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Abstract:

This paper investigates the operation of a hybowgr system through a novel fuzzy control
scheme. The hybrid power system employs variousnamtous generation systems like wind
turbine, solar photovoltaic, diesel engine, fudl;caqua electrolyzer etc. Other energy
storage devices like the battery, flywheel andautiapacitor are also present in the network.
A novel fractional order (FO) fuzzy control schemmemployed and its parameters are tuned
with a particle swarm optimization (PSO) algoritamgmented with two chaotic maps for
achieving an improved performance. This FO fuzaytadler shows better performance over
the classical PID, and the integer order fuzzy Rtntroller in both linear and nonlinear
operating regimes. The FO fuzzy controller alsoxshstronger robustness properties against
system parameter variation and rate constrainimeauiity, than that with the other controller
structures. The robustness is a highly desirabtgegty in such a scenario since many
components of the hybrid power system may be settain/off or may run at lower/higher
power output, at different time instants.
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Chaotic PSO; fractional fuzzy PID controller; hybpower system control; stochastic grid
frequency fluctuation; renewable energy generation

1. Introduction

The increase in energy demand coupled with thagisbncerns of global warming,
has necessitated the integration of renewable grieapnologies like wind and solar energy
into the power grid. This has given rise to hyldidtributed energy generation and storage
systems [1]. The generation from the wind and sotaver plants are stochastic in nature and
depend on the weather conditions at any parti¢uree instant. This might result in situations
where the electrical load is higher than the gdrm@raEnergy storage devices like batteries,
flywheels or ultra-capacitors might be coupled vatich systems to mitigate this unbalance.

1


https://core.ac.uk/display/146502909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ISA Transactions

They also improve the power quality and decreasdiltittuations in grid frequency [2]. If
there is surplus power available from these renésdurces over the demanded load, these
storage devices store them for a short periodnaé &and later release them to the grid when
the demand load is higher than the generation.tli@se actions to be performed properly
there needs to be a control strategy which cootelsnidese activities.

Control systems based on fractional calculus [3}aming increasing interest in the
research community due to its additional flexigil#gnd superior design performance [4][5].
Fractional calculus has spurred recent interesignal processing [6] and computational
intelligence techniques have also been integratethe design of fractional order control
systems [7]. These fractional order intelligent tcoinsystems are finding wide applications
in process control [8], [9], nuclear reactor cohffd0], chaos synchronization [11] etc.
among many others. Fractional calculus has alsa bgegrated with fuzzy logic [12][13]
and PSO [14], [15] to enhance their performancesoAcomputational intelligence based
design for fractional order control systems havenbéound expedient in different power
system applications like automatic voltage regulft6—18], two area load frequency control
[19], microgrid frequency control [20] etc. Motieat by the success of such diverse
applications of computational intelligence basexdttional order control systems, a fractional
order fuzzy control scheme is explored in this pdpe the case of hybrid power systems.
Other approaches towards designing control strategyhese kind of systems include the
standard PID controller [21], genetic algorithm dxsPI/PID controller [22], robust H
controller [23][24] etc.

In this paper, a comparison has been reported beatwwandard PID and fuzzy PID
controller to show the advantage of the proposéeérse. Due to the presence of stochastic
renewable energy generation components like wirdd sodar power, there is a continuous
variation in grid frequency. This affects the powegrality which needs to be kept within
limits so that the downstream connected electtaads do not malfunction. For this purpose
a controller is introduced in the loop, which serdsignal to the energy storage systems to
absorb/release additional/deficit power from/inb@ tgrid respectively. The controller also
sends a command to the diesel engine to releabebhigts of power into the grid to meet
short term load demands. The fractional order fu2ify controller [25] is employed for this
purpose and is compared with performances achibydelD and fuzzy PID controller. The
schematic of the hybrid power system along with ¢batroller is illustrated in Figure 1.
Another advantage of our proposed control scheree thhat reported in [18]-[19] is that only
one centralized controller structure is required tfte overall hybrid power system. This
removes the necessity of having one controllerefach of the power storage units in the
feedback path like that reported in [21][22] anon@lates the need for effective tuning of
each of the controllers simultaneously, which isnbarsome in practice. The proposed
scheme, therefore, reduces cost, additional wirmgintenance and also the necessity of
tuning each of the controllers separately, avoi@ding possible performance deterioration due
to loop interactions.

