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Abstract One of the most well-known bio-inspired algo-
rithms used in optimization problems is the particle swarm
optimization (PSO), which basically consists on a machine-
learning technique loosely inspired by birds flocking in
search of food. More specifically, it consists of a number
of particles that collectively move on the search space in
search of the global optimum. The Darwinian particle swarm
optimization (DPSO) is an evolutionary algorithm that ex-
tends the PSO using natural selection, or survival of the fit-
test, to enhance the ability to escape from local optima. This
paper firstly presents a survey on PSO algorithms mainly
focusing on the DPSO. Afterward, a method for controlling
the convergence rate of the DPSO using fractional calculus
(FC) concepts is proposed. The fractional-order optimiza-
tion algorithm, denoted as FO-DPSO, is tested using sev-
eral well-known functions, and the relationship between the

fractional-order velocity and the convergence of the algo-
rithm is observed. Moreover, experimental results show that 
the FO-DPSO significantly outperforms the previously pre-
sented FO-PSO.

Keywords Fractional calculus · DPSO ·
Evolutionary algorithm

1 Introduction

Bio-inspired algorithms have been employed in situations 
where conventional optimization techniques cannot find a 
satisfactory solution, for example, when the function to 
be optimized is discontinuous, non-differentiable, and/or 
presents too many nonlinearly related parameters [1]. The 
Darwinian particle swarm optimization (DPSO), an evolu-
tionary algorithm that extends the particle swarm optimiza-
tion (PSO) using natural selection, was developed to enhance 
the ability of the PSO to escape from local optima [3].

The theory of fractional calculus (FC) is a useful mathe-
matical tool for applied sciences [4]. In fact, FC has played 
a very important role increasing the performance of several 
algorithms used in modeling, curve fitting, filtering, pattern 
recognition, edge detection, identification, stability, control-
lability, observability, and robustness.

Therefore, this paper proposes a fractional-order (FO) 
DPSO using fractional calculus to control the convergence 
rate of the algorithm. Section two presents the state-of-the-
art of the several PSO main variants mainly focusing on the 
DPSO developed by [3]. Section three generalizes the DPSO 
to a fractional order. Experimental results for the FO-DPSO 
are presented in section four. Finally, section five outlines the 
main conclusions.
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2 A survey on PSO techniques

The original PSO was developed by Eberhart and Kennedy
in 1995 [2], and it is based on social and computer science.
The PSO basically takes advantages on the swarm intelli-
gence concept, which is the property of a system, whereby
the collective behaviors of unsophisticated agents that are
interacting locally with their environment, create coherent
global functional patterns [5]. Imagine a flock of birds where
each bird cries at an intensity proportional to the amount of
food that it finds at its current location. At the same time,
each bird can perceive the position of neighboring birds and
can tell which of the neighboring birds emits the loudest cry.
There is a good chance that the flock will find a spot with the
highest concentration of food if each bird follows a trajec-
tory that combines three directions: (i) keep flying in the same
direction; (ii) return to the location where it found the high-
est concentration of insects so far; and (iii) move toward the
neighboring bird that cries the loudest [1]. In the traditional
PSO, the candidate solutions are called particles. These par-
ticles travel through the search space to find an optimal solu-
tion, by interacting and sharing information with neighbor
particles, namely their individual best solution (local best)
and computing the neighborhood best. Also, in each step of
the procedure, the global best solution obtained in the entire
swarm is updated. Using all of this information, particles
realize the locations of the search space where success was
obtained and are guided by these successes. In each step of
the algorithm (Algorithm 1), a fitness function is used to eval-
uate the particle success. To model the swarm, each particle
n moves in a multidimensional space according to position
(xn

t ) and velocity (vn
t ) values, which are highly dependent on

local best (x̆n
t ), neighborhood best (n̆n

t ), and global best (ğn
t )

information:

vn
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t+1 = xn

t + vn
t+1 (2)

component per velocity dimension, rather than multiplying
the same component with each particle’s velocity dimension.

In the beginning, the particles’ velocities are set to zero,
and their position is randomly set within the boundaries of
the search space (Algorithm 1). The local, neighborhood,
and global bests are initialized with the worst possible val-
ues, taking into account the nature of the problem. There are
other few parameters that need to be adjusted: (i) population
size—very important to optimize to get overall good solu-
tions in acceptable time; and (ii) stopping criteria—it can
be a predefined number of iterations without getting better
results or other criteria, depending on the problem.

