863 research outputs found

    A Semantic Overlay for Self- Peer-to-Peer Publish/Subscribe

    Get PDF
    International audiencePublish/Subscribe systems provide a useful platform for delivering data (events) from publishers to subscribers in an anonymous fashion in distributed networks. In this pa-per, we promote a novel design principle for self-* dynamic and reliable content-based publish/subscribe systems and perform a comparative analysis of its probabilistic and de-terministic implementations. More specifically, we present a generic content-based publish/subscribe system, called DPS (Dynamic Publish/Subscribe). DPS combines classi-cal content-based filtering with self-* (self-organizing, self-configuring, and self-healing) subscription-driven cluster-ing of subscribers. DPS gracefully adapts to failures and changes in the system while achieving scalable events deliv-ery. DPS includes a variety of fault-tolerant deterministic and probabilistic content-based publication/subscription schemes. These schemes are targeted toward scalability, and aim at reducing and distributing the number of mes-sages exchanged. Reliability and scalability of our system are shown through analytical and experimental evaluation

    Reliable and timely event notification for publish/subscribe services over the internet

    Get PDF
    The publish/subscribe paradigm is gaining attention for the development of several applications in wide area networks (WANs) due to its intrinsic time, space, and synchronization decoupling properties that meet the scalability and asynchrony requirements of those applications. However, while the communication in a WAN may be affected by the unpredictable behavior of the network, with messages that can be dropped or delayed, existing publish/subscribe solutions pay just a little attention to addressing these issues. On the contrary, applications such as business intelligence, critical infrastructures, and financial services require delivery guarantees with strict temporal deadlines. In this paper, we propose a framework that enforces both reliability and timeliness for publish/subscribe services over WAN. Specifically, we combine two different approaches: gossiping, to retrieve missing packets in case of incomplete information, and network coding, to reduce the number of retransmissions and, consequently, the latency. We provide an analytical model that describes the information recovery capabilities of our algorithm and a simulation-based study, taking into account a real workload from the Air Traffic Control domain, which evidences how the proposed solution is able to ensure reliable event notification over a WAN within a reasonable bounded time window. © 2013 IEEE

    Swarm-based Intelligent Routing (SIR) - a new approach for efficient routing in content centric delay tolerant networks

    Get PDF
    This paper introduces Swarm-based Intelligent Routing (SIR), a swarm intelligence based approach used for routing content in content centric Pocket Switched Networks. We first formalize the notion of optimal path in DTN, then introduce a swarm intelligence based routing protocol adapted to content centric DTN that use a publish/subscribe communication paradigm. The protocol works in a fully decentralized way in which nodes do not have any knowledge about the global topology. Nodes, via opportunistic contacts, update utility functions which synthesizes their spatio-temporal proximity from the content subscribers. This individual behavior applied by each node leads to the collective formation of gradient fields between content subscribers and content providers. Therefore, content routing simply sums up to follow the steepest slope along these gradient fields to reach subscribers who are located at the minima of the field. Via real traces analysis and simulation, we demonstrate the existence and relevance of such gradient field and show routing performance improvements when compared to classical routing protocols previously defined for information routing in DTN

    On Data Dissemination for Large-Scale Complex Critical Infrastructures

    Get PDF
    Middleware plays a key role for the achievement of the mission of future largescalecomplexcriticalinfrastructures, envisioned as federations of several heterogeneous systems over Internet. However, available approaches for datadissemination result still inadequate, since they are unable to scale and to jointly assure given QoS properties. In addition, the best-effort delivery strategy of Internet and the occurrence of node failures further exacerbate the correct and timely delivery of data, if the middleware is not equipped with means for tolerating such failures. This paper presents a peer-to-peer approach for resilient and scalable datadissemination over large-scalecomplexcriticalinfrastructures. The approach is based on the adoption of epidemic dissemination algorithms between peer groups, combined with the semi-active replication of group leaders to tolerate failures and assure the resilient delivery of data, despite the increasing scale and heterogeneity of the federated system. The effectiveness of the approach is shown by means of extensive simulation experiments, based on Stochastic Activity Networks

    Semi-probabilistic Routing for Highly Dynamic Networks

    Get PDF
    Abstract. In this paper we describe a semi-probabilistic routing approach designed to enable content-based publish-subscribe on highly dynamic networks, e.g., mobile, peer-to-peer, or wireless sensor networks. We present the rationale and high level strategy of our approach, and then show its application in a link-based graph overlay as well as in a broadcast-based sensor network. Simulation results confirm that, in both scenarios, our semi-probabilistic approach strikes a balance between entirely deterministic and entirely probabilistic solutions, achieving high reliability with low overhead

    04411 Abtracts Collection -- Service Management and Self-Organization in IP-based Networks

    Get PDF
    From 03.10.04 to 06.10.04, the Dagstuhl Seminar 04411 ``Service Management and Self-Organization in IP-based Networks\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Ordering, timeliness and reliability for publish/subscribe systems over WAN

