when FMM features, with different m, were used? The next experiment used the
identical model as before but with m = 4 inputs included. This network was significantly
harder to optimise. The resulting m = 4 polynomials were very different, as shown in
Figure 6-15. This figure showed that significant alterations had occurred during optimisation
and that more emphasis had been placed by the polynomials around the object centre. At the

higher frequency the centre was more attractive as a source of class discrimination.

Generating a model that would include even more m, and thus become useful, would have
required large numbers of inputs and connections. The error surface was also known to be
complicated, and even the simplex method on occasion failed. Thus, other results have not
been included in this thesis. A more simplistic adaptive RI feature classifier was sought for the

project.

6.9.2 RI through 6 normalisation

Another approach was to transform the image such that RI was naturally incorporated into the
new image: #-normalisation. As has been seen, this process normalises for object rotations
using a linear shift in the @ direction equal to the circular mean, §, determined by solving
cos 0 = C(0)/R(8) or sin 0 = S(0)/R() where R(§) = (C?(8) + S?(6))"/* and

C(8) = /0 1/02203 8f(p,0) dbpdp and S(6) = /0 ]/Ozwsm 0f(p,8) dopdp. (6.14)

The new image, f(p,0 + 6), is then invariant to the initial rotation of the image. This
approach allowed for the direct application of the standard adaptive feature extraction techniques

discussed in Chapter 5. This was a major advantage.
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Polynomials after O optimisation iterations

Adapted radial polynomial, g( P )

0.0 0.2 04 0.6 0.8 1.0

Adapted radial polynomial, g( P )

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6-15: Seascape: 6 radial polynomials (m = 4) after 0 and 10,000 iterations.

The § normalisation process was applied to the seascape objects which had been mapped
to a 20x72 polar coordinate system. The data was then split, as described in previous chapters,
into three individual sets and two sets of experiments were performed. The first used a linear

adaptive network, and the second an extra nonlinear layer, as in Chapter 5.
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6.9.3 Linear adaptive kernel

The initial adaptive experiment adapted two positional kernel parameters (zo, yo) of a simple
Gaussian kernel, with ¢ =2.50 and b= 1.25. The positional parameters, which were found to be
some useful in the Cartesian experiments of Chapter 5, were optimised as before. The next test
allowed all four parameters of the Gaussian parameters (a, b, o, yo) to be adapted in the hope of
improving classification. Finally, using the real part of the Gabor kernel, six parameters were
used. In each test the number of kernels, IV, was varied and the optimisation process applied
for 1000 iterations. Results are given in Figure 6-16 where each point represents the mean
value, over 10 different random splits of the data, with a standard deviation of approximately
0.5%. The results indicated that for large values of N, with the seascape data, simple Gaussian
kernels, with four adaptive parameters, were sufficient to perform the classification task. The
final classification rate of 78.0% was 2.0% greater than the FM linear classifier results given in

Table 6-2.
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Figure 6-16: Seascape: Adaptive Rl linear classification results.

One of the most noted attribute of moment-based features is their insensitivity to image
noise. Pseudo-Zernike moments have been found to be less affected by noise than, for example,

Fourier-Mellin or Zernike [124]. Figure 6—17 shows how the various adaptive linear models



Invariance with adaptive kernel networks 170

were affected by additive Gaussian noise in comparison with the PZ moments. These models

were more sensitive to noise than their moment-based counterparts.
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Figure 6-17: Seascape: Effect of noise adaptive RI linear model performance.

Figure 6-18 shows how the effective kernel linear classifier (i.e. the weighted sum of
kernels) for the sailboat class changed during optimisation. The classifier had more, smaller,
kernels around the centre (p = 0) and used fewer, broader kernels towards the extremities of the
image. These areas included the tops of the sailboat masts only. The motor boats and buoys,
with more symmetric pixel distributions, had consequently more energy near the extremities.
This tied in exactly with the results that were discovered with the adaptive complex kernel

classifier. There was no kernel influence in the mid region.

6.9.4 Nonlinear adaptive kernel

As in Chapter 5 the next step was to include the usual MLP sigmoid layer of processing
elements to provide nonlinear classification of the RI images. The discussion of this network
was covered in the previous chapter, so it suffices to simply provide results for this new RI

image database. The only difference is the image sampling.
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Figure 6—18: Seascape: Combined filter weights for sailboat class.
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Using the RI image database used in the last section several nonlinear networks were
optimised and tested. The classification performances for networks of varying flexibility is
recorded in Table 6—4. The 4-parameter (zo, Yo, @, b) Gaussian kernel, that worked well in the
non-RI case, was also used here and a limit on the number of parameters was set to 180 ( similar

to a standard 8 hidden node MLP with 15, for example, moment features.)

Number of hidden units
Kernels 2 4 6 8 10 12

3 7325 76.0 765 7725 78.0 7175
6 745 805 805 805 7875 -
10 76.75 82.25 8325 85.5 - -
15 79.0 825 8275 - - -
15 fixed PZ moment features:
70.25 755 805 81.75 - -

Table 6—4: Seascape: RI features with a rotated database. Each score is the mean percentage
classification over 10 different samples each consisting of 400 test vectors. The value in

parentheses is the standard deviation over the 10 tests.

This table shows that with similar numbers of parameters the adaptive technique matched,
and surpassed, the performance of the classification achieved with the best fixed RI features.
The maximum classification rate achieved was 85.5% using 10 kernels and 8 hidden nonlinear
hidden units. Figure 6-19 shows how this was achieved in terms of the final centroid and shape
of the feature extracting kernels. The ellipses denote equal kernel values, and the grey lines
denote the kernel trajecfories during optimisation. Again, the kernels tended towards the centre

of the image (small p) and concentrated less on the extremities.
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Figure 6-19: Seascape: Tracking of kernel centroids during optimisation and final shape.

6.10 Review

This chapter has reviewed invariant object recognition. This is a subject of great importance in
real ATR systems. One particular type of invariance, planar rotation, was discussed in detail
and two methods for incorporating rotation invariance into the adaptive feature extraction
classification, described in the last chapter, were outlined. The first, based on adaptive complex
kernels similar to moment features, were shown to be effective but very difficult to optimise. A
second method, based on preprocessing the images such that RI was already incorporated into
the data, proved much easier to use as it was a simple extension of the previous adaptive work.
Results were given for both methods using the real IR seascape database containing ideally
segmented objects. It was now time to examine the effects when objects were generated by a

non-ideal segmentation process and how that would effect classification performance.



Chapter 7

Integration into the ATR environment

In the previous chapters several adaptive feature extraction and classification models were
reported as attractive solutions to the invariant classification of real, well-segmented, IR objects.
These models required small numbers of model parameters to be estimated, yet still allowed
for model estimation with respect to the original image data. However, these results were
based on one particular ATR environment using a system that was assumed to generate ideally
segmented objects. The next step in the project was to examine the effects on the adaptive
classifiers when these assumptions were no longer valid, what could be done to minimise
performance degradation, and finally, what would happen when other ATR situations were

considered. Three particular issues had to addressed:

o The effect on classification due to rogue data produced by a non-ideal segmentation

algorithm. This included

I: The influence of clutter, everything else that the segmentation module wrongly
assumed was a target.
II : Phenomenological effects due to object occlusion as a result of a cluttered scene.

III : The effect of segmentation failure on classification.

e The identification and differentiation of, and between, clutter and poorly-segmented

objects.

e The adaptability of the system to a new environment.

Of course, there were other potential hazards but, within the scope of the project, object
clutter, occlusion, and poor segmentation quality were found to affect most severely classi-

fication performance. This chapter considers each of these problems in turn, and how each

174
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affected generalisation. The chapter begins by reporting the effect of object occlusion had on
the seascape object classifications and follows with a discussion of the techniques that were

employed to differentiate between the clutter and the poorly-segmented objects.

In the requirements, set down in Chapter 1, it was stated that the classification system should
be easily adaptable to a new environment, and target type, by an unskilled or automated,
operator. The classifiers discussed, in theory, should be able to perform this task, and this
chapter finishes by reporting on the results of the adaptive models with a completely new, real,

infrared database.

Before discussing the application of the new models to the BASE data a few important
points need to be highlighted. These models will be used in many different situations, and this
was the reason for a requirement that the system should be readily adaptable. It is suggested

that the problems with BASE data are common with many other real-world situations in that:

e The vast majority of real-world environments will have artifacts with similar prop-
erties to those the system is interested in classifying. In this way clutter generation is
inevitable.

e At the time of writing, and for the foreseeable future, perfect automated object
detection and segmentation processes do not exist. This means that object extraction
will fail at some point.

e There will be processes at work, such as occlusion, which will affect object repres-

entation.

The problems with the BASE data is simply a subset of a more generic problem of object
generation. The difference being that each new application will have a different distribution

and probability of occurrence for the rogue data.
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7.1 The effects of rogue data

Throughout this thesis various assumptions have been considered concerning the validity of
the results of a new ATR classification module. For example, the work in Chapters 4, 5,
and 6 assumed that the objects provided were of ideal segmentation quality. The results in
Chapter 3 showed that this was not being achieved with the original segmentation algorithm
and even though there is no agreement in the literature over what constitutes an ideal object
segmentation !, changes in segmentation quality would be highly likely to affect classification
performance. With a more advanced segmentation al gorithm the likelihood of a more predict-
able object extraction would be greater, though not guaranteed. For example, in the seascape
database the clutter had properties similar to the objects of interest. Consequently, the effects
of clutter and poor object segmentation on classification had to be considered. The current
segmentation algorithm was thus useful as it provided large numbers, of what were termed,

rogue data to test the effects of segmentation failure in the extreme.

7.1.1 Clutter

Clutter was introduced in Chapter 3 as the artifacts extracted by the segmentation process that
were, in fact, of no interest. They were non-objects. They were extracted because they had
similar properties to all the other types of objects, for example, they radiated heat. So unless one

particular property was available to distinguish the objects, clutter would always be produced.

The classifiers that had been designed at this stage had no knowledge of clutter, and no
rejection method. The clutter was classified according to the position in feature space in
which they occurred, and the decision boundaries created using the object data. Using two
different types of feature the 956 cases of seascape clutter were classified, using both a linear
and 7-NN classifier developed on 3-category, non-RI (Chapters 4 and 5) and RI (Chapter 6),

well-segmented data. The results are given in Table 7-1.

IIdeal segmentation in this thesis has been assumed to be that of skilled hand segmentation by a
human, though other segmentations may have led to easier classification, for example, by not segmenting
sails, only masts.
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Classified as
Feature # RI Sail Motor Buoy Total

Linear:
Gaussian 16 No 85 637 234 956
Zernike 15 Yes 295 485 176 956
7-NN:
Gaussian 16 No 137 704 115 956
Zermnike 15 Yes 587 284 85 956

Table 7-1: Seascape: Clutter classification using a 3-category linear and 7-NN classifier.

In the non-RI case the clutter was being classified as motor boats. Clutter did, in fact, tend
to be thin and horizontal, such as the wash from boats and sections of coastline. However, in
the RI situation this horizontal information was lost and clutter was classified either as sailboats
or motor boats, dependent on the type of feature. This inability to reject data would lead to a
high false alarm rate on particular classes of object. This was not satisfactory, especially if the

class was to be of particular importance.