Algorithm 1 Traditional PSO Algorithm

PSO reveals an effect of implicit communication between
particles (similar to broadcasting) by updating neighborhood
and global information, which affects the velocity and conse-
quent position of particles. Also, there is a stochastic explo-
ration effect due to the introduction of the random multipliers
(r1, r2, and r3). The PSO has been successfully used in many
applications such as robotics [6–9], electric systems [10], and
sport sciences [11].

However, a general problem with the PSO and other opti-
mization algorithms is that of becoming trapped in a local
optimum such that it may work well on one problem, but
may fail on another problem. In order to overcome this prob-
lem, many authors have suggested other adjustments to the
parameters of the PSO algorithm combining Fuzzy logic (FA-
PSO), where the inertia weight w is dynamically adjusted
using fuzzy “IF-THEN” [12] rules, or Gaussian approaches
(GPSO), where the inertia constant w is no longer needed,
and the acceleration constants ρ1, ρ2, and ρ3 are replaced by
random numbers with Gaussian distributions [13].

More recently, Pires et al. used fractional calculus to con-
trol the convergence rate of the PSO [14]. The authors rear-
range the original velocity Eq. (1) in order to modify the
order of the velocity derivative. This paper tries to control
the convergence rate of an evolutionary version of the PSO
based on Pires et al. work, since the well-succeeded variants
of the PSO are the ones based on evolutionary techniques [5].

Many authors have considered incorporating selection,
mutation, and crossover, as well as the differential evolution
(DE), into the PSO algorithm. The main goal is to increase the
diversity of the population by either preventing the particles
to move too close to each other and collide [15,16] or to self-
adapt parameters such as the constriction factor, acceleration

The coefficients w, ρ1, ρ2, and ρ3 assign weights to 
the inertial influence, the global best, the local best, and 
the neighborhood best when determining the new velocity, 
respectively. Typically, the inertial influence is set to a value 
slightly less than 1. ρ1, ρ2, and ρ3 are constant integer values, 
which represent “cognitive” and “social” components. How-
ever, different results can be obtained by assigning different 
influences for each component. For example, several works 
do not consider the neighborhood best, and ρ3 is set to zero. 
Depending on the application and the characteristics of the 
problem, tuning these parameters properly will lead to bet-
ter results. The parameters r1, r2, and r3 are random vectors 
with each component generally a uniform random number 
between 0 and 1. The intent is to multiply a new random



constants [17], or inertia weight [18]. The fusion between ge-
netic algorithms (GA) and the PSO originated the GA-PSO
[19], which combines the advantages of swarm intelligence
and a natural selection mechanism, such as GA, in order to in-
crease the number of highly evaluated agents, while decreas-
ing the number of lowly evaluated agents at each iteration
step. Similar to this last one, the EPSO is an evolutionary
approach that incorporates a selection procedure to the orig-
inal PSO algorithm, as well as self-adapting properties for
its parameters. This algorithm adds a tournament selection
method used in evolutionary programming (EP) [20]. Based
on the EPSO, a differential evolution operator has been pro-
posed to improve the performance of the algorithm in two
different ways. The first one [21] applies the differential evo-
lution operator to the particle’s best position to eliminate the
particles falling into local minima (DEPSO), while the sec-
ond one [22] applies it to find the optimal parameters (inertia
and acceleration constants) for the canonical PSO (C-PSO).

In search of a better model of natural selection using the
PSO algorithm, the DPSO was formulated by [3], in which
many swarms of test solutions may exist at any time. Each
swarm individually performs just like an ordinary PSO algo-
rithm with some rules governing the collection of swarms that
are designed to simulate natural selection. Despite the simi-
larities between the PSO and GAs like randomly generated
population, fitness function evaluation, population update,
search for optimality with random techniques, and not guar-
anteeing success, PSO does not use genetic operators like
crossover and mutation, thus not being considered an evo-
lutionary technique. On the other hand, the DPSO extends
the PSO to determine whether natural selection (Darwinian
principle of survival of the fittest) can enhance the ability
of the PSO algorithm to escape from local optima. The idea
is to run many simultaneous parallel PSO algorithms, each
one a different swarm, on the same test problem, and a sim-
ple selection mechanism is applied. When a search tends to
a local optimum, the search in that area is simply discarded
and another area is searched instead. In this approach, at each
step, swarms that get better are rewarded (extend particle life
or spawn a new descendent) and swarms that stagnate are
punished (reduce swarm life or delete particles). To analyze
the general state of each swarm, the fitness of all particles
is evaluated, and the neighborhood and individual best posi-
tions of each of the particles are updated. If a new global
solution is found, a new particle is spawned. A particle is
deleted if the swarm fails to find a fitter state in a defined
number of steps (Algorithm 2).