The evolutionary and swarm algorithm works well otlee classical gradient based
methods especially in noisy [26] and dynamic enwinents [27], [28], [29] which are
commonly encountered in control system design tedlgastochastic fluctuations. In this
paper, a chaotic PSO algorithm has been used ferndiming the controller parameters by
optimizing a time domain performance metric (whishnoisy) due to the presence of
stochastic fluctuations in the wind power genergtisolar power generation and the load
profile. Other new search and optimization algonghlike the gravitational search algorithm
[30] and cat swarm algorithm [31] might also bedusefind the controller parameters.
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The rest of the paper is organized as follows. i&ecR describes the various
components of the hybrid energy system. Sectione3lyintroduces the FO fuzzy controller
which keeps the frequency deviation of the powetesy within allowable range. Section 4
explains two-chaotic map adapted versions of PS§orighm, along with the objective
function for optimization. Section 5 presents tlenparison amongst the performances of
three controller structures and also their robisstraggainst system parameter variation. The
effect of the rate constraint nonlinearity in teedback elements are explored next in section
6, followed by discussion on the heuristics andl@mgntation issues in Section 7. The paper
ends with the conclusions in Section 8, followedlgy references.

2. Description of the hybrid power system with renewale generation

The schematic of the hybrid power system usingeckfit modes of energy generation
and storage is illustrated in Figure 1 with itdeliént components described in Table 1.

2.1. Models of various generation subsystems

For small signal analysis, the transfer functiohthe WTG, STPG, FC and DEG can
be modeled by first order transfer functions (1)-(ith the associated gain and time
constants given in Table 1 [32][21][22].

Gure (8) = Kure /(1+ STyrs ) = ARy /ARy (1)
Gareo (8) = (Ks/(Tes+1)) (K, /(T s+1)) = ARy /AR, 2)
Gee, (S) =Keo/(1+5Tec) =P /AP k=12 (3)
Gors (S) = Koo/ (1+ STos ) = APyes /AU @)
TABLE 1: NOMINAL PARAMETERS OF THECOMPONENTS OFHYBRID POWER SYSTEM
Component GainK) Time constantT®)
Wind turbine generator (WTG) Kwre=1 Twre=1.5
Aqua Electrolyzer (AE) Kae=0.002 Tae=0.5
Fuel Cell (FC) Krc=0.01 Trc=4
Flywheel energy storage system (FESS$) Kress=-0.01 Tress=0.1
Battery energy storage system (BESS) Kgess=-0.003 Teess=0.1
Ultracapacitor (UC) Kuc=-0.7 Tuc=0.9
Diesel engine generator (DEG) Kbec=0.003 Toec=2
Solar Thermal Power Generation (STPG)Ks=1.8,Kr=1 T<=1.8,T1=0.3

2.2. Model of the aqua electrolyzer

The aqua-electrolyzer produces hydrogen for thé dak using a part of the power
generated from the renewable energy sources likd amd/or solar. The dynamics of the AE
for small signal analysis can be represented bytrdmesfer function (5) [32] where it uses
(1— Kn)fraction of the total power of WTG and STPG to proel hydrogen which is again

used by two FCs to produce power and feed it taythe
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Gue (S) =K, /(1+5T,) :APAE/((ARMG +0P ) (1-K,)) (5)
where, K, =R /(R * Psps ), K, =0.6 (6)

2.3. Model of different energy storage systems

In the hybrid energy system of Figure 1, the FEESSS and the UC are connected in
the feedback loop and are actuated by the sigaal the FO fuzzy controller. These absorb
or release energy from or to the grid if there isuwaplus or deficit amount of power
respectively. Their corresponding transfer functican be represented as (7)-(9) [32] where
Au is the incremental control action by the centeadizontroller employed in feedback path,
to reduce the grid frequency oscillatifsin.

GFEss (S) = KFESS/(1+ STFE$) = APFESS/AU (7)
GBEss (S) = KBESS/ (l+ STBE$) = APBESS/ Au 8
G\Jc (S) = Kuc/(TucS+l) = APUC/AU ()]
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Figure 1: Schematic of the hybrid power system wéte constraint nonlinearity in energy
storage/generation elements.

2.4. Power system model using grid frequency deviation
The power system model can be represented as (10).

G, (s) =Af /AP, =1/(D +Ms) (10)
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where, M and D are the equivalent inertia constant and dampintstemt of the hybrid
power system [1] and their typical values are abersd as 0.4 and 0.03 respectively for the
present simulation study.