    Get PDF
    In the last few years, the increasing use of the Internet and geo-political, sociological and financial changes induced by globalization, are paving the way for a connected world where the information is always available at the right place and the right time. As such, applications previously deployed for ``closed'' environmets, are now federating into geographically distributed systems connected through a Wide Area Network (WAN). By this evolution, in the near future no system will be isolated: every system will be composed by interconnected systems, i.e., it will be a System of Systems (SoS). Example of SoS are the Large-scale Complex Critical Infrastructure (LCCIs), such as power grids, transport infrastructures (airports and seaports), financial infrastructures, next generation intelligence platforms, to cite a few. In these systems, multiple sources of information generate a high volume of events that need to be delivered to all intended destinations by respecting several Quality of Service (QoS) constraints imposed by the critical nature of LCCIs. As such, particular attention is devoted to the middleware solution used to disseminate information in the SoS. Due to its inherently scalability provided by space, time and synchronization decoupling properties, the publish/subscribe paradigm is becoming attractive for the implementation of a middleware service for LCCIs. However, scalability is not the only requirement exhibited by SoS. Several services need to control a broader set of QoS requirements, such as timeliness, ordering and reliability. Unfortunately, current middleware solutions do not address QoS constraints required by SoS. Current publish/subscribe middleware solutions for the WAN environment offer only a best effort event dissemination, with no additional control on QoS. Just a few implementations try to address some isolated QoS policy, making them not suitable for a SoS scenario. The contribution of this thesis is to devise a QoS layer that can be posed on top of a generic publish/subscribe middleware that enriches its service by addressing: (i) ordering, (ii) reliability and (iii) timeliness in event dissemination in SoS over WAN. Specifically, we first analyze several real case studies, by highlighting their QoS requirements in terms of ordering, reliability and timeliness, and compare these requirements with both current research prototypes and commercial systems. Then, we fill the gap by proposing novel algorithms to address those requirements. The proposed protocols can also be combined together in order to provide the QoS level required by the particular application. In this way, QoS issues do not need to be addressed at application level, so as to leave applications to implement just their native functionalities

    Ordering, timeliness and reliability for publish/subscribe systems over WAN

    Get PDF
    In the last few years, the increasing use of the Internet and geo-political, sociological and financial changes induced by globalization, are paving the way for a connected world where the information is always available at the right place and the right time. As such, applications previously deployed for ``closed'' environmets, are now federating into geographically distributed systems connected through a Wide Area Network (WAN). By this evolution, in the near future no system will be isolated: every system will be composed by interconnected systems, i.e., it will be a System of Systems (SoS). Example of SoS are the Large-scale Complex Critical Infrastructure (LCCIs), such as power grids, transport infrastructures (airports and seaports), financial infrastructures, next generation intelligence platforms, to cite a few. In these systems, multiple sources of information generate a high volume of events that need to be delivered to all intended destinations by respecting several Quality of Service (QoS) constraints imposed by the critical nature of LCCIs. As such, particular attention is devoted to the middleware solution used to disseminate information in the SoS. Due to its inherently scalability provided by space, time and synchronization decoupling properties, the publish/subscribe paradigm is becoming attractive for the implementation of a middleware service for LCCIs. However, scalability is not the only requirement exhibited by SoS. Several services need to control a broader set of QoS requirements, such as timeliness, ordering and reliability. Unfortunately, current middleware solutions do not address QoS constraints required by SoS. Current publish/subscribe middleware solutions for the WAN environment offer only a best effort event dissemination, with no additional control on QoS. Just a few implementations try to address some isolated QoS policy, making them not suitable for a SoS scenario. The contribution of this thesis is to devise a QoS layer that can be posed on top of a generic publish/subscribe middleware that enriches its service by addressing: (i) ordering, (ii) reliability and (iii) timeliness in event dissemination in SoS over WAN. Specifically, we first analyze several real case studies, by highlighting their QoS requirements in terms of ordering, reliability and timeliness, and compare these requirements with both current research prototypes and commercial systems. Then, we fill the gap by proposing novel algorithms to address those requirements. The proposed protocols can also be combined together in order to provide the QoS level required by the particular application. In this way, QoS issues do not need to be addressed at application level, so as to leave applications to implement just their native functionalities

    Cooperation as a Service in VANET: Implementation and Simulation Results

    Get PDF
    The past decade has witnessed the emergence of Vehicular Ad-hoc Networks (VANET), specializing from the well-known Mobile Ad Hoc Networks (MANET) to Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) wireless communications. While the original motivation for Vehicular Networks was to promote traffic safety, recently it has become increasingly obvious that Vehicular Networks open new vistas for Internet access, providing weather or road condition, parking availability, distributed gaming, and advertisement. In previous papers [27,28], we introduced Cooperation as a Service (CaaS); a new service-oriented solution which enables improved and new services for the road users and an optimized use of the road network through vehicle\u27s cooperation and vehicle-to-vehicle communications. The current paper is an extension of the first ones; it describes an improved version of CaaS and provides its full implementation details and simulation results. CaaS structures the network into clusters, and uses Content Based Routing (CBR) for intra-cluster communications and DTN (Delay and disruption-Tolerant Network) routing for inter-cluster communications. To show the feasibility of our approach, we implemented and tested CaaS using Opnet modeler software package. Simulation results prove the correctness of our protocol and indicate that CaaS achieves higher performance as compared to an Epidemic approach
    • …
    corecore