7.1.2 Occlusion

Another potential source of danger with the seascape data occurred because of the highly
cluttered environment where objects, and objects and clutter, such as rocks or thick smoke,
would overlap in the two-dimensional image representation. In the previous chapters thé
adaptive models were tested for their ability to classify in the presence of noise. This is
a standard test applied to image-based classification problems but not necessarily, given the
quality of modern day sensors, a very realistic problem. Occlusion though was a serious
problem with the seascape data as it caused segmentation failure; either entities were combined
into single objects, or only sections of an object were extracted. Occlusion was thus labelled
as a special case of segmentation failure. The difference with the ordinary single object
segmentation failure was that no amount of corrective segmentation could, without complex

extrapolation, derive the true object segmentation.
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7.1.3 Segmentation failure

In Chapter 3 individual object segmentation failure during the creation of the seascape database
was discussed. Different severities of failure were introduced and catalogued. It was now
appropriate to see how classification degraded with segmentation quality. Thus, a classifier

was trained using purely well-segmented data and tested separately using:

1609 objects with good internal, and external quality (EX0 INO).

385 object internals that were slightly either too large or small (EXO0 IN1-2).

568 objects with complete internal segmentation failure (EXO0 IN3)

466 objects with external segmentation failure, regardless of internal failure (EX1-3).

The results for various types of features using a 7-NN classifier are given in Figure 7-1.
For small inaccuracies in the segmentation (EX0 IN1-2) there was, for all classes, a slight
degradation in performance, ranging between 1 and 20%. The motor boat and buoy classes
typically suffering the worst. However, when the internal segmentation failed completely (EX0
IN3) large differences occurred, dependent on feature type and class. With every feature the
buoy class suffered very badly. In Chapter 3 it was noted that the main differences between
the buoys and the sailboats was the grey level distribution. They tended to have very similar
outlines. Thus, when the buoy internal segmentation failed, all that was left was the outline,
and the object was classified as a sailboat. This was confirmed on examination of the confusion
matrices. The motor boats, in the RI cases, also suffered for similar reasons. In the non-RI cases
the motor boats exhibited different behaviour for different features. In the non-RI case with
Gaussian features, classification was performed using the fact that there were object sections to
the extreme right and left (the bow and stern) but little in the top and bottom thirds. Gaussian
features, and subsequently, classification were thus unaffected for this class if significant central
portions were missing. With Fourier features losing large amounts of data caused significant
changes in the frequency content of the image due to the thin, high frequency, skeletal structure

of the (EXO0 IN3) objects. This caused large changes in features.

The sailboat classification results were the most interesting. There appeared no degradation

in classification with segmentation failure. In fact, in some cases there was an improvement
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in classification. The features were found to have changed drastically in value with change in
segmentation quality. However, these new features had not transgressed any decision boundary,
unlike the other two classes, and were in fact further away from the decision boundary, and
subsequently much less likely to be misclassified. This is demonstrated in Figure 7-2 using

two Gaussian features and a linear decision boundary created using the well-segmented data.
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Figure 7-2: Seascape: Badly segmented Gaussian feature distribution.

The overall classification remained relatively high due to the fact that the majority of

poorly-segmented objects were sailboats.

It was also found that if the poorly-segmented objects had been included in the original
database used in Chapters 4-6 they would have introduced, not only degraded performance in
the test data, but also significantly affected the decision boundaries created. Remember that
these poorly-segmented objects, away from the other well-segmented data points, would have
generated large sum-of-squares errors, and would have dominated the final decision boundaries.
This is demonstrated in Table 7-2 where two 8 hidden node MLP’s were trained using either
well-segmented data, or a mixture of both well and poorly-segmented object features. The
resulting networks were both tested using similar types of databases, but derived from different

objects. The entries in the tables are the resulting classification performances in the four
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different cases, with the usual one standard deviation error in brackets. Sixteen fixed Gaussian

features were used.

The results for the networks optimised with well-segmented data, and tested with well-
segmented data, were taken from Chapter 4. When these networks were tested with the
mixture of both well and poorly-segmented objects the classification performance dropped off
significantly. This was due to the existence of the motor boats, and buoys, across the decision

boundaries, as shown earlier in Figure 7-2.

Training set

Test set Well-segmented only Mixture of both
Well-segmented only 92.75% (1.0) 91.5% (0.9)
Mixture of both 86.25% (1.2) 89.75% (1.0)

Table 7-2: Seascape: Effect of segmentation quality on MLP training and classification. Each
score is the mean percentage classification over 10 different samples each consisting of 400

test vectors. The value in parentheses is the standard deviation over the 10 tests.

When optimised with all the non-clutter objects, the network performance using well-segmented
test data was slightly degraded due to the warping of the decision boundaries by the rogue data
points. However, in this case the drop in classification was far less noticeable with the mixed
data test set as the boundary formed had adjusted for the rogue data, especially the sailboats.
So optimising the classifiers with all the non-clutter data reduced the effect of bad segmentation

but there was still no way of identifying the rogue points.
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7.2 The identification of rogue data

Of course, the first question is why there is a need to identify rogue data? In the previous section
is was seen that by including poorly-segmented data in the training set performance degradation
could be reduced. However, if a test object could be identified as being poorly-segmented,
action could be taken by, for example, re-segmenting the object with different, possibly more
suitable, segmentation parameters and classifying again. Furthermore, if the rogue data was
clutter, and did not belong any object class then a mistake would always occur. So, was there
any way of examining the outputs of the classification stage to identify both these types of

rogue data?

7.2.1 Classifier outputs and a posteriori probabilities

As discussed in Chapter 2 most classification tasks operate by allocating an unknown feature
vector to one of C pre-defined classes, w;, such that the a posteriori probability, P(w; | x),
is maximum. Clutter is not a pre-defined class, it has a separate distribution, and:thus
maz P(w; | x) is nonsensical. Rogue data, in terms of poorly-segmented objects, however,
is dependent on the class definition. If the class is defined as including only well-segmented
examples then this rogue data, also has a separate distribution. Again maz P(w; | x) is irrelev-
ant. If rogue data is included within the class it will be reflected in the as either another mode,

or extended tail, in the class distribution.

Figure 7-3 demonstrates the effect a poorly-segmented object had on the output of a
classifier designed using a mixture of both well- and poorly-segmented data. The object
existed in the tail of the sailboat distribution. This time P(w; | x) predicted the object class
correctly, but with a magnitude greater than that of the well-segmented data. However, as seen
in Figure 7-2 this will not always be the case and P(w; | x) could have easily been lower for
the poorly-segmented cases of class w;. So P(w; | x) could not be used to identify this type
of rogue data. The rogue data had to be considered as separate from pre-defined, non-clutter,

well-segmented object classes.
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Weighted conditional probability density
of well segmented objects

3.0 20 -1.0 0.0 1.0 2.0 3.0
Feature

Figure 7-3: Seascape: Poorly-segmented object classification.

Two methods were examined as possibilities for identifying rogue data. The first included
the rogue data as an extra class providing C + 1 class discrimination. This is the usual method
for categorising clutter and has been employed by BASE [49]. The second method assigned a
measure of how alike a pattern was to anything in the C-class training set, with highly novel

patterns being labelled as possible rogue data.

7.2.2 C + 1 classification

This approach of using an extra class in the discrimination procedure assumed that the rogue
data had a distribution that was adequately represented by the sampled data. If this assumption

was correct then classification could be applied, as before, with good generalisation capabilities.

Initially, each of the two types of rogue data were examined separately. Clutter was first
considered to have a broad distribution that covered the entire feature space. However, this
was found to be correct as the clutter features were products, of not just the segmentation, but
also the feature extraction process. If clutter were localised, as was suggested for the seascape

data by examination of various feature spaces, then treating clutter as an extra class was an

appropriate proposition.
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Using both features from Chapter 4 and the adaptive feature extraction networks from
Chapters 5 and 6 a four class classification table for the seascape data was created. There were
956 samples in the clutter class. The results are given in Table 7-3. The adaptive model results
are given for both the linear and nonlinear approaches. For the linear adaptive model nine 4
parameter (z, Yo, @, b) Gaussian kernels were used. For the nonlinear model only six of these

kernels were used, combined with four nonlinear nodes.

Feature # Linear 7-NN MLP

Fixed non-RI features:
Gaussian 16 73.25(1.6) 81.25(2.4) 84.5(1.2)
Legendre 15 72.5(2.5) 81.5(2.5) 81.0 (1.6)

Fourier 16 76.5(22) 85.75(1.7) 84.0(1.2)
Fixed RI features:
OFM 15 60.0(29 705(1.5 73.5(2.1)

Pseudo-Zernike 15 64.0(1.9) 7525(1.5) 74.25(2.2)
Adaptive non-RI model:

76.5 (1.4) 84.75 (1.5)
Adaptive RI model:

67.25 (1.5) 74.25 (1.0)

Table 7-3: Seascape: Clutter classification using a 4-categories of data. Each score is the
mean percentage classification over 10 different samples each consisting of 400 test vectors.

The value in parentheses is the standard deviation over the 10 tests.

The additional clutter class produced an approximately 10% decrease in classification per-
formance when using the same fixed features as before. The fixed Fourier features, again,
provided for superior classification whilst the adaptive networks, as can be seen, have com-
pensated for the new class, scoring as high and higher, than the best fixed feature results.
The confusion matrices for incidents of the non-RI and RI adaptive linear classifications are
provided in Table 7—4. In the non-RI case, as previously suspected, the main confusions were

between the clutter and the motor boats, as well as, the usual buoy-sailboat confusion. With
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the RI adaptive model, again as suspected, the confusions were much more spread out across

the classes with objects being confused for clutter equally across all the non-clutter classes.

Correct class Correct class
Guess  Sail Motor Buoy Clutter Guess  Saill Motor Buoy Clutter
Sail 104 1 26 10 Sail 96 3 11 20
Motor O 79 3 19 Motor 5 65 3 25
Buoy 2 2 28 9 Buoy 16 28 43 22
Clutter 3 14 0 100 Clutter 2 0 0 71
(a) non-RI adaptive model (77.75% correct) (b) RI adaptive model (66.25% correct)

Table 7-4: Seascape: Confusion matrices for the linear adaptive networks with a clutter class.

So, overall, the addition of the clutter class produced a reduction in the classification
performance, and this was due to the similarities that existed between the clutter and certain
object features. But what about the rogue data generated by poor object segmentation? There
were 1419 examples of poorly-segmented objects in the seascape database. How would these
classify? The results using this data as a fourth class, instead of the clutter, are given in

Table 7-5.
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Feature # Linear 7-NN MLP

Fixed non-RI features:
Gaussian 16 62.0(1.3) 745(1.4) 75.0(0.9
Legendre 15 59.75(1.7) 750.7) 75.0(1.2)

Fourier 16 63.75(0.8) 77.00.7) 77.75(1.1)
Fixed RI features:

OFM 15 585(1.2) 71.75(0.9) 71.75(1.2)
Pseudo-Zernike 15 59.5(1.0) 73.75(1.1) 74.0(1.5)
Adaptive non-RI model:

64.0 (1.3) 78.25 (1.5)
Adaptive RI model:
60.0 (1.1) 75.0 (1.3)

Table 7-5: Seascape: All badly segmented data classified using 4-categories. Each score is the
mean percentage classification over 10 different samples each consisting of 400 test vectors.