2.5. Stochastic model of the renewable energy: wind and solar power
generation and the demand load

The wind generation, solar generation and load dem&s modeled in a general
template considering both large deterministic driftl small stochastic fluctuations [22]. The
models result in a mean value and stochastic fatictns about the mean generated or
demand power at each time instant. Additionallyeéhe a sudden shift in the mean value at
some point in time to indicate a greater variaiiorthese parameters. The general template
for these is chosen as (11)

P=((mVB(1-G(s))+B)s/p)r =¢m (11)
where, P represents the power output of the solar, windher load model,g is the
stochastic component of the powgt, contributes to the mean value of the pov@(s) is a
low pass transfer functio{fn,d} are constants in order to normalize the genemtel@mand
powers & to match the per unit (p.u.) levdl, is a time dependent switching signal with a
gain which dictates the sudden fluctuation in mealoe for the power output.

Generated and demand powers independent of controller structure and Af
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Figure 2: A single realization of the renewable pogeneration and demand load.

For the wind power generation, the parameters oj éke ¢~IU(—L1), n=0.8,
,8:10,G(s)=]/(10“s+]), =1 and =0.5H(t)-0.H(t- 40, where H(t) is the
Heaviside step function. For the solar power gdim®@rathe parameters of (11) are
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p~U(-11), n=0.7, B=2, G(s)=1/(10's+1), 5=0.1 and
F=1.111H(t)- 0.5556 (t— 4X. For the demand load, the parameters of (11) are
9~U(-11), G(s)=(30q(30a&+ })-(A 1808+ )}, n=0.8, B=100, 5=1, and

[ =H(t)+(0.§&)H (t-80.

A single realization of the stochastic componevits generated powersp(,P,, ),
demand @ ) and also the net generated power to the grijl ére shown in Figure 2. These

are independent of the controller structure presetite feedback path. It can be seen for all
the cases that there is a stochastic componentisygpsed on a base value and there are
sudden jumps of the base value at arbitrary instahtime to indicate a sudden large change
in the power at different time instants (40 sec 8Qdsec in this case). The expression (11)
with parameters, mentioned above have been ussldolate the net power generated by the

wind and solar units i.d.R,, P} in (1) and (2) respectively.

3. Fractional order fuzzy controller

3.1. Basics of fractional calculus

Fractional calculus is an extension of th® order successive differentiation and
integration of an arbitrary function having the @rds any real value. There are three main
definitions of fractional calculus, the Grinwaldthéov (GL), Riemann-Liouville (RL) and
Caputo definitions [3]. The Caputo definition isdely used in fractional order control
system design problems [3-7]. According to CaputieBnition, thea™ order differ-integral

of a functionf (t) with respect to timeis given by (12).

oot ()=t [ 2T 4
r(m-a)q(t-r) (12)
aOR*, mOZ" , m-1<a<m
3.2. Hybridization of fuzzy PID and fractional order control

Fractional fuzzy controller
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Figure 3: Schematic of the fractional order fuziy EBontroller.

The FO fuzzy PID controller has been introducedlaget al. in [25] with {Ke, Kd}
and[ KP,,KPD} being its input and output scaling factors (SFgpeetively and has been
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shown to give good results for process control iappbns [8], [10], [25], [26]. The
schematic diagram of the fuzzy FOPID controllesli®wn in Figure 3. Also, the rule base
considered for the fuzzy controller is depictedrigure 4 and the corresponding membership
functions in Figure 5. The fuzzy linguistic variabINL, NM, NS, ZR, PS, PM, PL represent
Negative Large, Negative Medium, Negative SmalloZéositive Small, Positive Medium
and Positive Large respectively. The crisp outguhe Fuzzy Logic Controller is determined
by using center of gravity method of defuzzificatioThe FO fuzzy controller SFs and

integro-differential order§K,, K, Ky, ,Kq 4,44 are tuned using PSO for a fixed rule base
and membership function type.

c)
d*e NL NM NS ZR PS PM PL
dr”
PL /R PS PM PL PL PL PL
PM NS ZR PS PM PL PL PL
PS NM NS ZR PS PM PL PL
ZR NL NM NS ZR PS PM PL
NS NL NL NM NS ZR PS PM
NM NL NL NL NM NS /R PS
NL NL NL NL NL NM NS ZR

Figure 4: Rule base for error, fractional ratembeand FLC output.
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o T
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(@)]
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0-1 0 1

Universe of discourse
Figure 5: Rule base for error, fractional rate mbeand FLC output.