Some simple rules are followed to delete a swarm, delete
particles, and spawn a new swarm and a new particle: (i)
when the swarm population falls below a minimum bound,
the swarm is deleted; and (ii) the worst performing particle in
the swarm is deleted when a maximum threshold number of
steps (search counter) without improving the fitness function

is reached. After the deletion of the particle, instead of being
set to zero, the counter is reset to a value approaching the
threshold number, according to:

SCC (Nkill) = SCmax
C

[
1 − 1

Nkill + 1

]
(3)

with being the number of particles deleted from the swarm
over a period in which there was no improvement in fitness.
To spawn a new swarm, a swarm must not have any parti-
cle ever deleted, and the maximum number of swarms must
not be exceeded. Still, the new swarm is only created with a
probability of p = f /NS, with f a random number in [0,1]
and NS the number of swarms. This factor avoids the creation
of newer swarms when there are large numbers of swarms
in existence. The parent swarm is unaffected, and half of the
parent’s particles are selected at random for the child swarm,
and half of the particles of a random member of the swarm
collection are also selected. If the swarm initial population
number is not obtained, the rest of the particles are randomly
initialized and added to the new swarm. A particle is spawned
whenever a swarm achieves a new global best and the maxi-
mum defined population of a swarm has not been reached.

Algorithm 2 DPSO Algorithm

Like the PSO, a few parameters also need to be adjusted
to run the algorithm efficiently: (i) initial swarm population;
(ii) maximum and minimum swarm population; (iii) initial
number of swarms; (iv) maximum and minimum number of
swarms; and (v) stagnancy threshold. In estimation problems
previously studied in [11] or robotic exploration strategies
proposed in [23], the DPSO has been successfully compared
with the PSO showing a superior performance.

Later on, the results obtained using the proposed FO-
DPSO will be compared with the FO-PSO developed by [14]
and discussed. Next chapter presents the use of the FC to con-
trol the convergence rate of the DPSO.

3 Fractional-order Darwinian particle swarm
optimization

In this section, a new method to control the DPSO algorithm
based on Pires et al. approach to the traditional SO [14] is
introduced and denoted as FO-DPSO.

Fractional calculus (FC) has attracted the attention of sev-
eral researchers [4,24,25], being applied in various scientific
fields such as engineering, computational mathematics, fluid



mechanics, among others [26–29]. The Grünwald–Letnikov
definition based on the concept of fractional differential with
fractional coefficient α ∈ C of a general signal x(t) is given
by:

Dα [x (t)] = lim
h→0

[
1

hα

+∞∑

k=0

(−1)k � (α + 1) x (t − kh)

� (k + 1) � (α − k + 1)

]

(4)

where � is the gamma function.
An important property revealed by the Grünwald–

Letnikov eqution (4) is that while an integer-order deriva-
tive just implies a finite series, the FO derivative requires an
infinite number of terms. Therefore, integer derivatives are
“local” operators, while fractional derivatives have, implic-
itly, a “memory” of all past events. However, the influence
of past events decreases over time.

Based on Eq. (4), a discrete time implementations expres-
sion can be defined as:

Dα [x (t)] = 1

T α

r∑

k=0

(−1)k � (α + 1) x (t − kT )

� (k + 1) � (α − k + 1)
(5)

where T is the sampling period and r is the truncation order.
The characteristics revealed by fractional calculus make

this mathematical tool well suited to describe phenomena
such as irreversibility and chaos because of its inherent mem-
ory property. In this line of thought, the dynamic phenomena
of particle’s trajectory configure a case where fractional cal-
culus tools fit adequately.

Considering the inertial influence of Eq. (1) w = 1,
assuming T = 1 and based on [14] work, the following
expression can be defined:

Dα
[
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(
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Preliminary experimental tests on the algorithm presented
similar results for r ≥ 4. Furthermore, the computational
requirements increase linearly with r, thatis, the FO-DPSO
present a O (r) memory complexity. Hence, using only the
first r = 4 terms of differential derivative given by (5)and
Eq. (6) can be rewritten as (7):

vn
t+1 = αvn

t + 1

2
αvn
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Although this new equation incorporates the concept of
FC, the difficulty to understand the influence inherent to the
fractional coefficient α still remains: What should be the most
adequate value for α?