The value in parentheses is the standard deviation over the 10 tests.

The results indicated that there was significant overlap between the object classes and the
poorly-segmented rogue data. This was expected as this rogue data also included objecté which
were only slightly mis-segmented, (EX0 IN1-2) for example. For the re-segmentation project
that was run in parallel with this project it was useful to examine whether the objects with gross

segmentation defects could be identified.

When the extremely poorly-segmented objects were used class separation was improved.
This is shown in Table 7-6 where 568 (EX0 IN3) data samples form the fourth class. None of

the adaptive models were applied to this data due to project time restrictions.
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Feature # Linear 7-NN MLP

Fixed non-RI features:
Gaussian 16 78.25(1.8) 85.0(1.5) 85.0(1.3)
Legendre 15 77001.4) 855(14) 855(1.2)

Fourier 16 79.25(1.5) 89.0(0.8) 88.0(1.5)
Fixed RI features:
OFM 15 7025 (1.5) 81.5(1.2) 82.0(1.0

Pseudo-Zernike 15 74.75(1.6) 84.0(1.1) 84.0(0.9)

Table 7-6: Seascape: (EXO0 IN3) badly segmented data classified using 4-categories. Each
score is the mean percentage classification over 10 different samples each consisting of 400

test vectors. The value in parentheses is the standard deviation over the 10 tests.

The classification rate improved significantly which indicated that it was possible to identify
this type of rogue data. Table 7-7 provides confusion matrices for two of the fixed feature
classifications using a 7-NN classifier. It was unsurprising to find that the sailboats were the
main source of confusion and they were most prone to drastic segmentation failure with their

skeletal representations leaving little left to provide useful classification information.

Correct class Correct class

Guess  Sail Motor Buoy (EX3 Guess  Sail Motor Buoy (EX3
INO) : INO)

Sail 111 0 12 Sail 103 15
Motor O 105 1 4 Motor 9 88 7 6
Buoy 11 0 71 5 Buoy 9 3 61 1
(EX3 8 0 0 71 (EX3 9 0 0 79
INO) INO)
(a) Fourier features (89.5% correct) (b) Zernike features (82.75% correct)

Table 7-7: Seascape: Confusion matrices for the fixed feature 7-NN classifiers with an (EX3

INO) class.
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The C + 1 class algorithm was shown to be successful in identifying both clutter, and very
badly segmented object, rogue data points. The method allowed ease-of-use of the adaptive
feature extraction techniques described in the previous chapters. However, the method made
an assumption concerning the distribution of the fourth rogue class. The next method provided

a solution in the situation where that assumption was not valid.

7.2.3 Novelty classification

In the previous section the rogue data was identified by treating this data as another object in
the classification system. This was made possible by the assumption that the detection and
segmentation process will generate rogue data drawn from a fixed distribution. Thus, given
enough examples of the rogue data from the object generating process, which are representative
of the fixed rogue data distribution, classification, and subsequently rogue data identification,
can be performed. With the seascape data this was shown to be a successful approach and

allowed the adaptive feature extraction models to be incorporated.

The second rogue data identification method, described in this section, can be used when the
rogue data distribution is unknown, severely undersampled or not constant. In these conditions,
which would occur when an automated, adaptive, segmentation process was considered, the

C' + 1 performance would be severely degraded.

This secondary approach makes use of the fact that the the ideally segmented, non-clutter,
object feature distributions will, by definition, remain constant if the environment and segment-
ation algorithms are changed. Identification of the rogue data can be performed by rejecting

data that falls out of the region of the object feature distributions by some pre-set threshold.

This secondary method would require a measure of the degree of novelty of a test pattern,
how much the feature was away from the norm. Figure 7-3 indicated that the inverse of the
unconditional probability estimate, p(non — roguex), was a prime candidate. Indeed, p(z)
had been used in other fields as a measure of novelty where low values of #(z) indicated high

novelty [14].

Bishop suggests classifying objects as novel if the estimated unconditional probability of

a given feature falls below a given threshold value [14]. The threshold value that separates
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the non-novel from the novel, rogue, data class may be determined using the Bayes rule. The
probability density p(roguex) is assumed to be uniform 2 over volume the feature space that
could be possibly be covered. Practically, this volume is quite arbitrary and the threshold has
to be determined by experimentation. For the project, it was not necessary to be very accurate
with the threshold, provided it erred on the side of identifying more novel data than expected,
as this data was to be passed to a secondary assessment module. An inaccurately positioned
threshold would mean simply more work for this stage. The question remained how to estimate

p(non — roguex).

There exist several methods for estimating probability densities including kernel density
estimators such as the Parzen window approach, k-NN and Gaussian mixtu're models [103,
134]. Each of these methods require a set of smoothing parameters. The estimates for one
particular seascape Fourier feature, on the right in Figure 7—4, were derived using a Gaussian

kernel estimator with various Gaussian widths, A, of 0.01, 0.25, and 1.0. Visually with

Probability density estimates

Feature Feature

Figure 7—4: Examples of two type of density estimator.

h = 0.25 the multi-modal structure of the distribution could be seen but without the unwanted
sharp peaks. Unfortunately, determining smoothing parameters, even using advanced cross
validation techniques, in multi-dimensions is notoriously difficult [97]. The k-NN estimator

was a more intuitive technique requiring adjustment of a single parameter, k. It was also

2Though this is a very unsafe assumption as the rogue data is the result of a deterministic segmentation
process.
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simple to implement, had been encountered already with classification, and so was used in the
project for the novelty tests. The estimator was determined as described in Chapter 2. As
stated in Chapter 2 the k-NN estimator is not strictly speaking a true density estimator but was
effective enough for the purpose of the project. The effect of different k is shown on the left in

Figure 74.

In practice, this form of thresholded p(x) classification using £-NN density estimation
equates to thresholding on an Euclidean distance in feature space. In fact, this type of novelty
classification is very similar to the C' 4+ 1 algorithm, described in the previous section, but
only if the rogue data has a wide, uniform, distribution, is fully representative for determining

classification boundaries and these boundaries suitably flexible.

The k-NN based novelty algorithm was applied to the the seascape data. Figures 7-5
and 7-6 show the distribution of clutter, and poorly-segmented object, novelty (p(x)) values
for this database, and for different types of feature 3. Both sets of Figures demonstrate the
classification rates possible with the novelty classifier (only (EX0 IN3) data used in the latter.)
This was done by using the standard Bayes rule, coupled with the class conditional, k-NN
probability density estimates, for the three defined seascape classes. If p(x) fell below a set
threshold for a particular test example, then the object was classified as the fourth, novel,
class. The Figures show the effect on classification by varying this threshold. It must be noted
that these classifications were only valid for the particular clutter prior probability implied by
the population of the test set. In reality this probability would include temporal fluctuations,
caused by environment or system dynamics, such as a change in segmentation parameters.
Consequently, choosing a threshold that minimised misclassification according to these plots
was only correct in this particular case. If the probability of clutter increased then the novelty

threshold would need to be increased.

Each of the feature sets demonstrated the ability to successfully separate out the clutter.
The maximum classification performance was also similar to the C' + 1 rate. The results based

on the poorly-segmented data were more interesting.

Figure 7—6 shows that objects with only slight segmentation failure were difficult to identify.
The features were not preserving the artifacts that identified these faults. This was not sur-

prising as the features were not designed for this function. The surprising result was the poor

3The novelty distributions were not weighted by their prior probabilities
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Figure 7-7: Seascape: Novelty distribution of Fourier features of 3 classes.

performance of the Fourier features, and the excellent results using the Zernike data. This
was not at all expected from the C + 1 classifications. The rogue Fourier data was separable,
so why were the points not suitably classified? The problem was that the data available for
test was not uniformly distributed, and was, as has already seen, localised. The distribution
was close to the large non-rogue sailboat data which gave them relatively large novelty values.
The motor boat Fourier feature distribution, on the other hand, were both weighted by a small
prior probability and of high variance. These contributed to produce small novelty values, even
smaller than the rogue data. This is demonstrated in Figure 7-7 where the main mass of the
small non-rogue data is coming from the motor boats. Further verification was provided by the
confusion matrices for varying thresholds in Tables 7-8 and 7-9. Only the (EXO0 IN3) rogue
data points were used. The failures were transferred, as the threéshold increases, from rogue

data classified as sailboats directly to motor boats as rogue data.
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Correct class

Guess Sail Motor Buoy Novel

Correct class

Guess  Sail Motor Buoy Novel

Sail 710 4 6 454
Motor 1 513 3 32
Buoy 23 7 329 49
Novel 4 9 0 33

Sail 704 4 6 438
Motor 1 479 3 18
Buoy 23 7 329 44
Novel 10 43 0 68

Total 738 533 338 568

(@) logio(novelty) = —12 (72.75% correct)

Total 738 533 338 568

(b) logio(novelty) = —11 (72.5% correct)

Table 7-8. Seascape: Confusion matrices for novelty classifier using Fourier features.

Correct class

Guess  Sail Motor Buoy Novel

Correct class

Guess  Sail Motor Buoy Novel

Sail 697 4 5 406
Motor 1 420 2 7
Buoy 23 7 328 37
Novel 17 102 3 118

Sail 683 3 5 364
Motor O 289 1 2
Buoy 23 6 324 29
Novel 32 235 8 173

Total 738 533 338 568

(a) logio(novelty) = —10 (71.75% correct)

Total 738 533 338 568

(b) logio(novelty) = —9 (67.5% correct)

Table 7-9. Seascape: Confusion matrices for'novelty classifier using Fourier features.

The Zernike features, conversely, mapped the (EXO0 IN3) data such that their novelty values

were significantly less than any of the non-rogue data values. This could not be predicted, and

this problem was caused by multi-modal p(x) distributions and could not be addressed within

the time scope of this thesis.

7.2.4 Identification conclusions

The novelty classifier, though required when the rogue data distributions were unknown, had

several disadvantages.
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e The novelty classifier required an estimate of a multidimensional probability density
function.

e Most approaches, including k-NN, are fundamentally non-parametric in that they
require storage of many training samples.

e The classifier was not suited for integration of the adaptive networks discussed in
this thesis, unlike the C + 1 classifier.

¢ Required setting a threshold through experimentation. As the system will adapt
this will need to adapt with it, although as previously stated using a large threshold
only means extra processing by a secondary, possible re-segmentation, module. The
extra processing may effect response time which will be disadvantageous in an hostile
environment.

e It was difficult to choose a suitable set of features that not only differentiated the

main classes, but also successfully identified rogue data. This is nonsensical if the

rogue data is truly novel.