Various continuous and discrete time rational appmation methods exist for
fractional order elements [4][3][5] which can beseas the heart of the proposed fuzzy logic
based fractional order controller. In the presengr, each guess value of the fractional order

differ-integrals{/l,,u} within the optimization process is continuouslyioaalized with

Oustaloup’s B order rational approximation. The FO differ-intatgrs are basically infinite
dimensional linear filters. However, band-limitezhlizations of fractional order controllers
are necessary for practical implementation. Inpifessent study, each fractional order element
has been rationalized with Oustaloup’s recursilterfgiven by the equations (13)-(14). If it
be assumed that the expected fitting range or é&ecy range of controller operation is
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(cq),cq]), then the higher order filter which approximates FO elemens” can be written as
(13).

G, (s):s":KkEL((s+a{)/(s+a4)) (13)

Its poles, zeros, and gain of the filter can bdwatad as (14).

k+N+(1+a)/2 k+N+(l-a) 2

w=a(@/a) ™ d=a(a/q) 22 K=o (14)

In equations (13)-(14y, is the order of the differ-integration ar(n’le +1) is the order of the
realized analog filter. The present study conside#%order Oustaloup’s approximation for
all the FO elements within the frequency rangeudif{lO‘2 ,102} rad/sec.

4. Control objectives and optimization based tuning othe fuzzy FOPID
controller parameters

4.1. Optimization strategy for dynamically changing objective
functions

The objective function ) for optimization has been considered as an iategr
performance index over the simulation period, 9f =120sec, using the weighted sum of

squared frequency deviation and the deviation oftrob signali from its expected steady
state value_as given by (15).

J =I0Tmax(wl(Af )? +W2(u—uss)2)dt (15)

In (15) the first term represents the Integral @u&ed Error (ISE) of grid frequency
deviation and the second term is known as the tateyf Squared Deviation of Controller
Output (ISDCO) as studied in [8], [20] for a didgtance rejection task of the controller, since
it is placed in the feedback path. In (15), theghies w,,w, govern the relative importance of

each term in the objective function. They are takew, = w, =1 to give equal importance to
both. Here, the steady state control signalchanges after each switching in the generation
and load as also studied in [32][20]. For the pmes@mulation study,T =120sec and

U, =0.8H (t)+ 0.1H (t- 49+ 1.18 (t- &

Due to the presence of stochastic terms in geoeraid load as shown in Figure 2,
the optimization for controller tuning essentiadlgals with locating the expected minima of a
dynamic (time-varying) objective function [10], [R7[28], [33]. The PSO variants are
employed to identify the expected minima of the tiplé realizations of the objective
function (15) that slightly changes its shape icheeealization (ensembles) and fluctuates
around the respective steady values during the tmee intervals iru_[33], [27]. Also, the

objective function (15) is formulated in such a wihgt beside the frequency oscillatiofyf (

), the control signal variations to different atctwra are also minimum to avoid possible
mechanical shock/stress in those elements. Thissttel limit the requirement of increased
capacity for the battery and ultra-capacitor, reguftywheel jerk and diesel consumption,
making the overall hybrid power system more cottetive.
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4.2. Chaotic map adapted particle swarm optimization
The PSO algorithm tries to optimize an objectivaction f (x) with respect to the
design variable O R". It is expressed as (16).

minimize f(x) (16)
where, the objective function: R" - R and then-dimensional search spa@OR"is pre-
specified by the user. The PSO algorithm consisésswarm of particles [Ji D{l,Z,...,np}
. The maximum number of particlegis specified by the user. The partickesearch for an
optimal solutionK OR"of (16). The position of th&particle is denoted by
X = (X1, % 5% ,) OR"and the velocity is denoted fy=(v,,Y ,,...v,,,) OR", where
i D{l,z,...,np} . The position and velocity of ti particlex OR"is updated in each
iteration, based on equations (17)-(18) kar z * which indicates the iteration number.

