139 research outputs found

    Introducing the fractional-order Darwinian PSO

    Get PDF
    One of the most well-known bio-inspired algorithms used in optimization problems is the particle swarm optimization (PSO), which basically consists on a machinelearning technique loosely inspired by birds flocking in search of food. More specifically, it consists of a number of particles that collectively move on the search space in search of the global optimum. The Darwinian particle swarm optimization (DPSO) is an evolutionary algorithm that extends the PSO using natural selection, or survival of the fittest, to enhance the ability to escape from local optima. This paper firstly presents a survey on PSO algorithms mainly focusing on the DPSO. Afterward, a method for controlling the convergence rate of the DPSO using fractional calculus (FC) concepts is proposed. The fractional-order optimization algorithm, denoted as FO-DPSO, is tested using several well-known functions, and the relationship between the fractional-order velocity and the convergence of the algorithm is observed. Moreover, experimental results show that the FO-DPSO significantly outperforms the previously presented FO-PSO

    Multilevel thresholding hyperspectral image segmentation based on independent component analysis and swarm optimization methods

    Get PDF
    High dimensional problems are often encountered in studies related to hyperspectral data. One of the challenges that arise is how to find representations that are accurate so that important structures can be clearly easily. This study aims to process segmentation of hyperspectral image by using swarm optimization techniques. This experiments use Aviris Indian Pines hyperspectral image dataset that consist of 103 bands. The method used for segmentation image is particle swarm optimization (PSO), Darwinian particle swarm optimization (DPSO) and fractional order Darwinian particle swarm optimization (FODPSO). Before process segmentation image, the dimension of the hyperspectral image data set are first reduced by using independent component analysis (ICA) technique to get first independent component. The experimental show that FODPSO method is better than PSO and DPSO, in terms of the average CPU processing time and best fitness value. The PSNR and SSIM values when using FODPSO are better than the other two swarm optimization method. It can be concluded that FODPSO method is better in order to obtain better segmentation results compared to the previous method

    A Novel Evolutionary Swarm Fuzzy Clustering Approach for Hyperspectral Imagery

    Get PDF
    In land cover assessment, classes often gradually change from one to another. Therefore, it is difficult to allocate sharp boundaries between different classes of interest. To overcome this issue and model such conditions, fuzzy techniques that resemble human reasoning have been proposed as alternatives. Fuzzy C-means is the most common fuzzy clustering technique, but its concept is based on a local search mechanism and its convergence rate is rather slow, especially considering high-dimensional problems (e.g., in processing of hyperspectral images). Here, in order to address those shortcomings of hard approaches, a new approach is proposed, i.e., fuzzy C-means which is optimized by fractional order Darwinian particle swarm optimization. In addition, to speed up the clustering process, the histogram of image intensities is used during the clustering process instead of the raw image data. Furthermore, the proposed clustering approach is combined with support vector machine classification to accurately classify hyperspectral images. The new classification framework is applied on two well-known hyperspectral data sets; Indian Pines and Salinas. Experimental results confirm that the proposed swarm-based clustering approach can group hyperspectral images accurately in a time-efficient manner compared to other existing clustering techniques.PostPrin

    A fast and automatic approach for removing artefacts due to immobilisation masks in X-ray CT

    Get PDF
    Immobilisation masks are fixation devices that are used when administering radiotherapy treatment to patients with tumours affecting the head and neck. Radiotherapy planning X-ray Computer Tomography (CT) data sets for these patients are captured with the immobilisation mask fitted and manually editing the X-ray CT images to remove artefacts due to the mask is time consuming and error prone. This paper represents the first study that employs a fast and automatic approach to remove image artefacts due to masks in X-ray CT images without affecting pixel values representing tissue. Our algorithm uses a fractional order Darwinian particle swarm optimisation of Otsu’s method combined with morphological post-processing to classify pixels belonging to the mask. The proposed approach is tested on five X-ray CT data sets and achieves an average specificity of 92.01% and sensitivity of 99.39%. We also present results demonstrating the comparative speed-up obtained by fractional order Darwinian particle swarm optimisation

    A Novel Feature Selection Approach Based on FODPSO and SVM

    Get PDF
    A novel feature selection approach is proposed to address the curse of dimensionality and reduce the redundancy of hyperspectral data. The proposed approach is based on a new binary optimization method inspired by fractional-order Darwinian particle swarm optimization (FODPSO). The overall accuracy (OA) of a support vector machine (SVM) classifier on validation samples is used as fitness values in order to evaluate the informativity of different groups of bands. In order to show the capability of the proposed method, two different applications are considered. In the first application, the proposed feature selection approach is directly carried out on the input hyperspectral data. The most informative bands selected from this step are classified by the SVM. In the second application, the main shortcoming of using attribute profiles (APs) for spectral-spatial classification is addressed. In this case, a stacked vector of the input data and an AP with all widely used attributes are created. Then, the proposed feature selection approach automatically chooses the most informative features from the stacked vector. Experimental results successfully confirm that the proposed feature selection technique works better in terms of classification accuracies and CPU processing time than other studied methods without requiring the number of desired features to be set a priori by users.IEEE Geoscience and Remote Sensing SocietyRitrýnt tímaritPeer Reviewe

    Hyper Spectral Image Segmentation and Classification Using Least Square Clustering Based on FODPSO

    Get PDF
    The spatial analysis of the image detected and acquired by a satellite provides less accurate information on a remote location. Hyperspectral images are one of the images detected remotely, they are superior to multispectral images that provide spectral information. detailed information is one of the important requirements in many areas, such as military, agriculture, etc. The FODPSO classifier algorithm is used with the grouping technique of least squares for image segmentation. The 2D adaptive filter is proposed to eliminate the noise of the hyperspectral image detected and captured in order to eliminate the noise of the spot. Denoising the hyperspectral image (HSI) is an essential pre-processing step to improve the performance of subsequent applications

    Fractional Order Fuzzy Control of Hybrid Power System with Renewable Generation Using Chaotic PSO

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants

    A Survey on: Hyper Spectral Image Segmentation and Classification Using FODPSO

    Get PDF
    The Spatial analysis of image sensed and captured from a satellite provides less accurate information about a remote location. Hence analyzing spectral becomes essential. Hyper spectral images are one of the remotely sensed images, they are superior to multispectral images in providing spectral information. Detection of target is one of the significant requirements in many are assuc has military, agriculture etc. This paper gives the analysis of hyper spectral image segmentation using fuzzy C-Mean (FCM)clustering technique with FODPSO classifier algorithm. The 2D adaptive log filter is proposed to denoise the sensed and captured hyper spectral image in order to remove the speckle noise
    corecore