7.3 The separation of rogue data

The previous section demonstrated that it was possible separate out, quite effectively, the
rogue data. It was also possible to identify between the two types of rogue data: clutter, and
poorly-segmented objects; although the misclassification rate was approximately 30%. This
identification was useful as clutter could simply be ditched, and the segmentation failures sent
on for further processing, such as re-segmentation. However, the choice of feature was critical,
and unfortunately as has been stated can often not be predicted in advance, as rogue data by

definition may only appear at run-time.
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7.4 Database adaptability

In the thesis it was stated that one of the objectives of the work was to design a plug-and-play
classification module. For each new application into which the classifier is to be used the
module should be ready to run after a simple set-up procedure. This entails exposing the
system to a labelled, well-segmented, database indicative of the objects that the system will

encounter.

With the exception of the NIST database, only one real-world database was used to test the
adaptive feature extraction and classification models. A second database was available from
BASE “ for the testing of the system. This database had never been tested before. If the adaptive
networks could learn to classify these very different objects as successfully as the seascape data
it would further support the flexible, and generic, nature of these type of classifiers, which is

one of their strongest attributes.

This new car database was chosen, in particular, for various reasons. It was another real
infrared database > but with different characteristics. The objects were much similar than in the
seascape database and, thus, potentially harder to discriminate. However, the segmentation was
easier as the cars were very hot in relation to their surroundings. The surroundings generated
their own problems, yet again different to the seascape data and this included swaying trees,
the number of car occupants, the direction of the car, as well as differing weather conditions
and times of day. The seascape data was all taken under constant weather conditions. The next

sections further describes the nature of the car database.

7.4.1 Database description

The database contained four classes of vehicle: a Range rover, a Rover car, Ford Fiesta and a
Maestro. These were captured, as with the seascape, using a thermal infrared sensor with one
vehicle per frame at a constant viewing angle. The resulting images were 512x512, 8 bit per

pixel, frames of data. The vehicles themselves were captured at a distance of approximately 50

4Courtesy of Andy Connelly, University of Edinburgh.
3 A different sensor would have been more appropriate but was not available at the time.
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metres and typically were 64x64 pixels in size. The vehicles were then segmented out of the
frames and normalised to 32x32 pixel images, exactly as with the seascape data. Table 7-10

provides the distribution of the classes.

Class Population

Range Rover 496

Rover car 689
Ford Fiesta 695
Maestro 883
Total 2763

Table 7-10: Car: Class distributions.

7.4.2 Database results

The object database was split into training, testing and validation sets. Fixed features were
derived and classified for reference. Both linear and nonlinear adaptive feature extraction
models were then applied to the data. The mean classification percentages, over 10 tests, for

the fixed features are given in Tables 7-11. Standard deviations are given in brackets.

Feature Linear 7-NN

Legendre 78.0(1.7) 92.4(1.2)
Fourier 79.2 (1.5) 95.4(0.6)

Table 7-11: Car: Results for the infrared vehicle data using fixed features. Each score is the
mean percentage classification over 10 different samples each consisting of 500 test vectors.

The value in parentheses is the standard deviation over the 10 tests.

Results for the adaptive models are given in Table 7-12. Four parameter (zo, Yo, a,b)
Gaussian kernels were used due to their success with the seascape data. Table 7-13 provides

the confusion matrix from one linear, and one nonlinear, adaptive classification test.
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Type Kernels Hidden units Classification

Linear 9 - 73.6 (1.0)
Linear 12 - 79.6 (1.3)
Nonlinear 9 12 96.2 (1.4)
Nonlinear 12 8 95.8(1.1)

Table 7-12: Car: Results for the infrared vehicle data using adaptive features. Each score is
the mean percentage classification over 10 different samples each consisting of 500 test vectors.

The value in parentheses is the standard deviation over the 10 tests.

Correct class Correct class
Guess Land Rover Fiesta Maestro Guess Land Rover Fiesta Maestro
Land 80 6 3 1 Land 98 9 0 0
Rover 8 63 0 10 Rover 3 106 3 1
Fiesta 8 19 107 5 Fiesta O 4 117 1
Maestro 5 31 10 144 Maestro 0 0 0 158
(a) Linear (78.8% correct) (b) Nonlinear (95.8% correct)

Table 7-13: Car: Confusion matrices for the linear and nonlinear adaptive classifiers.

Figure 7-8 shows how the validation set classification rate, the validation set error and the
training set error changed during optimisation. This demonstrates that the optimisation path

through the error surface was smooth.

7.4.3 Database conclusions

The adaptive models performed well on this completely new database, scoring classification
rates in excess of the fixed feature results. Admittedly only two fixed features were tested but
this does not distract from the point that excellent generalisation was achieved with adaptive
models without any extensive investigation into other features. An object database was created,
analysed for properties such as segmentation quality, and applied to four configurations of the

adaptive models. No other work was required.
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Figure 7-8: Car: Validation set classification rate, validation set error and training set error
during optimisation for the nonlinear 9 kernel, 12 hidden unit adaptive model.
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7.5 Review

This chapter has examined the effects on classification performance due to the non-ideal nature
of the object generating process. The problems with the BASE data was suggested to be
symptomatic of the more generic nature of object generation. The BASE data being simply
one example of the distribution of rogue data. As such, two methods were proposed in order to
identify these type of objects based on assumptions on the nature of the rogue data distribution.
The C + 1 algorithm was found to be far more appropriate if the object generating process were
to remain constant and if this fixed rogue data distribution could be adequately sampled. If
this assumption is correct then the rogue data can be treated identically to the object data. Thé
success of the classification being dependent only on the overlap of class conditional feature
distributions. The C + 1 algorithm had another very important benefit in that it was able to
use the adaptive models introduced in the thesis to provide, again, improved classification over

many of the standard approaches.

The second approach using novelty detection was found to be superior in situations where
the object generating process was known to fluctuate or where the rogue data distributions were
heavily undersampled during model optimisation. In these cases the C' + 1 algorithm will be
dependent on where the rogue data distributions shift or appear. The novelty approach could

not, however, directly incorporate the adaptive feature extraction methods.

In order to demonstrate the adaptability of the algorithms discussed in the thesis, the adaptive
classification models were applied to a completely new real-world database. With this new

database classification rates comparable and better than the standard approaches were achieved.



- Chapter 8

Conclusions

This final chapter summarises the work which has been carried out, reviews the extent to which
the aims, set down in Chapter 1, have been achieved, and indicates where future work could

most productively be focussed.

8.1 Summary of work completed

Chapters 3 through 7 were a chronological, and systematic, record of the work completed
during this project. These chapters represent the solutions to the aims that were outlined in
Chapter 1. The work was modularised such that each chapter centred on a particular set of
aims. Chapter 3 analysed the generation of two real, non-ideal, databases derived from a set
of infrared images. Chapter 4 looked at applying standard feature extraction and classification
techniques to the accurately-generated data of Chapter 3, and discussed the complexities of
such methods. Chapter 5 introduced the successful application of a relatively new classification
model to the real data, simplified the model and then extended it to improve performance even
more. Comparisons were made in this chapter with the results of the standard approaches.
Incorporation of invariance in the new model was described in Chapter 6, and this invariance
was also tested with the real data. Chapter 7 examined the effects of a non-ideal preprocessing
system, something that Chapter 3 highlighted, and demonstrated both the effect and remedy
with respect to the new classification model. This tested the improved classification module
with even more realistic data. A final test in the chapter was to apply the new techniques to a
completely new database to show that the system was easily adaptable to a new environment.

The next section explains how far the original aims were achieved.

201
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8.2 Analysis of completed aims

1. To highlight problems with the existing BASE ATR object classification system.

In Chapter 2 the problems with the existing BASE ATR classification module were
discussed. There was little consideration of the data being classified including object
characteristics, prepreprocessing or generation. No thought was given to the required
solution, to the scale or type of the classification model used, and inappropriate model
parameter estimation procedures were applied. These issues were addressed at various

points in this thesis.

2. To design a replacement classification module for the BASE ATR system.

The combined feature extraction and classification model described in this thesis, in its
nonlinear form, is structurally equivalent to the original BASE MLP classifier; an image
input layer, followed by a nonlinear hidden layer, plus a linear output layer. In fact, the
only difference is the number of hidden units, and the values of the model parameters. No
further storage was thﬁs required, and throughput has not changed, with the exception of
some preprocessing that is not currently performed in the BASE system. Furthermore, the
number of adaptive parameters has considerably decreased from the order of thousands

to about one hundred.

The ATR module generated, consisting of the combined feature extraction and classific-
ation model, has been tested in the OSTRICH ATR system, and is readily available to
BASE. The module has been tested on two real-world ATR databases captured using an
infrared sensor. No testing has been performed with any other type of sensor due to time

restrictions.

3. To provide improved classification.

Chapters 5 and 6 have shown that the new combined models can provide increased, or at
least, equivalent classification performance than the standard approaches. In fact, some of

the linear new model results outperformed the nonlinear classification of certain standard
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features. This implies good classification results without the need for any nonlinear

calculations.

In the cases where the classification results were equivalent, for example with the nonlin-
ear discrimination of the selected Fourier features on the seascape data, the differentiation

between the two approaches was the amount of time taken to achieve the same result.

4. To design a classifier that is adaptive to new environments and applications.

The ability of the new adaptive models to learn new environments and applications is
one of the most important successes of the thesis. In this thesis the adaptive models were
applied to three different databases; two real-world infrared applications with different
environmental factors and clutter sources, and a completely unsimilar database of hand-
written characters. In each case the classification results were equivalent, if not better,
than any of the laborious approaches using the traditional two-stage and separate feature

extract and classify approach.

In each of the problems once the data had been generated it was a matter of optimising
the model with the new data using a suitable number of kernels, and hidden units. There
was no need for complicated feature extraction, or selection, procedures, as the features
best suited for classification are automatically generated. Of course, the features with
these new models will be confined to those generated by the linear, spatial mappings of
the image object data, where the transformation can only exist in the set of all possible

manifestations of the finite sum of kernels.

" As stated in Chapter 1 these new adaptive models inherit the disadvantages of all segment-
feature-classify approaches. The most important is that the classification can only be
made with reference to the image data presented, with all important range, temporal and
contextual information removed at this point. Also, as stated in the last paragraph the
features generated are restricted to those generated by the linear kernel mapping. Both
combined means that the susceptibility of these models to decoys is high. However, there
are two points that need to be expressed at this point. Firstly, decoys could potentially
be included in the estimation of adaptive models meaning the decoys would have to be
detailed to fool the classifier. Secondly, and more importantly, and as stated in Chapters

1 and 2, these systems tend to be used in conjunction with tracking systems, knowledge
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bases, and model matching systems, all with access to multiple sensors. The purpose
of the adaptive models is to classify an object based solely, and as best it can without
bias from other sources of information, on the object data shape. It is the job of later
interpretation stages to examine the evidence from all parts of the system to make a final

reasoned judgement based on the generated results.

A final note on the adaptive nature of the combined model is that the structure of
the model is identical to many neural classifiers already implemented in many ATR
systems, including BASE. The only difference being the estimation of the model and,
potentially, the number of processing nodes. This implies that the adaptive models
could be incorporated immediately into already installed classification systems by simply

updating the model weights and biases.