)§k+1 - )ﬁk +Vik+1 (17)

V= av + B (X0 - x)+ B (XK %) (18)
where, o is the inertia factoyg, is the cognitive learning rate apgiis the social learning rate
and is pre-specified by the user. These influeheeeixploration and exploitation properties
of the particles and must be properly chosen fcste‘iaconvergencél"’i and H;i represent

random numbers uniformly distributed in the intér\{@,]].xb“"‘in (19) refers to the

previously obtained best position of tHi@article andx* denotes the best position of the
swarm at the current iteratiéin This is expressed as (20).

X = arg min{f &’ ), 05 | sk} (19)
Xij
XXk = arg mkin{ f " ),Di} (20)
%
The pseudo-code for the PSO algorithm can be suinedsas follows:

[Step 1]: Initializen, particles randomly distributed in the search spa¢eR" and calculate
the objective function values for each partk;li[]{l,z,...,np}. Set, k =0. Determine
X" andizs,
[Step 2]: If the criteria for termination is satisfied, th&orithm terminates with the solution
X =arg mjin{ f &' ),0i ,j} . Otherwise go to [Step 3].

X

[Step 3]: Use (17) and (18) to update the position and viglad the particles and evaluate
the corresponding objective functions at each ositSet, k = k +1. Determinex™* and

X2k and go to [Step 2].

The termination criterion is set as the user spEtimaximum number of iterations
kmex. The population is taken as 30 and the numbeenégations as 300. The inertia weight
ais linearly decreased over the iterations from ©.9.1. The values o3, and B, are

9
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chosen as 0.5 and 1 respectively.

In [34], [35], it is shown that incorporating a dtie@ map for the random number
generation instead of the conventional random nungamerators (RNG), increases the
efficiency of the algorithm and introduces diveysit the solutions. In the present study, a
Henon map and a logistic map is coupled with th® Rgorithm for improved performance
[18], [19]. The Henon map is a two dimensional thse time dynamical system that exhibits
chaotic behavior. Given a point with co-ordingtesy,} , the Henon map transforms it to a

new point{x..,, y,,,} using the following set of equations in (21).

Xosp = Yo 1= axf,
yn+1 = bxn
The map is chaotic for the parameters1.4andb=0.3. It is actually a simplified
model of the Poincare section of the Lorenz syst@Eme. initial values of all the variables are
zero. The output,,, varies in the rande0.3854,0.381F. Since the Henon map is used here

(21)

as a replacement for the RNG, it has to produceiraber in the rang[@,]]. Hence, the
output is scaled in the ranjged] as also done in [36], [37].
The one dimensional chaotic Logistic map is give(eR).

X1 = 8%, (1-X,) (22)
The initial condition of the map in (22) has bedwsen to bex, =0.2027 and the

parametera=4 has been taken similar to that in [36], [37]. Tderformances of standard
global optimizers have been improved to a higheéergxusing several chaotic maps reported
as in [38], [39] and have also been applied inowggipower or energy system applications
e.g. economic load dispatch [34], [35], automabttage regulator design [16], [18] and two
area load frequency control [19] etc.

5. Results and discussions

5.1. Performance of the controller in nominal condition of the hybrid
power system

The hybrid power system is simulated with differezdntroller structures and
optimized with the chaotic map adapted PSO algworiths in section 4, while all the
components in Figure 1 are considered to be workitigin the linear operating regime. The
total simulation time is considered as 120 secaoaus the coupled ordinary differential
equations (comprising of the system componentscamtroller) along with the stochastic
forcing terms, representing the whole hybrid powgstem in Figure 1, are numerically
integrated with a fixed step size of 0.01 sec usig3® order accurate Bogacki-Shampine
formula. It has been found that the PID controltersed with different chaotic maps result in

the same minima of the cost functionJgs = 4.51with corresponding gains &s =2.04,

K. =0.64,K, =0.61, although the individual convergence charactesstre different for

three PSO variants. Similar analysis for the fuk4dp and fuzzy FOPID controllers are
shown in Table 2 reporting the best controller peeters, corresponding to the minimum
J_across multiple runs. The convergence charadteyitr different PSO algorithms for

min

each of the controllers are shown in Figure 6.

