671 research outputs found

    Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks

    Get PDF
    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period

    Clustered wireless sensor networks

    Get PDF
    The study of topology in randomly deployed wireless sensor networks (WSNs) is important in addressing the fundamental issue of stochastic coverage resulting from randomness in the deployment procedure and power management algorithms. This dissertation defines and studies clustered WSNs, WSNs whose topology due to the deployment procedure and the application requirements results in the phenomenon of clustering or clumping of nodes. The first part of this dissertation analyzes a range of topologies of clustered WSNs and their impact on the primary sensing objectives of coverage and connectivity. By exploiting the inherent advantages of clustered topologies of nodes, this dissertation presents techniques for optimizing the primary performance metrics of power consumption and network capacity. It analyzes clustering in the presence of obstacles, and studies varying levels of redundancy to determine the probability of coverage in the network. The proposed models for clustered WSNs embrace the domain of a wide range of topologies that are prevalent in actual real-world deployment scenarios, and call for clustering-specific protocols to enhance network performance. It has been shown that power management algorithms tailored to various clustering scenarios optimize the level of active coverage and maximize the network lifetime. The second part of this dissertation addresses the problem of edge effects and heavy traffic on queuing in clustered WSNs. In particular, an admission control model called directed ignoring model has been developed that aims to minimize the impact of edge effects in queuing by improving queuing metrics such as packet loss and wait time

    Machine Learning-Based Anomaly Detection in Cloud Virtual Machine Resource Usage

    Get PDF
    Anomaly detection is an important activity in cloud computing systems because it aids in the identification of odd behaviours or actions that may result in software glitch, security breaches, and performance difficulties. Detecting aberrant resource utilization trends in virtual machines is a typical application of anomaly detection in cloud computing (VMs). Currently, the most serious cyber threat is distributed denial-of-service attacks. The afflicted server\u27s resources and internet traffic resources, such as bandwidth and buffer size, are slowed down by restricting the server\u27s capacity to give resources to legitimate customers. To recognize attacks and common occurrences, machine learning techniques such as Quadratic Support Vector Machines (QSVM), Random Forest, and neural network models such as MLP and Autoencoders are employed. Various machine learning algorithms are used on the optimised NSL-KDD dataset to provide an efficient and accurate predictor of network intrusions. In this research, we propose a neural network based model and experiment on various central and spiral rearrangements of the features for distinguishing between different types of attacks and support our approach of better preservation of feature structure with image representations. The results are analysed and compared to existing models and prior research. The outcomes of this study have practical implications for improving the security and performance of cloud computing systems, specifically in the area of identifying and mitigating network intrusions

    Placement, visibility and coverage analysis of dynamic pan/tilt/zoom camera sensor networks

    Get PDF
    Multi-camera vision systems have important application in a number of fields, including robotics and security. One interesting problem related to multi-camera vision systems is to determine the effect of camera placement on the quality of service provided by a network of Pan/Tilt/Zoom (PTZ) cameras with respect to a specific image processing application. The goal of this work is to investigate how to place a team of PTZ cameras, potentially used for collaborative tasks, such as surveillance, and analyze the dynamic coverage that can be provided by them. Computational Geometry approaches to various formulations of sensor placement problems have been shown to offer very elegant solutions; however, they often involve unrealistic assumptions about real-world sensors, such as infinite sensing range and infinite rotational speed. Other solutions to camera placement have attempted to account for the constraints of real-world computer vision applications, but offer solutions that are approximations over a discrete problem space. A contribution of this work is an algorithm for camera placement that leverages Computational Geometry principles over a continuous problem space utilizing a model for dynamic camera coverage that is simple, yet representative. This offers a balance between accounting for real-world application constraints and creating a problem that is tractable

    Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement

    Get PDF
    Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method

    Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus

    Get PDF
    This is an open access book. It gathers the first volume of the proceedings of the 31st edition of the International Conference on Flexible Automation and Intelligent Manufacturing, FAIM 2022, held on June 19 – 23, 2022, in Detroit, Michigan, USA. Covering four thematic areas including Manufacturing Processes, Machine Tools, Manufacturing Systems, and Enabling Technologies, it reports on advanced manufacturing processes, and innovative materials for 3D printing, applications of machine learning, artificial intelligence and mixed reality in various production sectors, as well as important issues in human-robot collaboration, including methods for improving safety. Contributions also cover strategies to improve quality control, supply chain management and training in the manufacturing industry, and methods supporting circular supply chain and sustainable manufacturing. All in all, this book provides academicians, engineers and professionals with extensive information on both scientific and industrial advances in the converging fields of manufacturing, production, and automation

    QUALITY-DRIVEN CROSS LAYER DESIGN FOR MULTIMEDIA SECURITY OVER RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS

    Get PDF
    The strong need for security guarantee, e.g., integrity and authenticity, as well as privacy and confidentiality in wireless multimedia services has driven the development of an emerging research area in low cost Wireless Multimedia Sensor Networks (WMSNs). Unfortunately, those conventional encryption and authentication techniques cannot be applied directly to WMSNs due to inborn challenges such as extremely limited energy, computing and bandwidth resources. This dissertation provides a quality-driven security design and resource allocation framework for WMSNs. The contribution of this dissertation bridges the inter-disciplinary research gap between high layer multimedia signal processing and low layer computer networking. It formulates the generic problem of quality-driven multimedia resource allocation in WMSNs and proposes a cross layer solution. The fundamental methodologies of multimedia selective encryption and stream authentication, and their application to digital image or video compression standards are presented. New multimedia selective encryption and stream authentication schemes are proposed at application layer, which significantly reduces encryption/authentication complexity. In addition, network resource allocation methodologies at low layers are extensively studied. An unequal error protection-based network resource allocation scheme is proposed to achieve the best effort media quality with integrity and energy efficiency guarantee. Performance evaluation results show that this cross layer framework achieves considerable energy-quality-security gain by jointly designing multimedia selective encryption/multimedia stream authentication and communication resource allocation

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience
    corecore