Estimation of the model parameters was performed directly against the object image
data, and so no complicated feature extraction or selection techniques were required. A
conjugate gradient line-searching technique allowed for faster optimisation of the model,
with fewer control values required to be set. The only other control values needed
to be set were the number and type of feature extracting kernel, although the many-
simple-kernel approach seemed to work well in all cases, and for the nonlinear version
of the model, the number of hidden units. The model validation procedure, however,
remains the most difficult operation, and care must be taken in determining when to stop
optimisation. However, this is a general model estimétion problem. A last point is that
these adaptive models, with the higher dimensional inputs, have more computations to
perform, compared with, for example, a 20 input standard MLP and thus it can take

longer to generate an optimised model.

5. To analyse the real data provided for the project.

There are several reasons for performing analysis on real, or synthetic, data before any
classification procedures are applied. These were described at the beginning of Chapter
3. In Chapter 3, the real, seascape, data that was provided for the project was analysed.
In particular, the method of generating and preprocessing the data, and any assumptions
used in these processes. The object characteristics were also considered. This provided
very useful information for determining features for discriminating between the classes

of object, as well as, for reasoning classification successes and failures.
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6. To incorporate invariance to size, position, or two-dimensional rotations of the object

image, into the classification model.

The incorporation of invariance was discussed in Chapter 6. Two alternative methods,
both that used a single feature extraction and classification model, were proposed. One
model was found to have problems in parameter estimation. A solution was found to
this problem but it was felt that the approach was still inappropriate. A better proposal
was to use a preprocessing step that introduced the required invariance into the data,
as opposed to the model itself, and allowed the application of the previously successful
techniques when no invariance had been available. Adding the invariance led to reduced
classification performance with the real data. This was expected as orientation was a

very important feature in classifying the real, seascape, database.

7. To identify potential weakness in the new classification module and the identification of

rogue data.

Throughout the testing of both the standard and the new model classification, tests on
both the NIST and seascape databases confusion matrices were provided that showed
where the main sources of misclassification were occurring. For the seascape databases,
as was noted in the preliminary analysis of the data in Chapter 3, the main confusions
existed between the sailboats and buoys, and between the motor boats and clutter. The
clutter was one type of rogue data generated by the non-ideal segmentation module.
This inability of the new classification models to handle this rogue data was a potential

weakness. Chapter 7 examined how this weakness could be overcome.

In Chapter 7 two approaches to the detection of rogue data was discussed. If the
distribution of the rogue data was constant and well sampled then a simple C' + 1
classification method could used in conjunction with the adaptive feature extraction and
classification models to generate results potentially dependent only on the amount of
distribution overlap between all the object and rogue data classes. This is a powerful
method for rogue data detection, and could even potentially incorporate Bayes risk

methods for reducing the effects of rejecting object data as rogue data, or vice-versa.

One potential weakness of the new classifiers is that if the assumption of the rogue

data does not hold, if, for example, the segmentation process is adaptive. The C + 1
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algorithm could potentially fail disastrously with rogue data, as although the data rﬁay
still be dissimilar to object data, it will be classified as objects due to the location in
feature space. A novelty approach was discussed for countering this shift in the rogue
data distributions but unlike the C' + 1 approach it could not incorporate the benefits of

the adaptive feature extraction classifiers.

A further potential weakness of the new model, as already discussed, is that it is not
100% guaranteed to find the best feature set for classification. These may be caused
by local minima in the optimisation process of the model, not reaching the global error
minima, but is more likely to be caused by the nature of the feature extraction mechanism.
The linear mapping of the object data used to generate the features may not be able to
approximate the best mapping of the data due to the form of the kernel. Furthermore,
the best feature extraction may not be even expressible as a linear mapping of the image

data.

8.3 Scope for future work

There are many avenues of research that were not attempted or published here, due to either
lack of relevance to the thesis or time to complete. Some are listed on the following page, in

no particular order.
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e The effect of preprocessing on the classification results. Could this step be simplified,
without adversely affecting classification performance?

¢ Identification of subclasses in the seascape database. This was not attempted due to
the lack of examples in many of the classes.

¢ Examining how classification of an object changes with the new model as it is tracked
and rotates out of the image plane.

e What is the minimum size of object that can be extracted, and confidently classified.

e Producing a posteriori classification results. This was performed but there was no
time to report results.

e For the combined model, only a few types of kernels were tried, and all based on
a Gaussian mother kernel. In multivariate kernel density estimation it is known that
Gaussian kernels are not the most efficient [103]. It would interesting to examine
other types of kernels.

e More research is required on the apparent over- and under-fitting that occurred with
the new model in Chapter 5, as well as, initialising the models before optimisation .

¢ Examining the effect of using a risk-based classification criterion.

e The application of Bayesian inference techniques which have recently become popu-
lar for determining neural network models has also been neglected in this thesis. This

could incorporate investigation into using better validation techniques for estimating

generalisation, such as bootstrapping.

8.4 Final comment

Although not guaranteed to find the best features for classifying, and the fact they take longer
to optimise than a standard MLP, the combined feature extraction and classification model,
together with the invariance introduced by preprocessing the data, offers is a very suitable
model for an ATR classification module. The model offers ease-of-use, easy adaptability to

new environments, and typically good generalisation.
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Appendix A

Optimisation techniques

There are many approaches to the nonlinear optimisation of adaptive parameters against some
error criterion and there exists an extensive literature on the subject [2,7,12]. There exists no
optimal optimisation technique and the technique chosen is often dependent on the problem at
hand.

Most neural networks optimisation techniques are iterative in nature and make use of zero,
first and second order derivatives to determine the position of the local error minimum. Three
popular techniques are described in this appendix, of which the last two are the only optimisation
techniques used in this thesis. The other optimisation algorithms are generally based on the
availability of the error Hessian such as quasi-newton and Levenberg-Marquardt method. The
methods used in this thesis are deemed adequate for the task involved.

A.1 Simple descent methods

Early neural network models, such as the multi-layer perceptron, used a basic optimisation
technique known as gradient descent. This involves back-propagating errors from the model
output to the input and then taking fixed steps in the direction of the local negative error surface
gradient i.e.

w(t+ 1) = w(t) —nVE |wy

where w is the parameter vector and 7 is the optimisation rate parameter.

This type of optimisation is extremely inefficient for error function minimisation due to the
excessive number of function evaluations. It is also prone to oscillation along error surface
valley’s and consequently large numbers of iterations, even when the error surface is quadratic.
A momentum term, which effectively acts like a smoother, can dampen these oscillations and -
improve convergence to the minimum. However, the value of the optimisation rate parameter
and the amount of momentum is very important for fast convergence and is very much problem
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dependent. Optimising a neural network with gradient descent with momentum is related to
conjugate gradient minimisation (see Section A.3) with optimal values for optimisation rate
and momentum set by the conjugate gradient algorithm.

There exist several enhanced gradient descent, such as bold driver technique or quick-
prop, but these were not used as there exist many better optimisation techniques with better
mathematical foundation.

Steepest descent is worth mentioning though as it uses line searching much like conjugate
gradient. Instead of using a optimisation rate parameter the new parameter vector is located at
the minimum in the direction of the local negative error surface gradient. The new direction
of search then proceeds in the direction of the gradient at the new parameter vector. However,
this also suffers from the same oscillation problem described before as shown in Figure A-1.

Optimisation trajectory

Error surface contours

Figure A-1: Steepest descent: Problems of oscillation.

A.2 The Simplex Method

The downhill simplex method in multi-dimensions was proposed by Nelder and Mead [75,82]
for function minimisation. This is a simpler algorithm than the conjugate gradient method in
that no function derivatives need to calculated, only pure function evaluations. However, it is
not very efficientin the number of iterations required to reach a solution. But it is a way of
providing a working solution without complex derivative calculations which may not even be
available. Simplex is based on neither first or second derivatives. No assumptions are made
about the surface except it is continuous and has a unique minimum in the area of the search.
It performs well when the curvature of the error surface changes rapidly, when compared to
other methods, but it may perform worse in the neighbourhood of the minimum. There are few
multiplications and no divisions to be performed.
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¢) Contraction

b) Expansion d) Multiple
contraction

Figure A-2: Simplex: Possible steps in two dimensions.

A simplex is a geometrical figure consisting of N + 1 vertices, Py, P, ..., Py, and all their
interconnecting line segments, where N is the dimension of the space. It 'is assumed that the
simplex is of a finite volume, it is non-degenerate. Each point, P; has an associated function
value, y;. The P is the centroid of all the vertex positions not including the vertex with the
highest function value. Equation A.1 represents a reflection as shown in Figure A—2a where «
is known as the reflection coefficient. Reflection occurs if the newly reflected point lies between
the highest and lowest point in the simplex and also when an expansion fails. Equation A.2
represents an expansion as shown in Figure A—2a where vy is known as the expansion coefficient.
An expansion will fail if, after a successful reflection, the simplex can not be extended any
further in that direction without increasing the function value. Equation A.3 represents a
contraction as shown in Figure A—2a where (3 is known as the contraction coefficient. A
contraction will occur when the reflected point is higher than the current highest vertex. If
the contraction fails the simplex is reduced in size towards the current minima as shown in
Figure A-2d. The coefficients are set to be be 1,2, and 1/2 respectively [75].

P*=(14a)P —ab, (A.1)
P* =qyP*+(1—-9)P (A.2)

P* =BP, + (1 - B)P (A3)
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Simplex adapts to the local error surface, elongating down long inclined planes, changing
directions, and contracting in the neighbourhood of a minimum. Initial size and orientation of
the simplex will have an effect on the speed of convergence.

The stopping criteria compares the ’standard error’ of the heights of the simplex vertices
with a preset value. The success of the criteria depends on the simplex not becoming too small
in relation to the curvature of the surface until final minima reached.

A.3 Conjugate gradient optimisation

The concept of conjugate gradient optimisation has been around for about 30 years. Recently
it has become one of the most popular, derivative-based, optimisation techniques for neural
network optimisation, replacing the now outmoded gradient descent method [35,81,12].

The practical concept is similar to steepest descent with the exception that the new search
direction is not necessarily orthogonal but conjugate to the previous search direction. In plain
terms this means that the gradient vector along the new direction has a zero (to lowest order)
component in a direction parallel to the previous search direction, as shown in Figure A-3. In
this way the new direction does not interfere with previous minimisations.

Error surface contours

Figure A-3: Conjugate gradient optimisation.

When the error surface is quadratic and positive definite the Hessian can be used to determine
the step sizes along the conjugate gradient directions. However, with a highly nonlinear error
surface whereby local Hessians are not necessarily positive definite and also possibly compute
intensive to generate, it is more usual to use a line minimisation to find the correct step size.
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There are solutions to help include the Hessian such as scaled conjugate gradient but will
not be considered in this thesis. The conjugate directions are generated through the Polak-
Ribiere algorithm and the initial direction set equal to the local negative error surface gradient.
The conjugate gradients are reinitialised every N steps, where N is the number of adaptive
parameters.