10
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TABLE 2: PSOBASED TUNING OF FUzzY PID AND Fuzzy FOPIDCONTROLLERS

Controller structure

Random number
generator

Controller parameters

Jmin Ke Kd Kei Krb A
Uniform 435| 0.05| 0.0Z2 11.7¢ 22.04 - -
Fuzzy PID Logistic 431 0.07f 0.02 6.08 18.61 - -
Henon 428 0.0 0.02 7.64 2345 -
Uniform 456 | 0.72| 047 1.28 207 0.87 0.87
Fuzzy FOPID Logistic 4.37| 0.15/ 0.18 6.29 3.58 0.78 0.99
Henon 425 0.22 0.2% 3.17 400 099 0.84

It is already mentioned that for the case of tHe &introller, the same value df, is

obtained for all the three different versions of P& owever from Table 2, it is observed that

the besd . is obtained by the Henon map adapted PSO algofidhrithe fuzzy PID and the

fuzzy FOPID controller. Also the convergence chaastics for these two cases as shown in

Figure 6 indicate that the Henon map adapted PS®@etges to the solution quickly as

compared to the Logistic map version. The resuldscate towards a general trend that the
chaotic map adapted PSO algorithms are better asethcases where the number of

parameters to be tuned are more and the objeaiivetibn is obtained through nonlinear
relationships with long memory (for fuzzy logic afdctional calculus respectively). For

11
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PID controller design, there is no difference ie thinima found by three PSO variants but
Logistic map assisted version of PSO takes lesatit&s to converge (as can be observed
from Figure 6). For Fuzzy PID/FOPID design, both thinima of the control objective and
number of iterations is lower with Henon map augeenPSO than that with the other
variants.

The controller design task has been carried out thié scenario shown in Figure 2
for multiple realizations of the stochastic pro@ssen the generated and demand powers.
Both the wind and solar power have superimposertuations about the steady state value.
Both the powers drop to significantly different édw after 40 sec. This is representative of
the actual scenario where there is a high vartgbiih the generated power over time,
depending on the weather condition. The load denadéswhas similar fluctuations about the
steady state values and increases suddenly aftee@®0The controller tuning methodology
takes these fluctuations into account with multigiech realizations of the stochastic
fluctuations while computing the controller gaifierefore, the controller is expected to
work in a wide variety of scenarios.

Frequency deviation and controller efforts with four controller structures
_______________________________________________________ ~{—PID

---Fuzzy PID
““““““ Fuzzy FOPID

o
o

e
=)

frequency
deviation (Af)

i
0 20 40 60 80 100 120

—_
2
=25
©
c
D 2
%) :
015 :
E —PID
8 1 ---Fuzzy PID
e e el e N R Fuzzy FOPID
| T
03 20 40 60 80 100 120

time (sec)

Figure 7: Deviation in frequency and control sigwéh different controller structures.

Figure 7 shows the frequency deviation for the @hdé@ferent controller structures
with the best obtained values in Table 2. The apwading individual powers of the
different components of the hybrid power systentli@se cases are shown in Figure 8. From
the frequency deviation curves, it is difficult destinguish that the fuzzy FOPID controller
works better than the other two, but this is intikdaby the numerical values §f in Table

2. However, from the control signal curve in Figureit can be observed that the band of
oscillations for the fuzzy FOPID controller is legmn that with the PID or the fuzzy PID
controller. This is especially important from theagtical implementation point of view
because the control signal actuates mechanical @oemps like the FESS, BESS, DEG etc.

12
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Sustained oscillation in the actuator command woud@dr out the mechanical components
and would deteriorate the life time and the per@moe of that particular component. Figure
8 also shows that amongst different energy stoongsupplying components, the UC
contributes to the maximum power followed by theSSEBESS, DEG and FC respectively.
Also, in Figure 8 positive powers in FC, DEG indedhat they are power producing and
conversely negative powers in FESS, BESS, UC sighdt they are energy storing elements
in the hybrid power system.

Power generated by each component dependent on controller structure and Af
x10°
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Figure 8: Power generated by different componeftiseohybrid power system.

TABLE 3: ROBUSTNESSTEST AGAINSTPARAMETER VARIATION OF UC

Performance - ISE (ISDCO) for different controllers
Condition PID Fuzzy PID Fuzzy FOPID
nominal 1.55 (2.96) 1.50 (2.78 1.50 (2.76)
30% increase| 1.24 (13.67) 1.18 (13.53) 1.17 (13.47)
50% increase| 1.14 (26.71) 1.07 (26.59) 1.06 (26.51)
30% decrease 2.37 (49.09) 2.4 (48.85H) 2.36 (48.87)
50% decrease 3.89 (236.7) 4.17 (236.3) 4.00 (236.4)

To test the robustness of the obtained solutioms ampare them across different
controllers, two kinds of simulations are shown tnéx section 5.2, the parameters of the
transfer function of the maximum power storing/prodg component (i.e. UC) are changed
and its effect on the system performance is studredection 5.3, different components are
disconnected from the hybrid power system one leyamd the performance of the controller
to adjust the dynamics of the remaining power sgsgequantified by the increaseJif15).