As described in [30] and [31], a swarm behavior can be di-
vided into two activities: (i) exploitation and (ii) exploration.
The first one is related with the convergence of the algorithm,
thus allowing a good short-term performance. However, if
the exploitation level is too high, then the algorithm may be
stuck on local solutions. The second one is related with the
diversification of the algorithm, which allows exploring new
solutions, thus improving the long-term performance. How-
ever, if the exploration level is too high, then the algorithm
may take too much time to find the global solution. As first
presented by Shi and Eberhart [12], the trade-off between
exploitation and exploration in the classical PSO has been
commonly handled by adjusting the inertia weight. A large
inertia weight improves exploration activity, while exploi-
tation is improved using a small inertia weight. Since the
FO-DPSO presents a FC strategy to control the convergence
of particles, the coefficient α needs to be defined in order to
provide a high level of exploration while ensuring the global
solution of the mission. Therefore, the FO-DPSO will be
experimentally evaluated in next section using Eq. (7) for all
particles in all swarms.

4 Experimental results

This section presents experimental results of the proposed
FO-DPSO. Also, in order to compare this approach with Pires
et al. approach [14], the same test functions and parameters
are used as depicted in Table 1. Table 1 also shows the specific
parameters of the DPSO algorithm.

The median of the fitness evolution of the best global par-
ticle is taken as the system output, for each value in the set
α = {0, 0.1, . . . , 1}. In Figs. 1, 2, 3, 4 and 5, the results
can be seen for the adopted optimization functions f j , j =
{1, . . . , 5}.

Table 1 Specifications of the algorithm and optimization functions

Min Initial Max

Number of simulations – 201 –

Number of iterations – 200 –

Coefficients ρ1 = ρ2 = ρ3 – 0.8 –

Swarm population 3 4 5

Stagnancy threshold – 10 –

Optimization functions f j [32] 1- Bohachevsky 1

2- Colville

3- Drop wave

4- Easom

5- Rastrigin

Observing Eq. (7), one can conclude that the DPSO is then 
considered as being a particular case of the FO-DPSO when 
α = 1 (without “memory”). Moreover, the FO-DPSO may 
also be seen as a collection of FO-PSOs [14], in which each 
swarm individually performs with some natural selection 
rules (cf., Sect. 2).



Fig. 1 Evolution of the
Bohachevsky 1 function
changing α
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Fig. 2 Evolution of the Colville
function changing α
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Fig. 3 Evolution of the Drop
wave function changing α
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Fig. 4 Evolution of the Easom
function changing α
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Fig. 5 Evolution of the
Rastrigin function changing α
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Experimental results show that the convergence of the
algorithm depends upon the fractional order α. However,
contrary to the FO-PSO presented in [14], the Darwinian
algorithm easily avoids being stuck in local solutions inde-
pendently on the value of α (since it is a particularity of the
traditional DPSO). Moreover, one can observe that, in most
situations, a faster optimization convergence is obtained for
a fractional coefficient α in the range [0.5, 0.8]. Therefore, to
further evaluate the FO-DPSO, let us then systematically ad-
just the fractional coefficient α between 0.5 and 0.8, accord-
ing to the following expression:

α (t) = 0.8 − 0.3
t

200
(8)

FO-PSO proposed by Pires et al. [7] using Eq. (8). Observing
Fig. 6, one can conclude that, despite both FO-PSO and FO-
DPSO revealed a similar behavior, the combination of FC and
Darwin’s principles contributes to an improved convergence
dynamics.

5 Conclusions

The search for an algorithm capable of dealing with most
optimization problems without being very time-consum-
ing and computationally demanding has been a subject of
research in several scientific areas such as control engi-
neering and applied mathematics. Fractional calculus has
appeared as a tool to enhance the performance of conven-
tional mathematical methods. This work proposed a new
optimization algorithm based on the DPSO using the con-
cept of fractional derivative to control the convergence rate.

Once again, the median of the fitness evolution of the best 
global particle is taken as the system output. In Fig. 6, the  
results can be seen for the adopted optimization functions 
f j , j = {1, . . . , 5}, while comparing the FO-DPSO with the



Fig. 6 Evolution of the fitness function, with variable α for FO-PSO and FO-DPSO

Experimental results show that, although the speed of con-
vergence of the fractional-order DPSO (FO-DPSO) depends
on the fractional order α, the herein proposed algorithm out-
performs the traditional DPSO and PSO¸ as well as the FO-
PSO previously presented in the literature. However, each
optimization problem may have a slightly different opti-
mal α. Therefore, as future work, we propose to extend the

FO-DPSO with adaptive ability to tune the fractional order
α based on the contextual information inherent to each prob-
lem.
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