In this thesis a golden search technique was used along with a simple bracketing algorithm
as the line minimiser. However, it was found that many of the experiments that a considerable
speed up could be achieved by replacing the golden search technique with Brent’s algorithm
which applies parabolic interpolation.
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M. Smart. “Rotation invariant IR object recognition using adaptive kernel subspace pro-

jections with a neural network”

Rotation invariant IR object recognition
using adaptive kernel subspace projections with
a neural network

Michael H. W. Smart

Dept. of Electrical Engineering,
King’s Buildings, University Of Edinburgh, Scotland.
mhws@ee.ed.ac.uk

Abstract. This paper examines two techniques for rotation invariant,
adaptive feature extraction and classification of infra red images using
a feedforward neural network model. Both approaches use a set of ad-
aptive kernels, or wavelets, to generate rotation invariant features for
classification and allow for direct minimisation of a classification error
criterion against the input images whilst maintaining a low dimensional
parameter space. Each feature extraction parameter is estimated using
errors backpropagated from the classification stage.

The first of the two methods uses complex kernels with adaptive radial
polynomials. When combined with a magnitude nonlinearity in the first
layer of the model they provide rotation invariant features for classifica-
tion. However, there are several problems with this model which make it
impractical. A second method provides a much simpler solution and uses
the preprocessing technique of 8 normalisation with a standard adaptive
fcature extraction and classification model. Both of these methods have
been tested on the difficult problem of discriminating between objects
derived from a set of real infra red images. Results and discussion are
provided in this paper.

1 INTRODUCTION

There are many problems associated with the automatic recognition of objects
derived from real infra red (IR) images. One of these problems is to maintain
a constant misclassification rate regardless of either sensor or object rotation
and many feature extraction based solutions have been proposed [10]). However,
these methods often require extensive search techniques to determine a suitable
subset of features for every new task. A more sensible approach is to optimise a
combined feature extraction and classification network against an overall classi-
fication error criterion. Unfortunately due to the high dimensionality of the image
space these networks tend to produce large numbers of adjustable parameters
and with a finite data set this may lead to problems of underdeterminedness.
They may also lack the desired invariance.

This paper examines two techniques for rotation invariant, adaptive feature
extraction and classification using a feedforward neural network model whilst
maintaining a relatively low dimensional parameter space. This is applied to a
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specific problem of 1R object recognition in which sensor rotation invariance and
the ability of the system to easily adapt to new environments is essential.

One of the image databases used to test the model consists of 608 frames of
seascape scenes, that were taken at a constant depression angle, from various
coastal locations in South West England and contain 3 broad classes of large,
man-made objects; namely sailboat, motor boat and buoy. These objects are
detected and extracted using a Sobel based segmentation algorithm and spatially
normalised to a size of 32x32 pixels, whilst maintaining object aspect ratio. This
generated a database of 1609 objects, of which 738 were sailboats, 533 motor
boats and 338 buoys.

giok o Iarexest (ROL)

Fig. 1. Example from the seascape image database.

2 ADAPTIVE FEATURE EXTRACTION

The ”super-wavelet” concept was iniroduced by Szu et al. as a combination of
adaptive wavelet feature extraction and linear class discrimination [8] and has
been applied successfully to problems of signal representation and classification.
Many of the problems of feature selection were circumvented by this concept of
a "super-wavelet” due to the direct adaptation of the feature extraction, whilst
maintaining a controllable numbers of adjustable parameters.

The “super-wavelet” is a linear weighted sum of N adaptive wavelets, or
kernels, which are shifted and dilated versions of a mother kernel, ¢. To classify
a two-dimensional signal, such as an image f(z,y), a linear discriminant of the
form

N
a(f;0) =wo + Y wix ),y [z y)¥i(2.5:8)) (1)
i=1 r y
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can be implemented where z; represents one of C classifier outputs and the full
classification parameter vector, @, is comprised of the weights and biases, wjy,
and the M-dimensional kernel parameter vectors, .‘éj' Hence, in the model there
are MN + C(N + 1) adaptive parameters.

‘This combination of adaptive feature extraction followed by classification can
been visualised, as with the macro-Gabor filter, as a two layer neural network
with a linear hidden layer [?]. The initial layer of adaptive kernels provides a
linear transformation of the image to a lower dimensional feature space and the
output layer forms a linear discriminant. Hence, to avoid ill-conditioning during
optimisation there can be no linear relationship between the kernel parameters’
and . This network can then be easily extended to a nonlinear classifier, such
as a MultiLayer Perceptron (MLP), in the form

H N
H(f;8) = wor + D wik 99(w"j+ZWijEZI(r,y)¢j(z,';éj)> 0]
=1 i=1

z ¥

where H represents the number of hidden units with the ¢ nonlinearity.

Nonlinear optimisation of @ is performed using a conjugate gradient directed
line searching technique to minimise an output classification error criterion, E.
‘The error derivative, dE/0¢;m, for the linear network of Equation 1, can be
easily derived over all the training patterns, ¢, to be

(=1 9,)

23
Z;wjkﬂ.;;[t(z,y)w.

As stated by Daugman [3] the resulting feature extractors, tﬁj, are required to
be neither orthogonal (<g[;j(z,1 , Ty, Ho); (2, ¥, 70, yo)> # 0 for all j # k) nor
complete in order to satisfy optimality according to E and the main consideration
is the form of ¥.

Many authors use the Gabor wavelet as a suitable kernel and have suc-
cessfully applied it to many problems including image representation [3], object
detection [?] and character recognition [6]. The Gabor wavelet is given by

¥(, ¥; zo, Yo, 6, b, ug, vo) = exp{~7[(z - za)?a® + (y - y0)*b?]}

ezp{—2mj[uo(z — z0) + voy — )]} (3)

and an example of the real part of a typical kernel is given in Figure 2. The
Gabor kernel is a Gaussian, centred at (zy,yo) and with scaling values (a,b),
modulated with a complex exponential with spatial frequency (uf + v3)!/? and
orientation arctan(vy/ug).
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Fig. 2. Example of the real part of Gabor wavelet

3 ROTATION INVARIANCE (RI)

Rotation invariant classification is achieved if the a posteriori class dependent
probability estimates of an object remain unaffected by image rotation. If the
image is centred using central moments and scaled to be of unit radius it can be
expressed in a polar coordinate system, f(p,0), where p denotes radial direction
and 0 angular direction. A rotation can then be expressed as a simple linear
shift in the 0 direction by a constant a, i.e. f(p,# + «). This paper concentrates
purely on these simple in-plane rotations of an image. -

Barnard and Casasent [1] identify three different neural based approaches
to RI classification. Invariance through training or regularisation: The
classification model is based on a training set that sufficiently covers the span
of rotated images. Although simple, this method requires a significantly large
database. Invariance through structure: The second approach is to encode
RI properties within the model. A good example of this approach are high-order
neural networks which can be made translation, rotation and scale invariant at
order 3, by suitable choice of network parameters. However, these networks are
sometimes impractical due to their size. Invariance through preprocessing:
This is the most popular method and two particular approaches are considered in
this paper; complex kernel feature extraction and # normalisation. Both methods
allow for adaptive feature extraction.

3.1 RI through complex kernel feature extraction

In their paper concerning Zernike circular polynomials Bhatia and Wolf [2} demon-
strate that for a kernel to provide Rl about the centre of mass of an object it
must be of the form g(p)ezp(jmf) where m represents circular harmonic order
and g(p) a radial polynomial.

Many authors use these complex kernels to generate Rl features, d;, as in
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Equation 4 where + denotes the complex conjugate and | . | complex magnitude.

4 = | / y 10,0065 (5,0) dopdp (1)

The ability of this transform to achieve Rl is demonstrated in Appendix A.1.

The choice of g(p) and m are obviously crucial for a minimising E and four
types of kernel derived from Fourier-Mellin (FM), orthogonal Fourier-Mellin
(OFM), Zernike (ZE) and pseudo-Zernike (PZ) moments have been found to
work well {5, 9). Fourier-Mellin moments use the kernel ¥;,(p,0) = p*ezp(jmf)
where in this paper s is integer valued. Sheng and Shen [5] derived OFM mo-
ments by orthogonalisation of the sequence 1,p, p?, ...., p". This generates a set
of orthogonal g(p) such that ¥,(p,8) = exp(3mb) 37 _, Binsp*. Two other sets
of moments were discovered by a similiar orthogonalisation of the sequences
pml plmlt2 | plnland plml plmI41 oIl These are the ZE and PZ moments
respectively [2]. In the same way as the OFM, the ZE and PZ kernels can be ex-
pressed as linear combinations of weighted natural powers of p but with Bi,, = 0
for s < m. More generally,

n 1 p2x
Y Bins / / Hp. 0)p* e™i™° dopdp
=0 oJo

whereby suitable choice of B, can generate any of the required moments.

Teh and Chin [9) tested various image moments for information redundancy,
noise sensitivity and image reconstruction capability. Of the moments examined
Zernike had the best overall performance. However, the position of the ZE g(p)
zeros, than say those of OFM, might not be so suitable for scale and RI classific-
ation [56). Furthermore the number of feature moments used is often determined
by a normalised reconstruction error and not directly by a classification error
criterion. Smart et al [7] therefore attempts to combine feature extraction into
an overall classification model by including Bi, as a classification parameter.
This is an iterative method to automatically determine a suitable set of g(p)’s
for a particular object recognition task. It can be constructed as in Equation 5
with complex magnitude nonlinearities in a single preprocessing layer before, for
example, an MLP classifer.

However, there are several problems associated with this technique. Imagine
the simple problem of optimising, with respect to a least squares error criterion,
the network z = w | BM | where w is the output weight and 8 and M are as in
Equation 5. The error surface for a problem using complex FM features derived
from two distinct sets of rotated images is shown in Figure 3. The solution re-
quires a positive output weight and the error surface in the negative region can
cause line searching opiimisation techniques to fail if the network is improperly
initialised. Also, with a positive output weight the network can be expressed as
z =| wPM | and hence there is ill-conditioning. A non-derivative based optim-
isation method, such as simplex, provides a working alternative and reasonable
results can be achieved (7). However, there are other factors that make the ap-
proach unattractive. These include the requirement of non-interference between

Zﬂin:Mnn 3)

=0

d; =
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Fig. 3. Mean squared error (MSE) surface for a simple problem.

features using different m and a large number of parameters to a achieve salis-
factory classification rate.

3.2 RI through 8 normalisation

A better approach is to transform the image such that RI is naturally incor-
porated into the new image. This allows for direct application of the standard
adaptive feature extraction techniques discussed in Section 2 and can be achieved
through ¢ normalisation. This process normalises for rotations in an image by a
linear shift in the @ direction equal to the circular mean, # [4] which is determined
using cos § = C(0)/R(0) or sin§ = S(8)/R(0) where R(6) = (C*(0) + S*(8))*/*
and

1,20 1,22
C(ﬂ):/u/" cos 0f(p,0) d0pdp and S(ﬁ):/o‘/u sin0f(p,0) dopdp. (6)

The new image, f(p,0 -+ 0), is then invariant to the initial rotation of the image
and this is proved in Appendix A.2. Also, by using a log-polar transform instead,
scale invariance can also be achieved.

4 RESULTS

The @ normalisation process is applied to the set of images, described in Sec-
tion 1, which are mapped to a 20x72 polar coordinate system. The data is then
randomly split into two sets, one for training consisting of 1000 patterns and one
for testing of 500 patterns. This process is repeated 10 times for each experiment.