13
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5.2. Robustness against ultracapacitor parameter variation

A 30% and 50% increase and decrease of UC gaintiame constant has been
introduced to test the robustness of three coetratructures. Among all the components
connected in the feedback path, the UC has theekigdhare of power as can be seen from
Figure 8. Hence changes in the UC parameters ftdttathe overall system more than the
other components. So testing for parametric rolasstrof UC is essentially testing for the
worst case scenario. Figure 9 shows the frequemcly control deviation for the three
controller structures. Table 3 lists the correspagdalues of the performance measures (ISE
and ISDCO) for these perturbed cases of UC parameéibe robustness of the fuzzy FOPID
controller as the centralized controller in feedbkop is evident since it consistently keeps
ISE and ISDCO at lower values than that with th@ &hd fuzzy PID structures.

From Table 3, it is evident that the fuzzy FOPIOpauforms the PID or the fuzzy
PID controller in all the perturbed cases althotghthe nominal case the performance gain
is relatively smaller. The improvement with fuzz@FID over fuzzy PID is small but still the
former is better under all cases of () parameg¢etuobation of UC.

PID Fuzzy PID Fuzzy FOPID
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Figure 9: Frequency and control signal deviatiortk wariation UC parameter.

5.3. Robustness against disconnecting different energy storage
components

Robustness of the obtained solutions are verifiegt iy disconnecting different
components and looking at the two performance mreasiie. ISE/ISDCO and their
percentage change from the nominal case (havinghallcomponents). Three cases are
considered i.e. separately disconnecting the DEESS-and BESS.

The corresponding performance measuréd (s given by (23) along with the
decrease in performance due to disconnecting ecpiart componerk .

Performance decrease (1 omna= )/ nomna) X 1009

lnomina > 1,1 O{ ISE, 1SDCO, J} .k O{ DEG ,FESS,BESS}
From the tabulated results in Table 4, it can bex ghat in all cases, the grid frequency

(23)
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oscillation suppression (load rejection ISE) andhtaaler effort (ISDCO) of the PID
controller is the worst. The performance is betigh fuzzy PID and the best with the fuzzy
FOPID controller. Table 4 shows that disconnectFi§SS has higher impact on the
performance followed by BESS and DEG. Also, theesigy of the performance deterioration
is the minimum for fuzzy FOPID, followed by fuzzyPand the traditional PID controller.

TABLE 4: ROBUSTNESSAGAINST DISCONNECTINGSTORING/GENERATING ELEMENTS

Performance measure % performance decrease
Controller Element opened ISE | ISDCO J ISE | ISDCO J
nominal 1.55 2.96 4.51 - - -
DEG 1.55 3.01 456 3.54 9.29 7.26
FESS 1.61 3.29 490 7.20 19.56 15.21
PID BESS 1.56 3.05 4.61 4.2¢/ 10.74 8.46
nominal 1.50 2.78 4.28 - - -
DEG 151 2.82 4.33 0.60 2.50 1.83
FESS 1.57 3.10 4.67 4.47 12.5p 9.69
Fuzzy PID BESS 1.52 2.86 438 1.33 3.92 3.01
nominal 1.50 2.76 4.21 - - -
DEG 151 2.80 431 0.60 1.63 1.27
FESS 1.57 3.07 4.64 494 11.36 9.10
Fuzzy FOPID BESS 1.52 2.84 436 1.40 3.01 2.44

6. Effect of nonlinear operation of the energy storingproducing
elements in the feedback path

In order to test the robustness of the proposedraoscheme for significant
nonlinearity in the energy storing or generatingices like FESS, BESS, UC and DEG, all
the components are considered to have a rate aoristype nonlinearity. This typical
nonlinearity restricts a particular component trstor release power very fast by putting an
upper and lower bound on them which is represesmtadf a realistic scenario. Figure 10
shows the implementation of a rate constraint mogarity for all the different types of
energy generation and storage subsystems whiclrepresented by first order transfer
functions. It is implemented as a saturation blfweith pre-specified upper and lower cut-off
limits) before the integrator block.