‘The first of these experiments is to test the standard Rl feature extraction
methods of moments discussed in Section 3. For each moment type a set of
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features is classified using a least squares linear discriminant and the number
within each set is determined by increasing moment order. The results are shown
in Figure 4(a).
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Fig. 4. Adaptive Rl classification resnlts.

‘This provides a benchmark for the adaptive feature extraction classifier given
in Equation 1. The first adaptive experiment adapts the two positional kernel
parameters (zq, y) only, with v =v =0, a=2.50 and b=1.25. This is a simple
Gaussian kernel. The following test optimises the four parameters of the Gans-
sian (a, b, zo, ), and in the final experiment using the real part of the Gabor
wavelet, as the kernel, all six kernel parameters are used. In each test the number
of kernels, N, is varied and the optimisation process applied for 1000 iterations.
Results are given in Figure 4(a) where each point represents the mean value,
over 10 different random splits of the data, with a standard deviation of approx-
imately 0.5%. The results indicate that for large values of N simple Gaussian
kernels, with four adaptive parameters, will suffice.

One of the aspects of moment based features is their sensitivity to image
noise and the pseudo-Zernike moments have been found to be less affected by
noise than, for example, Fourier-Mellin or Zernike [9]. Figure 4(b) shows how the
various adaptive models are affected by additive Gaussian noise in comparison
with the PZ moments. It is clear that these models are more sensitive to noise
than their moment based counterparts.

Figure 5 shows how the effective kernel linear classifier (i.e. the weighted sum
of kernels) for the sailboat class changes during optimisation. The classifier has
more kernels around the centre (p = 0) and uses fewer, broader kernels towards
the extremities of the image. These areas include the tops of sails and the bows
of motor boats.
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() Oiterations, 43.0% (b} 500 iterations, T0.8% (c) 1000 iterations, 74.0%
Fig. 5. Combined filter weights for sailboat class.

5 CONCLUSIONS

This paper has discussed two methods for rotation invariant adaptive feature
extraction. The first method, using complex kernels, is difficult to optimise but
a much simpler second approach of # normalisation allows for the direct ap-
plication of standard adaptive techniques. These allow for optimisation of both
feature extraction and classification while maintaining a low dimensional para-
meler vector.

The results on the seascape database show a significant improvement over
the current fixed RI features, especially with a low number of features. However,
they may appear disappointing with respect to an overall classification rate.
This is because the data poses a difficult Rl recognition problem with rotated
boats often resembling motor boats or buoys. There also exists large within-class
variations so there is a high probability of multimodal class distributions and the
requirement of the nonlinear classifer as in Equation 2. Preliminary results are
promising with 86.2% classification using the four parameter per kernel model
with 6 nonlinear hidden units.
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A PROOF OF RI

A.1 RI through complex kernel feature extraction
RI is accomplished using features generated from the complex kernels, #(p,0) =
a(p)exp(jmb) and each RI feature, d, is determined by the equation

1 p27
dy = / J(p,0)g(p)e™?™" dOpdp
oJo

1 p2n
A f(p, 0)¥* (p,0) dOpdp

To prove the features are RI the effect of rotating the image by, —a, is compared
with the new feature, dy, given by

dy = ‘ / / 1(p.0 + a)g(p)e™™" dOpdp |
and by letting 0/ = @ + « and knowing that | ezp(jma) |=1

1 p2x
dy = ejma// Hp,0)g(p)e™i™ do’ﬂdpl = dy.
oJ0

A.2 RI through 8 normalisation

Assume the circular mean expressed in Equation 6 for an image j(p, 9) is given
by 91 and for a rotated version of the same image, f(p,0 + a}, by 0,. Then for
RI 03 must equal §; — «. For the rotated image

c0) = [ A f'mo/(p,o +a) dﬂpdpr

and by letting 0’ = 0 + a it can be seen that

@)= [ [ eost0 = w1100y a'nip | '
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1 p2xta 1 p2vta 2
= [ cos « // cos 0’ f(p,0') d0'pdp + sin« // sin 0 f(p,0') dﬂ'pdp]
0Ja OJer

x

. 1 ;2v4a 2 1 p204a 2
= costa [// cos ' f(p,0') d0’pdp] + sina [// sin ' f(p,0') {lﬂ’pdp]
o 0Ja

a

1 2x4a 1 2n4a
+ 2cosasina [// cos 0’ f(p,0') d0’pdp] [ // sin 0’ f(p,0') dﬂ’pdp]
v/a 0Ja
Similarly,
. i 1 ,2x4a 2 1 p2x4a
S*(0) = cos’x [// sin @' f(p,0') dﬂ'pdp] + sina [// cos 0 f(p,0') d6'pdp
0Ja 0Ja

1 2n4a 1 p2nta
— 2cosasina [// cos 0 f(p,0") dﬂ’pdp] [ // sin@’ f(p,0') dB'pdp]
0Ja [

Now R*(0) = C*(0') + R*(0’) such that

. 1 p2x4a B 1 p2nta 2
RY0') = [// cos0’f(p,0’)d0’pdp] + [// sin 0’ f(p,0") rll)'pdp]
0Ja 0Va

1 2% 2 1 2% 2
= [// c0s 0 f(p,0') mpdp] + [// sina'/(p,o')da',,d,,] = R2(0)
oJo 0J0

™
So R(#) is invariant to changes in image rotation but what about C'(8)?

1 p20ta
c)= // cos(0 — o) f(p,0') dO pdp
UGJa

1,20 1,27
=cosa // cos 0 f(p,0') A0’ pdp + sin o // sin @' f(p, &) d0' pdp
0Jo oJo
Combining this with R(0’) from equation 7 and letting 6/ = 8 it can be seen that

c(@)
R(0')

coslly; = = cosax cosly + sin« sinfy = cos(ly — «)

and hence

Nl
1}
=

|
2

This article was processed using the BTEX macro package with LLNCS style

(
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ABSTRACT

In this paper we introduce a technique for incorporating adaptive, rotationally invariant (RI), feature ex-
traction into the initial layer parameters of a multilayer perceptron (MLP) for classifying real infra-red (IR)
imagery. Feature extraction parameters are not usually estimated directly due to their high dimensionality but it
is possible to reduce the dimensionality by constraining these parameters to a feature subspace where the para-
meters are restricted to a continuous RI generating functional form (e.g. a circularly symmetric radial polynomial
transform.) The lower dimensional function parameters and the classification parameters can then be estimated
simultaneously to minimise an overall classification error criterion. This can be considered as an extension of
previous work by other authors where non-RI filter parameters, such as Gabor filter directional selectivity, were
successfully tuned for feature extraction.

Keywords: rotational invariance, multilayer perceptron, misclassification rate, infra-red imagery

1. INTRODUCTION

An important aspect of automatic target recognition (ATR) is the location and identification of possible
targets in a scene, irrespective of sensor position or rotation. In this paper we investigate the possibility of
adaptively tuning rotation invariant (RI) feature generating kernels in order to minimise an overall classification
error criterion. These RI generating kernels are based on circular Fourier and radial Mellin transforms described
in a polar coordinate system:

1 27
/ f(p,0)p’exp(—jmB)dOpdl, s > 0,m = 0,+1,42,.....+ c0 (1)
o Jo )

where f(p,0) is an object image defined over the unit circle (0 < p < 1), m is the circular harmonic order and s
the transform order.%!4
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Figure 1 shows a typical ATR system on which we shall concentrate on the feature exiraction and classification
functional units. Feature extraction is a form of linear or non-linear mapping that attempts to retain discriminat-
orial information whilst projecting data into a lower dimensional feature space. This both reduces computational
complexity and generally allows more accurate parameter estimates with a limited set of observations. The
feature extraction mapping can not usually be directly estimated with respect to an overall classification error
criterion. This is often due to the high dimensionality of the object images producing the possibility that the num-
ber of independent parameters in the model significantly exceeding the limited number of training observations.
Although several authors have suggested using techniques such as weight decay, cascade correlation or shared
weights as a solution to this problem®&® a more general solution is to utilise a fixed set of feature extractors such
as Karhunen-Loéve, Hadamard, Harr, Fourier, Gabor, and singular value decomposition (SVD).!#

Image Sensors
Noise Pilltering
Image Noxrmalisation

Scene Segmentation

Peedback

—— Classification

Action

Knowledge Base

Figure 1: Typical ATR system.

1.1. Rotational invariance

Rotational invariance requires that features, and consequently object classifications, generated by a spatial
mapping remain unaffected under pure rotations of the input image.? To achieve rotationally invariant pat-
tern recognition Barnard and Casasent® identified three basic approaches, with respect to neural network based
systems:

e Development of a classification model based on a training set that contains a sufficient number of examples
of rotated images. Although simple, this method requires a significantly large database.

e The next approach is to hard-wire RI properties within the model. A good example of this approach are
high-order neural networks (HONN),

z; = Z Z '''' Z'\"lin.“nﬁf"r wigs @

which can be made translation, rotation and scale invariant at order 3, by suitable choice of the parameters,
AL
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o The final method, and possibly most popular, is the generation of RI features through pre-processing. We
shall consider one form of pre-processing whereby each feature, z;, is generated through a fixed complex
function, or kernel, W;(p,0). The required invariance properties, such as insensitivity to sensor rotation or
tilt, are incorporated into this initial pre-processing.

2. FOURIER-MELLIN AND ZERNIKE MOMENTS

In their paper concerning Zernike circular polynomials Bhatia and Wolf* demonstrated that there exist an
infinite number of complete sets of polynomials which are orthogonal for the interior of the unit circle. They also
showed that for a polynomial, or kernel, W(pcosf, psinfl) to be invariant in form about the origin it must be of
the form g(p)ezp(jmnb) where m is the circular harmonic order and g(p) a radial polynomial.

Many authors have proceeded to utilise these kernels in order to generate sets of rotationally invariant features,
x;, from centered and scaled polar images f(p,#), as shown in equation 3 where * denotes the complex conjugate
and | . | complex magnitude.

1 2x
=1 [ [ 500w o000 | 3)

The rotationally invariant property of this transform can easily be demonstrated by replacing f(p,0) by f(p,0+¢)
where ¢ represents a sensor rotation away from the horizontal, and factoring out the term | ezp(jmé) |= 1.

The choice of the radial polynomial and circular harmonic order are obviously fundamental to the misclassi-
fication rate. We shall concentrate on four types of kernel derived from Fourier-Mellin (FM), orthogonal Fourier-
Mellin (OFM), Zernike (ZE) and pseudo-Zernike (PZ) moments.'®!7 The kernel used to generate Fourier-Mellin
moments is given by Wi,(p,0) = p*ezp(jmb). s is usually complex valued (s = jw) but. we shall consider only
integer values for s. Fourier-Mellin moments with integer valued s are often called rotational moments. Sheng
and Shen!S derived a new set of moments for invariant pattern recognition called orthogonal Fourier-Mellin mo-
ments by the Gram-Schimdt orthogonalisation of the sequence 1, p, p?, ..., p". This generates a set of orthogonal
radial polynomials such that W;,(p,6) = exp(jmb) Z:‘=0 insp®. Two other sets of moments, derived from the
work of Frits Zernike on optical aberrations and diffraction, were discovered by the orthogonalisation of the
sequences pl™l plmI+2 . Inl and plml plml+1gnl These are called Zernike and pseudo-Zernike moments
respectively. Thus in the same way as the OFM the Zernike kernels can be expressed as a linear combination of
weighted natural powers of p but, with «;,, = 0 for s < m. More generally we can write

n 1 2
= |y ting /o /o F(p,0)p° cxp(—im0)dopdo | 4)

=0

whereby suitable choice of ., we can generate any of the required moments. It is worth noting that both the
Zernike , pseudo-Zernike and orthogonal Fourier-Mellin are derived from the more general Jacobi polynomials.
Examples of the radial polynomials are provided in Figure 2.

In a study of image moments Teh and Chin'? tested various types of moments including Zernike, psendo-
Zernike and Fourier-Mellin for information redundancy, noise sensitivity and image reconstruction capability. Of
all these moments Zernike moments had the best overall performance. However, it has been suggested that due
to the positioning of ZM radial polynomial zeros more towards the unit circle than say those of OFM polynomials
ZM might not. be so suitable for scale and rotation invariant classification.!® Furthermore the choice of the number
of moments used to perform the necessary feature extraction is often guided by a normalised reconstruction error
and not by an overall classification error criterion. In this paper we examine the possibility of including the
feature extraction into an overall classification model by kernel adaptation by including «;n, as a classification
parameter.
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OFM polynomials up to order 5 Sth order PZ polynomials
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Figure 2: Examples of radial polynomials

3. CLASSIFICATION AND KERNEL ADAPTATION

Allocation of an arbitrary unclassified feature vector, z, to a member of a predefined set, wi (k = 1..N;), or
class, is often achieved by comparison of the class a posteriori probabilities, P(wg|z).'® However, the form of the
class conditional probability density functions are often unknown. Thus we are left a task of nonparametrically
estimating ¢ discriminant functions, yx(z), such that y;(z) > y;j(z) for i # j given z is of class w;. Although
nominally a parametric model the multilayer perceptron'? (MLP) , given in equation 5, provides a flexible method
for parameterising a fairly general non-linear set of these discriminant functions. In fact MLP’s are universal

approzimators in that given sufficient complexity and data they can approximate virtually any function.!?

H

ye(zi B) = ox + 3 wikd(oy + w;.x) (5
7

The approximating function is controlled by a vector of parameters, g, comprising of a set of weights, w, and
biases , ¢, and the hidden layer activation function, ¥, is usually the logistic function

(=) =1/(1+e7°). (6

In this paper we form a least squares estimate, ﬂ, of the true model parameter vector, §, using a conjugate gradient,
iterative, local optimisation technique.! Model complexity can be controlled through varying the number of hidden
nodes, H, as well as through various standard regularisation techniques.

The feature vector, z, will be generated via equation 4 and can be considered as an initial pre-processing layer
to the MLP model. The kernel parameters, win,, as described in the previous section, can be fixed such as to
implement a specific image moment but we were interested to see whether kernel parameters could be included
into the extended MLP model such that the classification error minimisation was performed over a new parameter
vector, B
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4. EXPERIMENTS

In order to test the adaptive kernel algorithm a series of simple artificial image object databases were created.
The images were of the form f(p,0) = a1(p)cos(28 + @) + az(p) + n(p,8) where n(p, 0) represents a additive, zero
mean, white noise process. Various fixed kernel feature extraction methods were then tested against the adapted
kernel method (m = 2). Some results, using both an MLP and a K-nearest neighbour!® (K=7) classifier, from
one such test are recorded in Table 1.

Kernel MLP (%) KNN (%)
(Standard error) | (Standard error) J
PZ 50.9 (1.48) 20.2 (1.46)
OFM 22.2 (1.52) 23.2 (1.55)
FM 23.6 (1.75) 23.9 (1.81)
Adapted 19.6 (1.32) N/A

Table 1: Classification error rates for an artificial problem

Although the results are promising and demonstrate that kernel adaptability is feasible there does appear to
be a problem with either local minima or the learning mechanism which occasionally causes the formation of
inappropriate kernels, although the reasoning behind this phenomenon has yet to be confirmed.

The adaptive kernel algorithm was then tested on real, 8 bit greyscale, (8-12um) infra-red (IR) seascape im-
agery. A typical 512x512 pixel IR seascape scene, with zero sensor rotation, is shown in Figure 3 with classification
results from a Zernike {eature extractor combined with a MLP classifier.

Figure 3: IR seascape scene with ¢ =0
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The image sequences contain seascape objects, including sailboat, motor boat, buoy, and clutter. Objects are
identified and segmented utilising a standard Sobel edge detector, thresholder and edgewalker in order to generate
a database of 4000 objects. Once collated these were made translation and scale invariant by using low order
image moments.'® Three binary examples of the seascape classes are shown in Figure 4. The database was then
divided into 3 separate training, validation and testing sets.

Sailboat (Class 0) Motor boat (Class 1) Buoy (Class 2)

Figure 4: Typical binary objects with ¢ =0

These objects contain a considerable amount of directional discriminatorial information provided that the
sensor remains horizontal, ¢ = 0. In this circumstance a non-RJ feature extractor such as a Gabor filter” will
classify better than, for example, a RI Zernike based system. However, as clearly demonstrated in Figure 5, only
a relatively small tilt in the images that generate the test set object database (system trained with ¢ = 0) is
required to incur a notable increase in the misclassification rate. As sensor rotation is expected in the project the
use of an RI feature extractor is justified.

0 T T T T T T T
50

40

Misclassification rate (%)

-40 -30 -20 -lOA 0 10 20 30 40
Sensor tilt (degrees)

Figure 5: Effect of sensor tilt

Initially fixed RI kernels were used to generate features for the MLP classifier and estimates of § were formed
for each type of kernel. Experiments were repeated to measure the statistical significance of any increases in
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classification performance. Some results are provided in Table 2 including complex moments'” (CM) and a RI
correlation filter'3 (CHF).

Kernel | Features KNN (%) MLP (%)
| (Standard error) | (Standard error)
™ 20 %5 (12) 24.4 (1.5)
OFM 20 22.6 (1.3) 22.1 (1.3)
PZ 18 21.2 (1.6) 19.8 (1.2)
ZM 18 22.9 (1.3) 21.9 (1.4)
CcM 15 26.0 (1.5) 25.3 (1.1)
CHF 20 21.3 (1.6) 20.1 (1.3)

Table 2: Classification results using fixed RI kernels.

A set of parameter estimates of 8’ were then formed to investigate whether any improvement in classification
performance could be achieved with the new model. The adaptive kernel algorithm produced a misclassification
rate of 19.2% (1.1). The kernel adaptation method has improved over certain types of moments but has provided
only comparable performance with the pseudo-Zernike and correlation based classifiers.

5. CONCLT SIONS

In this paper we have attempted to demonstrate the possibility of RI kernel adaptability based around Fourier-
Mellin moments using a MLP. We have shown that it can be successfully applied to a real IR problem although
in the seascape database there was no significant decrease in the misclassification rate when compared to the best
fixed RI kernel. However, it does provide a method of automatically generating RI kernels that are related to
an overall classification error criterion. Further work will investigate the problem of local minima and the use of
regularisation terms in the optimisation algorithm to reduce kernel correlation.

6. ACKNOWLEDGEMENTS

This work is being jointly funded by British Acrospace Systems and Equipment Ltd., Plymouth, England
(Applied Research project number 82140761) and the Engineering and Physical Sciences Research Council.

7. REFERENCES

[1] P. R. Adby and M. A. H. Dempster. “Introduction to Optimizaiion Methods”. Chapman and Hall, 1978.

(2] H. H. Arsenault, Y.-H Hsu, and K. Chalasinska-Macukow. “Rotation-invariant pattern recognition”. Optical
Engineering, 23:705, 1984.

(3] E. Barnard and D. Casasent. “Invariance and neural nets”. IEEE Transactions on Neural Networks, 2(5):498-
508, 1991.

[4] A. B. Bhatia and E. Wolf. “On the circle polynomials of Zernike and related orthogonal sets”. Proccedings
of the Cambridge Philosophical Sociely, 50:40-48, 1954.




Publications ' 240

[5] D. Casasent and D. Psaltis. “Position, rotation and scale invariant optical correlation”. Applied Optics,
15:1795-1799, 1976.

[6] Y.Le Cun, J. S. Denker, and S. Solla. “Optimal brain damage”. In D. S. Touretzky, editor, Advances in Neural
Information Processing Systems 2, pages 598-605, San Mateo, CA, 1990. Morgan Kaufmann publishers.

{7] J. G. Daugman. “Complete Discrete 2-D Gabor Transforms by Neural Networks for Image Analysis and
Compression”. IEEE Transactions on Acouslics, Specch and Signal Processing, 36(7):1169-1179, 1988.

{8] S. E. Fahlman and C. Lebiere. “The cascade-correlation learning architecture”. In D. S. Touretzky, ed-
itor, Advances in Neural Information Processing Systems 2, pages 524-532, San Mateo, CA, 1990. Morgan
Kaufmann publishers.

[9] A. Krogh and J. Hertz. “A simple weight decay can improve generalisation”. Tn J. E. Moody, S. J. Hanson,
and R. P. Lippmann, editors, Advances in Neural Information Processing Sysiems 4, pages 950-957, San
Mateo, CA, 1992. Morgan Kaufmann publishers.

[10] G.J. McLachlan. “Discriminant Analysis and Stalistical Patiern Recognition”. Wiley and Sons, 1992.

[11] S. J. Perantonis and P. J. G. Lisboa. “Translation, Rotation, and Scale Invariant Pattern Recognition by
Higher-Order Neural Networks and Moment Classifiers”. IEEE Transactions on Neural Networks, 3(2):241~
251, March 1992.

12] B. D. Ripley. “Pattern Recognition and Neural Networks”. Cambridge University Press, 1996.
£

[13] G.F. Schils and D. W. Sweeney. “Rotationally invariant correlation filtering”. Journal of the Optical Society
of America (A), 2(9):1411-1418, September 1985.

[14] Y. Sheng. “Fourier-Mellin spatial filters for invariant pattern recognition”. Optical Engineering, 28(5):494—
500, 1989.

[15] Y. Sheng and L. Shen. “Orthogonal Fourier-Mellin moments for invariant pattern recognition”. Journal of
the Optical Sociely of America (A), 11(6):1748-1757, 1994,

[16) M. R. Teague. “Image analysis via the general theory of moments”. Journal of the Optical Sociely of America,
70(8):920-930, 1980.

(17} C. Teh and R. T. Chin. “On Image Analysis by the Method of Moments”. JEEE Transactions on Patiern
Analysis and Machine Inielligence, PAMI-10(4):496-513, July 1988.

(18] C. W. Therrien. “Decision, Estimation and Classification”. Wiley and Sons, 1989.
(19] H. White. “Artificial Neural Networks: Approzimation and Learning Theory”. Blackwell, 1992.