Figure 11 shows this phenomenon for each of the domponents in feedback path
with a constraint  df,.|<0.02,|P.s|<0.005|P,[<1.2,|P,| < 0.001, while the
controllers are tuned for the linear operation,cassidered in the previous sections. The
robustness comparison can be done with the inclieatbe cost function (15) for the three

controller structures as reported in Figure 11 Whaearly shows that fuzzy FOPID
outperforms the other two structures. Figure 12 abows the deviation between the
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corresponding linear operation and nonlinear ratestrained operation with the well-tuned
controllers. The value of the objective functiopaged alongside each controller structure in
Figure 12 again verifies the fact that the fuzzy PHD controller is better than its
counterparts.

=== +
| —  Input ok _ l £k Qutput
e — — 3 A

L4 sT T - [ T ‘ >

Figure 10: Rate constraint type nonlinearity fdirst order transfer function representing the
generation or storage units in the feedback path.
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Figure 11: Effect of nonlinear rate constraintseoergy storage/generating elements.

7. Discussion

We have initially tuned the three controllers wiitiear models of the hybrid power
system components. Then, we have tested the penfmerof the controllers under nonlinear
operation of the energy storing and producing etgmen section 6. In this mode of
operation, all the power system components hawaeaconstraint type nonlinearity which is
representative of a more realistic scenario [20hc& our optimization methodology is
generic in nature (unlike #H- techniques [17] or Linear Matrix Inequality (LMBased
techniques [33] etc.) and the controllers are moitéd to have a linear structure only, it is
easy to explore other kinds of process nonlinearithis well. The fractional order fuzzy
controllers also have high robustness propertieteawnstrated in sections 5.2 and 5.3. This
is important since the control design can take iatoount the effects of different un-
modelled dynamics which are neglected while mougllthe different power system
components. Therefore in spite of the consideratfmall signal linear models in the initial
power system components (i.e. during the tunings@hahe other advantages of robustness
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e.g. parametric uncertainties, robustness agaissbmhection of different energy storage
components, satisfactory performance in the presehcate constraint nonlinearities (as in
section 6) are also enjoyed due to the presenfiepny logic in the FO controller. Therefore,
it might be an attractive option to the system giesi for giving preference to the fuzzy
control design over other traditional techniques.

PID (J = 4.73) Fuzzy PID {J = 4.724) Fuzzy FOPID {J = 4.662)
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Figure 12: Change in performance of the storagaetés due to nonlinear rate constraints.

Also, here other controller design approaches fitadel predictive control, sliding
mode control etc. could have been used which nugre better performance over the PID
controller for this hybrid power system. Howevesnindustrial control systems still rely on
the PID controller due to its simple structure,eeaimplementation and satisfactory closed
loop performance in the presence of uncertainter&lore the objective of introducing the
simulation results with the PID controller is sgléb serve as a benchmark of traditionally
accepted industrial practices. The focus of thegmestudy is to make a comparison between
the integer order fuzzy PID controller and the fi@awal order fuzzy PID controller. Naturally
these are more complicated control system desigs veould require more expensive
hardware to implement. The system designer can Hblkhe relative improvement in
performance as obtained by these fuzzy strategiesstbe simple PID controller and decide
whether it is worthwhile for his specific applicati to obtain this improvement in control
system performance, at the expense of investimgore sophisticated hardware for the fuzzy
controllers.

8. Conclusions

This paper proposes a centralized control scherteavhovel fractional order fuzzy
PID controller for suppressing the grid frequensgiltation in a hybrid power system. The
centralized scheme offers the advantage of costtefeness, reduced maintenance, wiring
and number of parameters to tune. Parameters dtiflag FOPID controller are tuned with
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chaotic map adapted PSO algorithms and the caatrollitperforms the PID and fuzzy PID

controller structures. The chaotic map adapted R8s better than the traditional PSO in
terms of the quality of the solution and obtainitagter convergence. The fuzzy FOPID
controller also shows high robustness propertigh vaspect to parameter variation in UC,
nonlinear rate constraint on feedback elements als® on disconnection of some

components. This suggests that once the fuzzy F@#tbned for the nominal system and
implemented, it would not need additional retuniog online auto-tuning, even in the

perturbed cases, which increases system reliabilthg operation of each component in the
nonlinear regime is also probed into and it is shéwat the fuzzy FOPID controller is able to
handle system nonlinearities better than the dthercontroller structures.
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